xref: /openbmc/qemu/block/qcow2-cluster.c (revision ae3c12a0)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
36 {
37     BDRVQcow2State *s = bs->opaque;
38     int new_l1_size, i, ret;
39 
40     if (exact_size >= s->l1_size) {
41         return 0;
42     }
43 
44     new_l1_size = exact_size;
45 
46 #ifdef DEBUG_ALLOC2
47     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 #endif
49 
50     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52                                        new_l1_size * sizeof(uint64_t),
53                              (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54     if (ret < 0) {
55         goto fail;
56     }
57 
58     ret = bdrv_flush(bs->file->bs);
59     if (ret < 0) {
60         goto fail;
61     }
62 
63     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66             continue;
67         }
68         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
70         s->l1_table[i] = 0;
71     }
72     return 0;
73 
74 fail:
75     /*
76      * If the write in the l1_table failed the image may contain a partially
77      * overwritten l1_table. In this case it would be better to clear the
78      * l1_table in memory to avoid possible image corruption.
79      */
80     memset(s->l1_table + new_l1_size, 0,
81            (s->l1_size - new_l1_size) * sizeof(uint64_t));
82     return ret;
83 }
84 
85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86                         bool exact_size)
87 {
88     BDRVQcow2State *s = bs->opaque;
89     int new_l1_size2, ret, i;
90     uint64_t *new_l1_table;
91     int64_t old_l1_table_offset, old_l1_size;
92     int64_t new_l1_table_offset, new_l1_size;
93     uint8_t data[12];
94 
95     if (min_size <= s->l1_size)
96         return 0;
97 
98     /* Do a sanity check on min_size before trying to calculate new_l1_size
99      * (this prevents overflows during the while loop for the calculation of
100      * new_l1_size) */
101     if (min_size > INT_MAX / sizeof(uint64_t)) {
102         return -EFBIG;
103     }
104 
105     if (exact_size) {
106         new_l1_size = min_size;
107     } else {
108         /* Bump size up to reduce the number of times we have to grow */
109         new_l1_size = s->l1_size;
110         if (new_l1_size == 0) {
111             new_l1_size = 1;
112         }
113         while (min_size > new_l1_size) {
114             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
115         }
116     }
117 
118     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
120         return -EFBIG;
121     }
122 
123 #ifdef DEBUG_ALLOC2
124     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125             s->l1_size, new_l1_size);
126 #endif
127 
128     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
129     new_l1_table = qemu_try_blockalign(bs->file->bs,
130                                        ROUND_UP(new_l1_size2, 512));
131     if (new_l1_table == NULL) {
132         return -ENOMEM;
133     }
134     memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
135 
136     if (s->l1_size) {
137         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
138     }
139 
140     /* write new table (align to cluster) */
141     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143     if (new_l1_table_offset < 0) {
144         qemu_vfree(new_l1_table);
145         return new_l1_table_offset;
146     }
147 
148     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149     if (ret < 0) {
150         goto fail;
151     }
152 
153     /* the L1 position has not yet been updated, so these clusters must
154      * indeed be completely free */
155     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156                                         new_l1_size2, false);
157     if (ret < 0) {
158         goto fail;
159     }
160 
161     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162     for(i = 0; i < s->l1_size; i++)
163         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
165                            new_l1_table, new_l1_size2);
166     if (ret < 0)
167         goto fail;
168     for(i = 0; i < s->l1_size; i++)
169         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170 
171     /* set new table */
172     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173     stl_be_p(data, new_l1_size);
174     stq_be_p(data + 4, new_l1_table_offset);
175     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176                            data, sizeof(data));
177     if (ret < 0) {
178         goto fail;
179     }
180     qemu_vfree(s->l1_table);
181     old_l1_table_offset = s->l1_table_offset;
182     s->l1_table_offset = new_l1_table_offset;
183     s->l1_table = new_l1_table;
184     old_l1_size = s->l1_size;
185     s->l1_size = new_l1_size;
186     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187                         QCOW2_DISCARD_OTHER);
188     return 0;
189  fail:
190     qemu_vfree(new_l1_table);
191     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192                         QCOW2_DISCARD_OTHER);
193     return ret;
194 }
195 
196 /*
197  * l2_load
198  *
199  * @bs: The BlockDriverState
200  * @offset: A guest offset, used to calculate what slice of the L2
201  *          table to load.
202  * @l2_offset: Offset to the L2 table in the image file.
203  * @l2_slice: Location to store the pointer to the L2 slice.
204  *
205  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206  * that are loaded by the qcow2 cache). If the slice is in the cache,
207  * the cache is used; otherwise the L2 slice is loaded from the image
208  * file.
209  */
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211                    uint64_t l2_offset, uint64_t **l2_slice)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     int start_of_slice = sizeof(uint64_t) *
215         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
216 
217     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218                            (void **)l2_slice);
219 }
220 
221 /*
222  * Writes one sector of the L1 table to the disk (can't update single entries
223  * and we really don't want bdrv_pread to perform a read-modify-write)
224  */
225 #define L1_ENTRIES_PER_SECTOR (512 / 8)
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
227 {
228     BDRVQcow2State *s = bs->opaque;
229     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
230     int l1_start_index;
231     int i, ret;
232 
233     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
234     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
235          i++)
236     {
237         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
238     }
239 
240     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
241             s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
242     if (ret < 0) {
243         return ret;
244     }
245 
246     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
247     ret = bdrv_pwrite_sync(bs->file,
248                            s->l1_table_offset + 8 * l1_start_index,
249                            buf, sizeof(buf));
250     if (ret < 0) {
251         return ret;
252     }
253 
254     return 0;
255 }
256 
257 /*
258  * l2_allocate
259  *
260  * Allocate a new l2 entry in the file. If l1_index points to an already
261  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
262  * table) copy the contents of the old L2 table into the newly allocated one.
263  * Otherwise the new table is initialized with zeros.
264  *
265  */
266 
267 static int l2_allocate(BlockDriverState *bs, int l1_index)
268 {
269     BDRVQcow2State *s = bs->opaque;
270     uint64_t old_l2_offset;
271     uint64_t *l2_slice = NULL;
272     unsigned slice, slice_size2, n_slices;
273     int64_t l2_offset;
274     int ret;
275 
276     old_l2_offset = s->l1_table[l1_index];
277 
278     trace_qcow2_l2_allocate(bs, l1_index);
279 
280     /* allocate a new l2 entry */
281 
282     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
283     if (l2_offset < 0) {
284         ret = l2_offset;
285         goto fail;
286     }
287 
288     /* The offset must fit in the offset field of the L1 table entry */
289     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
290 
291     /* If we're allocating the table at offset 0 then something is wrong */
292     if (l2_offset == 0) {
293         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
294                                 "allocation of L2 table at offset 0");
295         ret = -EIO;
296         goto fail;
297     }
298 
299     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
300     if (ret < 0) {
301         goto fail;
302     }
303 
304     /* allocate a new entry in the l2 cache */
305 
306     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
307     n_slices = s->cluster_size / slice_size2;
308 
309     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
310     for (slice = 0; slice < n_slices; slice++) {
311         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
312                                     l2_offset + slice * slice_size2,
313                                     (void **) &l2_slice);
314         if (ret < 0) {
315             goto fail;
316         }
317 
318         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
319             /* if there was no old l2 table, clear the new slice */
320             memset(l2_slice, 0, slice_size2);
321         } else {
322             uint64_t *old_slice;
323             uint64_t old_l2_slice_offset =
324                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
325 
326             /* if there was an old l2 table, read a slice from the disk */
327             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
328             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
329                                   (void **) &old_slice);
330             if (ret < 0) {
331                 goto fail;
332             }
333 
334             memcpy(l2_slice, old_slice, slice_size2);
335 
336             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
337         }
338 
339         /* write the l2 slice to the file */
340         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
341 
342         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
343         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
344         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
345     }
346 
347     ret = qcow2_cache_flush(bs, s->l2_table_cache);
348     if (ret < 0) {
349         goto fail;
350     }
351 
352     /* update the L1 entry */
353     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
354     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
355     ret = qcow2_write_l1_entry(bs, l1_index);
356     if (ret < 0) {
357         goto fail;
358     }
359 
360     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
361     return 0;
362 
363 fail:
364     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
365     if (l2_slice != NULL) {
366         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
367     }
368     s->l1_table[l1_index] = old_l2_offset;
369     if (l2_offset > 0) {
370         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
371                             QCOW2_DISCARD_ALWAYS);
372     }
373     return ret;
374 }
375 
376 /*
377  * Checks how many clusters in a given L2 slice are contiguous in the image
378  * file. As soon as one of the flags in the bitmask stop_flags changes compared
379  * to the first cluster, the search is stopped and the cluster is not counted
380  * as contiguous. (This allows it, for example, to stop at the first compressed
381  * cluster which may require a different handling)
382  */
383 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
384         int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
385 {
386     int i;
387     QCow2ClusterType first_cluster_type;
388     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
389     uint64_t first_entry = be64_to_cpu(l2_slice[0]);
390     uint64_t offset = first_entry & mask;
391 
392     first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
393     if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
394         return 0;
395     }
396 
397     /* must be allocated */
398     assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
399            first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
400 
401     for (i = 0; i < nb_clusters; i++) {
402         uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
403         if (offset + (uint64_t) i * cluster_size != l2_entry) {
404             break;
405         }
406     }
407 
408         return i;
409 }
410 
411 /*
412  * Checks how many consecutive unallocated clusters in a given L2
413  * slice have the same cluster type.
414  */
415 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
416                                                  int nb_clusters,
417                                                  uint64_t *l2_slice,
418                                                  QCow2ClusterType wanted_type)
419 {
420     int i;
421 
422     assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
423            wanted_type == QCOW2_CLUSTER_UNALLOCATED);
424     for (i = 0; i < nb_clusters; i++) {
425         uint64_t entry = be64_to_cpu(l2_slice[i]);
426         QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
427 
428         if (type != wanted_type) {
429             break;
430         }
431     }
432 
433     return i;
434 }
435 
436 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
437                                             uint64_t src_cluster_offset,
438                                             unsigned offset_in_cluster,
439                                             QEMUIOVector *qiov)
440 {
441     int ret;
442 
443     if (qiov->size == 0) {
444         return 0;
445     }
446 
447     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
448 
449     if (!bs->drv) {
450         return -ENOMEDIUM;
451     }
452 
453     /* Call .bdrv_co_readv() directly instead of using the public block-layer
454      * interface.  This avoids double I/O throttling and request tracking,
455      * which can lead to deadlock when block layer copy-on-read is enabled.
456      */
457     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
458                                   qiov->size, qiov, 0);
459     if (ret < 0) {
460         return ret;
461     }
462 
463     return 0;
464 }
465 
466 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
467                                                 uint64_t src_cluster_offset,
468                                                 uint64_t cluster_offset,
469                                                 unsigned offset_in_cluster,
470                                                 uint8_t *buffer,
471                                                 unsigned bytes)
472 {
473     if (bytes && bs->encrypted) {
474         BDRVQcow2State *s = bs->opaque;
475         int64_t offset = (s->crypt_physical_offset ?
476                           (cluster_offset + offset_in_cluster) :
477                           (src_cluster_offset + offset_in_cluster));
478         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
479         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
480         assert(s->crypto);
481         if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
482             return false;
483         }
484     }
485     return true;
486 }
487 
488 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
489                                              uint64_t cluster_offset,
490                                              unsigned offset_in_cluster,
491                                              QEMUIOVector *qiov)
492 {
493     BDRVQcow2State *s = bs->opaque;
494     int ret;
495 
496     if (qiov->size == 0) {
497         return 0;
498     }
499 
500     ret = qcow2_pre_write_overlap_check(bs, 0,
501             cluster_offset + offset_in_cluster, qiov->size, true);
502     if (ret < 0) {
503         return ret;
504     }
505 
506     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
507     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
508                           qiov->size, qiov, 0);
509     if (ret < 0) {
510         return ret;
511     }
512 
513     return 0;
514 }
515 
516 
517 /*
518  * get_cluster_offset
519  *
520  * For a given offset of the virtual disk, find the cluster type and offset in
521  * the qcow2 file. The offset is stored in *cluster_offset.
522  *
523  * On entry, *bytes is the maximum number of contiguous bytes starting at
524  * offset that we are interested in.
525  *
526  * On exit, *bytes is the number of bytes starting at offset that have the same
527  * cluster type and (if applicable) are stored contiguously in the image file.
528  * Compressed clusters are always returned one by one.
529  *
530  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
531  * cases.
532  */
533 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
534                              unsigned int *bytes, uint64_t *cluster_offset)
535 {
536     BDRVQcow2State *s = bs->opaque;
537     unsigned int l2_index;
538     uint64_t l1_index, l2_offset, *l2_slice;
539     int c;
540     unsigned int offset_in_cluster;
541     uint64_t bytes_available, bytes_needed, nb_clusters;
542     QCow2ClusterType type;
543     int ret;
544 
545     offset_in_cluster = offset_into_cluster(s, offset);
546     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
547 
548     /* compute how many bytes there are between the start of the cluster
549      * containing offset and the end of the l2 slice that contains
550      * the entry pointing to it */
551     bytes_available =
552         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
553         << s->cluster_bits;
554 
555     if (bytes_needed > bytes_available) {
556         bytes_needed = bytes_available;
557     }
558 
559     *cluster_offset = 0;
560 
561     /* seek to the l2 offset in the l1 table */
562 
563     l1_index = offset_to_l1_index(s, offset);
564     if (l1_index >= s->l1_size) {
565         type = QCOW2_CLUSTER_UNALLOCATED;
566         goto out;
567     }
568 
569     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
570     if (!l2_offset) {
571         type = QCOW2_CLUSTER_UNALLOCATED;
572         goto out;
573     }
574 
575     if (offset_into_cluster(s, l2_offset)) {
576         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
577                                 " unaligned (L1 index: %#" PRIx64 ")",
578                                 l2_offset, l1_index);
579         return -EIO;
580     }
581 
582     /* load the l2 slice in memory */
583 
584     ret = l2_load(bs, offset, l2_offset, &l2_slice);
585     if (ret < 0) {
586         return ret;
587     }
588 
589     /* find the cluster offset for the given disk offset */
590 
591     l2_index = offset_to_l2_slice_index(s, offset);
592     *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
593 
594     nb_clusters = size_to_clusters(s, bytes_needed);
595     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
596      * integers; the minimum cluster size is 512, so this assertion is always
597      * true */
598     assert(nb_clusters <= INT_MAX);
599 
600     type = qcow2_get_cluster_type(bs, *cluster_offset);
601     if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
602                                 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
603         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
604                                 " in pre-v3 image (L2 offset: %#" PRIx64
605                                 ", L2 index: %#x)", l2_offset, l2_index);
606         ret = -EIO;
607         goto fail;
608     }
609     switch (type) {
610     case QCOW2_CLUSTER_COMPRESSED:
611         if (has_data_file(bs)) {
612             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
613                                     "entry found in image with external data "
614                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
615                                     "%#x)", l2_offset, l2_index);
616             ret = -EIO;
617             goto fail;
618         }
619         /* Compressed clusters can only be processed one by one */
620         c = 1;
621         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
622         break;
623     case QCOW2_CLUSTER_ZERO_PLAIN:
624     case QCOW2_CLUSTER_UNALLOCATED:
625         /* how many empty clusters ? */
626         c = count_contiguous_clusters_unallocated(bs, nb_clusters,
627                                                   &l2_slice[l2_index], type);
628         *cluster_offset = 0;
629         break;
630     case QCOW2_CLUSTER_ZERO_ALLOC:
631     case QCOW2_CLUSTER_NORMAL:
632         /* how many allocated clusters ? */
633         c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
634                                       &l2_slice[l2_index], QCOW_OFLAG_ZERO);
635         *cluster_offset &= L2E_OFFSET_MASK;
636         if (offset_into_cluster(s, *cluster_offset)) {
637             qcow2_signal_corruption(bs, true, -1, -1,
638                                     "Cluster allocation offset %#"
639                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
640                                     ", L2 index: %#x)", *cluster_offset,
641                                     l2_offset, l2_index);
642             ret = -EIO;
643             goto fail;
644         }
645         if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
646         {
647             qcow2_signal_corruption(bs, true, -1, -1,
648                                     "External data file host cluster offset %#"
649                                     PRIx64 " does not match guest cluster "
650                                     "offset: %#" PRIx64
651                                     ", L2 index: %#x)", *cluster_offset,
652                                     offset - offset_in_cluster, l2_index);
653             ret = -EIO;
654             goto fail;
655         }
656         break;
657     default:
658         abort();
659     }
660 
661     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
662 
663     bytes_available = (int64_t)c * s->cluster_size;
664 
665 out:
666     if (bytes_available > bytes_needed) {
667         bytes_available = bytes_needed;
668     }
669 
670     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
671      * subtracting offset_in_cluster will therefore definitely yield something
672      * not exceeding UINT_MAX */
673     assert(bytes_available - offset_in_cluster <= UINT_MAX);
674     *bytes = bytes_available - offset_in_cluster;
675 
676     return type;
677 
678 fail:
679     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
680     return ret;
681 }
682 
683 /*
684  * get_cluster_table
685  *
686  * for a given disk offset, load (and allocate if needed)
687  * the appropriate slice of its l2 table.
688  *
689  * the cluster index in the l2 slice is given to the caller.
690  *
691  * Returns 0 on success, -errno in failure case
692  */
693 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
694                              uint64_t **new_l2_slice,
695                              int *new_l2_index)
696 {
697     BDRVQcow2State *s = bs->opaque;
698     unsigned int l2_index;
699     uint64_t l1_index, l2_offset;
700     uint64_t *l2_slice = NULL;
701     int ret;
702 
703     /* seek to the l2 offset in the l1 table */
704 
705     l1_index = offset_to_l1_index(s, offset);
706     if (l1_index >= s->l1_size) {
707         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
708         if (ret < 0) {
709             return ret;
710         }
711     }
712 
713     assert(l1_index < s->l1_size);
714     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
715     if (offset_into_cluster(s, l2_offset)) {
716         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
717                                 " unaligned (L1 index: %#" PRIx64 ")",
718                                 l2_offset, l1_index);
719         return -EIO;
720     }
721 
722     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
723         /* First allocate a new L2 table (and do COW if needed) */
724         ret = l2_allocate(bs, l1_index);
725         if (ret < 0) {
726             return ret;
727         }
728 
729         /* Then decrease the refcount of the old table */
730         if (l2_offset) {
731             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
732                                 QCOW2_DISCARD_OTHER);
733         }
734 
735         /* Get the offset of the newly-allocated l2 table */
736         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
737         assert(offset_into_cluster(s, l2_offset) == 0);
738     }
739 
740     /* load the l2 slice in memory */
741     ret = l2_load(bs, offset, l2_offset, &l2_slice);
742     if (ret < 0) {
743         return ret;
744     }
745 
746     /* find the cluster offset for the given disk offset */
747 
748     l2_index = offset_to_l2_slice_index(s, offset);
749 
750     *new_l2_slice = l2_slice;
751     *new_l2_index = l2_index;
752 
753     return 0;
754 }
755 
756 /*
757  * alloc_compressed_cluster_offset
758  *
759  * For a given offset on the virtual disk, allocate a new compressed cluster
760  * and put the host offset of the cluster into *host_offset. If a cluster is
761  * already allocated at the offset, return an error.
762  *
763  * Return 0 on success and -errno in error cases
764  */
765 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
766                                           uint64_t offset,
767                                           int compressed_size,
768                                           uint64_t *host_offset)
769 {
770     BDRVQcow2State *s = bs->opaque;
771     int l2_index, ret;
772     uint64_t *l2_slice;
773     int64_t cluster_offset;
774     int nb_csectors;
775 
776     if (has_data_file(bs)) {
777         return 0;
778     }
779 
780     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
781     if (ret < 0) {
782         return ret;
783     }
784 
785     /* Compression can't overwrite anything. Fail if the cluster was already
786      * allocated. */
787     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
788     if (cluster_offset & L2E_OFFSET_MASK) {
789         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
790         return -EIO;
791     }
792 
793     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
794     if (cluster_offset < 0) {
795         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
796         return cluster_offset;
797     }
798 
799     nb_csectors =
800         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
801         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
802 
803     cluster_offset |= QCOW_OFLAG_COMPRESSED |
804                       ((uint64_t)nb_csectors << s->csize_shift);
805 
806     /* update L2 table */
807 
808     /* compressed clusters never have the copied flag */
809 
810     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
811     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
812     l2_slice[l2_index] = cpu_to_be64(cluster_offset);
813     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
814 
815     *host_offset = cluster_offset & s->cluster_offset_mask;
816     return 0;
817 }
818 
819 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
820 {
821     BDRVQcow2State *s = bs->opaque;
822     Qcow2COWRegion *start = &m->cow_start;
823     Qcow2COWRegion *end = &m->cow_end;
824     unsigned buffer_size;
825     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
826     bool merge_reads;
827     uint8_t *start_buffer, *end_buffer;
828     QEMUIOVector qiov;
829     int ret;
830 
831     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
832     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
833     assert(start->offset + start->nb_bytes <= end->offset);
834     assert(!m->data_qiov || m->data_qiov->size == data_bytes);
835 
836     if (start->nb_bytes == 0 && end->nb_bytes == 0) {
837         return 0;
838     }
839 
840     /* If we have to read both the start and end COW regions and the
841      * middle region is not too large then perform just one read
842      * operation */
843     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
844     if (merge_reads) {
845         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
846     } else {
847         /* If we have to do two reads, add some padding in the middle
848          * if necessary to make sure that the end region is optimally
849          * aligned. */
850         size_t align = bdrv_opt_mem_align(bs);
851         assert(align > 0 && align <= UINT_MAX);
852         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
853                UINT_MAX - end->nb_bytes);
854         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
855     }
856 
857     /* Reserve a buffer large enough to store all the data that we're
858      * going to read */
859     start_buffer = qemu_try_blockalign(bs, buffer_size);
860     if (start_buffer == NULL) {
861         return -ENOMEM;
862     }
863     /* The part of the buffer where the end region is located */
864     end_buffer = start_buffer + buffer_size - end->nb_bytes;
865 
866     qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
867 
868     qemu_co_mutex_unlock(&s->lock);
869     /* First we read the existing data from both COW regions. We
870      * either read the whole region in one go, or the start and end
871      * regions separately. */
872     if (merge_reads) {
873         qemu_iovec_add(&qiov, start_buffer, buffer_size);
874         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
875     } else {
876         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
877         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
878         if (ret < 0) {
879             goto fail;
880         }
881 
882         qemu_iovec_reset(&qiov);
883         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
884         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
885     }
886     if (ret < 0) {
887         goto fail;
888     }
889 
890     /* Encrypt the data if necessary before writing it */
891     if (bs->encrypted) {
892         if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
893                                     start->offset, start_buffer,
894                                     start->nb_bytes) ||
895             !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
896                                     end->offset, end_buffer, end->nb_bytes)) {
897             ret = -EIO;
898             goto fail;
899         }
900     }
901 
902     /* And now we can write everything. If we have the guest data we
903      * can write everything in one single operation */
904     if (m->data_qiov) {
905         qemu_iovec_reset(&qiov);
906         if (start->nb_bytes) {
907             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
908         }
909         qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
910         if (end->nb_bytes) {
911             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
912         }
913         /* NOTE: we have a write_aio blkdebug event here followed by
914          * a cow_write one in do_perform_cow_write(), but there's only
915          * one single I/O operation */
916         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
917         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
918     } else {
919         /* If there's no guest data then write both COW regions separately */
920         qemu_iovec_reset(&qiov);
921         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
922         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
923         if (ret < 0) {
924             goto fail;
925         }
926 
927         qemu_iovec_reset(&qiov);
928         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
929         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
930     }
931 
932 fail:
933     qemu_co_mutex_lock(&s->lock);
934 
935     /*
936      * Before we update the L2 table to actually point to the new cluster, we
937      * need to be sure that the refcounts have been increased and COW was
938      * handled.
939      */
940     if (ret == 0) {
941         qcow2_cache_depends_on_flush(s->l2_table_cache);
942     }
943 
944     qemu_vfree(start_buffer);
945     qemu_iovec_destroy(&qiov);
946     return ret;
947 }
948 
949 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
950 {
951     BDRVQcow2State *s = bs->opaque;
952     int i, j = 0, l2_index, ret;
953     uint64_t *old_cluster, *l2_slice;
954     uint64_t cluster_offset = m->alloc_offset;
955 
956     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
957     assert(m->nb_clusters > 0);
958 
959     old_cluster = g_try_new(uint64_t, m->nb_clusters);
960     if (old_cluster == NULL) {
961         ret = -ENOMEM;
962         goto err;
963     }
964 
965     /* copy content of unmodified sectors */
966     ret = perform_cow(bs, m);
967     if (ret < 0) {
968         goto err;
969     }
970 
971     /* Update L2 table. */
972     if (s->use_lazy_refcounts) {
973         qcow2_mark_dirty(bs);
974     }
975     if (qcow2_need_accurate_refcounts(s)) {
976         qcow2_cache_set_dependency(bs, s->l2_table_cache,
977                                    s->refcount_block_cache);
978     }
979 
980     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
981     if (ret < 0) {
982         goto err;
983     }
984     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
985 
986     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
987     for (i = 0; i < m->nb_clusters; i++) {
988         /* if two concurrent writes happen to the same unallocated cluster
989          * each write allocates separate cluster and writes data concurrently.
990          * The first one to complete updates l2 table with pointer to its
991          * cluster the second one has to do RMW (which is done above by
992          * perform_cow()), update l2 table with its cluster pointer and free
993          * old cluster. This is what this loop does */
994         if (l2_slice[l2_index + i] != 0) {
995             old_cluster[j++] = l2_slice[l2_index + i];
996         }
997 
998         l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
999                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
1000      }
1001 
1002 
1003     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1004 
1005     /*
1006      * If this was a COW, we need to decrease the refcount of the old cluster.
1007      *
1008      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1009      * clusters), the next write will reuse them anyway.
1010      */
1011     if (!m->keep_old_clusters && j != 0) {
1012         for (i = 0; i < j; i++) {
1013             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1014                                     QCOW2_DISCARD_NEVER);
1015         }
1016     }
1017 
1018     ret = 0;
1019 err:
1020     g_free(old_cluster);
1021     return ret;
1022  }
1023 
1024 /**
1025  * Frees the allocated clusters because the request failed and they won't
1026  * actually be linked.
1027  */
1028 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1029 {
1030     BDRVQcow2State *s = bs->opaque;
1031     qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1032                         QCOW2_DISCARD_NEVER);
1033 }
1034 
1035 /*
1036  * Returns the number of contiguous clusters that can be used for an allocating
1037  * write, but require COW to be performed (this includes yet unallocated space,
1038  * which must copy from the backing file)
1039  */
1040 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1041     uint64_t *l2_slice, int l2_index)
1042 {
1043     int i;
1044 
1045     for (i = 0; i < nb_clusters; i++) {
1046         uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1047         QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1048 
1049         switch(cluster_type) {
1050         case QCOW2_CLUSTER_NORMAL:
1051             if (l2_entry & QCOW_OFLAG_COPIED) {
1052                 goto out;
1053             }
1054             break;
1055         case QCOW2_CLUSTER_UNALLOCATED:
1056         case QCOW2_CLUSTER_COMPRESSED:
1057         case QCOW2_CLUSTER_ZERO_PLAIN:
1058         case QCOW2_CLUSTER_ZERO_ALLOC:
1059             break;
1060         default:
1061             abort();
1062         }
1063     }
1064 
1065 out:
1066     assert(i <= nb_clusters);
1067     return i;
1068 }
1069 
1070 /*
1071  * Check if there already is an AIO write request in flight which allocates
1072  * the same cluster. In this case we need to wait until the previous
1073  * request has completed and updated the L2 table accordingly.
1074  *
1075  * Returns:
1076  *   0       if there was no dependency. *cur_bytes indicates the number of
1077  *           bytes from guest_offset that can be read before the next
1078  *           dependency must be processed (or the request is complete)
1079  *
1080  *   -EAGAIN if we had to wait for another request, previously gathered
1081  *           information on cluster allocation may be invalid now. The caller
1082  *           must start over anyway, so consider *cur_bytes undefined.
1083  */
1084 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1085     uint64_t *cur_bytes, QCowL2Meta **m)
1086 {
1087     BDRVQcow2State *s = bs->opaque;
1088     QCowL2Meta *old_alloc;
1089     uint64_t bytes = *cur_bytes;
1090 
1091     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1092 
1093         uint64_t start = guest_offset;
1094         uint64_t end = start + bytes;
1095         uint64_t old_start = l2meta_cow_start(old_alloc);
1096         uint64_t old_end = l2meta_cow_end(old_alloc);
1097 
1098         if (end <= old_start || start >= old_end) {
1099             /* No intersection */
1100         } else {
1101             if (start < old_start) {
1102                 /* Stop at the start of a running allocation */
1103                 bytes = old_start - start;
1104             } else {
1105                 bytes = 0;
1106             }
1107 
1108             /* Stop if already an l2meta exists. After yielding, it wouldn't
1109              * be valid any more, so we'd have to clean up the old L2Metas
1110              * and deal with requests depending on them before starting to
1111              * gather new ones. Not worth the trouble. */
1112             if (bytes == 0 && *m) {
1113                 *cur_bytes = 0;
1114                 return 0;
1115             }
1116 
1117             if (bytes == 0) {
1118                 /* Wait for the dependency to complete. We need to recheck
1119                  * the free/allocated clusters when we continue. */
1120                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1121                 return -EAGAIN;
1122             }
1123         }
1124     }
1125 
1126     /* Make sure that existing clusters and new allocations are only used up to
1127      * the next dependency if we shortened the request above */
1128     *cur_bytes = bytes;
1129 
1130     return 0;
1131 }
1132 
1133 /*
1134  * Checks how many already allocated clusters that don't require a copy on
1135  * write there are at the given guest_offset (up to *bytes). If *host_offset is
1136  * not INV_OFFSET, only physically contiguous clusters beginning at this host
1137  * offset are counted.
1138  *
1139  * Note that guest_offset may not be cluster aligned. In this case, the
1140  * returned *host_offset points to exact byte referenced by guest_offset and
1141  * therefore isn't cluster aligned as well.
1142  *
1143  * Returns:
1144  *   0:     if no allocated clusters are available at the given offset.
1145  *          *bytes is normally unchanged. It is set to 0 if the cluster
1146  *          is allocated and doesn't need COW, but doesn't have the right
1147  *          physical offset.
1148  *
1149  *   1:     if allocated clusters that don't require a COW are available at
1150  *          the requested offset. *bytes may have decreased and describes
1151  *          the length of the area that can be written to.
1152  *
1153  *  -errno: in error cases
1154  */
1155 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1156     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1157 {
1158     BDRVQcow2State *s = bs->opaque;
1159     int l2_index;
1160     uint64_t cluster_offset;
1161     uint64_t *l2_slice;
1162     uint64_t nb_clusters;
1163     unsigned int keep_clusters;
1164     int ret;
1165 
1166     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1167                               *bytes);
1168 
1169     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1170                                       == offset_into_cluster(s, *host_offset));
1171 
1172     /*
1173      * Calculate the number of clusters to look for. We stop at L2 slice
1174      * boundaries to keep things simple.
1175      */
1176     nb_clusters =
1177         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1178 
1179     l2_index = offset_to_l2_slice_index(s, guest_offset);
1180     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1181     assert(nb_clusters <= INT_MAX);
1182 
1183     /* Find L2 entry for the first involved cluster */
1184     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1185     if (ret < 0) {
1186         return ret;
1187     }
1188 
1189     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1190 
1191     /* Check how many clusters are already allocated and don't need COW */
1192     if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1193         && (cluster_offset & QCOW_OFLAG_COPIED))
1194     {
1195         /* If a specific host_offset is required, check it */
1196         bool offset_matches =
1197             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1198 
1199         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1200             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1201                                     "%#llx unaligned (guest offset: %#" PRIx64
1202                                     ")", cluster_offset & L2E_OFFSET_MASK,
1203                                     guest_offset);
1204             ret = -EIO;
1205             goto out;
1206         }
1207 
1208         if (*host_offset != INV_OFFSET && !offset_matches) {
1209             *bytes = 0;
1210             ret = 0;
1211             goto out;
1212         }
1213 
1214         /* We keep all QCOW_OFLAG_COPIED clusters */
1215         keep_clusters =
1216             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1217                                       &l2_slice[l2_index],
1218                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1219         assert(keep_clusters <= nb_clusters);
1220 
1221         *bytes = MIN(*bytes,
1222                  keep_clusters * s->cluster_size
1223                  - offset_into_cluster(s, guest_offset));
1224 
1225         ret = 1;
1226     } else {
1227         ret = 0;
1228     }
1229 
1230     /* Cleanup */
1231 out:
1232     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1233 
1234     /* Only return a host offset if we actually made progress. Otherwise we
1235      * would make requirements for handle_alloc() that it can't fulfill */
1236     if (ret > 0) {
1237         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1238                      + offset_into_cluster(s, guest_offset);
1239     }
1240 
1241     return ret;
1242 }
1243 
1244 /*
1245  * Allocates new clusters for the given guest_offset.
1246  *
1247  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1248  * contain the number of clusters that have been allocated and are contiguous
1249  * in the image file.
1250  *
1251  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1252  * at which the new clusters must start. *nb_clusters can be 0 on return in
1253  * this case if the cluster at host_offset is already in use. If *host_offset
1254  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1255  *
1256  * *host_offset is updated to contain the offset into the image file at which
1257  * the first allocated cluster starts.
1258  *
1259  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1260  * function has been waiting for another request and the allocation must be
1261  * restarted, but the whole request should not be failed.
1262  */
1263 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1264                                    uint64_t *host_offset, uint64_t *nb_clusters)
1265 {
1266     BDRVQcow2State *s = bs->opaque;
1267 
1268     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1269                                          *host_offset, *nb_clusters);
1270 
1271     if (has_data_file(bs)) {
1272         assert(*host_offset == INV_OFFSET ||
1273                *host_offset == start_of_cluster(s, guest_offset));
1274         *host_offset = start_of_cluster(s, guest_offset);
1275         return 0;
1276     }
1277 
1278     /* Allocate new clusters */
1279     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1280     if (*host_offset == INV_OFFSET) {
1281         int64_t cluster_offset =
1282             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1283         if (cluster_offset < 0) {
1284             return cluster_offset;
1285         }
1286         *host_offset = cluster_offset;
1287         return 0;
1288     } else {
1289         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1290         if (ret < 0) {
1291             return ret;
1292         }
1293         *nb_clusters = ret;
1294         return 0;
1295     }
1296 }
1297 
1298 /*
1299  * Allocates new clusters for an area that either is yet unallocated or needs a
1300  * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1301  * allocated if the new allocation can match the specified host offset.
1302  *
1303  * Note that guest_offset may not be cluster aligned. In this case, the
1304  * returned *host_offset points to exact byte referenced by guest_offset and
1305  * therefore isn't cluster aligned as well.
1306  *
1307  * Returns:
1308  *   0:     if no clusters could be allocated. *bytes is set to 0,
1309  *          *host_offset is left unchanged.
1310  *
1311  *   1:     if new clusters were allocated. *bytes may be decreased if the
1312  *          new allocation doesn't cover all of the requested area.
1313  *          *host_offset is updated to contain the host offset of the first
1314  *          newly allocated cluster.
1315  *
1316  *  -errno: in error cases
1317  */
1318 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1319     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1320 {
1321     BDRVQcow2State *s = bs->opaque;
1322     int l2_index;
1323     uint64_t *l2_slice;
1324     uint64_t entry;
1325     uint64_t nb_clusters;
1326     int ret;
1327     bool keep_old_clusters = false;
1328 
1329     uint64_t alloc_cluster_offset = INV_OFFSET;
1330 
1331     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1332                              *bytes);
1333     assert(*bytes > 0);
1334 
1335     /*
1336      * Calculate the number of clusters to look for. We stop at L2 slice
1337      * boundaries to keep things simple.
1338      */
1339     nb_clusters =
1340         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1341 
1342     l2_index = offset_to_l2_slice_index(s, guest_offset);
1343     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1344     assert(nb_clusters <= INT_MAX);
1345 
1346     /* Find L2 entry for the first involved cluster */
1347     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1348     if (ret < 0) {
1349         return ret;
1350     }
1351 
1352     entry = be64_to_cpu(l2_slice[l2_index]);
1353 
1354     /* For the moment, overwrite compressed clusters one by one */
1355     if (entry & QCOW_OFLAG_COMPRESSED) {
1356         nb_clusters = 1;
1357     } else {
1358         nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1359     }
1360 
1361     /* This function is only called when there were no non-COW clusters, so if
1362      * we can't find any unallocated or COW clusters either, something is
1363      * wrong with our code. */
1364     assert(nb_clusters > 0);
1365 
1366     if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1367         (entry & QCOW_OFLAG_COPIED) &&
1368         (*host_offset == INV_OFFSET ||
1369          start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1370     {
1371         int preallocated_nb_clusters;
1372 
1373         if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1374             qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1375                                     "cluster offset %#llx unaligned (guest "
1376                                     "offset: %#" PRIx64 ")",
1377                                     entry & L2E_OFFSET_MASK, guest_offset);
1378             ret = -EIO;
1379             goto fail;
1380         }
1381 
1382         /* Try to reuse preallocated zero clusters; contiguous normal clusters
1383          * would be fine, too, but count_cow_clusters() above has limited
1384          * nb_clusters already to a range of COW clusters */
1385         preallocated_nb_clusters =
1386             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1387                                       &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1388         assert(preallocated_nb_clusters > 0);
1389 
1390         nb_clusters = preallocated_nb_clusters;
1391         alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1392 
1393         /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1394          * should not free them. */
1395         keep_old_clusters = true;
1396     }
1397 
1398     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1399 
1400     if (alloc_cluster_offset == INV_OFFSET) {
1401         /* Allocate, if necessary at a given offset in the image file */
1402         alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1403                                start_of_cluster(s, *host_offset);
1404         ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1405                                       &nb_clusters);
1406         if (ret < 0) {
1407             goto fail;
1408         }
1409 
1410         /* Can't extend contiguous allocation */
1411         if (nb_clusters == 0) {
1412             *bytes = 0;
1413             return 0;
1414         }
1415 
1416         assert(alloc_cluster_offset != INV_OFFSET);
1417     }
1418 
1419     /*
1420      * Save info needed for meta data update.
1421      *
1422      * requested_bytes: Number of bytes from the start of the first
1423      * newly allocated cluster to the end of the (possibly shortened
1424      * before) write request.
1425      *
1426      * avail_bytes: Number of bytes from the start of the first
1427      * newly allocated to the end of the last newly allocated cluster.
1428      *
1429      * nb_bytes: The number of bytes from the start of the first
1430      * newly allocated cluster to the end of the area that the write
1431      * request actually writes to (excluding COW at the end)
1432      */
1433     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1434     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1435     int nb_bytes = MIN(requested_bytes, avail_bytes);
1436     QCowL2Meta *old_m = *m;
1437 
1438     *m = g_malloc0(sizeof(**m));
1439 
1440     **m = (QCowL2Meta) {
1441         .next           = old_m,
1442 
1443         .alloc_offset   = alloc_cluster_offset,
1444         .offset         = start_of_cluster(s, guest_offset),
1445         .nb_clusters    = nb_clusters,
1446 
1447         .keep_old_clusters  = keep_old_clusters,
1448 
1449         .cow_start = {
1450             .offset     = 0,
1451             .nb_bytes   = offset_into_cluster(s, guest_offset),
1452         },
1453         .cow_end = {
1454             .offset     = nb_bytes,
1455             .nb_bytes   = avail_bytes - nb_bytes,
1456         },
1457     };
1458     qemu_co_queue_init(&(*m)->dependent_requests);
1459     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1460 
1461     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1462     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1463     assert(*bytes != 0);
1464 
1465     return 1;
1466 
1467 fail:
1468     if (*m && (*m)->nb_clusters > 0) {
1469         QLIST_REMOVE(*m, next_in_flight);
1470     }
1471     return ret;
1472 }
1473 
1474 /*
1475  * alloc_cluster_offset
1476  *
1477  * For a given offset on the virtual disk, find the cluster offset in qcow2
1478  * file. If the offset is not found, allocate a new cluster.
1479  *
1480  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1481  * other fields in m are meaningless.
1482  *
1483  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1484  * contiguous clusters that have been allocated. In this case, the other
1485  * fields of m are valid and contain information about the first allocated
1486  * cluster.
1487  *
1488  * If the request conflicts with another write request in flight, the coroutine
1489  * is queued and will be reentered when the dependency has completed.
1490  *
1491  * Return 0 on success and -errno in error cases
1492  */
1493 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1494                                unsigned int *bytes, uint64_t *host_offset,
1495                                QCowL2Meta **m)
1496 {
1497     BDRVQcow2State *s = bs->opaque;
1498     uint64_t start, remaining;
1499     uint64_t cluster_offset;
1500     uint64_t cur_bytes;
1501     int ret;
1502 
1503     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1504 
1505 again:
1506     start = offset;
1507     remaining = *bytes;
1508     cluster_offset = INV_OFFSET;
1509     *host_offset = INV_OFFSET;
1510     cur_bytes = 0;
1511     *m = NULL;
1512 
1513     while (true) {
1514 
1515         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1516             *host_offset = start_of_cluster(s, cluster_offset);
1517         }
1518 
1519         assert(remaining >= cur_bytes);
1520 
1521         start           += cur_bytes;
1522         remaining       -= cur_bytes;
1523 
1524         if (cluster_offset != INV_OFFSET) {
1525             cluster_offset += cur_bytes;
1526         }
1527 
1528         if (remaining == 0) {
1529             break;
1530         }
1531 
1532         cur_bytes = remaining;
1533 
1534         /*
1535          * Now start gathering as many contiguous clusters as possible:
1536          *
1537          * 1. Check for overlaps with in-flight allocations
1538          *
1539          *      a) Overlap not in the first cluster -> shorten this request and
1540          *         let the caller handle the rest in its next loop iteration.
1541          *
1542          *      b) Real overlaps of two requests. Yield and restart the search
1543          *         for contiguous clusters (the situation could have changed
1544          *         while we were sleeping)
1545          *
1546          *      c) TODO: Request starts in the same cluster as the in-flight
1547          *         allocation ends. Shorten the COW of the in-fight allocation,
1548          *         set cluster_offset to write to the same cluster and set up
1549          *         the right synchronisation between the in-flight request and
1550          *         the new one.
1551          */
1552         ret = handle_dependencies(bs, start, &cur_bytes, m);
1553         if (ret == -EAGAIN) {
1554             /* Currently handle_dependencies() doesn't yield if we already had
1555              * an allocation. If it did, we would have to clean up the L2Meta
1556              * structs before starting over. */
1557             assert(*m == NULL);
1558             goto again;
1559         } else if (ret < 0) {
1560             return ret;
1561         } else if (cur_bytes == 0) {
1562             break;
1563         } else {
1564             /* handle_dependencies() may have decreased cur_bytes (shortened
1565              * the allocations below) so that the next dependency is processed
1566              * correctly during the next loop iteration. */
1567         }
1568 
1569         /*
1570          * 2. Count contiguous COPIED clusters.
1571          */
1572         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1573         if (ret < 0) {
1574             return ret;
1575         } else if (ret) {
1576             continue;
1577         } else if (cur_bytes == 0) {
1578             break;
1579         }
1580 
1581         /*
1582          * 3. If the request still hasn't completed, allocate new clusters,
1583          *    considering any cluster_offset of steps 1c or 2.
1584          */
1585         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1586         if (ret < 0) {
1587             return ret;
1588         } else if (ret) {
1589             continue;
1590         } else {
1591             assert(cur_bytes == 0);
1592             break;
1593         }
1594     }
1595 
1596     *bytes -= remaining;
1597     assert(*bytes > 0);
1598     assert(*host_offset != INV_OFFSET);
1599 
1600     return 0;
1601 }
1602 
1603 /*
1604  * This discards as many clusters of nb_clusters as possible at once (i.e.
1605  * all clusters in the same L2 slice) and returns the number of discarded
1606  * clusters.
1607  */
1608 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1609                                uint64_t nb_clusters,
1610                                enum qcow2_discard_type type, bool full_discard)
1611 {
1612     BDRVQcow2State *s = bs->opaque;
1613     uint64_t *l2_slice;
1614     int l2_index;
1615     int ret;
1616     int i;
1617 
1618     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1619     if (ret < 0) {
1620         return ret;
1621     }
1622 
1623     /* Limit nb_clusters to one L2 slice */
1624     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1625     assert(nb_clusters <= INT_MAX);
1626 
1627     for (i = 0; i < nb_clusters; i++) {
1628         uint64_t old_l2_entry;
1629 
1630         old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1631 
1632         /*
1633          * If full_discard is false, make sure that a discarded area reads back
1634          * as zeroes for v3 images (we cannot do it for v2 without actually
1635          * writing a zero-filled buffer). We can skip the operation if the
1636          * cluster is already marked as zero, or if it's unallocated and we
1637          * don't have a backing file.
1638          *
1639          * TODO We might want to use bdrv_block_status(bs) here, but we're
1640          * holding s->lock, so that doesn't work today.
1641          *
1642          * If full_discard is true, the sector should not read back as zeroes,
1643          * but rather fall through to the backing file.
1644          */
1645         switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1646         case QCOW2_CLUSTER_UNALLOCATED:
1647             if (full_discard || !bs->backing) {
1648                 continue;
1649             }
1650             break;
1651 
1652         case QCOW2_CLUSTER_ZERO_PLAIN:
1653             if (!full_discard) {
1654                 continue;
1655             }
1656             break;
1657 
1658         case QCOW2_CLUSTER_ZERO_ALLOC:
1659         case QCOW2_CLUSTER_NORMAL:
1660         case QCOW2_CLUSTER_COMPRESSED:
1661             break;
1662 
1663         default:
1664             abort();
1665         }
1666 
1667         /* First remove L2 entries */
1668         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1669         if (!full_discard && s->qcow_version >= 3) {
1670             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1671         } else {
1672             l2_slice[l2_index + i] = cpu_to_be64(0);
1673         }
1674 
1675         /* Then decrease the refcount */
1676         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1677     }
1678 
1679     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1680 
1681     return nb_clusters;
1682 }
1683 
1684 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1685                           uint64_t bytes, enum qcow2_discard_type type,
1686                           bool full_discard)
1687 {
1688     BDRVQcow2State *s = bs->opaque;
1689     uint64_t end_offset = offset + bytes;
1690     uint64_t nb_clusters;
1691     int64_t cleared;
1692     int ret;
1693 
1694     /* Caller must pass aligned values, except at image end */
1695     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1696     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1697            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1698 
1699     nb_clusters = size_to_clusters(s, bytes);
1700 
1701     s->cache_discards = true;
1702 
1703     /* Each L2 slice is handled by its own loop iteration */
1704     while (nb_clusters > 0) {
1705         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1706                                       full_discard);
1707         if (cleared < 0) {
1708             ret = cleared;
1709             goto fail;
1710         }
1711 
1712         nb_clusters -= cleared;
1713         offset += (cleared * s->cluster_size);
1714     }
1715 
1716     ret = 0;
1717 fail:
1718     s->cache_discards = false;
1719     qcow2_process_discards(bs, ret);
1720 
1721     return ret;
1722 }
1723 
1724 /*
1725  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1726  * all clusters in the same L2 slice) and returns the number of zeroed
1727  * clusters.
1728  */
1729 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1730                             uint64_t nb_clusters, int flags)
1731 {
1732     BDRVQcow2State *s = bs->opaque;
1733     uint64_t *l2_slice;
1734     int l2_index;
1735     int ret;
1736     int i;
1737     bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1738 
1739     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1740     if (ret < 0) {
1741         return ret;
1742     }
1743 
1744     /* Limit nb_clusters to one L2 slice */
1745     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1746     assert(nb_clusters <= INT_MAX);
1747 
1748     for (i = 0; i < nb_clusters; i++) {
1749         uint64_t old_offset;
1750         QCow2ClusterType cluster_type;
1751 
1752         old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1753 
1754         /*
1755          * Minimize L2 changes if the cluster already reads back as
1756          * zeroes with correct allocation.
1757          */
1758         cluster_type = qcow2_get_cluster_type(bs, old_offset);
1759         if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1760             (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1761             continue;
1762         }
1763 
1764         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1765         if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1766             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1767             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1768         } else {
1769             l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1770         }
1771     }
1772 
1773     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1774 
1775     return nb_clusters;
1776 }
1777 
1778 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1779                           uint64_t bytes, int flags)
1780 {
1781     BDRVQcow2State *s = bs->opaque;
1782     uint64_t end_offset = offset + bytes;
1783     uint64_t nb_clusters;
1784     int64_t cleared;
1785     int ret;
1786 
1787     /* If we have to stay in sync with an external data file, zero out
1788      * s->data_file first. */
1789     if (data_file_is_raw(bs)) {
1790         assert(has_data_file(bs));
1791         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1792         if (ret < 0) {
1793             return ret;
1794         }
1795     }
1796 
1797     /* Caller must pass aligned values, except at image end */
1798     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1799     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1800            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1801 
1802     /* The zero flag is only supported by version 3 and newer */
1803     if (s->qcow_version < 3) {
1804         return -ENOTSUP;
1805     }
1806 
1807     /* Each L2 slice is handled by its own loop iteration */
1808     nb_clusters = size_to_clusters(s, bytes);
1809 
1810     s->cache_discards = true;
1811 
1812     while (nb_clusters > 0) {
1813         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1814         if (cleared < 0) {
1815             ret = cleared;
1816             goto fail;
1817         }
1818 
1819         nb_clusters -= cleared;
1820         offset += (cleared * s->cluster_size);
1821     }
1822 
1823     ret = 0;
1824 fail:
1825     s->cache_discards = false;
1826     qcow2_process_discards(bs, ret);
1827 
1828     return ret;
1829 }
1830 
1831 /*
1832  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1833  * non-backed non-pre-allocated zero clusters).
1834  *
1835  * l1_entries and *visited_l1_entries are used to keep track of progress for
1836  * status_cb(). l1_entries contains the total number of L1 entries and
1837  * *visited_l1_entries counts all visited L1 entries.
1838  */
1839 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1840                                       int l1_size, int64_t *visited_l1_entries,
1841                                       int64_t l1_entries,
1842                                       BlockDriverAmendStatusCB *status_cb,
1843                                       void *cb_opaque)
1844 {
1845     BDRVQcow2State *s = bs->opaque;
1846     bool is_active_l1 = (l1_table == s->l1_table);
1847     uint64_t *l2_slice = NULL;
1848     unsigned slice, slice_size2, n_slices;
1849     int ret;
1850     int i, j;
1851 
1852     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1853     n_slices = s->cluster_size / slice_size2;
1854 
1855     if (!is_active_l1) {
1856         /* inactive L2 tables require a buffer to be stored in when loading
1857          * them from disk */
1858         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1859         if (l2_slice == NULL) {
1860             return -ENOMEM;
1861         }
1862     }
1863 
1864     for (i = 0; i < l1_size; i++) {
1865         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1866         uint64_t l2_refcount;
1867 
1868         if (!l2_offset) {
1869             /* unallocated */
1870             (*visited_l1_entries)++;
1871             if (status_cb) {
1872                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1873             }
1874             continue;
1875         }
1876 
1877         if (offset_into_cluster(s, l2_offset)) {
1878             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1879                                     PRIx64 " unaligned (L1 index: %#x)",
1880                                     l2_offset, i);
1881             ret = -EIO;
1882             goto fail;
1883         }
1884 
1885         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1886                                  &l2_refcount);
1887         if (ret < 0) {
1888             goto fail;
1889         }
1890 
1891         for (slice = 0; slice < n_slices; slice++) {
1892             uint64_t slice_offset = l2_offset + slice * slice_size2;
1893             bool l2_dirty = false;
1894             if (is_active_l1) {
1895                 /* get active L2 tables from cache */
1896                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1897                                       (void **)&l2_slice);
1898             } else {
1899                 /* load inactive L2 tables from disk */
1900                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1901             }
1902             if (ret < 0) {
1903                 goto fail;
1904             }
1905 
1906             for (j = 0; j < s->l2_slice_size; j++) {
1907                 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1908                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1909                 QCow2ClusterType cluster_type =
1910                     qcow2_get_cluster_type(bs, l2_entry);
1911 
1912                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1913                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1914                     continue;
1915                 }
1916 
1917                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1918                     if (!bs->backing) {
1919                         /* not backed; therefore we can simply deallocate the
1920                          * cluster */
1921                         l2_slice[j] = 0;
1922                         l2_dirty = true;
1923                         continue;
1924                     }
1925 
1926                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
1927                     if (offset < 0) {
1928                         ret = offset;
1929                         goto fail;
1930                     }
1931 
1932                     if (l2_refcount > 1) {
1933                         /* For shared L2 tables, set the refcount accordingly
1934                          * (it is already 1 and needs to be l2_refcount) */
1935                         ret = qcow2_update_cluster_refcount(
1936                             bs, offset >> s->cluster_bits,
1937                             refcount_diff(1, l2_refcount), false,
1938                             QCOW2_DISCARD_OTHER);
1939                         if (ret < 0) {
1940                             qcow2_free_clusters(bs, offset, s->cluster_size,
1941                                                 QCOW2_DISCARD_OTHER);
1942                             goto fail;
1943                         }
1944                     }
1945                 }
1946 
1947                 if (offset_into_cluster(s, offset)) {
1948                     int l2_index = slice * s->l2_slice_size + j;
1949                     qcow2_signal_corruption(
1950                         bs, true, -1, -1,
1951                         "Cluster allocation offset "
1952                         "%#" PRIx64 " unaligned (L2 offset: %#"
1953                         PRIx64 ", L2 index: %#x)", offset,
1954                         l2_offset, l2_index);
1955                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1956                         qcow2_free_clusters(bs, offset, s->cluster_size,
1957                                             QCOW2_DISCARD_ALWAYS);
1958                     }
1959                     ret = -EIO;
1960                     goto fail;
1961                 }
1962 
1963                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1964                                                     s->cluster_size, true);
1965                 if (ret < 0) {
1966                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1967                         qcow2_free_clusters(bs, offset, s->cluster_size,
1968                                             QCOW2_DISCARD_ALWAYS);
1969                     }
1970                     goto fail;
1971                 }
1972 
1973                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1974                                          s->cluster_size, 0);
1975                 if (ret < 0) {
1976                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1977                         qcow2_free_clusters(bs, offset, s->cluster_size,
1978                                             QCOW2_DISCARD_ALWAYS);
1979                     }
1980                     goto fail;
1981                 }
1982 
1983                 if (l2_refcount == 1) {
1984                     l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1985                 } else {
1986                     l2_slice[j] = cpu_to_be64(offset);
1987                 }
1988                 l2_dirty = true;
1989             }
1990 
1991             if (is_active_l1) {
1992                 if (l2_dirty) {
1993                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1994                     qcow2_cache_depends_on_flush(s->l2_table_cache);
1995                 }
1996                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1997             } else {
1998                 if (l2_dirty) {
1999                     ret = qcow2_pre_write_overlap_check(
2000                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2001                         slice_offset, slice_size2, false);
2002                     if (ret < 0) {
2003                         goto fail;
2004                     }
2005 
2006                     ret = bdrv_pwrite(bs->file, slice_offset,
2007                                       l2_slice, slice_size2);
2008                     if (ret < 0) {
2009                         goto fail;
2010                     }
2011                 }
2012             }
2013         }
2014 
2015         (*visited_l1_entries)++;
2016         if (status_cb) {
2017             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2018         }
2019     }
2020 
2021     ret = 0;
2022 
2023 fail:
2024     if (l2_slice) {
2025         if (!is_active_l1) {
2026             qemu_vfree(l2_slice);
2027         } else {
2028             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2029         }
2030     }
2031     return ret;
2032 }
2033 
2034 /*
2035  * For backed images, expands all zero clusters on the image. For non-backed
2036  * images, deallocates all non-pre-allocated zero clusters (and claims the
2037  * allocation for pre-allocated ones). This is important for downgrading to a
2038  * qcow2 version which doesn't yet support metadata zero clusters.
2039  */
2040 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2041                                BlockDriverAmendStatusCB *status_cb,
2042                                void *cb_opaque)
2043 {
2044     BDRVQcow2State *s = bs->opaque;
2045     uint64_t *l1_table = NULL;
2046     int64_t l1_entries = 0, visited_l1_entries = 0;
2047     int ret;
2048     int i, j;
2049 
2050     if (status_cb) {
2051         l1_entries = s->l1_size;
2052         for (i = 0; i < s->nb_snapshots; i++) {
2053             l1_entries += s->snapshots[i].l1_size;
2054         }
2055     }
2056 
2057     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2058                                      &visited_l1_entries, l1_entries,
2059                                      status_cb, cb_opaque);
2060     if (ret < 0) {
2061         goto fail;
2062     }
2063 
2064     /* Inactive L1 tables may point to active L2 tables - therefore it is
2065      * necessary to flush the L2 table cache before trying to access the L2
2066      * tables pointed to by inactive L1 entries (else we might try to expand
2067      * zero clusters that have already been expanded); furthermore, it is also
2068      * necessary to empty the L2 table cache, since it may contain tables which
2069      * are now going to be modified directly on disk, bypassing the cache.
2070      * qcow2_cache_empty() does both for us. */
2071     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2072     if (ret < 0) {
2073         goto fail;
2074     }
2075 
2076     for (i = 0; i < s->nb_snapshots; i++) {
2077         int l1_size2;
2078         uint64_t *new_l1_table;
2079         Error *local_err = NULL;
2080 
2081         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2082                                    s->snapshots[i].l1_size, sizeof(uint64_t),
2083                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2084                                    &local_err);
2085         if (ret < 0) {
2086             error_report_err(local_err);
2087             goto fail;
2088         }
2089 
2090         l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2091         new_l1_table = g_try_realloc(l1_table, l1_size2);
2092 
2093         if (!new_l1_table) {
2094             ret = -ENOMEM;
2095             goto fail;
2096         }
2097 
2098         l1_table = new_l1_table;
2099 
2100         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2101                          l1_table, l1_size2);
2102         if (ret < 0) {
2103             goto fail;
2104         }
2105 
2106         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2107             be64_to_cpus(&l1_table[j]);
2108         }
2109 
2110         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2111                                          &visited_l1_entries, l1_entries,
2112                                          status_cb, cb_opaque);
2113         if (ret < 0) {
2114             goto fail;
2115         }
2116     }
2117 
2118     ret = 0;
2119 
2120 fail:
2121     g_free(l1_table);
2122     return ret;
2123 }
2124