1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "block/block-io.h" 29 #include "qapi/error.h" 30 #include "qcow2.h" 31 #include "qemu/bswap.h" 32 #include "qemu/memalign.h" 33 #include "trace.h" 34 35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs, 36 uint64_t exact_size) 37 { 38 BDRVQcow2State *s = bs->opaque; 39 int new_l1_size, i, ret; 40 41 if (exact_size >= s->l1_size) { 42 return 0; 43 } 44 45 new_l1_size = exact_size; 46 47 #ifdef DEBUG_ALLOC2 48 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); 49 #endif 50 51 BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); 52 ret = bdrv_co_pwrite_zeroes(bs->file, 53 s->l1_table_offset + new_l1_size * L1E_SIZE, 54 (s->l1_size - new_l1_size) * L1E_SIZE, 0); 55 if (ret < 0) { 56 goto fail; 57 } 58 59 ret = bdrv_co_flush(bs->file->bs); 60 if (ret < 0) { 61 goto fail; 62 } 63 64 BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); 65 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { 66 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { 67 continue; 68 } 69 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, 70 s->cluster_size, QCOW2_DISCARD_ALWAYS); 71 s->l1_table[i] = 0; 72 } 73 return 0; 74 75 fail: 76 /* 77 * If the write in the l1_table failed the image may contain a partially 78 * overwritten l1_table. In this case it would be better to clear the 79 * l1_table in memory to avoid possible image corruption. 80 */ 81 memset(s->l1_table + new_l1_size, 0, 82 (s->l1_size - new_l1_size) * L1E_SIZE); 83 return ret; 84 } 85 86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 87 bool exact_size) 88 { 89 BDRVQcow2State *s = bs->opaque; 90 int new_l1_size2, ret, i; 91 uint64_t *new_l1_table; 92 int64_t old_l1_table_offset, old_l1_size; 93 int64_t new_l1_table_offset, new_l1_size; 94 uint8_t data[12]; 95 96 if (min_size <= s->l1_size) 97 return 0; 98 99 /* Do a sanity check on min_size before trying to calculate new_l1_size 100 * (this prevents overflows during the while loop for the calculation of 101 * new_l1_size) */ 102 if (min_size > INT_MAX / L1E_SIZE) { 103 return -EFBIG; 104 } 105 106 if (exact_size) { 107 new_l1_size = min_size; 108 } else { 109 /* Bump size up to reduce the number of times we have to grow */ 110 new_l1_size = s->l1_size; 111 if (new_l1_size == 0) { 112 new_l1_size = 1; 113 } 114 while (min_size > new_l1_size) { 115 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); 116 } 117 } 118 119 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 120 if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) { 121 return -EFBIG; 122 } 123 124 #ifdef DEBUG_ALLOC2 125 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 126 s->l1_size, new_l1_size); 127 #endif 128 129 new_l1_size2 = L1E_SIZE * new_l1_size; 130 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2); 131 if (new_l1_table == NULL) { 132 return -ENOMEM; 133 } 134 memset(new_l1_table, 0, new_l1_size2); 135 136 if (s->l1_size) { 137 memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE); 138 } 139 140 /* write new table (align to cluster) */ 141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 143 if (new_l1_table_offset < 0) { 144 qemu_vfree(new_l1_table); 145 return new_l1_table_offset; 146 } 147 148 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 149 if (ret < 0) { 150 goto fail; 151 } 152 153 /* the L1 position has not yet been updated, so these clusters must 154 * indeed be completely free */ 155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 156 new_l1_size2, false); 157 if (ret < 0) { 158 goto fail; 159 } 160 161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 162 for(i = 0; i < s->l1_size; i++) 163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2, 165 new_l1_table, 0); 166 if (ret < 0) 167 goto fail; 168 for(i = 0; i < s->l1_size; i++) 169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 170 171 /* set new table */ 172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 173 stl_be_p(data, new_l1_size); 174 stq_be_p(data + 4, new_l1_table_offset); 175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 176 sizeof(data), data, 0); 177 if (ret < 0) { 178 goto fail; 179 } 180 qemu_vfree(s->l1_table); 181 old_l1_table_offset = s->l1_table_offset; 182 s->l1_table_offset = new_l1_table_offset; 183 s->l1_table = new_l1_table; 184 old_l1_size = s->l1_size; 185 s->l1_size = new_l1_size; 186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE, 187 QCOW2_DISCARD_OTHER); 188 return 0; 189 fail: 190 qemu_vfree(new_l1_table); 191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 192 QCOW2_DISCARD_OTHER); 193 return ret; 194 } 195 196 /* 197 * l2_load 198 * 199 * @bs: The BlockDriverState 200 * @offset: A guest offset, used to calculate what slice of the L2 201 * table to load. 202 * @l2_offset: Offset to the L2 table in the image file. 203 * @l2_slice: Location to store the pointer to the L2 slice. 204 * 205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables 206 * that are loaded by the qcow2 cache). If the slice is in the cache, 207 * the cache is used; otherwise the L2 slice is loaded from the image 208 * file. 209 */ 210 static int l2_load(BlockDriverState *bs, uint64_t offset, 211 uint64_t l2_offset, uint64_t **l2_slice) 212 { 213 BDRVQcow2State *s = bs->opaque; 214 int start_of_slice = l2_entry_size(s) * 215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset)); 216 217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice, 218 (void **)l2_slice); 219 } 220 221 /* 222 * Writes an L1 entry to disk (note that depending on the alignment 223 * requirements this function may write more that just one entry in 224 * order to prevent bdrv_pwrite from performing a read-modify-write) 225 */ 226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 227 { 228 BDRVQcow2State *s = bs->opaque; 229 int l1_start_index; 230 int i, ret; 231 int bufsize = MAX(L1E_SIZE, 232 MIN(bs->file->bs->bl.request_alignment, s->cluster_size)); 233 int nentries = bufsize / L1E_SIZE; 234 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries); 235 236 if (buf == NULL) { 237 return -ENOMEM; 238 } 239 240 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries); 241 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) { 242 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 243 } 244 245 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 246 s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false); 247 if (ret < 0) { 248 return ret; 249 } 250 251 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 252 ret = bdrv_pwrite_sync(bs->file, 253 s->l1_table_offset + L1E_SIZE * l1_start_index, 254 bufsize, buf, 0); 255 if (ret < 0) { 256 return ret; 257 } 258 259 return 0; 260 } 261 262 /* 263 * l2_allocate 264 * 265 * Allocate a new l2 entry in the file. If l1_index points to an already 266 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 267 * table) copy the contents of the old L2 table into the newly allocated one. 268 * Otherwise the new table is initialized with zeros. 269 * 270 */ 271 272 static int l2_allocate(BlockDriverState *bs, int l1_index) 273 { 274 BDRVQcow2State *s = bs->opaque; 275 uint64_t old_l2_offset; 276 uint64_t *l2_slice = NULL; 277 unsigned slice, slice_size2, n_slices; 278 int64_t l2_offset; 279 int ret; 280 281 old_l2_offset = s->l1_table[l1_index]; 282 283 trace_qcow2_l2_allocate(bs, l1_index); 284 285 /* allocate a new l2 entry */ 286 287 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s)); 288 if (l2_offset < 0) { 289 ret = l2_offset; 290 goto fail; 291 } 292 293 /* The offset must fit in the offset field of the L1 table entry */ 294 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset); 295 296 /* If we're allocating the table at offset 0 then something is wrong */ 297 if (l2_offset == 0) { 298 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 299 "allocation of L2 table at offset 0"); 300 ret = -EIO; 301 goto fail; 302 } 303 304 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 305 if (ret < 0) { 306 goto fail; 307 } 308 309 /* allocate a new entry in the l2 cache */ 310 311 slice_size2 = s->l2_slice_size * l2_entry_size(s); 312 n_slices = s->cluster_size / slice_size2; 313 314 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 315 for (slice = 0; slice < n_slices; slice++) { 316 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, 317 l2_offset + slice * slice_size2, 318 (void **) &l2_slice); 319 if (ret < 0) { 320 goto fail; 321 } 322 323 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 324 /* if there was no old l2 table, clear the new slice */ 325 memset(l2_slice, 0, slice_size2); 326 } else { 327 uint64_t *old_slice; 328 uint64_t old_l2_slice_offset = 329 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2; 330 331 /* if there was an old l2 table, read a slice from the disk */ 332 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 333 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset, 334 (void **) &old_slice); 335 if (ret < 0) { 336 goto fail; 337 } 338 339 memcpy(l2_slice, old_slice, slice_size2); 340 341 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice); 342 } 343 344 /* write the l2 slice to the file */ 345 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 346 347 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 348 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 349 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 350 } 351 352 ret = qcow2_cache_flush(bs, s->l2_table_cache); 353 if (ret < 0) { 354 goto fail; 355 } 356 357 /* update the L1 entry */ 358 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 359 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 360 ret = qcow2_write_l1_entry(bs, l1_index); 361 if (ret < 0) { 362 goto fail; 363 } 364 365 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 366 return 0; 367 368 fail: 369 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 370 if (l2_slice != NULL) { 371 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 372 } 373 s->l1_table[l1_index] = old_l2_offset; 374 if (l2_offset > 0) { 375 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s), 376 QCOW2_DISCARD_ALWAYS); 377 } 378 return ret; 379 } 380 381 /* 382 * For a given L2 entry, count the number of contiguous subclusters of 383 * the same type starting from @sc_from. Compressed clusters are 384 * treated as if they were divided into subclusters of size 385 * s->subcluster_size. 386 * 387 * Return the number of contiguous subclusters and set @type to the 388 * subcluster type. 389 * 390 * If the L2 entry is invalid return -errno and set @type to 391 * QCOW2_SUBCLUSTER_INVALID. 392 */ 393 static int qcow2_get_subcluster_range_type(BlockDriverState *bs, 394 uint64_t l2_entry, 395 uint64_t l2_bitmap, 396 unsigned sc_from, 397 QCow2SubclusterType *type) 398 { 399 BDRVQcow2State *s = bs->opaque; 400 uint32_t val; 401 402 *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from); 403 404 if (*type == QCOW2_SUBCLUSTER_INVALID) { 405 return -EINVAL; 406 } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) { 407 return s->subclusters_per_cluster - sc_from; 408 } 409 410 switch (*type) { 411 case QCOW2_SUBCLUSTER_NORMAL: 412 val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from); 413 return cto32(val) - sc_from; 414 415 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 416 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 417 val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32; 418 return cto32(val) - sc_from; 419 420 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 421 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 422 val = ((l2_bitmap >> 32) | l2_bitmap) 423 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from); 424 return ctz32(val) - sc_from; 425 426 default: 427 g_assert_not_reached(); 428 } 429 } 430 431 /* 432 * Return the number of contiguous subclusters of the exact same type 433 * in a given L2 slice, starting from cluster @l2_index, subcluster 434 * @sc_index. Allocated subclusters are required to be contiguous in 435 * the image file. 436 * At most @nb_clusters are checked (note that this means clusters, 437 * not subclusters). 438 * Compressed clusters are always processed one by one but for the 439 * purpose of this count they are treated as if they were divided into 440 * subclusters of size s->subcluster_size. 441 * On failure return -errno and update @l2_index to point to the 442 * invalid entry. 443 */ 444 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters, 445 unsigned sc_index, uint64_t *l2_slice, 446 unsigned *l2_index) 447 { 448 BDRVQcow2State *s = bs->opaque; 449 int i, count = 0; 450 bool check_offset = false; 451 uint64_t expected_offset = 0; 452 QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type; 453 454 assert(*l2_index + nb_clusters <= s->l2_slice_size); 455 456 for (i = 0; i < nb_clusters; i++) { 457 unsigned first_sc = (i == 0) ? sc_index : 0; 458 uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i); 459 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i); 460 int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap, 461 first_sc, &type); 462 if (ret < 0) { 463 *l2_index += i; /* Point to the invalid entry */ 464 return -EIO; 465 } 466 if (i == 0) { 467 if (type == QCOW2_SUBCLUSTER_COMPRESSED) { 468 /* Compressed clusters are always processed one by one */ 469 return ret; 470 } 471 expected_type = type; 472 expected_offset = l2_entry & L2E_OFFSET_MASK; 473 check_offset = (type == QCOW2_SUBCLUSTER_NORMAL || 474 type == QCOW2_SUBCLUSTER_ZERO_ALLOC || 475 type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC); 476 } else if (type != expected_type) { 477 break; 478 } else if (check_offset) { 479 expected_offset += s->cluster_size; 480 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) { 481 break; 482 } 483 } 484 count += ret; 485 /* Stop if there are type changes before the end of the cluster */ 486 if (first_sc + ret < s->subclusters_per_cluster) { 487 break; 488 } 489 } 490 491 return count; 492 } 493 494 static int coroutine_fn GRAPH_RDLOCK 495 do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset, 496 unsigned offset_in_cluster, QEMUIOVector *qiov) 497 { 498 int ret; 499 500 if (qiov->size == 0) { 501 return 0; 502 } 503 504 BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_READ); 505 506 if (!bs->drv) { 507 return -ENOMEDIUM; 508 } 509 510 /* 511 * We never deal with requests that don't satisfy 512 * bdrv_check_qiov_request(), and aligning requests to clusters never 513 * breaks this condition. So, do some assertions before calling 514 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments. 515 */ 516 assert(src_cluster_offset <= INT64_MAX); 517 assert(src_cluster_offset + offset_in_cluster <= INT64_MAX); 518 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */ 519 assert((uint64_t)qiov->size <= INT64_MAX); 520 bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size, 521 qiov, 0, &error_abort); 522 /* 523 * Call .bdrv_co_readv() directly instead of using the public block-layer 524 * interface. This avoids double I/O throttling and request tracking, 525 * which can lead to deadlock when block layer copy-on-read is enabled. 526 */ 527 ret = bs->drv->bdrv_co_preadv_part(bs, 528 src_cluster_offset + offset_in_cluster, 529 qiov->size, qiov, 0, 0); 530 if (ret < 0) { 531 return ret; 532 } 533 534 return 0; 535 } 536 537 static int coroutine_fn GRAPH_RDLOCK 538 do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset, 539 unsigned offset_in_cluster, QEMUIOVector *qiov) 540 { 541 BDRVQcow2State *s = bs->opaque; 542 int ret; 543 544 if (qiov->size == 0) { 545 return 0; 546 } 547 548 ret = qcow2_pre_write_overlap_check(bs, 0, 549 cluster_offset + offset_in_cluster, qiov->size, true); 550 if (ret < 0) { 551 return ret; 552 } 553 554 BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_WRITE); 555 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster, 556 qiov->size, qiov, 0); 557 if (ret < 0) { 558 return ret; 559 } 560 561 return 0; 562 } 563 564 565 /* 566 * get_host_offset 567 * 568 * For a given offset of the virtual disk find the equivalent host 569 * offset in the qcow2 file and store it in *host_offset. Neither 570 * offset needs to be aligned to a cluster boundary. 571 * 572 * If the cluster is unallocated then *host_offset will be 0. 573 * If the cluster is compressed then *host_offset will contain the l2 entry. 574 * 575 * On entry, *bytes is the maximum number of contiguous bytes starting at 576 * offset that we are interested in. 577 * 578 * On exit, *bytes is the number of bytes starting at offset that have the same 579 * subcluster type and (if applicable) are stored contiguously in the image 580 * file. The subcluster type is stored in *subcluster_type. 581 * Compressed clusters are always processed one by one. 582 * 583 * Returns 0 on success, -errno in error cases. 584 */ 585 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset, 586 unsigned int *bytes, uint64_t *host_offset, 587 QCow2SubclusterType *subcluster_type) 588 { 589 BDRVQcow2State *s = bs->opaque; 590 unsigned int l2_index, sc_index; 591 uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap; 592 int sc; 593 unsigned int offset_in_cluster; 594 uint64_t bytes_available, bytes_needed, nb_clusters; 595 QCow2SubclusterType type; 596 int ret; 597 598 offset_in_cluster = offset_into_cluster(s, offset); 599 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 600 601 /* compute how many bytes there are between the start of the cluster 602 * containing offset and the end of the l2 slice that contains 603 * the entry pointing to it */ 604 bytes_available = 605 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset))) 606 << s->cluster_bits; 607 608 if (bytes_needed > bytes_available) { 609 bytes_needed = bytes_available; 610 } 611 612 *host_offset = 0; 613 614 /* seek to the l2 offset in the l1 table */ 615 616 l1_index = offset_to_l1_index(s, offset); 617 if (l1_index >= s->l1_size) { 618 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN; 619 goto out; 620 } 621 622 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 623 if (!l2_offset) { 624 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN; 625 goto out; 626 } 627 628 if (offset_into_cluster(s, l2_offset)) { 629 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 630 " unaligned (L1 index: %#" PRIx64 ")", 631 l2_offset, l1_index); 632 return -EIO; 633 } 634 635 /* load the l2 slice in memory */ 636 637 ret = l2_load(bs, offset, l2_offset, &l2_slice); 638 if (ret < 0) { 639 return ret; 640 } 641 642 /* find the cluster offset for the given disk offset */ 643 644 l2_index = offset_to_l2_slice_index(s, offset); 645 sc_index = offset_to_sc_index(s, offset); 646 l2_entry = get_l2_entry(s, l2_slice, l2_index); 647 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 648 649 nb_clusters = size_to_clusters(s, bytes_needed); 650 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 651 * integers; the minimum cluster size is 512, so this assertion is always 652 * true */ 653 assert(nb_clusters <= INT_MAX); 654 655 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 656 if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN || 657 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) { 658 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 659 " in pre-v3 image (L2 offset: %#" PRIx64 660 ", L2 index: %#x)", l2_offset, l2_index); 661 ret = -EIO; 662 goto fail; 663 } 664 switch (type) { 665 case QCOW2_SUBCLUSTER_INVALID: 666 break; /* This is handled by count_contiguous_subclusters() below */ 667 case QCOW2_SUBCLUSTER_COMPRESSED: 668 if (has_data_file(bs)) { 669 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster " 670 "entry found in image with external data " 671 "file (L2 offset: %#" PRIx64 ", L2 index: " 672 "%#x)", l2_offset, l2_index); 673 ret = -EIO; 674 goto fail; 675 } 676 *host_offset = l2_entry; 677 break; 678 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 679 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 680 break; 681 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 682 case QCOW2_SUBCLUSTER_NORMAL: 683 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: { 684 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK; 685 *host_offset = host_cluster_offset + offset_in_cluster; 686 if (offset_into_cluster(s, host_cluster_offset)) { 687 qcow2_signal_corruption(bs, true, -1, -1, 688 "Cluster allocation offset %#" 689 PRIx64 " unaligned (L2 offset: %#" PRIx64 690 ", L2 index: %#x)", host_cluster_offset, 691 l2_offset, l2_index); 692 ret = -EIO; 693 goto fail; 694 } 695 if (has_data_file(bs) && *host_offset != offset) { 696 qcow2_signal_corruption(bs, true, -1, -1, 697 "External data file host cluster offset %#" 698 PRIx64 " does not match guest cluster " 699 "offset: %#" PRIx64 700 ", L2 index: %#x)", host_cluster_offset, 701 offset - offset_in_cluster, l2_index); 702 ret = -EIO; 703 goto fail; 704 } 705 break; 706 } 707 default: 708 abort(); 709 } 710 711 sc = count_contiguous_subclusters(bs, nb_clusters, sc_index, 712 l2_slice, &l2_index); 713 if (sc < 0) { 714 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found " 715 " (L2 offset: %#" PRIx64 ", L2 index: %#x)", 716 l2_offset, l2_index); 717 ret = -EIO; 718 goto fail; 719 } 720 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 721 722 bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits; 723 724 out: 725 if (bytes_available > bytes_needed) { 726 bytes_available = bytes_needed; 727 } 728 729 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 730 * subtracting offset_in_cluster will therefore definitely yield something 731 * not exceeding UINT_MAX */ 732 assert(bytes_available - offset_in_cluster <= UINT_MAX); 733 *bytes = bytes_available - offset_in_cluster; 734 735 *subcluster_type = type; 736 737 return 0; 738 739 fail: 740 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice); 741 return ret; 742 } 743 744 /* 745 * get_cluster_table 746 * 747 * for a given disk offset, load (and allocate if needed) 748 * the appropriate slice of its l2 table. 749 * 750 * the cluster index in the l2 slice is given to the caller. 751 * 752 * Returns 0 on success, -errno in failure case 753 */ 754 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 755 uint64_t **new_l2_slice, 756 int *new_l2_index) 757 { 758 BDRVQcow2State *s = bs->opaque; 759 unsigned int l2_index; 760 uint64_t l1_index, l2_offset; 761 uint64_t *l2_slice = NULL; 762 int ret; 763 764 /* seek to the l2 offset in the l1 table */ 765 766 l1_index = offset_to_l1_index(s, offset); 767 if (l1_index >= s->l1_size) { 768 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 769 if (ret < 0) { 770 return ret; 771 } 772 } 773 774 assert(l1_index < s->l1_size); 775 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 776 if (offset_into_cluster(s, l2_offset)) { 777 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 778 " unaligned (L1 index: %#" PRIx64 ")", 779 l2_offset, l1_index); 780 return -EIO; 781 } 782 783 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) { 784 /* First allocate a new L2 table (and do COW if needed) */ 785 ret = l2_allocate(bs, l1_index); 786 if (ret < 0) { 787 return ret; 788 } 789 790 /* Then decrease the refcount of the old table */ 791 if (l2_offset) { 792 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s), 793 QCOW2_DISCARD_OTHER); 794 } 795 796 /* Get the offset of the newly-allocated l2 table */ 797 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 798 assert(offset_into_cluster(s, l2_offset) == 0); 799 } 800 801 /* load the l2 slice in memory */ 802 ret = l2_load(bs, offset, l2_offset, &l2_slice); 803 if (ret < 0) { 804 return ret; 805 } 806 807 /* find the cluster offset for the given disk offset */ 808 809 l2_index = offset_to_l2_slice_index(s, offset); 810 811 *new_l2_slice = l2_slice; 812 *new_l2_index = l2_index; 813 814 return 0; 815 } 816 817 /* 818 * alloc_compressed_cluster_offset 819 * 820 * For a given offset on the virtual disk, allocate a new compressed cluster 821 * and put the host offset of the cluster into *host_offset. If a cluster is 822 * already allocated at the offset, return an error. 823 * 824 * Return 0 on success and -errno in error cases 825 */ 826 int coroutine_fn GRAPH_RDLOCK 827 qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, uint64_t offset, 828 int compressed_size, uint64_t *host_offset) 829 { 830 BDRVQcow2State *s = bs->opaque; 831 int l2_index, ret; 832 uint64_t *l2_slice; 833 int64_t cluster_offset; 834 int nb_csectors; 835 836 if (has_data_file(bs)) { 837 return 0; 838 } 839 840 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 841 if (ret < 0) { 842 return ret; 843 } 844 845 /* Compression can't overwrite anything. Fail if the cluster was already 846 * allocated. */ 847 cluster_offset = get_l2_entry(s, l2_slice, l2_index); 848 if (cluster_offset & L2E_OFFSET_MASK) { 849 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 850 return -EIO; 851 } 852 853 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 854 if (cluster_offset < 0) { 855 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 856 return cluster_offset; 857 } 858 859 nb_csectors = 860 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE - 861 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE); 862 863 /* The offset and size must fit in their fields of the L2 table entry */ 864 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset); 865 assert((nb_csectors & s->csize_mask) == nb_csectors); 866 867 cluster_offset |= QCOW_OFLAG_COMPRESSED | 868 ((uint64_t)nb_csectors << s->csize_shift); 869 870 /* update L2 table */ 871 872 /* compressed clusters never have the copied flag */ 873 874 BLKDBG_CO_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 875 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 876 set_l2_entry(s, l2_slice, l2_index, cluster_offset); 877 if (has_subclusters(s)) { 878 set_l2_bitmap(s, l2_slice, l2_index, 0); 879 } 880 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 881 882 *host_offset = cluster_offset & s->cluster_offset_mask; 883 return 0; 884 } 885 886 static int coroutine_fn GRAPH_RDLOCK 887 perform_cow(BlockDriverState *bs, QCowL2Meta *m) 888 { 889 BDRVQcow2State *s = bs->opaque; 890 Qcow2COWRegion *start = &m->cow_start; 891 Qcow2COWRegion *end = &m->cow_end; 892 unsigned buffer_size; 893 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); 894 bool merge_reads; 895 uint8_t *start_buffer, *end_buffer; 896 QEMUIOVector qiov; 897 int ret; 898 899 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); 900 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); 901 assert(start->offset + start->nb_bytes <= end->offset); 902 903 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) { 904 return 0; 905 } 906 907 /* If we have to read both the start and end COW regions and the 908 * middle region is not too large then perform just one read 909 * operation */ 910 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; 911 if (merge_reads) { 912 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; 913 } else { 914 /* If we have to do two reads, add some padding in the middle 915 * if necessary to make sure that the end region is optimally 916 * aligned. */ 917 size_t align = bdrv_opt_mem_align(bs); 918 assert(align > 0 && align <= UINT_MAX); 919 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= 920 UINT_MAX - end->nb_bytes); 921 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; 922 } 923 924 /* Reserve a buffer large enough to store all the data that we're 925 * going to read */ 926 start_buffer = qemu_try_blockalign(bs, buffer_size); 927 if (start_buffer == NULL) { 928 return -ENOMEM; 929 } 930 /* The part of the buffer where the end region is located */ 931 end_buffer = start_buffer + buffer_size - end->nb_bytes; 932 933 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? 934 qemu_iovec_subvec_niov(m->data_qiov, 935 m->data_qiov_offset, 936 data_bytes) 937 : 0)); 938 939 qemu_co_mutex_unlock(&s->lock); 940 /* First we read the existing data from both COW regions. We 941 * either read the whole region in one go, or the start and end 942 * regions separately. */ 943 if (merge_reads) { 944 qemu_iovec_add(&qiov, start_buffer, buffer_size); 945 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 946 } else { 947 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 948 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 949 if (ret < 0) { 950 goto fail; 951 } 952 953 qemu_iovec_reset(&qiov); 954 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 955 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); 956 } 957 if (ret < 0) { 958 goto fail; 959 } 960 961 /* Encrypt the data if necessary before writing it */ 962 if (bs->encrypted) { 963 ret = qcow2_co_encrypt(bs, 964 m->alloc_offset + start->offset, 965 m->offset + start->offset, 966 start_buffer, start->nb_bytes); 967 if (ret < 0) { 968 goto fail; 969 } 970 971 ret = qcow2_co_encrypt(bs, 972 m->alloc_offset + end->offset, 973 m->offset + end->offset, 974 end_buffer, end->nb_bytes); 975 if (ret < 0) { 976 goto fail; 977 } 978 } 979 980 /* And now we can write everything. If we have the guest data we 981 * can write everything in one single operation */ 982 if (m->data_qiov) { 983 qemu_iovec_reset(&qiov); 984 if (start->nb_bytes) { 985 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 986 } 987 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes); 988 if (end->nb_bytes) { 989 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 990 } 991 /* NOTE: we have a write_aio blkdebug event here followed by 992 * a cow_write one in do_perform_cow_write(), but there's only 993 * one single I/O operation */ 994 BLKDBG_CO_EVENT(bs->file, BLKDBG_WRITE_AIO); 995 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 996 } else { 997 /* If there's no guest data then write both COW regions separately */ 998 qemu_iovec_reset(&qiov); 999 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 1000 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 1001 if (ret < 0) { 1002 goto fail; 1003 } 1004 1005 qemu_iovec_reset(&qiov); 1006 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 1007 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); 1008 } 1009 1010 fail: 1011 qemu_co_mutex_lock(&s->lock); 1012 1013 /* 1014 * Before we update the L2 table to actually point to the new cluster, we 1015 * need to be sure that the refcounts have been increased and COW was 1016 * handled. 1017 */ 1018 if (ret == 0) { 1019 qcow2_cache_depends_on_flush(s->l2_table_cache); 1020 } 1021 1022 qemu_vfree(start_buffer); 1023 qemu_iovec_destroy(&qiov); 1024 return ret; 1025 } 1026 1027 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs, 1028 QCowL2Meta *m) 1029 { 1030 BDRVQcow2State *s = bs->opaque; 1031 int i, j = 0, l2_index, ret; 1032 uint64_t *old_cluster, *l2_slice; 1033 uint64_t cluster_offset = m->alloc_offset; 1034 1035 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 1036 assert(m->nb_clusters > 0); 1037 1038 old_cluster = g_try_new(uint64_t, m->nb_clusters); 1039 if (old_cluster == NULL) { 1040 ret = -ENOMEM; 1041 goto err; 1042 } 1043 1044 /* copy content of unmodified sectors */ 1045 ret = perform_cow(bs, m); 1046 if (ret < 0) { 1047 goto err; 1048 } 1049 1050 /* Update L2 table. */ 1051 if (s->use_lazy_refcounts) { 1052 qcow2_mark_dirty(bs); 1053 } 1054 if (qcow2_need_accurate_refcounts(s)) { 1055 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1056 s->refcount_block_cache); 1057 } 1058 1059 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index); 1060 if (ret < 0) { 1061 goto err; 1062 } 1063 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1064 1065 assert(l2_index + m->nb_clusters <= s->l2_slice_size); 1066 assert(m->cow_end.offset + m->cow_end.nb_bytes <= 1067 m->nb_clusters << s->cluster_bits); 1068 for (i = 0; i < m->nb_clusters; i++) { 1069 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits); 1070 /* if two concurrent writes happen to the same unallocated cluster 1071 * each write allocates separate cluster and writes data concurrently. 1072 * The first one to complete updates l2 table with pointer to its 1073 * cluster the second one has to do RMW (which is done above by 1074 * perform_cow()), update l2 table with its cluster pointer and free 1075 * old cluster. This is what this loop does */ 1076 if (get_l2_entry(s, l2_slice, l2_index + i) != 0) { 1077 old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i); 1078 } 1079 1080 /* The offset must fit in the offset field of the L2 table entry */ 1081 assert((offset & L2E_OFFSET_MASK) == offset); 1082 1083 set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED); 1084 1085 /* Update bitmap with the subclusters that were just written */ 1086 if (has_subclusters(s) && !m->prealloc) { 1087 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1088 unsigned written_from = m->cow_start.offset; 1089 unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes; 1090 int first_sc, last_sc; 1091 /* Narrow written_from and written_to down to the current cluster */ 1092 written_from = MAX(written_from, i << s->cluster_bits); 1093 written_to = MIN(written_to, (i + 1) << s->cluster_bits); 1094 assert(written_from < written_to); 1095 first_sc = offset_to_sc_index(s, written_from); 1096 last_sc = offset_to_sc_index(s, written_to - 1); 1097 l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1); 1098 l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1); 1099 set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap); 1100 } 1101 } 1102 1103 1104 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1105 1106 /* 1107 * If this was a COW, we need to decrease the refcount of the old cluster. 1108 * 1109 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 1110 * clusters), the next write will reuse them anyway. 1111 */ 1112 if (!m->keep_old_clusters && j != 0) { 1113 for (i = 0; i < j; i++) { 1114 qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER); 1115 } 1116 } 1117 1118 ret = 0; 1119 err: 1120 g_free(old_cluster); 1121 return ret; 1122 } 1123 1124 /** 1125 * Frees the allocated clusters because the request failed and they won't 1126 * actually be linked. 1127 */ 1128 void coroutine_fn qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m) 1129 { 1130 BDRVQcow2State *s = bs->opaque; 1131 if (!has_data_file(bs) && !m->keep_old_clusters) { 1132 qcow2_free_clusters(bs, m->alloc_offset, 1133 m->nb_clusters << s->cluster_bits, 1134 QCOW2_DISCARD_NEVER); 1135 } 1136 } 1137 1138 /* 1139 * For a given write request, create a new QCowL2Meta structure, add 1140 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write 1141 * request does not need copy-on-write or changes to the L2 metadata 1142 * then this function does nothing. 1143 * 1144 * @host_cluster_offset points to the beginning of the first cluster. 1145 * 1146 * @guest_offset and @bytes indicate the offset and length of the 1147 * request. 1148 * 1149 * @l2_slice contains the L2 entries of all clusters involved in this 1150 * write request. 1151 * 1152 * If @keep_old is true it means that the clusters were already 1153 * allocated and will be overwritten. If false then the clusters are 1154 * new and we have to decrease the reference count of the old ones. 1155 * 1156 * Returns 0 on success, -errno on failure. 1157 */ 1158 static int coroutine_fn calculate_l2_meta(BlockDriverState *bs, 1159 uint64_t host_cluster_offset, 1160 uint64_t guest_offset, unsigned bytes, 1161 uint64_t *l2_slice, QCowL2Meta **m, 1162 bool keep_old) 1163 { 1164 BDRVQcow2State *s = bs->opaque; 1165 int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset); 1166 uint64_t l2_entry, l2_bitmap; 1167 unsigned cow_start_from, cow_end_to; 1168 unsigned cow_start_to = offset_into_cluster(s, guest_offset); 1169 unsigned cow_end_from = cow_start_to + bytes; 1170 unsigned nb_clusters = size_to_clusters(s, cow_end_from); 1171 QCowL2Meta *old_m = *m; 1172 QCow2SubclusterType type; 1173 int i; 1174 bool skip_cow = keep_old; 1175 1176 assert(nb_clusters <= s->l2_slice_size - l2_index); 1177 1178 /* Check the type of all affected subclusters */ 1179 for (i = 0; i < nb_clusters; i++) { 1180 l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1181 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1182 if (skip_cow) { 1183 unsigned write_from = MAX(cow_start_to, i << s->cluster_bits); 1184 unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits); 1185 int first_sc = offset_to_sc_index(s, write_from); 1186 int last_sc = offset_to_sc_index(s, write_to - 1); 1187 int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap, 1188 first_sc, &type); 1189 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */ 1190 if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) { 1191 skip_cow = false; 1192 } 1193 } else { 1194 /* If we can't skip the cow we can still look for invalid entries */ 1195 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0); 1196 } 1197 if (type == QCOW2_SUBCLUSTER_INVALID) { 1198 int l1_index = offset_to_l1_index(s, guest_offset); 1199 uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 1200 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster " 1201 "entry found (L2 offset: %#" PRIx64 1202 ", L2 index: %#x)", 1203 l2_offset, l2_index + i); 1204 return -EIO; 1205 } 1206 } 1207 1208 if (skip_cow) { 1209 return 0; 1210 } 1211 1212 /* Get the L2 entry of the first cluster */ 1213 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1214 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 1215 sc_index = offset_to_sc_index(s, guest_offset); 1216 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 1217 1218 if (!keep_old) { 1219 switch (type) { 1220 case QCOW2_SUBCLUSTER_COMPRESSED: 1221 cow_start_from = 0; 1222 break; 1223 case QCOW2_SUBCLUSTER_NORMAL: 1224 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1225 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1226 if (has_subclusters(s)) { 1227 /* Skip all leading zero and unallocated subclusters */ 1228 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC; 1229 cow_start_from = 1230 MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits; 1231 } else { 1232 cow_start_from = 0; 1233 } 1234 break; 1235 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 1236 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 1237 cow_start_from = sc_index << s->subcluster_bits; 1238 break; 1239 default: 1240 g_assert_not_reached(); 1241 } 1242 } else { 1243 switch (type) { 1244 case QCOW2_SUBCLUSTER_NORMAL: 1245 cow_start_from = cow_start_to; 1246 break; 1247 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1248 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1249 cow_start_from = sc_index << s->subcluster_bits; 1250 break; 1251 default: 1252 g_assert_not_reached(); 1253 } 1254 } 1255 1256 /* Get the L2 entry of the last cluster */ 1257 l2_index += nb_clusters - 1; 1258 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1259 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 1260 sc_index = offset_to_sc_index(s, guest_offset + bytes - 1); 1261 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 1262 1263 if (!keep_old) { 1264 switch (type) { 1265 case QCOW2_SUBCLUSTER_COMPRESSED: 1266 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size); 1267 break; 1268 case QCOW2_SUBCLUSTER_NORMAL: 1269 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1270 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1271 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size); 1272 if (has_subclusters(s)) { 1273 /* Skip all trailing zero and unallocated subclusters */ 1274 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC; 1275 cow_end_to -= 1276 MIN(s->subclusters_per_cluster - sc_index - 1, 1277 clz32(alloc_bitmap)) << s->subcluster_bits; 1278 } 1279 break; 1280 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 1281 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 1282 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size); 1283 break; 1284 default: 1285 g_assert_not_reached(); 1286 } 1287 } else { 1288 switch (type) { 1289 case QCOW2_SUBCLUSTER_NORMAL: 1290 cow_end_to = cow_end_from; 1291 break; 1292 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1293 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1294 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size); 1295 break; 1296 default: 1297 g_assert_not_reached(); 1298 } 1299 } 1300 1301 *m = g_malloc0(sizeof(**m)); 1302 **m = (QCowL2Meta) { 1303 .next = old_m, 1304 1305 .alloc_offset = host_cluster_offset, 1306 .offset = start_of_cluster(s, guest_offset), 1307 .nb_clusters = nb_clusters, 1308 1309 .keep_old_clusters = keep_old, 1310 1311 .cow_start = { 1312 .offset = cow_start_from, 1313 .nb_bytes = cow_start_to - cow_start_from, 1314 }, 1315 .cow_end = { 1316 .offset = cow_end_from, 1317 .nb_bytes = cow_end_to - cow_end_from, 1318 }, 1319 }; 1320 1321 qemu_co_queue_init(&(*m)->dependent_requests); 1322 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1323 1324 return 0; 1325 } 1326 1327 /* 1328 * Returns true if writing to the cluster pointed to by @l2_entry 1329 * requires a new allocation (that is, if the cluster is unallocated 1330 * or has refcount > 1 and therefore cannot be written in-place). 1331 */ 1332 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry) 1333 { 1334 switch (qcow2_get_cluster_type(bs, l2_entry)) { 1335 case QCOW2_CLUSTER_NORMAL: 1336 case QCOW2_CLUSTER_ZERO_ALLOC: 1337 if (l2_entry & QCOW_OFLAG_COPIED) { 1338 return false; 1339 } 1340 /* fallthrough */ 1341 case QCOW2_CLUSTER_UNALLOCATED: 1342 case QCOW2_CLUSTER_COMPRESSED: 1343 case QCOW2_CLUSTER_ZERO_PLAIN: 1344 return true; 1345 default: 1346 abort(); 1347 } 1348 } 1349 1350 /* 1351 * Returns the number of contiguous clusters that can be written to 1352 * using one single write request, starting from @l2_index. 1353 * At most @nb_clusters are checked. 1354 * 1355 * If @new_alloc is true this counts clusters that are either 1356 * unallocated, or allocated but with refcount > 1 (so they need to be 1357 * newly allocated and COWed). 1358 * 1359 * If @new_alloc is false this counts clusters that are already 1360 * allocated and can be overwritten in-place (this includes clusters 1361 * of type QCOW2_CLUSTER_ZERO_ALLOC). 1362 */ 1363 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters, 1364 uint64_t *l2_slice, int l2_index, 1365 bool new_alloc) 1366 { 1367 BDRVQcow2State *s = bs->opaque; 1368 uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index); 1369 uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK; 1370 int i; 1371 1372 for (i = 0; i < nb_clusters; i++) { 1373 l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1374 if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) { 1375 break; 1376 } 1377 if (!new_alloc) { 1378 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) { 1379 break; 1380 } 1381 expected_offset += s->cluster_size; 1382 } 1383 } 1384 1385 assert(i <= nb_clusters); 1386 return i; 1387 } 1388 1389 /* 1390 * Check if there already is an AIO write request in flight which allocates 1391 * the same cluster. In this case we need to wait until the previous 1392 * request has completed and updated the L2 table accordingly. 1393 * 1394 * Returns: 1395 * 0 if there was no dependency. *cur_bytes indicates the number of 1396 * bytes from guest_offset that can be read before the next 1397 * dependency must be processed (or the request is complete) 1398 * 1399 * -EAGAIN if we had to wait for another request, previously gathered 1400 * information on cluster allocation may be invalid now. The caller 1401 * must start over anyway, so consider *cur_bytes undefined. 1402 */ 1403 static int coroutine_fn handle_dependencies(BlockDriverState *bs, 1404 uint64_t guest_offset, 1405 uint64_t *cur_bytes, QCowL2Meta **m) 1406 { 1407 BDRVQcow2State *s = bs->opaque; 1408 QCowL2Meta *old_alloc; 1409 uint64_t bytes = *cur_bytes; 1410 1411 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 1412 1413 uint64_t start = guest_offset; 1414 uint64_t end = start + bytes; 1415 uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc)); 1416 uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size); 1417 1418 if (end <= old_start || start >= old_end) { 1419 /* No intersection */ 1420 continue; 1421 } 1422 1423 if (old_alloc->keep_old_clusters && 1424 (end <= l2meta_cow_start(old_alloc) || 1425 start >= l2meta_cow_end(old_alloc))) 1426 { 1427 /* 1428 * Clusters intersect but COW areas don't. And cluster itself is 1429 * already allocated. So, there is no actual conflict. 1430 */ 1431 continue; 1432 } 1433 1434 /* Conflict */ 1435 1436 if (start < old_start) { 1437 /* Stop at the start of a running allocation */ 1438 bytes = old_start - start; 1439 } else { 1440 bytes = 0; 1441 } 1442 1443 /* 1444 * Stop if an l2meta already exists. After yielding, it wouldn't 1445 * be valid any more, so we'd have to clean up the old L2Metas 1446 * and deal with requests depending on them before starting to 1447 * gather new ones. Not worth the trouble. 1448 */ 1449 if (bytes == 0 && *m) { 1450 *cur_bytes = 0; 1451 return 0; 1452 } 1453 1454 if (bytes == 0) { 1455 /* 1456 * Wait for the dependency to complete. We need to recheck 1457 * the free/allocated clusters when we continue. 1458 */ 1459 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 1460 return -EAGAIN; 1461 } 1462 } 1463 1464 /* Make sure that existing clusters and new allocations are only used up to 1465 * the next dependency if we shortened the request above */ 1466 *cur_bytes = bytes; 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * Checks how many already allocated clusters that don't require a new 1473 * allocation there are at the given guest_offset (up to *bytes). 1474 * If *host_offset is not INV_OFFSET, only physically contiguous clusters 1475 * beginning at this host offset are counted. 1476 * 1477 * Note that guest_offset may not be cluster aligned. In this case, the 1478 * returned *host_offset points to exact byte referenced by guest_offset and 1479 * therefore isn't cluster aligned as well. 1480 * 1481 * Returns: 1482 * 0: if no allocated clusters are available at the given offset. 1483 * *bytes is normally unchanged. It is set to 0 if the cluster 1484 * is allocated and can be overwritten in-place but doesn't have 1485 * the right physical offset. 1486 * 1487 * 1: if allocated clusters that can be overwritten in place are 1488 * available at the requested offset. *bytes may have decreased 1489 * and describes the length of the area that can be written to. 1490 * 1491 * -errno: in error cases 1492 */ 1493 static int coroutine_fn handle_copied(BlockDriverState *bs, 1494 uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes, 1495 QCowL2Meta **m) 1496 { 1497 BDRVQcow2State *s = bs->opaque; 1498 int l2_index; 1499 uint64_t l2_entry, cluster_offset; 1500 uint64_t *l2_slice; 1501 uint64_t nb_clusters; 1502 unsigned int keep_clusters; 1503 int ret; 1504 1505 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 1506 *bytes); 1507 1508 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset) 1509 == offset_into_cluster(s, *host_offset)); 1510 1511 /* 1512 * Calculate the number of clusters to look for. We stop at L2 slice 1513 * boundaries to keep things simple. 1514 */ 1515 nb_clusters = 1516 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1517 1518 l2_index = offset_to_l2_slice_index(s, guest_offset); 1519 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1520 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */ 1521 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits); 1522 1523 /* Find L2 entry for the first involved cluster */ 1524 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1525 if (ret < 0) { 1526 return ret; 1527 } 1528 1529 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1530 cluster_offset = l2_entry & L2E_OFFSET_MASK; 1531 1532 if (!cluster_needs_new_alloc(bs, l2_entry)) { 1533 if (offset_into_cluster(s, cluster_offset)) { 1534 qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset " 1535 "%#" PRIx64 " unaligned (guest offset: %#" 1536 PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ? 1537 "Preallocated zero" : "Data", 1538 cluster_offset, guest_offset); 1539 ret = -EIO; 1540 goto out; 1541 } 1542 1543 /* If a specific host_offset is required, check it */ 1544 if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) { 1545 *bytes = 0; 1546 ret = 0; 1547 goto out; 1548 } 1549 1550 /* We keep all QCOW_OFLAG_COPIED clusters */ 1551 keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice, 1552 l2_index, false); 1553 assert(keep_clusters <= nb_clusters); 1554 1555 *bytes = MIN(*bytes, 1556 keep_clusters * s->cluster_size 1557 - offset_into_cluster(s, guest_offset)); 1558 assert(*bytes != 0); 1559 1560 ret = calculate_l2_meta(bs, cluster_offset, guest_offset, 1561 *bytes, l2_slice, m, true); 1562 if (ret < 0) { 1563 goto out; 1564 } 1565 1566 ret = 1; 1567 } else { 1568 ret = 0; 1569 } 1570 1571 /* Cleanup */ 1572 out: 1573 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1574 1575 /* Only return a host offset if we actually made progress. Otherwise we 1576 * would make requirements for handle_alloc() that it can't fulfill */ 1577 if (ret > 0) { 1578 *host_offset = cluster_offset + offset_into_cluster(s, guest_offset); 1579 } 1580 1581 return ret; 1582 } 1583 1584 /* 1585 * Allocates new clusters for the given guest_offset. 1586 * 1587 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1588 * contain the number of clusters that have been allocated and are contiguous 1589 * in the image file. 1590 * 1591 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file 1592 * at which the new clusters must start. *nb_clusters can be 0 on return in 1593 * this case if the cluster at host_offset is already in use. If *host_offset 1594 * is INV_OFFSET, the clusters can be allocated anywhere in the image file. 1595 * 1596 * *host_offset is updated to contain the offset into the image file at which 1597 * the first allocated cluster starts. 1598 * 1599 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1600 * function has been waiting for another request and the allocation must be 1601 * restarted, but the whole request should not be failed. 1602 */ 1603 static int coroutine_fn do_alloc_cluster_offset(BlockDriverState *bs, 1604 uint64_t guest_offset, 1605 uint64_t *host_offset, 1606 uint64_t *nb_clusters) 1607 { 1608 BDRVQcow2State *s = bs->opaque; 1609 1610 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1611 *host_offset, *nb_clusters); 1612 1613 if (has_data_file(bs)) { 1614 assert(*host_offset == INV_OFFSET || 1615 *host_offset == start_of_cluster(s, guest_offset)); 1616 *host_offset = start_of_cluster(s, guest_offset); 1617 return 0; 1618 } 1619 1620 /* Allocate new clusters */ 1621 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1622 if (*host_offset == INV_OFFSET) { 1623 int64_t cluster_offset = 1624 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1625 if (cluster_offset < 0) { 1626 return cluster_offset; 1627 } 1628 *host_offset = cluster_offset; 1629 return 0; 1630 } else { 1631 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1632 if (ret < 0) { 1633 return ret; 1634 } 1635 *nb_clusters = ret; 1636 return 0; 1637 } 1638 } 1639 1640 /* 1641 * Allocates new clusters for an area that is either still unallocated or 1642 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET, 1643 * clusters are only allocated if the new allocation can match the specified 1644 * host offset. 1645 * 1646 * Note that guest_offset may not be cluster aligned. In this case, the 1647 * returned *host_offset points to exact byte referenced by guest_offset and 1648 * therefore isn't cluster aligned as well. 1649 * 1650 * Returns: 1651 * 0: if no clusters could be allocated. *bytes is set to 0, 1652 * *host_offset is left unchanged. 1653 * 1654 * 1: if new clusters were allocated. *bytes may be decreased if the 1655 * new allocation doesn't cover all of the requested area. 1656 * *host_offset is updated to contain the host offset of the first 1657 * newly allocated cluster. 1658 * 1659 * -errno: in error cases 1660 */ 1661 static int coroutine_fn handle_alloc(BlockDriverState *bs, 1662 uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes, 1663 QCowL2Meta **m) 1664 { 1665 BDRVQcow2State *s = bs->opaque; 1666 int l2_index; 1667 uint64_t *l2_slice; 1668 uint64_t nb_clusters; 1669 int ret; 1670 1671 uint64_t alloc_cluster_offset; 1672 1673 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1674 *bytes); 1675 assert(*bytes > 0); 1676 1677 /* 1678 * Calculate the number of clusters to look for. We stop at L2 slice 1679 * boundaries to keep things simple. 1680 */ 1681 nb_clusters = 1682 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1683 1684 l2_index = offset_to_l2_slice_index(s, guest_offset); 1685 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1686 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */ 1687 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits); 1688 1689 /* Find L2 entry for the first involved cluster */ 1690 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1691 if (ret < 0) { 1692 return ret; 1693 } 1694 1695 nb_clusters = count_single_write_clusters(bs, nb_clusters, 1696 l2_slice, l2_index, true); 1697 1698 /* This function is only called when there were no non-COW clusters, so if 1699 * we can't find any unallocated or COW clusters either, something is 1700 * wrong with our code. */ 1701 assert(nb_clusters > 0); 1702 1703 /* Allocate at a given offset in the image file */ 1704 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET : 1705 start_of_cluster(s, *host_offset); 1706 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1707 &nb_clusters); 1708 if (ret < 0) { 1709 goto out; 1710 } 1711 1712 /* Can't extend contiguous allocation */ 1713 if (nb_clusters == 0) { 1714 *bytes = 0; 1715 ret = 0; 1716 goto out; 1717 } 1718 1719 assert(alloc_cluster_offset != INV_OFFSET); 1720 1721 /* 1722 * Save info needed for meta data update. 1723 * 1724 * requested_bytes: Number of bytes from the start of the first 1725 * newly allocated cluster to the end of the (possibly shortened 1726 * before) write request. 1727 * 1728 * avail_bytes: Number of bytes from the start of the first 1729 * newly allocated to the end of the last newly allocated cluster. 1730 * 1731 * nb_bytes: The number of bytes from the start of the first 1732 * newly allocated cluster to the end of the area that the write 1733 * request actually writes to (excluding COW at the end) 1734 */ 1735 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1736 int avail_bytes = nb_clusters << s->cluster_bits; 1737 int nb_bytes = MIN(requested_bytes, avail_bytes); 1738 1739 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1740 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1741 assert(*bytes != 0); 1742 1743 ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes, 1744 l2_slice, m, false); 1745 if (ret < 0) { 1746 goto out; 1747 } 1748 1749 ret = 1; 1750 1751 out: 1752 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1753 return ret; 1754 } 1755 1756 /* 1757 * For a given area on the virtual disk defined by @offset and @bytes, 1758 * find the corresponding area on the qcow2 image, allocating new 1759 * clusters (or subclusters) if necessary. The result can span a 1760 * combination of allocated and previously unallocated clusters. 1761 * 1762 * Note that offset may not be cluster aligned. In this case, the returned 1763 * *host_offset points to exact byte referenced by offset and therefore 1764 * isn't cluster aligned as well. 1765 * 1766 * On return, @host_offset is set to the beginning of the requested 1767 * area. This area is guaranteed to be contiguous on the qcow2 file 1768 * but it can be smaller than initially requested. In this case @bytes 1769 * is updated with the actual size. 1770 * 1771 * If any clusters or subclusters were allocated then @m contains a 1772 * list with the information of all the affected regions. Note that 1773 * this can happen regardless of whether this function succeeds or 1774 * not. The caller is responsible for updating the L2 metadata of the 1775 * allocated clusters (on success) or freeing them (on failure), and 1776 * for clearing the contents of @m afterwards in both cases. 1777 * 1778 * If the request conflicts with another write request in flight, the coroutine 1779 * is queued and will be reentered when the dependency has completed. 1780 * 1781 * Return 0 on success and -errno in error cases 1782 */ 1783 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset, 1784 unsigned int *bytes, 1785 uint64_t *host_offset, 1786 QCowL2Meta **m) 1787 { 1788 BDRVQcow2State *s = bs->opaque; 1789 uint64_t start, remaining; 1790 uint64_t cluster_offset; 1791 uint64_t cur_bytes; 1792 int ret; 1793 1794 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1795 1796 again: 1797 start = offset; 1798 remaining = *bytes; 1799 cluster_offset = INV_OFFSET; 1800 *host_offset = INV_OFFSET; 1801 cur_bytes = 0; 1802 *m = NULL; 1803 1804 while (true) { 1805 1806 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) { 1807 *host_offset = cluster_offset; 1808 } 1809 1810 assert(remaining >= cur_bytes); 1811 1812 start += cur_bytes; 1813 remaining -= cur_bytes; 1814 1815 if (cluster_offset != INV_OFFSET) { 1816 cluster_offset += cur_bytes; 1817 } 1818 1819 if (remaining == 0) { 1820 break; 1821 } 1822 1823 cur_bytes = remaining; 1824 1825 /* 1826 * Now start gathering as many contiguous clusters as possible: 1827 * 1828 * 1. Check for overlaps with in-flight allocations 1829 * 1830 * a) Overlap not in the first cluster -> shorten this request and 1831 * let the caller handle the rest in its next loop iteration. 1832 * 1833 * b) Real overlaps of two requests. Yield and restart the search 1834 * for contiguous clusters (the situation could have changed 1835 * while we were sleeping) 1836 * 1837 * c) TODO: Request starts in the same cluster as the in-flight 1838 * allocation ends. Shorten the COW of the in-fight allocation, 1839 * set cluster_offset to write to the same cluster and set up 1840 * the right synchronisation between the in-flight request and 1841 * the new one. 1842 */ 1843 ret = handle_dependencies(bs, start, &cur_bytes, m); 1844 if (ret == -EAGAIN) { 1845 /* Currently handle_dependencies() doesn't yield if we already had 1846 * an allocation. If it did, we would have to clean up the L2Meta 1847 * structs before starting over. */ 1848 assert(*m == NULL); 1849 goto again; 1850 } else if (ret < 0) { 1851 return ret; 1852 } else if (cur_bytes == 0) { 1853 break; 1854 } else { 1855 /* handle_dependencies() may have decreased cur_bytes (shortened 1856 * the allocations below) so that the next dependency is processed 1857 * correctly during the next loop iteration. */ 1858 } 1859 1860 /* 1861 * 2. Count contiguous COPIED clusters. 1862 */ 1863 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1864 if (ret < 0) { 1865 return ret; 1866 } else if (ret) { 1867 continue; 1868 } else if (cur_bytes == 0) { 1869 break; 1870 } 1871 1872 /* 1873 * 3. If the request still hasn't completed, allocate new clusters, 1874 * considering any cluster_offset of steps 1c or 2. 1875 */ 1876 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1877 if (ret < 0) { 1878 return ret; 1879 } else if (ret) { 1880 continue; 1881 } else { 1882 assert(cur_bytes == 0); 1883 break; 1884 } 1885 } 1886 1887 *bytes -= remaining; 1888 assert(*bytes > 0); 1889 assert(*host_offset != INV_OFFSET); 1890 assert(offset_into_cluster(s, *host_offset) == 1891 offset_into_cluster(s, offset)); 1892 1893 return 0; 1894 } 1895 1896 /* 1897 * This discards as many clusters of nb_clusters as possible at once (i.e. 1898 * all clusters in the same L2 slice) and returns the number of discarded 1899 * clusters. 1900 */ 1901 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1902 uint64_t nb_clusters, 1903 enum qcow2_discard_type type, bool full_discard) 1904 { 1905 BDRVQcow2State *s = bs->opaque; 1906 uint64_t *l2_slice; 1907 int l2_index; 1908 int ret; 1909 int i; 1910 1911 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1912 if (ret < 0) { 1913 return ret; 1914 } 1915 1916 /* Limit nb_clusters to one L2 slice */ 1917 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1918 assert(nb_clusters <= INT_MAX); 1919 1920 for (i = 0; i < nb_clusters; i++) { 1921 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1922 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1923 uint64_t new_l2_entry = old_l2_entry; 1924 uint64_t new_l2_bitmap = old_l2_bitmap; 1925 QCow2ClusterType cluster_type = 1926 qcow2_get_cluster_type(bs, old_l2_entry); 1927 bool keep_reference = (cluster_type != QCOW2_CLUSTER_COMPRESSED) && 1928 !full_discard && 1929 (s->discard_no_unref && 1930 type == QCOW2_DISCARD_REQUEST); 1931 1932 /* 1933 * If full_discard is true, the cluster should not read back as zeroes, 1934 * but rather fall through to the backing file. 1935 * 1936 * If full_discard is false, make sure that a discarded area reads back 1937 * as zeroes for v3 images (we cannot do it for v2 without actually 1938 * writing a zero-filled buffer). We can skip the operation if the 1939 * cluster is already marked as zero, or if it's unallocated and we 1940 * don't have a backing file. 1941 * 1942 * TODO We might want to use bdrv_block_status(bs) here, but we're 1943 * holding s->lock, so that doesn't work today. 1944 */ 1945 if (full_discard) { 1946 new_l2_entry = new_l2_bitmap = 0; 1947 } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) { 1948 if (has_subclusters(s)) { 1949 if (keep_reference) { 1950 new_l2_entry = old_l2_entry; 1951 } else { 1952 new_l2_entry = 0; 1953 } 1954 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES; 1955 } else { 1956 if (s->qcow_version >= 3) { 1957 if (keep_reference) { 1958 new_l2_entry |= QCOW_OFLAG_ZERO; 1959 } else { 1960 new_l2_entry = QCOW_OFLAG_ZERO; 1961 } 1962 } else { 1963 new_l2_entry = 0; 1964 } 1965 } 1966 } 1967 1968 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) { 1969 continue; 1970 } 1971 1972 /* First remove L2 entries */ 1973 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1974 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry); 1975 if (has_subclusters(s)) { 1976 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap); 1977 } 1978 if (!keep_reference) { 1979 /* Then decrease the refcount */ 1980 qcow2_free_any_cluster(bs, old_l2_entry, type); 1981 } else if (s->discard_passthrough[type] && 1982 (cluster_type == QCOW2_CLUSTER_NORMAL || 1983 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC)) { 1984 /* If we keep the reference, pass on the discard still */ 1985 bdrv_pdiscard(s->data_file, old_l2_entry & L2E_OFFSET_MASK, 1986 s->cluster_size); 1987 } 1988 } 1989 1990 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1991 1992 return nb_clusters; 1993 } 1994 1995 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, 1996 uint64_t bytes, enum qcow2_discard_type type, 1997 bool full_discard) 1998 { 1999 BDRVQcow2State *s = bs->opaque; 2000 uint64_t end_offset = offset + bytes; 2001 uint64_t nb_clusters; 2002 int64_t cleared; 2003 int ret; 2004 2005 /* Caller must pass aligned values, except at image end */ 2006 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 2007 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 2008 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 2009 2010 nb_clusters = size_to_clusters(s, bytes); 2011 2012 s->cache_discards = true; 2013 2014 /* Each L2 slice is handled by its own loop iteration */ 2015 while (nb_clusters > 0) { 2016 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type, 2017 full_discard); 2018 if (cleared < 0) { 2019 ret = cleared; 2020 goto fail; 2021 } 2022 2023 nb_clusters -= cleared; 2024 offset += (cleared * s->cluster_size); 2025 } 2026 2027 ret = 0; 2028 fail: 2029 s->cache_discards = false; 2030 qcow2_process_discards(bs, ret); 2031 2032 return ret; 2033 } 2034 2035 /* 2036 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 2037 * all clusters in the same L2 slice) and returns the number of zeroed 2038 * clusters. 2039 */ 2040 static int coroutine_fn 2041 zero_in_l2_slice(BlockDriverState *bs, uint64_t offset, 2042 uint64_t nb_clusters, int flags) 2043 { 2044 BDRVQcow2State *s = bs->opaque; 2045 uint64_t *l2_slice; 2046 int l2_index; 2047 int ret; 2048 int i; 2049 2050 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 2051 if (ret < 0) { 2052 return ret; 2053 } 2054 2055 /* Limit nb_clusters to one L2 slice */ 2056 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 2057 assert(nb_clusters <= INT_MAX); 2058 2059 for (i = 0; i < nb_clusters; i++) { 2060 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 2061 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 2062 QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry); 2063 bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) || 2064 ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type)); 2065 uint64_t new_l2_entry = unmap ? 0 : old_l2_entry; 2066 uint64_t new_l2_bitmap = old_l2_bitmap; 2067 2068 if (has_subclusters(s)) { 2069 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES; 2070 } else { 2071 new_l2_entry |= QCOW_OFLAG_ZERO; 2072 } 2073 2074 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) { 2075 continue; 2076 } 2077 2078 /* First update L2 entries */ 2079 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2080 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry); 2081 if (has_subclusters(s)) { 2082 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap); 2083 } 2084 2085 /* Then decrease the refcount */ 2086 if (unmap) { 2087 qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST); 2088 } 2089 } 2090 2091 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2092 2093 return nb_clusters; 2094 } 2095 2096 static int coroutine_fn 2097 zero_l2_subclusters(BlockDriverState *bs, uint64_t offset, 2098 unsigned nb_subclusters) 2099 { 2100 BDRVQcow2State *s = bs->opaque; 2101 uint64_t *l2_slice; 2102 uint64_t old_l2_bitmap, l2_bitmap; 2103 int l2_index, ret, sc = offset_to_sc_index(s, offset); 2104 2105 /* For full clusters use zero_in_l2_slice() instead */ 2106 assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster); 2107 assert(sc + nb_subclusters <= s->subclusters_per_cluster); 2108 assert(offset_into_subcluster(s, offset) == 0); 2109 2110 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 2111 if (ret < 0) { 2112 return ret; 2113 } 2114 2115 switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) { 2116 case QCOW2_CLUSTER_COMPRESSED: 2117 ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */ 2118 goto out; 2119 case QCOW2_CLUSTER_NORMAL: 2120 case QCOW2_CLUSTER_UNALLOCATED: 2121 break; 2122 default: 2123 g_assert_not_reached(); 2124 } 2125 2126 old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 2127 2128 l2_bitmap |= QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters); 2129 l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters); 2130 2131 if (old_l2_bitmap != l2_bitmap) { 2132 set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap); 2133 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2134 } 2135 2136 ret = 0; 2137 out: 2138 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2139 2140 return ret; 2141 } 2142 2143 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset, 2144 uint64_t bytes, int flags) 2145 { 2146 BDRVQcow2State *s = bs->opaque; 2147 uint64_t end_offset = offset + bytes; 2148 uint64_t nb_clusters; 2149 unsigned head, tail; 2150 int64_t cleared; 2151 int ret; 2152 2153 /* If we have to stay in sync with an external data file, zero out 2154 * s->data_file first. */ 2155 if (data_file_is_raw(bs)) { 2156 assert(has_data_file(bs)); 2157 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags); 2158 if (ret < 0) { 2159 return ret; 2160 } 2161 } 2162 2163 /* Caller must pass aligned values, except at image end */ 2164 assert(offset_into_subcluster(s, offset) == 0); 2165 assert(offset_into_subcluster(s, end_offset) == 0 || 2166 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS); 2167 2168 /* 2169 * The zero flag is only supported by version 3 and newer. However, if we 2170 * have no backing file, we can resort to discard in version 2. 2171 */ 2172 if (s->qcow_version < 3) { 2173 if (!bs->backing) { 2174 return qcow2_cluster_discard(bs, offset, bytes, 2175 QCOW2_DISCARD_REQUEST, false); 2176 } 2177 return -ENOTSUP; 2178 } 2179 2180 head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset; 2181 offset += head; 2182 2183 tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 : 2184 end_offset - MAX(offset, start_of_cluster(s, end_offset)); 2185 end_offset -= tail; 2186 2187 s->cache_discards = true; 2188 2189 if (head) { 2190 ret = zero_l2_subclusters(bs, offset - head, 2191 size_to_subclusters(s, head)); 2192 if (ret < 0) { 2193 goto fail; 2194 } 2195 } 2196 2197 /* Each L2 slice is handled by its own loop iteration */ 2198 nb_clusters = size_to_clusters(s, end_offset - offset); 2199 2200 while (nb_clusters > 0) { 2201 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags); 2202 if (cleared < 0) { 2203 ret = cleared; 2204 goto fail; 2205 } 2206 2207 nb_clusters -= cleared; 2208 offset += (cleared * s->cluster_size); 2209 } 2210 2211 if (tail) { 2212 ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail)); 2213 if (ret < 0) { 2214 goto fail; 2215 } 2216 } 2217 2218 ret = 0; 2219 fail: 2220 s->cache_discards = false; 2221 qcow2_process_discards(bs, ret); 2222 2223 return ret; 2224 } 2225 2226 /* 2227 * Expands all zero clusters in a specific L1 table (or deallocates them, for 2228 * non-backed non-pre-allocated zero clusters). 2229 * 2230 * l1_entries and *visited_l1_entries are used to keep track of progress for 2231 * status_cb(). l1_entries contains the total number of L1 entries and 2232 * *visited_l1_entries counts all visited L1 entries. 2233 */ 2234 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 2235 int l1_size, int64_t *visited_l1_entries, 2236 int64_t l1_entries, 2237 BlockDriverAmendStatusCB *status_cb, 2238 void *cb_opaque) 2239 { 2240 BDRVQcow2State *s = bs->opaque; 2241 bool is_active_l1 = (l1_table == s->l1_table); 2242 uint64_t *l2_slice = NULL; 2243 unsigned slice, slice_size2, n_slices; 2244 int ret; 2245 int i, j; 2246 2247 /* qcow2_downgrade() is not allowed in images with subclusters */ 2248 assert(!has_subclusters(s)); 2249 2250 slice_size2 = s->l2_slice_size * l2_entry_size(s); 2251 n_slices = s->cluster_size / slice_size2; 2252 2253 if (!is_active_l1) { 2254 /* inactive L2 tables require a buffer to be stored in when loading 2255 * them from disk */ 2256 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2); 2257 if (l2_slice == NULL) { 2258 return -ENOMEM; 2259 } 2260 } 2261 2262 for (i = 0; i < l1_size; i++) { 2263 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 2264 uint64_t l2_refcount; 2265 2266 if (!l2_offset) { 2267 /* unallocated */ 2268 (*visited_l1_entries)++; 2269 if (status_cb) { 2270 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2271 } 2272 continue; 2273 } 2274 2275 if (offset_into_cluster(s, l2_offset)) { 2276 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 2277 PRIx64 " unaligned (L1 index: %#x)", 2278 l2_offset, i); 2279 ret = -EIO; 2280 goto fail; 2281 } 2282 2283 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 2284 &l2_refcount); 2285 if (ret < 0) { 2286 goto fail; 2287 } 2288 2289 for (slice = 0; slice < n_slices; slice++) { 2290 uint64_t slice_offset = l2_offset + slice * slice_size2; 2291 bool l2_dirty = false; 2292 if (is_active_l1) { 2293 /* get active L2 tables from cache */ 2294 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset, 2295 (void **)&l2_slice); 2296 } else { 2297 /* load inactive L2 tables from disk */ 2298 ret = bdrv_pread(bs->file, slice_offset, slice_size2, 2299 l2_slice, 0); 2300 } 2301 if (ret < 0) { 2302 goto fail; 2303 } 2304 2305 for (j = 0; j < s->l2_slice_size; j++) { 2306 uint64_t l2_entry = get_l2_entry(s, l2_slice, j); 2307 int64_t offset = l2_entry & L2E_OFFSET_MASK; 2308 QCow2ClusterType cluster_type = 2309 qcow2_get_cluster_type(bs, l2_entry); 2310 2311 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && 2312 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { 2313 continue; 2314 } 2315 2316 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2317 if (!bs->backing) { 2318 /* 2319 * not backed; therefore we can simply deallocate the 2320 * cluster. No need to call set_l2_bitmap(), this 2321 * function doesn't support images with subclusters. 2322 */ 2323 set_l2_entry(s, l2_slice, j, 0); 2324 l2_dirty = true; 2325 continue; 2326 } 2327 2328 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2329 if (offset < 0) { 2330 ret = offset; 2331 goto fail; 2332 } 2333 2334 /* The offset must fit in the offset field */ 2335 assert((offset & L2E_OFFSET_MASK) == offset); 2336 2337 if (l2_refcount > 1) { 2338 /* For shared L2 tables, set the refcount accordingly 2339 * (it is already 1 and needs to be l2_refcount) */ 2340 ret = qcow2_update_cluster_refcount( 2341 bs, offset >> s->cluster_bits, 2342 refcount_diff(1, l2_refcount), false, 2343 QCOW2_DISCARD_OTHER); 2344 if (ret < 0) { 2345 qcow2_free_clusters(bs, offset, s->cluster_size, 2346 QCOW2_DISCARD_OTHER); 2347 goto fail; 2348 } 2349 } 2350 } 2351 2352 if (offset_into_cluster(s, offset)) { 2353 int l2_index = slice * s->l2_slice_size + j; 2354 qcow2_signal_corruption( 2355 bs, true, -1, -1, 2356 "Cluster allocation offset " 2357 "%#" PRIx64 " unaligned (L2 offset: %#" 2358 PRIx64 ", L2 index: %#x)", offset, 2359 l2_offset, l2_index); 2360 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2361 qcow2_free_clusters(bs, offset, s->cluster_size, 2362 QCOW2_DISCARD_ALWAYS); 2363 } 2364 ret = -EIO; 2365 goto fail; 2366 } 2367 2368 ret = qcow2_pre_write_overlap_check(bs, 0, offset, 2369 s->cluster_size, true); 2370 if (ret < 0) { 2371 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2372 qcow2_free_clusters(bs, offset, s->cluster_size, 2373 QCOW2_DISCARD_ALWAYS); 2374 } 2375 goto fail; 2376 } 2377 2378 ret = bdrv_pwrite_zeroes(s->data_file, offset, 2379 s->cluster_size, 0); 2380 if (ret < 0) { 2381 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2382 qcow2_free_clusters(bs, offset, s->cluster_size, 2383 QCOW2_DISCARD_ALWAYS); 2384 } 2385 goto fail; 2386 } 2387 2388 if (l2_refcount == 1) { 2389 set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED); 2390 } else { 2391 set_l2_entry(s, l2_slice, j, offset); 2392 } 2393 /* 2394 * No need to call set_l2_bitmap() after set_l2_entry() because 2395 * this function doesn't support images with subclusters. 2396 */ 2397 l2_dirty = true; 2398 } 2399 2400 if (is_active_l1) { 2401 if (l2_dirty) { 2402 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2403 qcow2_cache_depends_on_flush(s->l2_table_cache); 2404 } 2405 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2406 } else { 2407 if (l2_dirty) { 2408 ret = qcow2_pre_write_overlap_check( 2409 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, 2410 slice_offset, slice_size2, false); 2411 if (ret < 0) { 2412 goto fail; 2413 } 2414 2415 ret = bdrv_pwrite(bs->file, slice_offset, slice_size2, 2416 l2_slice, 0); 2417 if (ret < 0) { 2418 goto fail; 2419 } 2420 } 2421 } 2422 } 2423 2424 (*visited_l1_entries)++; 2425 if (status_cb) { 2426 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2427 } 2428 } 2429 2430 ret = 0; 2431 2432 fail: 2433 if (l2_slice) { 2434 if (!is_active_l1) { 2435 qemu_vfree(l2_slice); 2436 } else { 2437 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2438 } 2439 } 2440 return ret; 2441 } 2442 2443 /* 2444 * For backed images, expands all zero clusters on the image. For non-backed 2445 * images, deallocates all non-pre-allocated zero clusters (and claims the 2446 * allocation for pre-allocated ones). This is important for downgrading to a 2447 * qcow2 version which doesn't yet support metadata zero clusters. 2448 */ 2449 int qcow2_expand_zero_clusters(BlockDriverState *bs, 2450 BlockDriverAmendStatusCB *status_cb, 2451 void *cb_opaque) 2452 { 2453 BDRVQcow2State *s = bs->opaque; 2454 uint64_t *l1_table = NULL; 2455 int64_t l1_entries = 0, visited_l1_entries = 0; 2456 int ret; 2457 int i, j; 2458 2459 if (status_cb) { 2460 l1_entries = s->l1_size; 2461 for (i = 0; i < s->nb_snapshots; i++) { 2462 l1_entries += s->snapshots[i].l1_size; 2463 } 2464 } 2465 2466 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 2467 &visited_l1_entries, l1_entries, 2468 status_cb, cb_opaque); 2469 if (ret < 0) { 2470 goto fail; 2471 } 2472 2473 /* Inactive L1 tables may point to active L2 tables - therefore it is 2474 * necessary to flush the L2 table cache before trying to access the L2 2475 * tables pointed to by inactive L1 entries (else we might try to expand 2476 * zero clusters that have already been expanded); furthermore, it is also 2477 * necessary to empty the L2 table cache, since it may contain tables which 2478 * are now going to be modified directly on disk, bypassing the cache. 2479 * qcow2_cache_empty() does both for us. */ 2480 ret = qcow2_cache_empty(bs, s->l2_table_cache); 2481 if (ret < 0) { 2482 goto fail; 2483 } 2484 2485 for (i = 0; i < s->nb_snapshots; i++) { 2486 int l1_size2; 2487 uint64_t *new_l1_table; 2488 Error *local_err = NULL; 2489 2490 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset, 2491 s->snapshots[i].l1_size, L1E_SIZE, 2492 QCOW_MAX_L1_SIZE, "Snapshot L1 table", 2493 &local_err); 2494 if (ret < 0) { 2495 error_report_err(local_err); 2496 goto fail; 2497 } 2498 2499 l1_size2 = s->snapshots[i].l1_size * L1E_SIZE; 2500 new_l1_table = g_try_realloc(l1_table, l1_size2); 2501 2502 if (!new_l1_table) { 2503 ret = -ENOMEM; 2504 goto fail; 2505 } 2506 2507 l1_table = new_l1_table; 2508 2509 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2, 2510 l1_table, 0); 2511 if (ret < 0) { 2512 goto fail; 2513 } 2514 2515 for (j = 0; j < s->snapshots[i].l1_size; j++) { 2516 be64_to_cpus(&l1_table[j]); 2517 } 2518 2519 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 2520 &visited_l1_entries, l1_entries, 2521 status_cb, cb_opaque); 2522 if (ret < 0) { 2523 goto fail; 2524 } 2525 } 2526 2527 ret = 0; 2528 2529 fail: 2530 g_free(l1_table); 2531 return ret; 2532 } 2533 2534 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry, 2535 uint64_t *coffset, int *csize) 2536 { 2537 BDRVQcow2State *s = bs->opaque; 2538 int nb_csectors; 2539 2540 assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED); 2541 2542 *coffset = l2_entry & s->cluster_offset_mask; 2543 2544 nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1; 2545 *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE - 2546 (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1)); 2547 } 2548