1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t new_l1_table_offset, new_l1_size; 39 uint8_t data[12]; 40 41 if (min_size <= s->l1_size) 42 return 0; 43 44 if (exact_size) { 45 new_l1_size = min_size; 46 } else { 47 /* Bump size up to reduce the number of times we have to grow */ 48 new_l1_size = s->l1_size; 49 if (new_l1_size == 0) { 50 new_l1_size = 1; 51 } 52 while (min_size > new_l1_size) { 53 new_l1_size = (new_l1_size * 3 + 1) / 2; 54 } 55 } 56 57 if (new_l1_size > INT_MAX) { 58 return -EFBIG; 59 } 60 61 #ifdef DEBUG_ALLOC2 62 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 63 s->l1_size, new_l1_size); 64 #endif 65 66 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 67 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 68 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 69 70 /* write new table (align to cluster) */ 71 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 72 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 73 if (new_l1_table_offset < 0) { 74 g_free(new_l1_table); 75 return new_l1_table_offset; 76 } 77 78 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 79 if (ret < 0) { 80 goto fail; 81 } 82 83 /* the L1 position has not yet been updated, so these clusters must 84 * indeed be completely free */ 85 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, 86 new_l1_table_offset, new_l1_size2); 87 if (ret < 0) { 88 goto fail; 89 } 90 91 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 92 for(i = 0; i < s->l1_size; i++) 93 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 94 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 95 if (ret < 0) 96 goto fail; 97 for(i = 0; i < s->l1_size; i++) 98 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 99 100 /* set new table */ 101 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 102 cpu_to_be32w((uint32_t*)data, new_l1_size); 103 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); 104 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 105 if (ret < 0) { 106 goto fail; 107 } 108 g_free(s->l1_table); 109 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t), 110 QCOW2_DISCARD_OTHER); 111 s->l1_table_offset = new_l1_table_offset; 112 s->l1_table = new_l1_table; 113 s->l1_size = new_l1_size; 114 return 0; 115 fail: 116 g_free(new_l1_table); 117 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 118 QCOW2_DISCARD_OTHER); 119 return ret; 120 } 121 122 /* 123 * l2_load 124 * 125 * Loads a L2 table into memory. If the table is in the cache, the cache 126 * is used; otherwise the L2 table is loaded from the image file. 127 * 128 * Returns a pointer to the L2 table on success, or NULL if the read from 129 * the image file failed. 130 */ 131 132 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 133 uint64_t **l2_table) 134 { 135 BDRVQcowState *s = bs->opaque; 136 int ret; 137 138 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 139 140 return ret; 141 } 142 143 /* 144 * Writes one sector of the L1 table to the disk (can't update single entries 145 * and we really don't want bdrv_pread to perform a read-modify-write) 146 */ 147 #define L1_ENTRIES_PER_SECTOR (512 / 8) 148 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 149 { 150 BDRVQcowState *s = bs->opaque; 151 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 152 int l1_start_index; 153 int i, ret; 154 155 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 156 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 157 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 158 } 159 160 ret = qcow2_pre_write_overlap_check(bs, 161 QCOW2_OL_DEFAULT & ~QCOW2_OL_ACTIVE_L1, 162 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 163 if (ret < 0) { 164 return ret; 165 } 166 167 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 168 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 169 buf, sizeof(buf)); 170 if (ret < 0) { 171 return ret; 172 } 173 174 return 0; 175 } 176 177 /* 178 * l2_allocate 179 * 180 * Allocate a new l2 entry in the file. If l1_index points to an already 181 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 182 * table) copy the contents of the old L2 table into the newly allocated one. 183 * Otherwise the new table is initialized with zeros. 184 * 185 */ 186 187 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 188 { 189 BDRVQcowState *s = bs->opaque; 190 uint64_t old_l2_offset; 191 uint64_t *l2_table; 192 int64_t l2_offset; 193 int ret; 194 195 old_l2_offset = s->l1_table[l1_index]; 196 197 trace_qcow2_l2_allocate(bs, l1_index); 198 199 /* allocate a new l2 entry */ 200 201 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 202 if (l2_offset < 0) { 203 return l2_offset; 204 } 205 206 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 207 if (ret < 0) { 208 goto fail; 209 } 210 211 /* allocate a new entry in the l2 cache */ 212 213 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 214 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 215 if (ret < 0) { 216 return ret; 217 } 218 219 l2_table = *table; 220 221 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 222 /* if there was no old l2 table, clear the new table */ 223 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 224 } else { 225 uint64_t* old_table; 226 227 /* if there was an old l2 table, read it from the disk */ 228 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 229 ret = qcow2_cache_get(bs, s->l2_table_cache, 230 old_l2_offset & L1E_OFFSET_MASK, 231 (void**) &old_table); 232 if (ret < 0) { 233 goto fail; 234 } 235 236 memcpy(l2_table, old_table, s->cluster_size); 237 238 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 239 if (ret < 0) { 240 goto fail; 241 } 242 } 243 244 /* write the l2 table to the file */ 245 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 246 247 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 248 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 249 ret = qcow2_cache_flush(bs, s->l2_table_cache); 250 if (ret < 0) { 251 goto fail; 252 } 253 254 /* update the L1 entry */ 255 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 256 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 257 ret = qcow2_write_l1_entry(bs, l1_index); 258 if (ret < 0) { 259 goto fail; 260 } 261 262 *table = l2_table; 263 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 264 return 0; 265 266 fail: 267 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 268 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 269 s->l1_table[l1_index] = old_l2_offset; 270 return ret; 271 } 272 273 /* 274 * Checks how many clusters in a given L2 table are contiguous in the image 275 * file. As soon as one of the flags in the bitmask stop_flags changes compared 276 * to the first cluster, the search is stopped and the cluster is not counted 277 * as contiguous. (This allows it, for example, to stop at the first compressed 278 * cluster which may require a different handling) 279 */ 280 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 281 uint64_t *l2_table, uint64_t start, uint64_t stop_flags) 282 { 283 int i; 284 uint64_t mask = stop_flags | L2E_OFFSET_MASK; 285 uint64_t offset = be64_to_cpu(l2_table[0]) & mask; 286 287 if (!offset) 288 return 0; 289 290 for (i = start; i < start + nb_clusters; i++) { 291 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 292 if (offset + (uint64_t) i * cluster_size != l2_entry) { 293 break; 294 } 295 } 296 297 return (i - start); 298 } 299 300 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 301 { 302 int i; 303 304 for (i = 0; i < nb_clusters; i++) { 305 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 306 307 if (type != QCOW2_CLUSTER_UNALLOCATED) { 308 break; 309 } 310 } 311 312 return i; 313 } 314 315 /* The crypt function is compatible with the linux cryptoloop 316 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 317 supported */ 318 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 319 uint8_t *out_buf, const uint8_t *in_buf, 320 int nb_sectors, int enc, 321 const AES_KEY *key) 322 { 323 union { 324 uint64_t ll[2]; 325 uint8_t b[16]; 326 } ivec; 327 int i; 328 329 for(i = 0; i < nb_sectors; i++) { 330 ivec.ll[0] = cpu_to_le64(sector_num); 331 ivec.ll[1] = 0; 332 AES_cbc_encrypt(in_buf, out_buf, 512, key, 333 ivec.b, enc); 334 sector_num++; 335 in_buf += 512; 336 out_buf += 512; 337 } 338 } 339 340 static int coroutine_fn copy_sectors(BlockDriverState *bs, 341 uint64_t start_sect, 342 uint64_t cluster_offset, 343 int n_start, int n_end) 344 { 345 BDRVQcowState *s = bs->opaque; 346 QEMUIOVector qiov; 347 struct iovec iov; 348 int n, ret; 349 350 /* 351 * If this is the last cluster and it is only partially used, we must only 352 * copy until the end of the image, or bdrv_check_request will fail for the 353 * bdrv_read/write calls below. 354 */ 355 if (start_sect + n_end > bs->total_sectors) { 356 n_end = bs->total_sectors - start_sect; 357 } 358 359 n = n_end - n_start; 360 if (n <= 0) { 361 return 0; 362 } 363 364 iov.iov_len = n * BDRV_SECTOR_SIZE; 365 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 366 367 qemu_iovec_init_external(&qiov, &iov, 1); 368 369 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 370 371 /* Call .bdrv_co_readv() directly instead of using the public block-layer 372 * interface. This avoids double I/O throttling and request tracking, 373 * which can lead to deadlock when block layer copy-on-read is enabled. 374 */ 375 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 376 if (ret < 0) { 377 goto out; 378 } 379 380 if (s->crypt_method) { 381 qcow2_encrypt_sectors(s, start_sect + n_start, 382 iov.iov_base, iov.iov_base, n, 1, 383 &s->aes_encrypt_key); 384 } 385 386 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, 387 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 388 if (ret < 0) { 389 goto out; 390 } 391 392 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 393 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 394 if (ret < 0) { 395 goto out; 396 } 397 398 ret = 0; 399 out: 400 qemu_vfree(iov.iov_base); 401 return ret; 402 } 403 404 405 /* 406 * get_cluster_offset 407 * 408 * For a given offset of the disk image, find the cluster offset in 409 * qcow2 file. The offset is stored in *cluster_offset. 410 * 411 * on entry, *num is the number of contiguous sectors we'd like to 412 * access following offset. 413 * 414 * on exit, *num is the number of contiguous sectors we can read. 415 * 416 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 417 * cases. 418 */ 419 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 420 int *num, uint64_t *cluster_offset) 421 { 422 BDRVQcowState *s = bs->opaque; 423 unsigned int l2_index; 424 uint64_t l1_index, l2_offset, *l2_table; 425 int l1_bits, c; 426 unsigned int index_in_cluster, nb_clusters; 427 uint64_t nb_available, nb_needed; 428 int ret; 429 430 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 431 nb_needed = *num + index_in_cluster; 432 433 l1_bits = s->l2_bits + s->cluster_bits; 434 435 /* compute how many bytes there are between the offset and 436 * the end of the l1 entry 437 */ 438 439 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 440 441 /* compute the number of available sectors */ 442 443 nb_available = (nb_available >> 9) + index_in_cluster; 444 445 if (nb_needed > nb_available) { 446 nb_needed = nb_available; 447 } 448 449 *cluster_offset = 0; 450 451 /* seek the the l2 offset in the l1 table */ 452 453 l1_index = offset >> l1_bits; 454 if (l1_index >= s->l1_size) { 455 ret = QCOW2_CLUSTER_UNALLOCATED; 456 goto out; 457 } 458 459 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 460 if (!l2_offset) { 461 ret = QCOW2_CLUSTER_UNALLOCATED; 462 goto out; 463 } 464 465 /* load the l2 table in memory */ 466 467 ret = l2_load(bs, l2_offset, &l2_table); 468 if (ret < 0) { 469 return ret; 470 } 471 472 /* find the cluster offset for the given disk offset */ 473 474 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 475 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 476 nb_clusters = size_to_clusters(s, nb_needed << 9); 477 478 ret = qcow2_get_cluster_type(*cluster_offset); 479 switch (ret) { 480 case QCOW2_CLUSTER_COMPRESSED: 481 /* Compressed clusters can only be processed one by one */ 482 c = 1; 483 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 484 break; 485 case QCOW2_CLUSTER_ZERO: 486 if (s->qcow_version < 3) { 487 return -EIO; 488 } 489 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 490 &l2_table[l2_index], 0, 491 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 492 *cluster_offset = 0; 493 break; 494 case QCOW2_CLUSTER_UNALLOCATED: 495 /* how many empty clusters ? */ 496 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 497 *cluster_offset = 0; 498 break; 499 case QCOW2_CLUSTER_NORMAL: 500 /* how many allocated clusters ? */ 501 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 502 &l2_table[l2_index], 0, 503 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 504 *cluster_offset &= L2E_OFFSET_MASK; 505 break; 506 default: 507 abort(); 508 } 509 510 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 511 512 nb_available = (c * s->cluster_sectors); 513 514 out: 515 if (nb_available > nb_needed) 516 nb_available = nb_needed; 517 518 *num = nb_available - index_in_cluster; 519 520 return ret; 521 } 522 523 /* 524 * get_cluster_table 525 * 526 * for a given disk offset, load (and allocate if needed) 527 * the l2 table. 528 * 529 * the l2 table offset in the qcow2 file and the cluster index 530 * in the l2 table are given to the caller. 531 * 532 * Returns 0 on success, -errno in failure case 533 */ 534 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 535 uint64_t **new_l2_table, 536 int *new_l2_index) 537 { 538 BDRVQcowState *s = bs->opaque; 539 unsigned int l2_index; 540 uint64_t l1_index, l2_offset; 541 uint64_t *l2_table = NULL; 542 int ret; 543 544 /* seek the the l2 offset in the l1 table */ 545 546 l1_index = offset >> (s->l2_bits + s->cluster_bits); 547 if (l1_index >= s->l1_size) { 548 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 549 if (ret < 0) { 550 return ret; 551 } 552 } 553 554 assert(l1_index < s->l1_size); 555 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 556 557 /* seek the l2 table of the given l2 offset */ 558 559 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 560 /* load the l2 table in memory */ 561 ret = l2_load(bs, l2_offset, &l2_table); 562 if (ret < 0) { 563 return ret; 564 } 565 } else { 566 /* First allocate a new L2 table (and do COW if needed) */ 567 ret = l2_allocate(bs, l1_index, &l2_table); 568 if (ret < 0) { 569 return ret; 570 } 571 572 /* Then decrease the refcount of the old table */ 573 if (l2_offset) { 574 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 575 QCOW2_DISCARD_OTHER); 576 } 577 } 578 579 /* find the cluster offset for the given disk offset */ 580 581 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 582 583 *new_l2_table = l2_table; 584 *new_l2_index = l2_index; 585 586 return 0; 587 } 588 589 /* 590 * alloc_compressed_cluster_offset 591 * 592 * For a given offset of the disk image, return cluster offset in 593 * qcow2 file. 594 * 595 * If the offset is not found, allocate a new compressed cluster. 596 * 597 * Return the cluster offset if successful, 598 * Return 0, otherwise. 599 * 600 */ 601 602 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 603 uint64_t offset, 604 int compressed_size) 605 { 606 BDRVQcowState *s = bs->opaque; 607 int l2_index, ret; 608 uint64_t *l2_table; 609 int64_t cluster_offset; 610 int nb_csectors; 611 612 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 613 if (ret < 0) { 614 return 0; 615 } 616 617 /* Compression can't overwrite anything. Fail if the cluster was already 618 * allocated. */ 619 cluster_offset = be64_to_cpu(l2_table[l2_index]); 620 if (cluster_offset & L2E_OFFSET_MASK) { 621 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 622 return 0; 623 } 624 625 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 626 if (cluster_offset < 0) { 627 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 628 return 0; 629 } 630 631 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 632 (cluster_offset >> 9); 633 634 cluster_offset |= QCOW_OFLAG_COMPRESSED | 635 ((uint64_t)nb_csectors << s->csize_shift); 636 637 /* update L2 table */ 638 639 /* compressed clusters never have the copied flag */ 640 641 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 642 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 643 l2_table[l2_index] = cpu_to_be64(cluster_offset); 644 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 645 if (ret < 0) { 646 return 0; 647 } 648 649 return cluster_offset; 650 } 651 652 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 653 { 654 BDRVQcowState *s = bs->opaque; 655 int ret; 656 657 if (r->nb_sectors == 0) { 658 return 0; 659 } 660 661 qemu_co_mutex_unlock(&s->lock); 662 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 663 r->offset / BDRV_SECTOR_SIZE, 664 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 665 qemu_co_mutex_lock(&s->lock); 666 667 if (ret < 0) { 668 return ret; 669 } 670 671 /* 672 * Before we update the L2 table to actually point to the new cluster, we 673 * need to be sure that the refcounts have been increased and COW was 674 * handled. 675 */ 676 qcow2_cache_depends_on_flush(s->l2_table_cache); 677 678 return 0; 679 } 680 681 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 682 { 683 BDRVQcowState *s = bs->opaque; 684 int i, j = 0, l2_index, ret; 685 uint64_t *old_cluster, *l2_table; 686 uint64_t cluster_offset = m->alloc_offset; 687 688 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 689 assert(m->nb_clusters > 0); 690 691 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 692 693 /* copy content of unmodified sectors */ 694 ret = perform_cow(bs, m, &m->cow_start); 695 if (ret < 0) { 696 goto err; 697 } 698 699 ret = perform_cow(bs, m, &m->cow_end); 700 if (ret < 0) { 701 goto err; 702 } 703 704 /* Update L2 table. */ 705 if (s->use_lazy_refcounts) { 706 qcow2_mark_dirty(bs); 707 } 708 if (qcow2_need_accurate_refcounts(s)) { 709 qcow2_cache_set_dependency(bs, s->l2_table_cache, 710 s->refcount_block_cache); 711 } 712 713 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 714 if (ret < 0) { 715 goto err; 716 } 717 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 718 719 for (i = 0; i < m->nb_clusters; i++) { 720 /* if two concurrent writes happen to the same unallocated cluster 721 * each write allocates separate cluster and writes data concurrently. 722 * The first one to complete updates l2 table with pointer to its 723 * cluster the second one has to do RMW (which is done above by 724 * copy_sectors()), update l2 table with its cluster pointer and free 725 * old cluster. This is what this loop does */ 726 if(l2_table[l2_index + i] != 0) 727 old_cluster[j++] = l2_table[l2_index + i]; 728 729 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 730 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 731 } 732 733 734 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 735 if (ret < 0) { 736 goto err; 737 } 738 739 /* 740 * If this was a COW, we need to decrease the refcount of the old cluster. 741 * Also flush bs->file to get the right order for L2 and refcount update. 742 * 743 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 744 * clusters), the next write will reuse them anyway. 745 */ 746 if (j != 0) { 747 for (i = 0; i < j; i++) { 748 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 749 QCOW2_DISCARD_NEVER); 750 } 751 } 752 753 ret = 0; 754 err: 755 g_free(old_cluster); 756 return ret; 757 } 758 759 /* 760 * Returns the number of contiguous clusters that can be used for an allocating 761 * write, but require COW to be performed (this includes yet unallocated space, 762 * which must copy from the backing file) 763 */ 764 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 765 uint64_t *l2_table, int l2_index) 766 { 767 int i; 768 769 for (i = 0; i < nb_clusters; i++) { 770 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 771 int cluster_type = qcow2_get_cluster_type(l2_entry); 772 773 switch(cluster_type) { 774 case QCOW2_CLUSTER_NORMAL: 775 if (l2_entry & QCOW_OFLAG_COPIED) { 776 goto out; 777 } 778 break; 779 case QCOW2_CLUSTER_UNALLOCATED: 780 case QCOW2_CLUSTER_COMPRESSED: 781 case QCOW2_CLUSTER_ZERO: 782 break; 783 default: 784 abort(); 785 } 786 } 787 788 out: 789 assert(i <= nb_clusters); 790 return i; 791 } 792 793 /* 794 * Check if there already is an AIO write request in flight which allocates 795 * the same cluster. In this case we need to wait until the previous 796 * request has completed and updated the L2 table accordingly. 797 * 798 * Returns: 799 * 0 if there was no dependency. *cur_bytes indicates the number of 800 * bytes from guest_offset that can be read before the next 801 * dependency must be processed (or the request is complete) 802 * 803 * -EAGAIN if we had to wait for another request, previously gathered 804 * information on cluster allocation may be invalid now. The caller 805 * must start over anyway, so consider *cur_bytes undefined. 806 */ 807 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 808 uint64_t *cur_bytes, QCowL2Meta **m) 809 { 810 BDRVQcowState *s = bs->opaque; 811 QCowL2Meta *old_alloc; 812 uint64_t bytes = *cur_bytes; 813 814 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 815 816 uint64_t start = guest_offset; 817 uint64_t end = start + bytes; 818 uint64_t old_start = l2meta_cow_start(old_alloc); 819 uint64_t old_end = l2meta_cow_end(old_alloc); 820 821 if (end <= old_start || start >= old_end) { 822 /* No intersection */ 823 } else { 824 if (start < old_start) { 825 /* Stop at the start of a running allocation */ 826 bytes = old_start - start; 827 } else { 828 bytes = 0; 829 } 830 831 /* Stop if already an l2meta exists. After yielding, it wouldn't 832 * be valid any more, so we'd have to clean up the old L2Metas 833 * and deal with requests depending on them before starting to 834 * gather new ones. Not worth the trouble. */ 835 if (bytes == 0 && *m) { 836 *cur_bytes = 0; 837 return 0; 838 } 839 840 if (bytes == 0) { 841 /* Wait for the dependency to complete. We need to recheck 842 * the free/allocated clusters when we continue. */ 843 qemu_co_mutex_unlock(&s->lock); 844 qemu_co_queue_wait(&old_alloc->dependent_requests); 845 qemu_co_mutex_lock(&s->lock); 846 return -EAGAIN; 847 } 848 } 849 } 850 851 /* Make sure that existing clusters and new allocations are only used up to 852 * the next dependency if we shortened the request above */ 853 *cur_bytes = bytes; 854 855 return 0; 856 } 857 858 /* 859 * Checks how many already allocated clusters that don't require a copy on 860 * write there are at the given guest_offset (up to *bytes). If 861 * *host_offset is not zero, only physically contiguous clusters beginning at 862 * this host offset are counted. 863 * 864 * Note that guest_offset may not be cluster aligned. In this case, the 865 * returned *host_offset points to exact byte referenced by guest_offset and 866 * therefore isn't cluster aligned as well. 867 * 868 * Returns: 869 * 0: if no allocated clusters are available at the given offset. 870 * *bytes is normally unchanged. It is set to 0 if the cluster 871 * is allocated and doesn't need COW, but doesn't have the right 872 * physical offset. 873 * 874 * 1: if allocated clusters that don't require a COW are available at 875 * the requested offset. *bytes may have decreased and describes 876 * the length of the area that can be written to. 877 * 878 * -errno: in error cases 879 */ 880 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 881 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 882 { 883 BDRVQcowState *s = bs->opaque; 884 int l2_index; 885 uint64_t cluster_offset; 886 uint64_t *l2_table; 887 unsigned int nb_clusters; 888 unsigned int keep_clusters; 889 int ret, pret; 890 891 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 892 *bytes); 893 894 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 895 == offset_into_cluster(s, *host_offset)); 896 897 /* 898 * Calculate the number of clusters to look for. We stop at L2 table 899 * boundaries to keep things simple. 900 */ 901 nb_clusters = 902 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 903 904 l2_index = offset_to_l2_index(s, guest_offset); 905 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 906 907 /* Find L2 entry for the first involved cluster */ 908 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 909 if (ret < 0) { 910 return ret; 911 } 912 913 cluster_offset = be64_to_cpu(l2_table[l2_index]); 914 915 /* Check how many clusters are already allocated and don't need COW */ 916 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 917 && (cluster_offset & QCOW_OFLAG_COPIED)) 918 { 919 /* If a specific host_offset is required, check it */ 920 bool offset_matches = 921 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 922 923 if (*host_offset != 0 && !offset_matches) { 924 *bytes = 0; 925 ret = 0; 926 goto out; 927 } 928 929 /* We keep all QCOW_OFLAG_COPIED clusters */ 930 keep_clusters = 931 count_contiguous_clusters(nb_clusters, s->cluster_size, 932 &l2_table[l2_index], 0, 933 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 934 assert(keep_clusters <= nb_clusters); 935 936 *bytes = MIN(*bytes, 937 keep_clusters * s->cluster_size 938 - offset_into_cluster(s, guest_offset)); 939 940 ret = 1; 941 } else { 942 ret = 0; 943 } 944 945 /* Cleanup */ 946 out: 947 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 948 if (pret < 0) { 949 return pret; 950 } 951 952 /* Only return a host offset if we actually made progress. Otherwise we 953 * would make requirements for handle_alloc() that it can't fulfill */ 954 if (ret) { 955 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 956 + offset_into_cluster(s, guest_offset); 957 } 958 959 return ret; 960 } 961 962 /* 963 * Allocates new clusters for the given guest_offset. 964 * 965 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 966 * contain the number of clusters that have been allocated and are contiguous 967 * in the image file. 968 * 969 * If *host_offset is non-zero, it specifies the offset in the image file at 970 * which the new clusters must start. *nb_clusters can be 0 on return in this 971 * case if the cluster at host_offset is already in use. If *host_offset is 972 * zero, the clusters can be allocated anywhere in the image file. 973 * 974 * *host_offset is updated to contain the offset into the image file at which 975 * the first allocated cluster starts. 976 * 977 * Return 0 on success and -errno in error cases. -EAGAIN means that the 978 * function has been waiting for another request and the allocation must be 979 * restarted, but the whole request should not be failed. 980 */ 981 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 982 uint64_t *host_offset, unsigned int *nb_clusters) 983 { 984 BDRVQcowState *s = bs->opaque; 985 986 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 987 *host_offset, *nb_clusters); 988 989 /* Allocate new clusters */ 990 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 991 if (*host_offset == 0) { 992 int64_t cluster_offset = 993 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 994 if (cluster_offset < 0) { 995 return cluster_offset; 996 } 997 *host_offset = cluster_offset; 998 return 0; 999 } else { 1000 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1001 if (ret < 0) { 1002 return ret; 1003 } 1004 *nb_clusters = ret; 1005 return 0; 1006 } 1007 } 1008 1009 /* 1010 * Allocates new clusters for an area that either is yet unallocated or needs a 1011 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1012 * the new allocation can match the specified host offset. 1013 * 1014 * Note that guest_offset may not be cluster aligned. In this case, the 1015 * returned *host_offset points to exact byte referenced by guest_offset and 1016 * therefore isn't cluster aligned as well. 1017 * 1018 * Returns: 1019 * 0: if no clusters could be allocated. *bytes is set to 0, 1020 * *host_offset is left unchanged. 1021 * 1022 * 1: if new clusters were allocated. *bytes may be decreased if the 1023 * new allocation doesn't cover all of the requested area. 1024 * *host_offset is updated to contain the host offset of the first 1025 * newly allocated cluster. 1026 * 1027 * -errno: in error cases 1028 */ 1029 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1030 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1031 { 1032 BDRVQcowState *s = bs->opaque; 1033 int l2_index; 1034 uint64_t *l2_table; 1035 uint64_t entry; 1036 unsigned int nb_clusters; 1037 int ret; 1038 1039 uint64_t alloc_cluster_offset; 1040 1041 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1042 *bytes); 1043 assert(*bytes > 0); 1044 1045 /* 1046 * Calculate the number of clusters to look for. We stop at L2 table 1047 * boundaries to keep things simple. 1048 */ 1049 nb_clusters = 1050 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1051 1052 l2_index = offset_to_l2_index(s, guest_offset); 1053 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1054 1055 /* Find L2 entry for the first involved cluster */ 1056 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1057 if (ret < 0) { 1058 return ret; 1059 } 1060 1061 entry = be64_to_cpu(l2_table[l2_index]); 1062 1063 /* For the moment, overwrite compressed clusters one by one */ 1064 if (entry & QCOW_OFLAG_COMPRESSED) { 1065 nb_clusters = 1; 1066 } else { 1067 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1068 } 1069 1070 /* This function is only called when there were no non-COW clusters, so if 1071 * we can't find any unallocated or COW clusters either, something is 1072 * wrong with our code. */ 1073 assert(nb_clusters > 0); 1074 1075 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1076 if (ret < 0) { 1077 return ret; 1078 } 1079 1080 /* Allocate, if necessary at a given offset in the image file */ 1081 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1082 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1083 &nb_clusters); 1084 if (ret < 0) { 1085 goto fail; 1086 } 1087 1088 /* Can't extend contiguous allocation */ 1089 if (nb_clusters == 0) { 1090 *bytes = 0; 1091 return 0; 1092 } 1093 1094 /* 1095 * Save info needed for meta data update. 1096 * 1097 * requested_sectors: Number of sectors from the start of the first 1098 * newly allocated cluster to the end of the (possibly shortened 1099 * before) write request. 1100 * 1101 * avail_sectors: Number of sectors from the start of the first 1102 * newly allocated to the end of the last newly allocated cluster. 1103 * 1104 * nb_sectors: The number of sectors from the start of the first 1105 * newly allocated cluster to the end of the area that the write 1106 * request actually writes to (excluding COW at the end) 1107 */ 1108 int requested_sectors = 1109 (*bytes + offset_into_cluster(s, guest_offset)) 1110 >> BDRV_SECTOR_BITS; 1111 int avail_sectors = nb_clusters 1112 << (s->cluster_bits - BDRV_SECTOR_BITS); 1113 int alloc_n_start = offset_into_cluster(s, guest_offset) 1114 >> BDRV_SECTOR_BITS; 1115 int nb_sectors = MIN(requested_sectors, avail_sectors); 1116 QCowL2Meta *old_m = *m; 1117 1118 *m = g_malloc0(sizeof(**m)); 1119 1120 **m = (QCowL2Meta) { 1121 .next = old_m, 1122 1123 .alloc_offset = alloc_cluster_offset, 1124 .offset = start_of_cluster(s, guest_offset), 1125 .nb_clusters = nb_clusters, 1126 .nb_available = nb_sectors, 1127 1128 .cow_start = { 1129 .offset = 0, 1130 .nb_sectors = alloc_n_start, 1131 }, 1132 .cow_end = { 1133 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1134 .nb_sectors = avail_sectors - nb_sectors, 1135 }, 1136 }; 1137 qemu_co_queue_init(&(*m)->dependent_requests); 1138 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1139 1140 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1141 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1142 - offset_into_cluster(s, guest_offset)); 1143 assert(*bytes != 0); 1144 1145 return 1; 1146 1147 fail: 1148 if (*m && (*m)->nb_clusters > 0) { 1149 QLIST_REMOVE(*m, next_in_flight); 1150 } 1151 return ret; 1152 } 1153 1154 /* 1155 * alloc_cluster_offset 1156 * 1157 * For a given offset on the virtual disk, find the cluster offset in qcow2 1158 * file. If the offset is not found, allocate a new cluster. 1159 * 1160 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1161 * other fields in m are meaningless. 1162 * 1163 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1164 * contiguous clusters that have been allocated. In this case, the other 1165 * fields of m are valid and contain information about the first allocated 1166 * cluster. 1167 * 1168 * If the request conflicts with another write request in flight, the coroutine 1169 * is queued and will be reentered when the dependency has completed. 1170 * 1171 * Return 0 on success and -errno in error cases 1172 */ 1173 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1174 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m) 1175 { 1176 BDRVQcowState *s = bs->opaque; 1177 uint64_t start, remaining; 1178 uint64_t cluster_offset; 1179 uint64_t cur_bytes; 1180 int ret; 1181 1182 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, 1183 n_start, n_end); 1184 1185 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset)); 1186 offset = start_of_cluster(s, offset); 1187 1188 again: 1189 start = offset + (n_start << BDRV_SECTOR_BITS); 1190 remaining = (n_end - n_start) << BDRV_SECTOR_BITS; 1191 cluster_offset = 0; 1192 *host_offset = 0; 1193 cur_bytes = 0; 1194 *m = NULL; 1195 1196 while (true) { 1197 1198 if (!*host_offset) { 1199 *host_offset = start_of_cluster(s, cluster_offset); 1200 } 1201 1202 assert(remaining >= cur_bytes); 1203 1204 start += cur_bytes; 1205 remaining -= cur_bytes; 1206 cluster_offset += cur_bytes; 1207 1208 if (remaining == 0) { 1209 break; 1210 } 1211 1212 cur_bytes = remaining; 1213 1214 /* 1215 * Now start gathering as many contiguous clusters as possible: 1216 * 1217 * 1. Check for overlaps with in-flight allocations 1218 * 1219 * a) Overlap not in the first cluster -> shorten this request and 1220 * let the caller handle the rest in its next loop iteration. 1221 * 1222 * b) Real overlaps of two requests. Yield and restart the search 1223 * for contiguous clusters (the situation could have changed 1224 * while we were sleeping) 1225 * 1226 * c) TODO: Request starts in the same cluster as the in-flight 1227 * allocation ends. Shorten the COW of the in-fight allocation, 1228 * set cluster_offset to write to the same cluster and set up 1229 * the right synchronisation between the in-flight request and 1230 * the new one. 1231 */ 1232 ret = handle_dependencies(bs, start, &cur_bytes, m); 1233 if (ret == -EAGAIN) { 1234 /* Currently handle_dependencies() doesn't yield if we already had 1235 * an allocation. If it did, we would have to clean up the L2Meta 1236 * structs before starting over. */ 1237 assert(*m == NULL); 1238 goto again; 1239 } else if (ret < 0) { 1240 return ret; 1241 } else if (cur_bytes == 0) { 1242 break; 1243 } else { 1244 /* handle_dependencies() may have decreased cur_bytes (shortened 1245 * the allocations below) so that the next dependency is processed 1246 * correctly during the next loop iteration. */ 1247 } 1248 1249 /* 1250 * 2. Count contiguous COPIED clusters. 1251 */ 1252 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1253 if (ret < 0) { 1254 return ret; 1255 } else if (ret) { 1256 continue; 1257 } else if (cur_bytes == 0) { 1258 break; 1259 } 1260 1261 /* 1262 * 3. If the request still hasn't completed, allocate new clusters, 1263 * considering any cluster_offset of steps 1c or 2. 1264 */ 1265 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1266 if (ret < 0) { 1267 return ret; 1268 } else if (ret) { 1269 continue; 1270 } else { 1271 assert(cur_bytes == 0); 1272 break; 1273 } 1274 } 1275 1276 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS); 1277 assert(*num > 0); 1278 assert(*host_offset != 0); 1279 1280 return 0; 1281 } 1282 1283 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1284 const uint8_t *buf, int buf_size) 1285 { 1286 z_stream strm1, *strm = &strm1; 1287 int ret, out_len; 1288 1289 memset(strm, 0, sizeof(*strm)); 1290 1291 strm->next_in = (uint8_t *)buf; 1292 strm->avail_in = buf_size; 1293 strm->next_out = out_buf; 1294 strm->avail_out = out_buf_size; 1295 1296 ret = inflateInit2(strm, -12); 1297 if (ret != Z_OK) 1298 return -1; 1299 ret = inflate(strm, Z_FINISH); 1300 out_len = strm->next_out - out_buf; 1301 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1302 out_len != out_buf_size) { 1303 inflateEnd(strm); 1304 return -1; 1305 } 1306 inflateEnd(strm); 1307 return 0; 1308 } 1309 1310 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1311 { 1312 BDRVQcowState *s = bs->opaque; 1313 int ret, csize, nb_csectors, sector_offset; 1314 uint64_t coffset; 1315 1316 coffset = cluster_offset & s->cluster_offset_mask; 1317 if (s->cluster_cache_offset != coffset) { 1318 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1319 sector_offset = coffset & 511; 1320 csize = nb_csectors * 512 - sector_offset; 1321 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1322 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1323 if (ret < 0) { 1324 return ret; 1325 } 1326 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1327 s->cluster_data + sector_offset, csize) < 0) { 1328 return -EIO; 1329 } 1330 s->cluster_cache_offset = coffset; 1331 } 1332 return 0; 1333 } 1334 1335 /* 1336 * This discards as many clusters of nb_clusters as possible at once (i.e. 1337 * all clusters in the same L2 table) and returns the number of discarded 1338 * clusters. 1339 */ 1340 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1341 unsigned int nb_clusters) 1342 { 1343 BDRVQcowState *s = bs->opaque; 1344 uint64_t *l2_table; 1345 int l2_index; 1346 int ret; 1347 int i; 1348 1349 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1350 if (ret < 0) { 1351 return ret; 1352 } 1353 1354 /* Limit nb_clusters to one L2 table */ 1355 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1356 1357 for (i = 0; i < nb_clusters; i++) { 1358 uint64_t old_offset; 1359 1360 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1361 if ((old_offset & L2E_OFFSET_MASK) == 0) { 1362 continue; 1363 } 1364 1365 /* First remove L2 entries */ 1366 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1367 l2_table[l2_index + i] = cpu_to_be64(0); 1368 1369 /* Then decrease the refcount */ 1370 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1371 } 1372 1373 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1374 if (ret < 0) { 1375 return ret; 1376 } 1377 1378 return nb_clusters; 1379 } 1380 1381 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1382 int nb_sectors) 1383 { 1384 BDRVQcowState *s = bs->opaque; 1385 uint64_t end_offset; 1386 unsigned int nb_clusters; 1387 int ret; 1388 1389 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1390 1391 /* Round start up and end down */ 1392 offset = align_offset(offset, s->cluster_size); 1393 end_offset &= ~(s->cluster_size - 1); 1394 1395 if (offset > end_offset) { 1396 return 0; 1397 } 1398 1399 nb_clusters = size_to_clusters(s, end_offset - offset); 1400 1401 s->cache_discards = true; 1402 1403 /* Each L2 table is handled by its own loop iteration */ 1404 while (nb_clusters > 0) { 1405 ret = discard_single_l2(bs, offset, nb_clusters); 1406 if (ret < 0) { 1407 goto fail; 1408 } 1409 1410 nb_clusters -= ret; 1411 offset += (ret * s->cluster_size); 1412 } 1413 1414 ret = 0; 1415 fail: 1416 s->cache_discards = false; 1417 qcow2_process_discards(bs, ret); 1418 1419 return ret; 1420 } 1421 1422 /* 1423 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1424 * all clusters in the same L2 table) and returns the number of zeroed 1425 * clusters. 1426 */ 1427 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1428 unsigned int nb_clusters) 1429 { 1430 BDRVQcowState *s = bs->opaque; 1431 uint64_t *l2_table; 1432 int l2_index; 1433 int ret; 1434 int i; 1435 1436 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1437 if (ret < 0) { 1438 return ret; 1439 } 1440 1441 /* Limit nb_clusters to one L2 table */ 1442 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1443 1444 for (i = 0; i < nb_clusters; i++) { 1445 uint64_t old_offset; 1446 1447 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1448 1449 /* Update L2 entries */ 1450 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1451 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1452 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1453 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1454 } else { 1455 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1456 } 1457 } 1458 1459 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1460 if (ret < 0) { 1461 return ret; 1462 } 1463 1464 return nb_clusters; 1465 } 1466 1467 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1468 { 1469 BDRVQcowState *s = bs->opaque; 1470 unsigned int nb_clusters; 1471 int ret; 1472 1473 /* The zero flag is only supported by version 3 and newer */ 1474 if (s->qcow_version < 3) { 1475 return -ENOTSUP; 1476 } 1477 1478 /* Each L2 table is handled by its own loop iteration */ 1479 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1480 1481 s->cache_discards = true; 1482 1483 while (nb_clusters > 0) { 1484 ret = zero_single_l2(bs, offset, nb_clusters); 1485 if (ret < 0) { 1486 goto fail; 1487 } 1488 1489 nb_clusters -= ret; 1490 offset += (ret * s->cluster_size); 1491 } 1492 1493 ret = 0; 1494 fail: 1495 s->cache_discards = false; 1496 qcow2_process_discards(bs, ret); 1497 1498 return ret; 1499 } 1500