xref: /openbmc/qemu/block/qcow2-cluster.c (revision 8e6fe6b8)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32 
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size, i, ret;
37 
38     if (exact_size >= s->l1_size) {
39         return 0;
40     }
41 
42     new_l1_size = exact_size;
43 
44 #ifdef DEBUG_ALLOC2
45     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47 
48     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50                                        new_l1_size * sizeof(uint64_t),
51                              (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
52     if (ret < 0) {
53         goto fail;
54     }
55 
56     ret = bdrv_flush(bs->file->bs);
57     if (ret < 0) {
58         goto fail;
59     }
60 
61     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64             continue;
65         }
66         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
68         s->l1_table[i] = 0;
69     }
70     return 0;
71 
72 fail:
73     /*
74      * If the write in the l1_table failed the image may contain a partially
75      * overwritten l1_table. In this case it would be better to clear the
76      * l1_table in memory to avoid possible image corruption.
77      */
78     memset(s->l1_table + new_l1_size, 0,
79            (s->l1_size - new_l1_size) * sizeof(uint64_t));
80     return ret;
81 }
82 
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84                         bool exact_size)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     int new_l1_size2, ret, i;
88     uint64_t *new_l1_table;
89     int64_t old_l1_table_offset, old_l1_size;
90     int64_t new_l1_table_offset, new_l1_size;
91     uint8_t data[12];
92 
93     if (min_size <= s->l1_size)
94         return 0;
95 
96     /* Do a sanity check on min_size before trying to calculate new_l1_size
97      * (this prevents overflows during the while loop for the calculation of
98      * new_l1_size) */
99     if (min_size > INT_MAX / sizeof(uint64_t)) {
100         return -EFBIG;
101     }
102 
103     if (exact_size) {
104         new_l1_size = min_size;
105     } else {
106         /* Bump size up to reduce the number of times we have to grow */
107         new_l1_size = s->l1_size;
108         if (new_l1_size == 0) {
109             new_l1_size = 1;
110         }
111         while (min_size > new_l1_size) {
112             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113         }
114     }
115 
116     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
118         return -EFBIG;
119     }
120 
121 #ifdef DEBUG_ALLOC2
122     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123             s->l1_size, new_l1_size);
124 #endif
125 
126     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
127     new_l1_table = qemu_try_blockalign(bs->file->bs,
128                                        ROUND_UP(new_l1_size2, 512));
129     if (new_l1_table == NULL) {
130         return -ENOMEM;
131     }
132     memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
133 
134     if (s->l1_size) {
135         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
136     }
137 
138     /* write new table (align to cluster) */
139     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
140     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
141     if (new_l1_table_offset < 0) {
142         qemu_vfree(new_l1_table);
143         return new_l1_table_offset;
144     }
145 
146     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
147     if (ret < 0) {
148         goto fail;
149     }
150 
151     /* the L1 position has not yet been updated, so these clusters must
152      * indeed be completely free */
153     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
154                                         new_l1_size2, false);
155     if (ret < 0) {
156         goto fail;
157     }
158 
159     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
160     for(i = 0; i < s->l1_size; i++)
161         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
162     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
163                            new_l1_table, new_l1_size2);
164     if (ret < 0)
165         goto fail;
166     for(i = 0; i < s->l1_size; i++)
167         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
168 
169     /* set new table */
170     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
171     stl_be_p(data, new_l1_size);
172     stq_be_p(data + 4, new_l1_table_offset);
173     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
174                            data, sizeof(data));
175     if (ret < 0) {
176         goto fail;
177     }
178     qemu_vfree(s->l1_table);
179     old_l1_table_offset = s->l1_table_offset;
180     s->l1_table_offset = new_l1_table_offset;
181     s->l1_table = new_l1_table;
182     old_l1_size = s->l1_size;
183     s->l1_size = new_l1_size;
184     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
185                         QCOW2_DISCARD_OTHER);
186     return 0;
187  fail:
188     qemu_vfree(new_l1_table);
189     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
190                         QCOW2_DISCARD_OTHER);
191     return ret;
192 }
193 
194 /*
195  * l2_load
196  *
197  * @bs: The BlockDriverState
198  * @offset: A guest offset, used to calculate what slice of the L2
199  *          table to load.
200  * @l2_offset: Offset to the L2 table in the image file.
201  * @l2_slice: Location to store the pointer to the L2 slice.
202  *
203  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
204  * that are loaded by the qcow2 cache). If the slice is in the cache,
205  * the cache is used; otherwise the L2 slice is loaded from the image
206  * file.
207  */
208 static int l2_load(BlockDriverState *bs, uint64_t offset,
209                    uint64_t l2_offset, uint64_t **l2_slice)
210 {
211     BDRVQcow2State *s = bs->opaque;
212     int start_of_slice = sizeof(uint64_t) *
213         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
214 
215     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
216                            (void **)l2_slice);
217 }
218 
219 /*
220  * Writes one sector of the L1 table to the disk (can't update single entries
221  * and we really don't want bdrv_pread to perform a read-modify-write)
222  */
223 #define L1_ENTRIES_PER_SECTOR (512 / 8)
224 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
225 {
226     BDRVQcow2State *s = bs->opaque;
227     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
228     int l1_start_index;
229     int i, ret;
230 
231     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
232     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
233          i++)
234     {
235         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
236     }
237 
238     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
239             s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
240     if (ret < 0) {
241         return ret;
242     }
243 
244     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
245     ret = bdrv_pwrite_sync(bs->file,
246                            s->l1_table_offset + 8 * l1_start_index,
247                            buf, sizeof(buf));
248     if (ret < 0) {
249         return ret;
250     }
251 
252     return 0;
253 }
254 
255 /*
256  * l2_allocate
257  *
258  * Allocate a new l2 entry in the file. If l1_index points to an already
259  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
260  * table) copy the contents of the old L2 table into the newly allocated one.
261  * Otherwise the new table is initialized with zeros.
262  *
263  */
264 
265 static int l2_allocate(BlockDriverState *bs, int l1_index)
266 {
267     BDRVQcow2State *s = bs->opaque;
268     uint64_t old_l2_offset;
269     uint64_t *l2_slice = NULL;
270     unsigned slice, slice_size2, n_slices;
271     int64_t l2_offset;
272     int ret;
273 
274     old_l2_offset = s->l1_table[l1_index];
275 
276     trace_qcow2_l2_allocate(bs, l1_index);
277 
278     /* allocate a new l2 entry */
279 
280     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
281     if (l2_offset < 0) {
282         ret = l2_offset;
283         goto fail;
284     }
285 
286     /* The offset must fit in the offset field of the L1 table entry */
287     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
288 
289     /* If we're allocating the table at offset 0 then something is wrong */
290     if (l2_offset == 0) {
291         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
292                                 "allocation of L2 table at offset 0");
293         ret = -EIO;
294         goto fail;
295     }
296 
297     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
298     if (ret < 0) {
299         goto fail;
300     }
301 
302     /* allocate a new entry in the l2 cache */
303 
304     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
305     n_slices = s->cluster_size / slice_size2;
306 
307     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
308     for (slice = 0; slice < n_slices; slice++) {
309         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
310                                     l2_offset + slice * slice_size2,
311                                     (void **) &l2_slice);
312         if (ret < 0) {
313             goto fail;
314         }
315 
316         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
317             /* if there was no old l2 table, clear the new slice */
318             memset(l2_slice, 0, slice_size2);
319         } else {
320             uint64_t *old_slice;
321             uint64_t old_l2_slice_offset =
322                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
323 
324             /* if there was an old l2 table, read a slice from the disk */
325             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
326             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
327                                   (void **) &old_slice);
328             if (ret < 0) {
329                 goto fail;
330             }
331 
332             memcpy(l2_slice, old_slice, slice_size2);
333 
334             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
335         }
336 
337         /* write the l2 slice to the file */
338         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
339 
340         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
341         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
342         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
343     }
344 
345     ret = qcow2_cache_flush(bs, s->l2_table_cache);
346     if (ret < 0) {
347         goto fail;
348     }
349 
350     /* update the L1 entry */
351     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
352     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
353     ret = qcow2_write_l1_entry(bs, l1_index);
354     if (ret < 0) {
355         goto fail;
356     }
357 
358     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
359     return 0;
360 
361 fail:
362     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
363     if (l2_slice != NULL) {
364         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
365     }
366     s->l1_table[l1_index] = old_l2_offset;
367     if (l2_offset > 0) {
368         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
369                             QCOW2_DISCARD_ALWAYS);
370     }
371     return ret;
372 }
373 
374 /*
375  * Checks how many clusters in a given L2 slice are contiguous in the image
376  * file. As soon as one of the flags in the bitmask stop_flags changes compared
377  * to the first cluster, the search is stopped and the cluster is not counted
378  * as contiguous. (This allows it, for example, to stop at the first compressed
379  * cluster which may require a different handling)
380  */
381 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
382         int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
383 {
384     int i;
385     QCow2ClusterType first_cluster_type;
386     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
387     uint64_t first_entry = be64_to_cpu(l2_slice[0]);
388     uint64_t offset = first_entry & mask;
389 
390     first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
391     if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
392         return 0;
393     }
394 
395     /* must be allocated */
396     assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
397            first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
398 
399     for (i = 0; i < nb_clusters; i++) {
400         uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
401         if (offset + (uint64_t) i * cluster_size != l2_entry) {
402             break;
403         }
404     }
405 
406         return i;
407 }
408 
409 /*
410  * Checks how many consecutive unallocated clusters in a given L2
411  * slice have the same cluster type.
412  */
413 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
414                                                  int nb_clusters,
415                                                  uint64_t *l2_slice,
416                                                  QCow2ClusterType wanted_type)
417 {
418     int i;
419 
420     assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
421            wanted_type == QCOW2_CLUSTER_UNALLOCATED);
422     for (i = 0; i < nb_clusters; i++) {
423         uint64_t entry = be64_to_cpu(l2_slice[i]);
424         QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
425 
426         if (type != wanted_type) {
427             break;
428         }
429     }
430 
431     return i;
432 }
433 
434 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
435                                             uint64_t src_cluster_offset,
436                                             unsigned offset_in_cluster,
437                                             QEMUIOVector *qiov)
438 {
439     int ret;
440 
441     if (qiov->size == 0) {
442         return 0;
443     }
444 
445     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
446 
447     if (!bs->drv) {
448         return -ENOMEDIUM;
449     }
450 
451     /* Call .bdrv_co_readv() directly instead of using the public block-layer
452      * interface.  This avoids double I/O throttling and request tracking,
453      * which can lead to deadlock when block layer copy-on-read is enabled.
454      */
455     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
456                                   qiov->size, qiov, 0);
457     if (ret < 0) {
458         return ret;
459     }
460 
461     return 0;
462 }
463 
464 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
465                                                 uint64_t src_cluster_offset,
466                                                 uint64_t cluster_offset,
467                                                 unsigned offset_in_cluster,
468                                                 uint8_t *buffer,
469                                                 unsigned bytes)
470 {
471     if (bytes && bs->encrypted) {
472         BDRVQcow2State *s = bs->opaque;
473         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
474         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
475         assert(s->crypto);
476         if (qcow2_co_encrypt(bs, cluster_offset,
477                              src_cluster_offset + offset_in_cluster,
478                              buffer, bytes) < 0) {
479             return false;
480         }
481     }
482     return true;
483 }
484 
485 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
486                                              uint64_t cluster_offset,
487                                              unsigned offset_in_cluster,
488                                              QEMUIOVector *qiov)
489 {
490     BDRVQcow2State *s = bs->opaque;
491     int ret;
492 
493     if (qiov->size == 0) {
494         return 0;
495     }
496 
497     ret = qcow2_pre_write_overlap_check(bs, 0,
498             cluster_offset + offset_in_cluster, qiov->size, true);
499     if (ret < 0) {
500         return ret;
501     }
502 
503     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
504     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
505                           qiov->size, qiov, 0);
506     if (ret < 0) {
507         return ret;
508     }
509 
510     return 0;
511 }
512 
513 
514 /*
515  * get_cluster_offset
516  *
517  * For a given offset of the virtual disk, find the cluster type and offset in
518  * the qcow2 file. The offset is stored in *cluster_offset.
519  *
520  * On entry, *bytes is the maximum number of contiguous bytes starting at
521  * offset that we are interested in.
522  *
523  * On exit, *bytes is the number of bytes starting at offset that have the same
524  * cluster type and (if applicable) are stored contiguously in the image file.
525  * Compressed clusters are always returned one by one.
526  *
527  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
528  * cases.
529  */
530 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
531                              unsigned int *bytes, uint64_t *cluster_offset)
532 {
533     BDRVQcow2State *s = bs->opaque;
534     unsigned int l2_index;
535     uint64_t l1_index, l2_offset, *l2_slice;
536     int c;
537     unsigned int offset_in_cluster;
538     uint64_t bytes_available, bytes_needed, nb_clusters;
539     QCow2ClusterType type;
540     int ret;
541 
542     offset_in_cluster = offset_into_cluster(s, offset);
543     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
544 
545     /* compute how many bytes there are between the start of the cluster
546      * containing offset and the end of the l2 slice that contains
547      * the entry pointing to it */
548     bytes_available =
549         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
550         << s->cluster_bits;
551 
552     if (bytes_needed > bytes_available) {
553         bytes_needed = bytes_available;
554     }
555 
556     *cluster_offset = 0;
557 
558     /* seek to the l2 offset in the l1 table */
559 
560     l1_index = offset_to_l1_index(s, offset);
561     if (l1_index >= s->l1_size) {
562         type = QCOW2_CLUSTER_UNALLOCATED;
563         goto out;
564     }
565 
566     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
567     if (!l2_offset) {
568         type = QCOW2_CLUSTER_UNALLOCATED;
569         goto out;
570     }
571 
572     if (offset_into_cluster(s, l2_offset)) {
573         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
574                                 " unaligned (L1 index: %#" PRIx64 ")",
575                                 l2_offset, l1_index);
576         return -EIO;
577     }
578 
579     /* load the l2 slice in memory */
580 
581     ret = l2_load(bs, offset, l2_offset, &l2_slice);
582     if (ret < 0) {
583         return ret;
584     }
585 
586     /* find the cluster offset for the given disk offset */
587 
588     l2_index = offset_to_l2_slice_index(s, offset);
589     *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
590 
591     nb_clusters = size_to_clusters(s, bytes_needed);
592     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
593      * integers; the minimum cluster size is 512, so this assertion is always
594      * true */
595     assert(nb_clusters <= INT_MAX);
596 
597     type = qcow2_get_cluster_type(bs, *cluster_offset);
598     if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
599                                 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
600         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
601                                 " in pre-v3 image (L2 offset: %#" PRIx64
602                                 ", L2 index: %#x)", l2_offset, l2_index);
603         ret = -EIO;
604         goto fail;
605     }
606     switch (type) {
607     case QCOW2_CLUSTER_COMPRESSED:
608         if (has_data_file(bs)) {
609             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
610                                     "entry found in image with external data "
611                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
612                                     "%#x)", l2_offset, l2_index);
613             ret = -EIO;
614             goto fail;
615         }
616         /* Compressed clusters can only be processed one by one */
617         c = 1;
618         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
619         break;
620     case QCOW2_CLUSTER_ZERO_PLAIN:
621     case QCOW2_CLUSTER_UNALLOCATED:
622         /* how many empty clusters ? */
623         c = count_contiguous_clusters_unallocated(bs, nb_clusters,
624                                                   &l2_slice[l2_index], type);
625         *cluster_offset = 0;
626         break;
627     case QCOW2_CLUSTER_ZERO_ALLOC:
628     case QCOW2_CLUSTER_NORMAL:
629         /* how many allocated clusters ? */
630         c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
631                                       &l2_slice[l2_index], QCOW_OFLAG_ZERO);
632         *cluster_offset &= L2E_OFFSET_MASK;
633         if (offset_into_cluster(s, *cluster_offset)) {
634             qcow2_signal_corruption(bs, true, -1, -1,
635                                     "Cluster allocation offset %#"
636                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
637                                     ", L2 index: %#x)", *cluster_offset,
638                                     l2_offset, l2_index);
639             ret = -EIO;
640             goto fail;
641         }
642         if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
643         {
644             qcow2_signal_corruption(bs, true, -1, -1,
645                                     "External data file host cluster offset %#"
646                                     PRIx64 " does not match guest cluster "
647                                     "offset: %#" PRIx64
648                                     ", L2 index: %#x)", *cluster_offset,
649                                     offset - offset_in_cluster, l2_index);
650             ret = -EIO;
651             goto fail;
652         }
653         break;
654     default:
655         abort();
656     }
657 
658     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
659 
660     bytes_available = (int64_t)c * s->cluster_size;
661 
662 out:
663     if (bytes_available > bytes_needed) {
664         bytes_available = bytes_needed;
665     }
666 
667     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
668      * subtracting offset_in_cluster will therefore definitely yield something
669      * not exceeding UINT_MAX */
670     assert(bytes_available - offset_in_cluster <= UINT_MAX);
671     *bytes = bytes_available - offset_in_cluster;
672 
673     return type;
674 
675 fail:
676     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
677     return ret;
678 }
679 
680 /*
681  * get_cluster_table
682  *
683  * for a given disk offset, load (and allocate if needed)
684  * the appropriate slice of its l2 table.
685  *
686  * the cluster index in the l2 slice is given to the caller.
687  *
688  * Returns 0 on success, -errno in failure case
689  */
690 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
691                              uint64_t **new_l2_slice,
692                              int *new_l2_index)
693 {
694     BDRVQcow2State *s = bs->opaque;
695     unsigned int l2_index;
696     uint64_t l1_index, l2_offset;
697     uint64_t *l2_slice = NULL;
698     int ret;
699 
700     /* seek to the l2 offset in the l1 table */
701 
702     l1_index = offset_to_l1_index(s, offset);
703     if (l1_index >= s->l1_size) {
704         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
705         if (ret < 0) {
706             return ret;
707         }
708     }
709 
710     assert(l1_index < s->l1_size);
711     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
712     if (offset_into_cluster(s, l2_offset)) {
713         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
714                                 " unaligned (L1 index: %#" PRIx64 ")",
715                                 l2_offset, l1_index);
716         return -EIO;
717     }
718 
719     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
720         /* First allocate a new L2 table (and do COW if needed) */
721         ret = l2_allocate(bs, l1_index);
722         if (ret < 0) {
723             return ret;
724         }
725 
726         /* Then decrease the refcount of the old table */
727         if (l2_offset) {
728             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
729                                 QCOW2_DISCARD_OTHER);
730         }
731 
732         /* Get the offset of the newly-allocated l2 table */
733         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
734         assert(offset_into_cluster(s, l2_offset) == 0);
735     }
736 
737     /* load the l2 slice in memory */
738     ret = l2_load(bs, offset, l2_offset, &l2_slice);
739     if (ret < 0) {
740         return ret;
741     }
742 
743     /* find the cluster offset for the given disk offset */
744 
745     l2_index = offset_to_l2_slice_index(s, offset);
746 
747     *new_l2_slice = l2_slice;
748     *new_l2_index = l2_index;
749 
750     return 0;
751 }
752 
753 /*
754  * alloc_compressed_cluster_offset
755  *
756  * For a given offset on the virtual disk, allocate a new compressed cluster
757  * and put the host offset of the cluster into *host_offset. If a cluster is
758  * already allocated at the offset, return an error.
759  *
760  * Return 0 on success and -errno in error cases
761  */
762 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
763                                           uint64_t offset,
764                                           int compressed_size,
765                                           uint64_t *host_offset)
766 {
767     BDRVQcow2State *s = bs->opaque;
768     int l2_index, ret;
769     uint64_t *l2_slice;
770     int64_t cluster_offset;
771     int nb_csectors;
772 
773     if (has_data_file(bs)) {
774         return 0;
775     }
776 
777     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
778     if (ret < 0) {
779         return ret;
780     }
781 
782     /* Compression can't overwrite anything. Fail if the cluster was already
783      * allocated. */
784     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
785     if (cluster_offset & L2E_OFFSET_MASK) {
786         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
787         return -EIO;
788     }
789 
790     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
791     if (cluster_offset < 0) {
792         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
793         return cluster_offset;
794     }
795 
796     nb_csectors =
797         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
798         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
799 
800     cluster_offset |= QCOW_OFLAG_COMPRESSED |
801                       ((uint64_t)nb_csectors << s->csize_shift);
802 
803     /* update L2 table */
804 
805     /* compressed clusters never have the copied flag */
806 
807     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
808     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
809     l2_slice[l2_index] = cpu_to_be64(cluster_offset);
810     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
811 
812     *host_offset = cluster_offset & s->cluster_offset_mask;
813     return 0;
814 }
815 
816 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
817 {
818     BDRVQcow2State *s = bs->opaque;
819     Qcow2COWRegion *start = &m->cow_start;
820     Qcow2COWRegion *end = &m->cow_end;
821     unsigned buffer_size;
822     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
823     bool merge_reads;
824     uint8_t *start_buffer, *end_buffer;
825     QEMUIOVector qiov;
826     int ret;
827 
828     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
829     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
830     assert(start->offset + start->nb_bytes <= end->offset);
831     assert(!m->data_qiov || m->data_qiov->size == data_bytes);
832 
833     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
834         return 0;
835     }
836 
837     /* If we have to read both the start and end COW regions and the
838      * middle region is not too large then perform just one read
839      * operation */
840     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
841     if (merge_reads) {
842         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
843     } else {
844         /* If we have to do two reads, add some padding in the middle
845          * if necessary to make sure that the end region is optimally
846          * aligned. */
847         size_t align = bdrv_opt_mem_align(bs);
848         assert(align > 0 && align <= UINT_MAX);
849         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
850                UINT_MAX - end->nb_bytes);
851         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
852     }
853 
854     /* Reserve a buffer large enough to store all the data that we're
855      * going to read */
856     start_buffer = qemu_try_blockalign(bs, buffer_size);
857     if (start_buffer == NULL) {
858         return -ENOMEM;
859     }
860     /* The part of the buffer where the end region is located */
861     end_buffer = start_buffer + buffer_size - end->nb_bytes;
862 
863     qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
864 
865     qemu_co_mutex_unlock(&s->lock);
866     /* First we read the existing data from both COW regions. We
867      * either read the whole region in one go, or the start and end
868      * regions separately. */
869     if (merge_reads) {
870         qemu_iovec_add(&qiov, start_buffer, buffer_size);
871         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
872     } else {
873         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
874         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
875         if (ret < 0) {
876             goto fail;
877         }
878 
879         qemu_iovec_reset(&qiov);
880         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
881         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
882     }
883     if (ret < 0) {
884         goto fail;
885     }
886 
887     /* Encrypt the data if necessary before writing it */
888     if (bs->encrypted) {
889         if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
890                                     start->offset, start_buffer,
891                                     start->nb_bytes) ||
892             !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
893                                     end->offset, end_buffer, end->nb_bytes)) {
894             ret = -EIO;
895             goto fail;
896         }
897     }
898 
899     /* And now we can write everything. If we have the guest data we
900      * can write everything in one single operation */
901     if (m->data_qiov) {
902         qemu_iovec_reset(&qiov);
903         if (start->nb_bytes) {
904             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
905         }
906         qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
907         if (end->nb_bytes) {
908             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
909         }
910         /* NOTE: we have a write_aio blkdebug event here followed by
911          * a cow_write one in do_perform_cow_write(), but there's only
912          * one single I/O operation */
913         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
914         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
915     } else {
916         /* If there's no guest data then write both COW regions separately */
917         qemu_iovec_reset(&qiov);
918         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
919         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
920         if (ret < 0) {
921             goto fail;
922         }
923 
924         qemu_iovec_reset(&qiov);
925         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
926         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
927     }
928 
929 fail:
930     qemu_co_mutex_lock(&s->lock);
931 
932     /*
933      * Before we update the L2 table to actually point to the new cluster, we
934      * need to be sure that the refcounts have been increased and COW was
935      * handled.
936      */
937     if (ret == 0) {
938         qcow2_cache_depends_on_flush(s->l2_table_cache);
939     }
940 
941     qemu_vfree(start_buffer);
942     qemu_iovec_destroy(&qiov);
943     return ret;
944 }
945 
946 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
947 {
948     BDRVQcow2State *s = bs->opaque;
949     int i, j = 0, l2_index, ret;
950     uint64_t *old_cluster, *l2_slice;
951     uint64_t cluster_offset = m->alloc_offset;
952 
953     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
954     assert(m->nb_clusters > 0);
955 
956     old_cluster = g_try_new(uint64_t, m->nb_clusters);
957     if (old_cluster == NULL) {
958         ret = -ENOMEM;
959         goto err;
960     }
961 
962     /* copy content of unmodified sectors */
963     ret = perform_cow(bs, m);
964     if (ret < 0) {
965         goto err;
966     }
967 
968     /* Update L2 table. */
969     if (s->use_lazy_refcounts) {
970         qcow2_mark_dirty(bs);
971     }
972     if (qcow2_need_accurate_refcounts(s)) {
973         qcow2_cache_set_dependency(bs, s->l2_table_cache,
974                                    s->refcount_block_cache);
975     }
976 
977     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
978     if (ret < 0) {
979         goto err;
980     }
981     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
982 
983     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
984     for (i = 0; i < m->nb_clusters; i++) {
985         /* if two concurrent writes happen to the same unallocated cluster
986          * each write allocates separate cluster and writes data concurrently.
987          * The first one to complete updates l2 table with pointer to its
988          * cluster the second one has to do RMW (which is done above by
989          * perform_cow()), update l2 table with its cluster pointer and free
990          * old cluster. This is what this loop does */
991         if (l2_slice[l2_index + i] != 0) {
992             old_cluster[j++] = l2_slice[l2_index + i];
993         }
994 
995         l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
996                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
997      }
998 
999 
1000     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1001 
1002     /*
1003      * If this was a COW, we need to decrease the refcount of the old cluster.
1004      *
1005      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1006      * clusters), the next write will reuse them anyway.
1007      */
1008     if (!m->keep_old_clusters && j != 0) {
1009         for (i = 0; i < j; i++) {
1010             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1011                                     QCOW2_DISCARD_NEVER);
1012         }
1013     }
1014 
1015     ret = 0;
1016 err:
1017     g_free(old_cluster);
1018     return ret;
1019  }
1020 
1021 /**
1022  * Frees the allocated clusters because the request failed and they won't
1023  * actually be linked.
1024  */
1025 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1026 {
1027     BDRVQcow2State *s = bs->opaque;
1028     qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1029                         QCOW2_DISCARD_NEVER);
1030 }
1031 
1032 /*
1033  * Returns the number of contiguous clusters that can be used for an allocating
1034  * write, but require COW to be performed (this includes yet unallocated space,
1035  * which must copy from the backing file)
1036  */
1037 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1038     uint64_t *l2_slice, int l2_index)
1039 {
1040     int i;
1041 
1042     for (i = 0; i < nb_clusters; i++) {
1043         uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1044         QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1045 
1046         switch(cluster_type) {
1047         case QCOW2_CLUSTER_NORMAL:
1048             if (l2_entry & QCOW_OFLAG_COPIED) {
1049                 goto out;
1050             }
1051             break;
1052         case QCOW2_CLUSTER_UNALLOCATED:
1053         case QCOW2_CLUSTER_COMPRESSED:
1054         case QCOW2_CLUSTER_ZERO_PLAIN:
1055         case QCOW2_CLUSTER_ZERO_ALLOC:
1056             break;
1057         default:
1058             abort();
1059         }
1060     }
1061 
1062 out:
1063     assert(i <= nb_clusters);
1064     return i;
1065 }
1066 
1067 /*
1068  * Check if there already is an AIO write request in flight which allocates
1069  * the same cluster. In this case we need to wait until the previous
1070  * request has completed and updated the L2 table accordingly.
1071  *
1072  * Returns:
1073  *   0       if there was no dependency. *cur_bytes indicates the number of
1074  *           bytes from guest_offset that can be read before the next
1075  *           dependency must be processed (or the request is complete)
1076  *
1077  *   -EAGAIN if we had to wait for another request, previously gathered
1078  *           information on cluster allocation may be invalid now. The caller
1079  *           must start over anyway, so consider *cur_bytes undefined.
1080  */
1081 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1082     uint64_t *cur_bytes, QCowL2Meta **m)
1083 {
1084     BDRVQcow2State *s = bs->opaque;
1085     QCowL2Meta *old_alloc;
1086     uint64_t bytes = *cur_bytes;
1087 
1088     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1089 
1090         uint64_t start = guest_offset;
1091         uint64_t end = start + bytes;
1092         uint64_t old_start = l2meta_cow_start(old_alloc);
1093         uint64_t old_end = l2meta_cow_end(old_alloc);
1094 
1095         if (end <= old_start || start >= old_end) {
1096             /* No intersection */
1097         } else {
1098             if (start < old_start) {
1099                 /* Stop at the start of a running allocation */
1100                 bytes = old_start - start;
1101             } else {
1102                 bytes = 0;
1103             }
1104 
1105             /* Stop if already an l2meta exists. After yielding, it wouldn't
1106              * be valid any more, so we'd have to clean up the old L2Metas
1107              * and deal with requests depending on them before starting to
1108              * gather new ones. Not worth the trouble. */
1109             if (bytes == 0 && *m) {
1110                 *cur_bytes = 0;
1111                 return 0;
1112             }
1113 
1114             if (bytes == 0) {
1115                 /* Wait for the dependency to complete. We need to recheck
1116                  * the free/allocated clusters when we continue. */
1117                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1118                 return -EAGAIN;
1119             }
1120         }
1121     }
1122 
1123     /* Make sure that existing clusters and new allocations are only used up to
1124      * the next dependency if we shortened the request above */
1125     *cur_bytes = bytes;
1126 
1127     return 0;
1128 }
1129 
1130 /*
1131  * Checks how many already allocated clusters that don't require a copy on
1132  * write there are at the given guest_offset (up to *bytes). If *host_offset is
1133  * not INV_OFFSET, only physically contiguous clusters beginning at this host
1134  * offset are counted.
1135  *
1136  * Note that guest_offset may not be cluster aligned. In this case, the
1137  * returned *host_offset points to exact byte referenced by guest_offset and
1138  * therefore isn't cluster aligned as well.
1139  *
1140  * Returns:
1141  *   0:     if no allocated clusters are available at the given offset.
1142  *          *bytes is normally unchanged. It is set to 0 if the cluster
1143  *          is allocated and doesn't need COW, but doesn't have the right
1144  *          physical offset.
1145  *
1146  *   1:     if allocated clusters that don't require a COW are available at
1147  *          the requested offset. *bytes may have decreased and describes
1148  *          the length of the area that can be written to.
1149  *
1150  *  -errno: in error cases
1151  */
1152 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1153     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1154 {
1155     BDRVQcow2State *s = bs->opaque;
1156     int l2_index;
1157     uint64_t cluster_offset;
1158     uint64_t *l2_slice;
1159     uint64_t nb_clusters;
1160     unsigned int keep_clusters;
1161     int ret;
1162 
1163     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1164                               *bytes);
1165 
1166     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1167                                       == offset_into_cluster(s, *host_offset));
1168 
1169     /*
1170      * Calculate the number of clusters to look for. We stop at L2 slice
1171      * boundaries to keep things simple.
1172      */
1173     nb_clusters =
1174         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1175 
1176     l2_index = offset_to_l2_slice_index(s, guest_offset);
1177     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1178     assert(nb_clusters <= INT_MAX);
1179 
1180     /* Find L2 entry for the first involved cluster */
1181     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1182     if (ret < 0) {
1183         return ret;
1184     }
1185 
1186     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1187 
1188     /* Check how many clusters are already allocated and don't need COW */
1189     if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1190         && (cluster_offset & QCOW_OFLAG_COPIED))
1191     {
1192         /* If a specific host_offset is required, check it */
1193         bool offset_matches =
1194             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1195 
1196         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1197             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1198                                     "%#llx unaligned (guest offset: %#" PRIx64
1199                                     ")", cluster_offset & L2E_OFFSET_MASK,
1200                                     guest_offset);
1201             ret = -EIO;
1202             goto out;
1203         }
1204 
1205         if (*host_offset != INV_OFFSET && !offset_matches) {
1206             *bytes = 0;
1207             ret = 0;
1208             goto out;
1209         }
1210 
1211         /* We keep all QCOW_OFLAG_COPIED clusters */
1212         keep_clusters =
1213             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1214                                       &l2_slice[l2_index],
1215                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1216         assert(keep_clusters <= nb_clusters);
1217 
1218         *bytes = MIN(*bytes,
1219                  keep_clusters * s->cluster_size
1220                  - offset_into_cluster(s, guest_offset));
1221 
1222         ret = 1;
1223     } else {
1224         ret = 0;
1225     }
1226 
1227     /* Cleanup */
1228 out:
1229     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1230 
1231     /* Only return a host offset if we actually made progress. Otherwise we
1232      * would make requirements for handle_alloc() that it can't fulfill */
1233     if (ret > 0) {
1234         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1235                      + offset_into_cluster(s, guest_offset);
1236     }
1237 
1238     return ret;
1239 }
1240 
1241 /*
1242  * Allocates new clusters for the given guest_offset.
1243  *
1244  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1245  * contain the number of clusters that have been allocated and are contiguous
1246  * in the image file.
1247  *
1248  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1249  * at which the new clusters must start. *nb_clusters can be 0 on return in
1250  * this case if the cluster at host_offset is already in use. If *host_offset
1251  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1252  *
1253  * *host_offset is updated to contain the offset into the image file at which
1254  * the first allocated cluster starts.
1255  *
1256  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1257  * function has been waiting for another request and the allocation must be
1258  * restarted, but the whole request should not be failed.
1259  */
1260 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1261                                    uint64_t *host_offset, uint64_t *nb_clusters)
1262 {
1263     BDRVQcow2State *s = bs->opaque;
1264 
1265     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1266                                          *host_offset, *nb_clusters);
1267 
1268     if (has_data_file(bs)) {
1269         assert(*host_offset == INV_OFFSET ||
1270                *host_offset == start_of_cluster(s, guest_offset));
1271         *host_offset = start_of_cluster(s, guest_offset);
1272         return 0;
1273     }
1274 
1275     /* Allocate new clusters */
1276     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1277     if (*host_offset == INV_OFFSET) {
1278         int64_t cluster_offset =
1279             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1280         if (cluster_offset < 0) {
1281             return cluster_offset;
1282         }
1283         *host_offset = cluster_offset;
1284         return 0;
1285     } else {
1286         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1287         if (ret < 0) {
1288             return ret;
1289         }
1290         *nb_clusters = ret;
1291         return 0;
1292     }
1293 }
1294 
1295 /*
1296  * Allocates new clusters for an area that either is yet unallocated or needs a
1297  * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1298  * allocated if the new allocation can match the specified host offset.
1299  *
1300  * Note that guest_offset may not be cluster aligned. In this case, the
1301  * returned *host_offset points to exact byte referenced by guest_offset and
1302  * therefore isn't cluster aligned as well.
1303  *
1304  * Returns:
1305  *   0:     if no clusters could be allocated. *bytes is set to 0,
1306  *          *host_offset is left unchanged.
1307  *
1308  *   1:     if new clusters were allocated. *bytes may be decreased if the
1309  *          new allocation doesn't cover all of the requested area.
1310  *          *host_offset is updated to contain the host offset of the first
1311  *          newly allocated cluster.
1312  *
1313  *  -errno: in error cases
1314  */
1315 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1316     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1317 {
1318     BDRVQcow2State *s = bs->opaque;
1319     int l2_index;
1320     uint64_t *l2_slice;
1321     uint64_t entry;
1322     uint64_t nb_clusters;
1323     int ret;
1324     bool keep_old_clusters = false;
1325 
1326     uint64_t alloc_cluster_offset = INV_OFFSET;
1327 
1328     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1329                              *bytes);
1330     assert(*bytes > 0);
1331 
1332     /*
1333      * Calculate the number of clusters to look for. We stop at L2 slice
1334      * boundaries to keep things simple.
1335      */
1336     nb_clusters =
1337         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1338 
1339     l2_index = offset_to_l2_slice_index(s, guest_offset);
1340     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1341     assert(nb_clusters <= INT_MAX);
1342 
1343     /* Find L2 entry for the first involved cluster */
1344     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1345     if (ret < 0) {
1346         return ret;
1347     }
1348 
1349     entry = be64_to_cpu(l2_slice[l2_index]);
1350 
1351     /* For the moment, overwrite compressed clusters one by one */
1352     if (entry & QCOW_OFLAG_COMPRESSED) {
1353         nb_clusters = 1;
1354     } else {
1355         nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1356     }
1357 
1358     /* This function is only called when there were no non-COW clusters, so if
1359      * we can't find any unallocated or COW clusters either, something is
1360      * wrong with our code. */
1361     assert(nb_clusters > 0);
1362 
1363     if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1364         (entry & QCOW_OFLAG_COPIED) &&
1365         (*host_offset == INV_OFFSET ||
1366          start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1367     {
1368         int preallocated_nb_clusters;
1369 
1370         if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1371             qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1372                                     "cluster offset %#llx unaligned (guest "
1373                                     "offset: %#" PRIx64 ")",
1374                                     entry & L2E_OFFSET_MASK, guest_offset);
1375             ret = -EIO;
1376             goto fail;
1377         }
1378 
1379         /* Try to reuse preallocated zero clusters; contiguous normal clusters
1380          * would be fine, too, but count_cow_clusters() above has limited
1381          * nb_clusters already to a range of COW clusters */
1382         preallocated_nb_clusters =
1383             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1384                                       &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1385         assert(preallocated_nb_clusters > 0);
1386 
1387         nb_clusters = preallocated_nb_clusters;
1388         alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1389 
1390         /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1391          * should not free them. */
1392         keep_old_clusters = true;
1393     }
1394 
1395     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1396 
1397     if (alloc_cluster_offset == INV_OFFSET) {
1398         /* Allocate, if necessary at a given offset in the image file */
1399         alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1400                                start_of_cluster(s, *host_offset);
1401         ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1402                                       &nb_clusters);
1403         if (ret < 0) {
1404             goto fail;
1405         }
1406 
1407         /* Can't extend contiguous allocation */
1408         if (nb_clusters == 0) {
1409             *bytes = 0;
1410             return 0;
1411         }
1412 
1413         assert(alloc_cluster_offset != INV_OFFSET);
1414     }
1415 
1416     /*
1417      * Save info needed for meta data update.
1418      *
1419      * requested_bytes: Number of bytes from the start of the first
1420      * newly allocated cluster to the end of the (possibly shortened
1421      * before) write request.
1422      *
1423      * avail_bytes: Number of bytes from the start of the first
1424      * newly allocated to the end of the last newly allocated cluster.
1425      *
1426      * nb_bytes: The number of bytes from the start of the first
1427      * newly allocated cluster to the end of the area that the write
1428      * request actually writes to (excluding COW at the end)
1429      */
1430     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1431     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1432     int nb_bytes = MIN(requested_bytes, avail_bytes);
1433     QCowL2Meta *old_m = *m;
1434 
1435     *m = g_malloc0(sizeof(**m));
1436 
1437     **m = (QCowL2Meta) {
1438         .next           = old_m,
1439 
1440         .alloc_offset   = alloc_cluster_offset,
1441         .offset         = start_of_cluster(s, guest_offset),
1442         .nb_clusters    = nb_clusters,
1443 
1444         .keep_old_clusters  = keep_old_clusters,
1445 
1446         .cow_start = {
1447             .offset     = 0,
1448             .nb_bytes   = offset_into_cluster(s, guest_offset),
1449         },
1450         .cow_end = {
1451             .offset     = nb_bytes,
1452             .nb_bytes   = avail_bytes - nb_bytes,
1453         },
1454     };
1455     qemu_co_queue_init(&(*m)->dependent_requests);
1456     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1457 
1458     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1459     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1460     assert(*bytes != 0);
1461 
1462     return 1;
1463 
1464 fail:
1465     if (*m && (*m)->nb_clusters > 0) {
1466         QLIST_REMOVE(*m, next_in_flight);
1467     }
1468     return ret;
1469 }
1470 
1471 /*
1472  * alloc_cluster_offset
1473  *
1474  * For a given offset on the virtual disk, find the cluster offset in qcow2
1475  * file. If the offset is not found, allocate a new cluster.
1476  *
1477  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1478  * other fields in m are meaningless.
1479  *
1480  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1481  * contiguous clusters that have been allocated. In this case, the other
1482  * fields of m are valid and contain information about the first allocated
1483  * cluster.
1484  *
1485  * If the request conflicts with another write request in flight, the coroutine
1486  * is queued and will be reentered when the dependency has completed.
1487  *
1488  * Return 0 on success and -errno in error cases
1489  */
1490 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1491                                unsigned int *bytes, uint64_t *host_offset,
1492                                QCowL2Meta **m)
1493 {
1494     BDRVQcow2State *s = bs->opaque;
1495     uint64_t start, remaining;
1496     uint64_t cluster_offset;
1497     uint64_t cur_bytes;
1498     int ret;
1499 
1500     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1501 
1502 again:
1503     start = offset;
1504     remaining = *bytes;
1505     cluster_offset = INV_OFFSET;
1506     *host_offset = INV_OFFSET;
1507     cur_bytes = 0;
1508     *m = NULL;
1509 
1510     while (true) {
1511 
1512         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1513             *host_offset = start_of_cluster(s, cluster_offset);
1514         }
1515 
1516         assert(remaining >= cur_bytes);
1517 
1518         start           += cur_bytes;
1519         remaining       -= cur_bytes;
1520 
1521         if (cluster_offset != INV_OFFSET) {
1522             cluster_offset += cur_bytes;
1523         }
1524 
1525         if (remaining == 0) {
1526             break;
1527         }
1528 
1529         cur_bytes = remaining;
1530 
1531         /*
1532          * Now start gathering as many contiguous clusters as possible:
1533          *
1534          * 1. Check for overlaps with in-flight allocations
1535          *
1536          *      a) Overlap not in the first cluster -> shorten this request and
1537          *         let the caller handle the rest in its next loop iteration.
1538          *
1539          *      b) Real overlaps of two requests. Yield and restart the search
1540          *         for contiguous clusters (the situation could have changed
1541          *         while we were sleeping)
1542          *
1543          *      c) TODO: Request starts in the same cluster as the in-flight
1544          *         allocation ends. Shorten the COW of the in-fight allocation,
1545          *         set cluster_offset to write to the same cluster and set up
1546          *         the right synchronisation between the in-flight request and
1547          *         the new one.
1548          */
1549         ret = handle_dependencies(bs, start, &cur_bytes, m);
1550         if (ret == -EAGAIN) {
1551             /* Currently handle_dependencies() doesn't yield if we already had
1552              * an allocation. If it did, we would have to clean up the L2Meta
1553              * structs before starting over. */
1554             assert(*m == NULL);
1555             goto again;
1556         } else if (ret < 0) {
1557             return ret;
1558         } else if (cur_bytes == 0) {
1559             break;
1560         } else {
1561             /* handle_dependencies() may have decreased cur_bytes (shortened
1562              * the allocations below) so that the next dependency is processed
1563              * correctly during the next loop iteration. */
1564         }
1565 
1566         /*
1567          * 2. Count contiguous COPIED clusters.
1568          */
1569         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1570         if (ret < 0) {
1571             return ret;
1572         } else if (ret) {
1573             continue;
1574         } else if (cur_bytes == 0) {
1575             break;
1576         }
1577 
1578         /*
1579          * 3. If the request still hasn't completed, allocate new clusters,
1580          *    considering any cluster_offset of steps 1c or 2.
1581          */
1582         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1583         if (ret < 0) {
1584             return ret;
1585         } else if (ret) {
1586             continue;
1587         } else {
1588             assert(cur_bytes == 0);
1589             break;
1590         }
1591     }
1592 
1593     *bytes -= remaining;
1594     assert(*bytes > 0);
1595     assert(*host_offset != INV_OFFSET);
1596 
1597     return 0;
1598 }
1599 
1600 /*
1601  * This discards as many clusters of nb_clusters as possible at once (i.e.
1602  * all clusters in the same L2 slice) and returns the number of discarded
1603  * clusters.
1604  */
1605 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1606                                uint64_t nb_clusters,
1607                                enum qcow2_discard_type type, bool full_discard)
1608 {
1609     BDRVQcow2State *s = bs->opaque;
1610     uint64_t *l2_slice;
1611     int l2_index;
1612     int ret;
1613     int i;
1614 
1615     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1616     if (ret < 0) {
1617         return ret;
1618     }
1619 
1620     /* Limit nb_clusters to one L2 slice */
1621     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1622     assert(nb_clusters <= INT_MAX);
1623 
1624     for (i = 0; i < nb_clusters; i++) {
1625         uint64_t old_l2_entry;
1626 
1627         old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1628 
1629         /*
1630          * If full_discard is false, make sure that a discarded area reads back
1631          * as zeroes for v3 images (we cannot do it for v2 without actually
1632          * writing a zero-filled buffer). We can skip the operation if the
1633          * cluster is already marked as zero, or if it's unallocated and we
1634          * don't have a backing file.
1635          *
1636          * TODO We might want to use bdrv_block_status(bs) here, but we're
1637          * holding s->lock, so that doesn't work today.
1638          *
1639          * If full_discard is true, the sector should not read back as zeroes,
1640          * but rather fall through to the backing file.
1641          */
1642         switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1643         case QCOW2_CLUSTER_UNALLOCATED:
1644             if (full_discard || !bs->backing) {
1645                 continue;
1646             }
1647             break;
1648 
1649         case QCOW2_CLUSTER_ZERO_PLAIN:
1650             if (!full_discard) {
1651                 continue;
1652             }
1653             break;
1654 
1655         case QCOW2_CLUSTER_ZERO_ALLOC:
1656         case QCOW2_CLUSTER_NORMAL:
1657         case QCOW2_CLUSTER_COMPRESSED:
1658             break;
1659 
1660         default:
1661             abort();
1662         }
1663 
1664         /* First remove L2 entries */
1665         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1666         if (!full_discard && s->qcow_version >= 3) {
1667             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1668         } else {
1669             l2_slice[l2_index + i] = cpu_to_be64(0);
1670         }
1671 
1672         /* Then decrease the refcount */
1673         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1674     }
1675 
1676     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1677 
1678     return nb_clusters;
1679 }
1680 
1681 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1682                           uint64_t bytes, enum qcow2_discard_type type,
1683                           bool full_discard)
1684 {
1685     BDRVQcow2State *s = bs->opaque;
1686     uint64_t end_offset = offset + bytes;
1687     uint64_t nb_clusters;
1688     int64_t cleared;
1689     int ret;
1690 
1691     /* Caller must pass aligned values, except at image end */
1692     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1693     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1694            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1695 
1696     nb_clusters = size_to_clusters(s, bytes);
1697 
1698     s->cache_discards = true;
1699 
1700     /* Each L2 slice is handled by its own loop iteration */
1701     while (nb_clusters > 0) {
1702         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1703                                       full_discard);
1704         if (cleared < 0) {
1705             ret = cleared;
1706             goto fail;
1707         }
1708 
1709         nb_clusters -= cleared;
1710         offset += (cleared * s->cluster_size);
1711     }
1712 
1713     ret = 0;
1714 fail:
1715     s->cache_discards = false;
1716     qcow2_process_discards(bs, ret);
1717 
1718     return ret;
1719 }
1720 
1721 /*
1722  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1723  * all clusters in the same L2 slice) and returns the number of zeroed
1724  * clusters.
1725  */
1726 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1727                             uint64_t nb_clusters, int flags)
1728 {
1729     BDRVQcow2State *s = bs->opaque;
1730     uint64_t *l2_slice;
1731     int l2_index;
1732     int ret;
1733     int i;
1734     bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1735 
1736     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1737     if (ret < 0) {
1738         return ret;
1739     }
1740 
1741     /* Limit nb_clusters to one L2 slice */
1742     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1743     assert(nb_clusters <= INT_MAX);
1744 
1745     for (i = 0; i < nb_clusters; i++) {
1746         uint64_t old_offset;
1747         QCow2ClusterType cluster_type;
1748 
1749         old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1750 
1751         /*
1752          * Minimize L2 changes if the cluster already reads back as
1753          * zeroes with correct allocation.
1754          */
1755         cluster_type = qcow2_get_cluster_type(bs, old_offset);
1756         if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1757             (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1758             continue;
1759         }
1760 
1761         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1762         if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1763             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1764             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1765         } else {
1766             l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1767         }
1768     }
1769 
1770     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1771 
1772     return nb_clusters;
1773 }
1774 
1775 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1776                           uint64_t bytes, int flags)
1777 {
1778     BDRVQcow2State *s = bs->opaque;
1779     uint64_t end_offset = offset + bytes;
1780     uint64_t nb_clusters;
1781     int64_t cleared;
1782     int ret;
1783 
1784     /* If we have to stay in sync with an external data file, zero out
1785      * s->data_file first. */
1786     if (data_file_is_raw(bs)) {
1787         assert(has_data_file(bs));
1788         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1789         if (ret < 0) {
1790             return ret;
1791         }
1792     }
1793 
1794     /* Caller must pass aligned values, except at image end */
1795     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1796     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1797            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1798 
1799     /* The zero flag is only supported by version 3 and newer */
1800     if (s->qcow_version < 3) {
1801         return -ENOTSUP;
1802     }
1803 
1804     /* Each L2 slice is handled by its own loop iteration */
1805     nb_clusters = size_to_clusters(s, bytes);
1806 
1807     s->cache_discards = true;
1808 
1809     while (nb_clusters > 0) {
1810         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1811         if (cleared < 0) {
1812             ret = cleared;
1813             goto fail;
1814         }
1815 
1816         nb_clusters -= cleared;
1817         offset += (cleared * s->cluster_size);
1818     }
1819 
1820     ret = 0;
1821 fail:
1822     s->cache_discards = false;
1823     qcow2_process_discards(bs, ret);
1824 
1825     return ret;
1826 }
1827 
1828 /*
1829  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1830  * non-backed non-pre-allocated zero clusters).
1831  *
1832  * l1_entries and *visited_l1_entries are used to keep track of progress for
1833  * status_cb(). l1_entries contains the total number of L1 entries and
1834  * *visited_l1_entries counts all visited L1 entries.
1835  */
1836 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1837                                       int l1_size, int64_t *visited_l1_entries,
1838                                       int64_t l1_entries,
1839                                       BlockDriverAmendStatusCB *status_cb,
1840                                       void *cb_opaque)
1841 {
1842     BDRVQcow2State *s = bs->opaque;
1843     bool is_active_l1 = (l1_table == s->l1_table);
1844     uint64_t *l2_slice = NULL;
1845     unsigned slice, slice_size2, n_slices;
1846     int ret;
1847     int i, j;
1848 
1849     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1850     n_slices = s->cluster_size / slice_size2;
1851 
1852     if (!is_active_l1) {
1853         /* inactive L2 tables require a buffer to be stored in when loading
1854          * them from disk */
1855         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1856         if (l2_slice == NULL) {
1857             return -ENOMEM;
1858         }
1859     }
1860 
1861     for (i = 0; i < l1_size; i++) {
1862         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1863         uint64_t l2_refcount;
1864 
1865         if (!l2_offset) {
1866             /* unallocated */
1867             (*visited_l1_entries)++;
1868             if (status_cb) {
1869                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1870             }
1871             continue;
1872         }
1873 
1874         if (offset_into_cluster(s, l2_offset)) {
1875             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1876                                     PRIx64 " unaligned (L1 index: %#x)",
1877                                     l2_offset, i);
1878             ret = -EIO;
1879             goto fail;
1880         }
1881 
1882         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1883                                  &l2_refcount);
1884         if (ret < 0) {
1885             goto fail;
1886         }
1887 
1888         for (slice = 0; slice < n_slices; slice++) {
1889             uint64_t slice_offset = l2_offset + slice * slice_size2;
1890             bool l2_dirty = false;
1891             if (is_active_l1) {
1892                 /* get active L2 tables from cache */
1893                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1894                                       (void **)&l2_slice);
1895             } else {
1896                 /* load inactive L2 tables from disk */
1897                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1898             }
1899             if (ret < 0) {
1900                 goto fail;
1901             }
1902 
1903             for (j = 0; j < s->l2_slice_size; j++) {
1904                 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1905                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1906                 QCow2ClusterType cluster_type =
1907                     qcow2_get_cluster_type(bs, l2_entry);
1908 
1909                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1910                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1911                     continue;
1912                 }
1913 
1914                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1915                     if (!bs->backing) {
1916                         /* not backed; therefore we can simply deallocate the
1917                          * cluster */
1918                         l2_slice[j] = 0;
1919                         l2_dirty = true;
1920                         continue;
1921                     }
1922 
1923                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
1924                     if (offset < 0) {
1925                         ret = offset;
1926                         goto fail;
1927                     }
1928 
1929                     if (l2_refcount > 1) {
1930                         /* For shared L2 tables, set the refcount accordingly
1931                          * (it is already 1 and needs to be l2_refcount) */
1932                         ret = qcow2_update_cluster_refcount(
1933                             bs, offset >> s->cluster_bits,
1934                             refcount_diff(1, l2_refcount), false,
1935                             QCOW2_DISCARD_OTHER);
1936                         if (ret < 0) {
1937                             qcow2_free_clusters(bs, offset, s->cluster_size,
1938                                                 QCOW2_DISCARD_OTHER);
1939                             goto fail;
1940                         }
1941                     }
1942                 }
1943 
1944                 if (offset_into_cluster(s, offset)) {
1945                     int l2_index = slice * s->l2_slice_size + j;
1946                     qcow2_signal_corruption(
1947                         bs, true, -1, -1,
1948                         "Cluster allocation offset "
1949                         "%#" PRIx64 " unaligned (L2 offset: %#"
1950                         PRIx64 ", L2 index: %#x)", offset,
1951                         l2_offset, l2_index);
1952                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1953                         qcow2_free_clusters(bs, offset, s->cluster_size,
1954                                             QCOW2_DISCARD_ALWAYS);
1955                     }
1956                     ret = -EIO;
1957                     goto fail;
1958                 }
1959 
1960                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1961                                                     s->cluster_size, true);
1962                 if (ret < 0) {
1963                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1964                         qcow2_free_clusters(bs, offset, s->cluster_size,
1965                                             QCOW2_DISCARD_ALWAYS);
1966                     }
1967                     goto fail;
1968                 }
1969 
1970                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1971                                          s->cluster_size, 0);
1972                 if (ret < 0) {
1973                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1974                         qcow2_free_clusters(bs, offset, s->cluster_size,
1975                                             QCOW2_DISCARD_ALWAYS);
1976                     }
1977                     goto fail;
1978                 }
1979 
1980                 if (l2_refcount == 1) {
1981                     l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1982                 } else {
1983                     l2_slice[j] = cpu_to_be64(offset);
1984                 }
1985                 l2_dirty = true;
1986             }
1987 
1988             if (is_active_l1) {
1989                 if (l2_dirty) {
1990                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1991                     qcow2_cache_depends_on_flush(s->l2_table_cache);
1992                 }
1993                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1994             } else {
1995                 if (l2_dirty) {
1996                     ret = qcow2_pre_write_overlap_check(
1997                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
1998                         slice_offset, slice_size2, false);
1999                     if (ret < 0) {
2000                         goto fail;
2001                     }
2002 
2003                     ret = bdrv_pwrite(bs->file, slice_offset,
2004                                       l2_slice, slice_size2);
2005                     if (ret < 0) {
2006                         goto fail;
2007                     }
2008                 }
2009             }
2010         }
2011 
2012         (*visited_l1_entries)++;
2013         if (status_cb) {
2014             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2015         }
2016     }
2017 
2018     ret = 0;
2019 
2020 fail:
2021     if (l2_slice) {
2022         if (!is_active_l1) {
2023             qemu_vfree(l2_slice);
2024         } else {
2025             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2026         }
2027     }
2028     return ret;
2029 }
2030 
2031 /*
2032  * For backed images, expands all zero clusters on the image. For non-backed
2033  * images, deallocates all non-pre-allocated zero clusters (and claims the
2034  * allocation for pre-allocated ones). This is important for downgrading to a
2035  * qcow2 version which doesn't yet support metadata zero clusters.
2036  */
2037 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2038                                BlockDriverAmendStatusCB *status_cb,
2039                                void *cb_opaque)
2040 {
2041     BDRVQcow2State *s = bs->opaque;
2042     uint64_t *l1_table = NULL;
2043     int64_t l1_entries = 0, visited_l1_entries = 0;
2044     int ret;
2045     int i, j;
2046 
2047     if (status_cb) {
2048         l1_entries = s->l1_size;
2049         for (i = 0; i < s->nb_snapshots; i++) {
2050             l1_entries += s->snapshots[i].l1_size;
2051         }
2052     }
2053 
2054     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2055                                      &visited_l1_entries, l1_entries,
2056                                      status_cb, cb_opaque);
2057     if (ret < 0) {
2058         goto fail;
2059     }
2060 
2061     /* Inactive L1 tables may point to active L2 tables - therefore it is
2062      * necessary to flush the L2 table cache before trying to access the L2
2063      * tables pointed to by inactive L1 entries (else we might try to expand
2064      * zero clusters that have already been expanded); furthermore, it is also
2065      * necessary to empty the L2 table cache, since it may contain tables which
2066      * are now going to be modified directly on disk, bypassing the cache.
2067      * qcow2_cache_empty() does both for us. */
2068     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2069     if (ret < 0) {
2070         goto fail;
2071     }
2072 
2073     for (i = 0; i < s->nb_snapshots; i++) {
2074         int l1_size2;
2075         uint64_t *new_l1_table;
2076         Error *local_err = NULL;
2077 
2078         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2079                                    s->snapshots[i].l1_size, sizeof(uint64_t),
2080                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2081                                    &local_err);
2082         if (ret < 0) {
2083             error_report_err(local_err);
2084             goto fail;
2085         }
2086 
2087         l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2088         new_l1_table = g_try_realloc(l1_table, l1_size2);
2089 
2090         if (!new_l1_table) {
2091             ret = -ENOMEM;
2092             goto fail;
2093         }
2094 
2095         l1_table = new_l1_table;
2096 
2097         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2098                          l1_table, l1_size2);
2099         if (ret < 0) {
2100             goto fail;
2101         }
2102 
2103         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2104             be64_to_cpus(&l1_table[j]);
2105         }
2106 
2107         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2108                                          &visited_l1_entries, l1_entries,
2109                                          status_cb, cb_opaque);
2110         if (ret < 0) {
2111             goto fail;
2112         }
2113     }
2114 
2115     ret = 0;
2116 
2117 fail:
2118     g_free(l1_table);
2119     return ret;
2120 }
2121