1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t new_l1_table_offset, new_l1_size; 39 uint8_t data[12]; 40 41 if (min_size <= s->l1_size) 42 return 0; 43 44 if (exact_size) { 45 new_l1_size = min_size; 46 } else { 47 /* Bump size up to reduce the number of times we have to grow */ 48 new_l1_size = s->l1_size; 49 if (new_l1_size == 0) { 50 new_l1_size = 1; 51 } 52 while (min_size > new_l1_size) { 53 new_l1_size = (new_l1_size * 3 + 1) / 2; 54 } 55 } 56 57 if (new_l1_size > INT_MAX) { 58 return -EFBIG; 59 } 60 61 #ifdef DEBUG_ALLOC2 62 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 63 s->l1_size, new_l1_size); 64 #endif 65 66 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 67 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 68 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 69 70 /* write new table (align to cluster) */ 71 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 72 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 73 if (new_l1_table_offset < 0) { 74 g_free(new_l1_table); 75 return new_l1_table_offset; 76 } 77 78 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 79 if (ret < 0) { 80 goto fail; 81 } 82 83 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 84 for(i = 0; i < s->l1_size; i++) 85 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 86 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 87 if (ret < 0) 88 goto fail; 89 for(i = 0; i < s->l1_size; i++) 90 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 91 92 /* set new table */ 93 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 94 cpu_to_be32w((uint32_t*)data, new_l1_size); 95 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); 96 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 97 if (ret < 0) { 98 goto fail; 99 } 100 g_free(s->l1_table); 101 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); 102 s->l1_table_offset = new_l1_table_offset; 103 s->l1_table = new_l1_table; 104 s->l1_size = new_l1_size; 105 return 0; 106 fail: 107 g_free(new_l1_table); 108 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2); 109 return ret; 110 } 111 112 /* 113 * l2_load 114 * 115 * Loads a L2 table into memory. If the table is in the cache, the cache 116 * is used; otherwise the L2 table is loaded from the image file. 117 * 118 * Returns a pointer to the L2 table on success, or NULL if the read from 119 * the image file failed. 120 */ 121 122 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 123 uint64_t **l2_table) 124 { 125 BDRVQcowState *s = bs->opaque; 126 int ret; 127 128 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 129 130 return ret; 131 } 132 133 /* 134 * Writes one sector of the L1 table to the disk (can't update single entries 135 * and we really don't want bdrv_pread to perform a read-modify-write) 136 */ 137 #define L1_ENTRIES_PER_SECTOR (512 / 8) 138 static int write_l1_entry(BlockDriverState *bs, int l1_index) 139 { 140 BDRVQcowState *s = bs->opaque; 141 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 142 int l1_start_index; 143 int i, ret; 144 145 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 146 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 147 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 148 } 149 150 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 151 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 152 buf, sizeof(buf)); 153 if (ret < 0) { 154 return ret; 155 } 156 157 return 0; 158 } 159 160 /* 161 * l2_allocate 162 * 163 * Allocate a new l2 entry in the file. If l1_index points to an already 164 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 165 * table) copy the contents of the old L2 table into the newly allocated one. 166 * Otherwise the new table is initialized with zeros. 167 * 168 */ 169 170 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 171 { 172 BDRVQcowState *s = bs->opaque; 173 uint64_t old_l2_offset; 174 uint64_t *l2_table; 175 int64_t l2_offset; 176 int ret; 177 178 old_l2_offset = s->l1_table[l1_index]; 179 180 trace_qcow2_l2_allocate(bs, l1_index); 181 182 /* allocate a new l2 entry */ 183 184 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 185 if (l2_offset < 0) { 186 return l2_offset; 187 } 188 189 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 190 if (ret < 0) { 191 goto fail; 192 } 193 194 /* allocate a new entry in the l2 cache */ 195 196 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 197 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 198 if (ret < 0) { 199 return ret; 200 } 201 202 l2_table = *table; 203 204 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 205 /* if there was no old l2 table, clear the new table */ 206 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 207 } else { 208 uint64_t* old_table; 209 210 /* if there was an old l2 table, read it from the disk */ 211 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 212 ret = qcow2_cache_get(bs, s->l2_table_cache, 213 old_l2_offset & L1E_OFFSET_MASK, 214 (void**) &old_table); 215 if (ret < 0) { 216 goto fail; 217 } 218 219 memcpy(l2_table, old_table, s->cluster_size); 220 221 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 222 if (ret < 0) { 223 goto fail; 224 } 225 } 226 227 /* write the l2 table to the file */ 228 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 229 230 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 231 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 232 ret = qcow2_cache_flush(bs, s->l2_table_cache); 233 if (ret < 0) { 234 goto fail; 235 } 236 237 /* update the L1 entry */ 238 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 239 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 240 ret = write_l1_entry(bs, l1_index); 241 if (ret < 0) { 242 goto fail; 243 } 244 245 *table = l2_table; 246 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 247 return 0; 248 249 fail: 250 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 251 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 252 s->l1_table[l1_index] = old_l2_offset; 253 return ret; 254 } 255 256 /* 257 * Checks how many clusters in a given L2 table are contiguous in the image 258 * file. As soon as one of the flags in the bitmask stop_flags changes compared 259 * to the first cluster, the search is stopped and the cluster is not counted 260 * as contiguous. (This allows it, for example, to stop at the first compressed 261 * cluster which may require a different handling) 262 */ 263 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 264 uint64_t *l2_table, uint64_t start, uint64_t stop_flags) 265 { 266 int i; 267 uint64_t mask = stop_flags | L2E_OFFSET_MASK; 268 uint64_t offset = be64_to_cpu(l2_table[0]) & mask; 269 270 if (!offset) 271 return 0; 272 273 for (i = start; i < start + nb_clusters; i++) { 274 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 275 if (offset + (uint64_t) i * cluster_size != l2_entry) { 276 break; 277 } 278 } 279 280 return (i - start); 281 } 282 283 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 284 { 285 int i; 286 287 for (i = 0; i < nb_clusters; i++) { 288 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 289 290 if (type != QCOW2_CLUSTER_UNALLOCATED) { 291 break; 292 } 293 } 294 295 return i; 296 } 297 298 /* The crypt function is compatible with the linux cryptoloop 299 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 300 supported */ 301 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 302 uint8_t *out_buf, const uint8_t *in_buf, 303 int nb_sectors, int enc, 304 const AES_KEY *key) 305 { 306 union { 307 uint64_t ll[2]; 308 uint8_t b[16]; 309 } ivec; 310 int i; 311 312 for(i = 0; i < nb_sectors; i++) { 313 ivec.ll[0] = cpu_to_le64(sector_num); 314 ivec.ll[1] = 0; 315 AES_cbc_encrypt(in_buf, out_buf, 512, key, 316 ivec.b, enc); 317 sector_num++; 318 in_buf += 512; 319 out_buf += 512; 320 } 321 } 322 323 static int coroutine_fn copy_sectors(BlockDriverState *bs, 324 uint64_t start_sect, 325 uint64_t cluster_offset, 326 int n_start, int n_end) 327 { 328 BDRVQcowState *s = bs->opaque; 329 QEMUIOVector qiov; 330 struct iovec iov; 331 int n, ret; 332 333 /* 334 * If this is the last cluster and it is only partially used, we must only 335 * copy until the end of the image, or bdrv_check_request will fail for the 336 * bdrv_read/write calls below. 337 */ 338 if (start_sect + n_end > bs->total_sectors) { 339 n_end = bs->total_sectors - start_sect; 340 } 341 342 n = n_end - n_start; 343 if (n <= 0) { 344 return 0; 345 } 346 347 iov.iov_len = n * BDRV_SECTOR_SIZE; 348 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 349 350 qemu_iovec_init_external(&qiov, &iov, 1); 351 352 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 353 354 /* Call .bdrv_co_readv() directly instead of using the public block-layer 355 * interface. This avoids double I/O throttling and request tracking, 356 * which can lead to deadlock when block layer copy-on-read is enabled. 357 */ 358 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 359 if (ret < 0) { 360 goto out; 361 } 362 363 if (s->crypt_method) { 364 qcow2_encrypt_sectors(s, start_sect + n_start, 365 iov.iov_base, iov.iov_base, n, 1, 366 &s->aes_encrypt_key); 367 } 368 369 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 370 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 371 if (ret < 0) { 372 goto out; 373 } 374 375 ret = 0; 376 out: 377 qemu_vfree(iov.iov_base); 378 return ret; 379 } 380 381 382 /* 383 * get_cluster_offset 384 * 385 * For a given offset of the disk image, find the cluster offset in 386 * qcow2 file. The offset is stored in *cluster_offset. 387 * 388 * on entry, *num is the number of contiguous sectors we'd like to 389 * access following offset. 390 * 391 * on exit, *num is the number of contiguous sectors we can read. 392 * 393 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 394 * cases. 395 */ 396 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 397 int *num, uint64_t *cluster_offset) 398 { 399 BDRVQcowState *s = bs->opaque; 400 unsigned int l2_index; 401 uint64_t l1_index, l2_offset, *l2_table; 402 int l1_bits, c; 403 unsigned int index_in_cluster, nb_clusters; 404 uint64_t nb_available, nb_needed; 405 int ret; 406 407 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 408 nb_needed = *num + index_in_cluster; 409 410 l1_bits = s->l2_bits + s->cluster_bits; 411 412 /* compute how many bytes there are between the offset and 413 * the end of the l1 entry 414 */ 415 416 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 417 418 /* compute the number of available sectors */ 419 420 nb_available = (nb_available >> 9) + index_in_cluster; 421 422 if (nb_needed > nb_available) { 423 nb_needed = nb_available; 424 } 425 426 *cluster_offset = 0; 427 428 /* seek the the l2 offset in the l1 table */ 429 430 l1_index = offset >> l1_bits; 431 if (l1_index >= s->l1_size) { 432 ret = QCOW2_CLUSTER_UNALLOCATED; 433 goto out; 434 } 435 436 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 437 if (!l2_offset) { 438 ret = QCOW2_CLUSTER_UNALLOCATED; 439 goto out; 440 } 441 442 /* load the l2 table in memory */ 443 444 ret = l2_load(bs, l2_offset, &l2_table); 445 if (ret < 0) { 446 return ret; 447 } 448 449 /* find the cluster offset for the given disk offset */ 450 451 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 452 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 453 nb_clusters = size_to_clusters(s, nb_needed << 9); 454 455 ret = qcow2_get_cluster_type(*cluster_offset); 456 switch (ret) { 457 case QCOW2_CLUSTER_COMPRESSED: 458 /* Compressed clusters can only be processed one by one */ 459 c = 1; 460 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 461 break; 462 case QCOW2_CLUSTER_ZERO: 463 if (s->qcow_version < 3) { 464 return -EIO; 465 } 466 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 467 &l2_table[l2_index], 0, 468 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 469 *cluster_offset = 0; 470 break; 471 case QCOW2_CLUSTER_UNALLOCATED: 472 /* how many empty clusters ? */ 473 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 474 *cluster_offset = 0; 475 break; 476 case QCOW2_CLUSTER_NORMAL: 477 /* how many allocated clusters ? */ 478 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 479 &l2_table[l2_index], 0, 480 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 481 *cluster_offset &= L2E_OFFSET_MASK; 482 break; 483 default: 484 abort(); 485 } 486 487 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 488 489 nb_available = (c * s->cluster_sectors); 490 491 out: 492 if (nb_available > nb_needed) 493 nb_available = nb_needed; 494 495 *num = nb_available - index_in_cluster; 496 497 return ret; 498 } 499 500 /* 501 * get_cluster_table 502 * 503 * for a given disk offset, load (and allocate if needed) 504 * the l2 table. 505 * 506 * the l2 table offset in the qcow2 file and the cluster index 507 * in the l2 table are given to the caller. 508 * 509 * Returns 0 on success, -errno in failure case 510 */ 511 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 512 uint64_t **new_l2_table, 513 int *new_l2_index) 514 { 515 BDRVQcowState *s = bs->opaque; 516 unsigned int l2_index; 517 uint64_t l1_index, l2_offset; 518 uint64_t *l2_table = NULL; 519 int ret; 520 521 /* seek the the l2 offset in the l1 table */ 522 523 l1_index = offset >> (s->l2_bits + s->cluster_bits); 524 if (l1_index >= s->l1_size) { 525 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 526 if (ret < 0) { 527 return ret; 528 } 529 } 530 531 assert(l1_index < s->l1_size); 532 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 533 534 /* seek the l2 table of the given l2 offset */ 535 536 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 537 /* load the l2 table in memory */ 538 ret = l2_load(bs, l2_offset, &l2_table); 539 if (ret < 0) { 540 return ret; 541 } 542 } else { 543 /* First allocate a new L2 table (and do COW if needed) */ 544 ret = l2_allocate(bs, l1_index, &l2_table); 545 if (ret < 0) { 546 return ret; 547 } 548 549 /* Then decrease the refcount of the old table */ 550 if (l2_offset) { 551 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); 552 } 553 } 554 555 /* find the cluster offset for the given disk offset */ 556 557 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 558 559 *new_l2_table = l2_table; 560 *new_l2_index = l2_index; 561 562 return 0; 563 } 564 565 /* 566 * alloc_compressed_cluster_offset 567 * 568 * For a given offset of the disk image, return cluster offset in 569 * qcow2 file. 570 * 571 * If the offset is not found, allocate a new compressed cluster. 572 * 573 * Return the cluster offset if successful, 574 * Return 0, otherwise. 575 * 576 */ 577 578 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 579 uint64_t offset, 580 int compressed_size) 581 { 582 BDRVQcowState *s = bs->opaque; 583 int l2_index, ret; 584 uint64_t *l2_table; 585 int64_t cluster_offset; 586 int nb_csectors; 587 588 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 589 if (ret < 0) { 590 return 0; 591 } 592 593 /* Compression can't overwrite anything. Fail if the cluster was already 594 * allocated. */ 595 cluster_offset = be64_to_cpu(l2_table[l2_index]); 596 if (cluster_offset & L2E_OFFSET_MASK) { 597 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 598 return 0; 599 } 600 601 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 602 if (cluster_offset < 0) { 603 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 604 return 0; 605 } 606 607 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 608 (cluster_offset >> 9); 609 610 cluster_offset |= QCOW_OFLAG_COMPRESSED | 611 ((uint64_t)nb_csectors << s->csize_shift); 612 613 /* update L2 table */ 614 615 /* compressed clusters never have the copied flag */ 616 617 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 618 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 619 l2_table[l2_index] = cpu_to_be64(cluster_offset); 620 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 621 if (ret < 0) { 622 return 0; 623 } 624 625 return cluster_offset; 626 } 627 628 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 629 { 630 BDRVQcowState *s = bs->opaque; 631 int ret; 632 633 if (r->nb_sectors == 0) { 634 return 0; 635 } 636 637 qemu_co_mutex_unlock(&s->lock); 638 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 639 r->offset / BDRV_SECTOR_SIZE, 640 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 641 qemu_co_mutex_lock(&s->lock); 642 643 if (ret < 0) { 644 return ret; 645 } 646 647 /* 648 * Before we update the L2 table to actually point to the new cluster, we 649 * need to be sure that the refcounts have been increased and COW was 650 * handled. 651 */ 652 qcow2_cache_depends_on_flush(s->l2_table_cache); 653 654 return 0; 655 } 656 657 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 658 { 659 BDRVQcowState *s = bs->opaque; 660 int i, j = 0, l2_index, ret; 661 uint64_t *old_cluster, *l2_table; 662 uint64_t cluster_offset = m->alloc_offset; 663 664 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 665 assert(m->nb_clusters > 0); 666 667 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 668 669 /* copy content of unmodified sectors */ 670 ret = perform_cow(bs, m, &m->cow_start); 671 if (ret < 0) { 672 goto err; 673 } 674 675 ret = perform_cow(bs, m, &m->cow_end); 676 if (ret < 0) { 677 goto err; 678 } 679 680 /* Update L2 table. */ 681 if (s->use_lazy_refcounts) { 682 qcow2_mark_dirty(bs); 683 } 684 if (qcow2_need_accurate_refcounts(s)) { 685 qcow2_cache_set_dependency(bs, s->l2_table_cache, 686 s->refcount_block_cache); 687 } 688 689 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 690 if (ret < 0) { 691 goto err; 692 } 693 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 694 695 for (i = 0; i < m->nb_clusters; i++) { 696 /* if two concurrent writes happen to the same unallocated cluster 697 * each write allocates separate cluster and writes data concurrently. 698 * The first one to complete updates l2 table with pointer to its 699 * cluster the second one has to do RMW (which is done above by 700 * copy_sectors()), update l2 table with its cluster pointer and free 701 * old cluster. This is what this loop does */ 702 if(l2_table[l2_index + i] != 0) 703 old_cluster[j++] = l2_table[l2_index + i]; 704 705 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 706 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 707 } 708 709 710 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 711 if (ret < 0) { 712 goto err; 713 } 714 715 /* 716 * If this was a COW, we need to decrease the refcount of the old cluster. 717 * Also flush bs->file to get the right order for L2 and refcount update. 718 */ 719 if (j != 0) { 720 for (i = 0; i < j; i++) { 721 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1); 722 } 723 } 724 725 ret = 0; 726 err: 727 g_free(old_cluster); 728 return ret; 729 } 730 731 /* 732 * Returns the number of contiguous clusters that can be used for an allocating 733 * write, but require COW to be performed (this includes yet unallocated space, 734 * which must copy from the backing file) 735 */ 736 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 737 uint64_t *l2_table, int l2_index) 738 { 739 int i; 740 741 for (i = 0; i < nb_clusters; i++) { 742 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 743 int cluster_type = qcow2_get_cluster_type(l2_entry); 744 745 switch(cluster_type) { 746 case QCOW2_CLUSTER_NORMAL: 747 if (l2_entry & QCOW_OFLAG_COPIED) { 748 goto out; 749 } 750 break; 751 case QCOW2_CLUSTER_UNALLOCATED: 752 case QCOW2_CLUSTER_COMPRESSED: 753 case QCOW2_CLUSTER_ZERO: 754 break; 755 default: 756 abort(); 757 } 758 } 759 760 out: 761 assert(i <= nb_clusters); 762 return i; 763 } 764 765 /* 766 * Check if there already is an AIO write request in flight which allocates 767 * the same cluster. In this case we need to wait until the previous 768 * request has completed and updated the L2 table accordingly. 769 * 770 * Returns: 771 * 0 if there was no dependency. *cur_bytes indicates the number of 772 * bytes from guest_offset that can be read before the next 773 * dependency must be processed (or the request is complete) 774 * 775 * -EAGAIN if we had to wait for another request, previously gathered 776 * information on cluster allocation may be invalid now. The caller 777 * must start over anyway, so consider *cur_bytes undefined. 778 */ 779 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 780 uint64_t *cur_bytes, QCowL2Meta **m) 781 { 782 BDRVQcowState *s = bs->opaque; 783 QCowL2Meta *old_alloc; 784 uint64_t bytes = *cur_bytes; 785 786 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 787 788 uint64_t start = guest_offset; 789 uint64_t end = start + bytes; 790 uint64_t old_start = l2meta_cow_start(old_alloc); 791 uint64_t old_end = l2meta_cow_end(old_alloc); 792 793 if (end <= old_start || start >= old_end) { 794 /* No intersection */ 795 } else { 796 if (start < old_start) { 797 /* Stop at the start of a running allocation */ 798 bytes = old_start - start; 799 } else { 800 bytes = 0; 801 } 802 803 /* Stop if already an l2meta exists. After yielding, it wouldn't 804 * be valid any more, so we'd have to clean up the old L2Metas 805 * and deal with requests depending on them before starting to 806 * gather new ones. Not worth the trouble. */ 807 if (bytes == 0 && *m) { 808 *cur_bytes = 0; 809 return 0; 810 } 811 812 if (bytes == 0) { 813 /* Wait for the dependency to complete. We need to recheck 814 * the free/allocated clusters when we continue. */ 815 qemu_co_mutex_unlock(&s->lock); 816 qemu_co_queue_wait(&old_alloc->dependent_requests); 817 qemu_co_mutex_lock(&s->lock); 818 return -EAGAIN; 819 } 820 } 821 } 822 823 /* Make sure that existing clusters and new allocations are only used up to 824 * the next dependency if we shortened the request above */ 825 *cur_bytes = bytes; 826 827 return 0; 828 } 829 830 /* 831 * Checks how many already allocated clusters that don't require a copy on 832 * write there are at the given guest_offset (up to *bytes). If 833 * *host_offset is not zero, only physically contiguous clusters beginning at 834 * this host offset are counted. 835 * 836 * Note that guest_offset may not be cluster aligned. In this case, the 837 * returned *host_offset points to exact byte referenced by guest_offset and 838 * therefore isn't cluster aligned as well. 839 * 840 * Returns: 841 * 0: if no allocated clusters are available at the given offset. 842 * *bytes is normally unchanged. It is set to 0 if the cluster 843 * is allocated and doesn't need COW, but doesn't have the right 844 * physical offset. 845 * 846 * 1: if allocated clusters that don't require a COW are available at 847 * the requested offset. *bytes may have decreased and describes 848 * the length of the area that can be written to. 849 * 850 * -errno: in error cases 851 */ 852 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 853 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 854 { 855 BDRVQcowState *s = bs->opaque; 856 int l2_index; 857 uint64_t cluster_offset; 858 uint64_t *l2_table; 859 unsigned int nb_clusters; 860 unsigned int keep_clusters; 861 int ret, pret; 862 863 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 864 *bytes); 865 866 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 867 == offset_into_cluster(s, *host_offset)); 868 869 /* 870 * Calculate the number of clusters to look for. We stop at L2 table 871 * boundaries to keep things simple. 872 */ 873 nb_clusters = 874 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 875 876 l2_index = offset_to_l2_index(s, guest_offset); 877 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 878 879 /* Find L2 entry for the first involved cluster */ 880 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 881 if (ret < 0) { 882 return ret; 883 } 884 885 cluster_offset = be64_to_cpu(l2_table[l2_index]); 886 887 /* Check how many clusters are already allocated and don't need COW */ 888 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 889 && (cluster_offset & QCOW_OFLAG_COPIED)) 890 { 891 /* If a specific host_offset is required, check it */ 892 bool offset_matches = 893 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 894 895 if (*host_offset != 0 && !offset_matches) { 896 *bytes = 0; 897 ret = 0; 898 goto out; 899 } 900 901 /* We keep all QCOW_OFLAG_COPIED clusters */ 902 keep_clusters = 903 count_contiguous_clusters(nb_clusters, s->cluster_size, 904 &l2_table[l2_index], 0, 905 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 906 assert(keep_clusters <= nb_clusters); 907 908 *bytes = MIN(*bytes, 909 keep_clusters * s->cluster_size 910 - offset_into_cluster(s, guest_offset)); 911 912 ret = 1; 913 } else { 914 ret = 0; 915 } 916 917 /* Cleanup */ 918 out: 919 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 920 if (pret < 0) { 921 return pret; 922 } 923 924 /* Only return a host offset if we actually made progress. Otherwise we 925 * would make requirements for handle_alloc() that it can't fulfill */ 926 if (ret) { 927 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 928 + offset_into_cluster(s, guest_offset); 929 } 930 931 return ret; 932 } 933 934 /* 935 * Allocates new clusters for the given guest_offset. 936 * 937 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 938 * contain the number of clusters that have been allocated and are contiguous 939 * in the image file. 940 * 941 * If *host_offset is non-zero, it specifies the offset in the image file at 942 * which the new clusters must start. *nb_clusters can be 0 on return in this 943 * case if the cluster at host_offset is already in use. If *host_offset is 944 * zero, the clusters can be allocated anywhere in the image file. 945 * 946 * *host_offset is updated to contain the offset into the image file at which 947 * the first allocated cluster starts. 948 * 949 * Return 0 on success and -errno in error cases. -EAGAIN means that the 950 * function has been waiting for another request and the allocation must be 951 * restarted, but the whole request should not be failed. 952 */ 953 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 954 uint64_t *host_offset, unsigned int *nb_clusters) 955 { 956 BDRVQcowState *s = bs->opaque; 957 958 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 959 *host_offset, *nb_clusters); 960 961 /* Allocate new clusters */ 962 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 963 if (*host_offset == 0) { 964 int64_t cluster_offset = 965 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 966 if (cluster_offset < 0) { 967 return cluster_offset; 968 } 969 *host_offset = cluster_offset; 970 return 0; 971 } else { 972 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 973 if (ret < 0) { 974 return ret; 975 } 976 *nb_clusters = ret; 977 return 0; 978 } 979 } 980 981 /* 982 * Allocates new clusters for an area that either is yet unallocated or needs a 983 * copy on write. If *host_offset is non-zero, clusters are only allocated if 984 * the new allocation can match the specified host offset. 985 * 986 * Note that guest_offset may not be cluster aligned. In this case, the 987 * returned *host_offset points to exact byte referenced by guest_offset and 988 * therefore isn't cluster aligned as well. 989 * 990 * Returns: 991 * 0: if no clusters could be allocated. *bytes is set to 0, 992 * *host_offset is left unchanged. 993 * 994 * 1: if new clusters were allocated. *bytes may be decreased if the 995 * new allocation doesn't cover all of the requested area. 996 * *host_offset is updated to contain the host offset of the first 997 * newly allocated cluster. 998 * 999 * -errno: in error cases 1000 */ 1001 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1002 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1003 { 1004 BDRVQcowState *s = bs->opaque; 1005 int l2_index; 1006 uint64_t *l2_table; 1007 uint64_t entry; 1008 unsigned int nb_clusters; 1009 int ret; 1010 1011 uint64_t alloc_cluster_offset; 1012 1013 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1014 *bytes); 1015 assert(*bytes > 0); 1016 1017 /* 1018 * Calculate the number of clusters to look for. We stop at L2 table 1019 * boundaries to keep things simple. 1020 */ 1021 nb_clusters = 1022 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1023 1024 l2_index = offset_to_l2_index(s, guest_offset); 1025 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1026 1027 /* Find L2 entry for the first involved cluster */ 1028 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1029 if (ret < 0) { 1030 return ret; 1031 } 1032 1033 entry = be64_to_cpu(l2_table[l2_index]); 1034 1035 /* For the moment, overwrite compressed clusters one by one */ 1036 if (entry & QCOW_OFLAG_COMPRESSED) { 1037 nb_clusters = 1; 1038 } else { 1039 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1040 } 1041 1042 /* This function is only called when there were no non-COW clusters, so if 1043 * we can't find any unallocated or COW clusters either, something is 1044 * wrong with our code. */ 1045 assert(nb_clusters > 0); 1046 1047 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1048 if (ret < 0) { 1049 return ret; 1050 } 1051 1052 /* Allocate, if necessary at a given offset in the image file */ 1053 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1054 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1055 &nb_clusters); 1056 if (ret < 0) { 1057 goto fail; 1058 } 1059 1060 /* Can't extend contiguous allocation */ 1061 if (nb_clusters == 0) { 1062 *bytes = 0; 1063 return 0; 1064 } 1065 1066 /* 1067 * Save info needed for meta data update. 1068 * 1069 * requested_sectors: Number of sectors from the start of the first 1070 * newly allocated cluster to the end of the (possibly shortened 1071 * before) write request. 1072 * 1073 * avail_sectors: Number of sectors from the start of the first 1074 * newly allocated to the end of the last newly allocated cluster. 1075 * 1076 * nb_sectors: The number of sectors from the start of the first 1077 * newly allocated cluster to the end of the area that the write 1078 * request actually writes to (excluding COW at the end) 1079 */ 1080 int requested_sectors = 1081 (*bytes + offset_into_cluster(s, guest_offset)) 1082 >> BDRV_SECTOR_BITS; 1083 int avail_sectors = nb_clusters 1084 << (s->cluster_bits - BDRV_SECTOR_BITS); 1085 int alloc_n_start = offset_into_cluster(s, guest_offset) 1086 >> BDRV_SECTOR_BITS; 1087 int nb_sectors = MIN(requested_sectors, avail_sectors); 1088 QCowL2Meta *old_m = *m; 1089 1090 *m = g_malloc0(sizeof(**m)); 1091 1092 **m = (QCowL2Meta) { 1093 .next = old_m, 1094 1095 .alloc_offset = alloc_cluster_offset, 1096 .offset = start_of_cluster(s, guest_offset), 1097 .nb_clusters = nb_clusters, 1098 .nb_available = nb_sectors, 1099 1100 .cow_start = { 1101 .offset = 0, 1102 .nb_sectors = alloc_n_start, 1103 }, 1104 .cow_end = { 1105 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1106 .nb_sectors = avail_sectors - nb_sectors, 1107 }, 1108 }; 1109 qemu_co_queue_init(&(*m)->dependent_requests); 1110 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1111 1112 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1113 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1114 - offset_into_cluster(s, guest_offset)); 1115 assert(*bytes != 0); 1116 1117 return 1; 1118 1119 fail: 1120 if (*m && (*m)->nb_clusters > 0) { 1121 QLIST_REMOVE(*m, next_in_flight); 1122 } 1123 return ret; 1124 } 1125 1126 /* 1127 * alloc_cluster_offset 1128 * 1129 * For a given offset on the virtual disk, find the cluster offset in qcow2 1130 * file. If the offset is not found, allocate a new cluster. 1131 * 1132 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1133 * other fields in m are meaningless. 1134 * 1135 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1136 * contiguous clusters that have been allocated. In this case, the other 1137 * fields of m are valid and contain information about the first allocated 1138 * cluster. 1139 * 1140 * If the request conflicts with another write request in flight, the coroutine 1141 * is queued and will be reentered when the dependency has completed. 1142 * 1143 * Return 0 on success and -errno in error cases 1144 */ 1145 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1146 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m) 1147 { 1148 BDRVQcowState *s = bs->opaque; 1149 uint64_t start, remaining; 1150 uint64_t cluster_offset; 1151 uint64_t cur_bytes; 1152 int ret; 1153 1154 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, 1155 n_start, n_end); 1156 1157 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset)); 1158 offset = start_of_cluster(s, offset); 1159 1160 again: 1161 start = offset + (n_start << BDRV_SECTOR_BITS); 1162 remaining = (n_end - n_start) << BDRV_SECTOR_BITS; 1163 cluster_offset = 0; 1164 *host_offset = 0; 1165 cur_bytes = 0; 1166 *m = NULL; 1167 1168 while (true) { 1169 1170 if (!*host_offset) { 1171 *host_offset = start_of_cluster(s, cluster_offset); 1172 } 1173 1174 assert(remaining >= cur_bytes); 1175 1176 start += cur_bytes; 1177 remaining -= cur_bytes; 1178 cluster_offset += cur_bytes; 1179 1180 if (remaining == 0) { 1181 break; 1182 } 1183 1184 cur_bytes = remaining; 1185 1186 /* 1187 * Now start gathering as many contiguous clusters as possible: 1188 * 1189 * 1. Check for overlaps with in-flight allocations 1190 * 1191 * a) Overlap not in the first cluster -> shorten this request and 1192 * let the caller handle the rest in its next loop iteration. 1193 * 1194 * b) Real overlaps of two requests. Yield and restart the search 1195 * for contiguous clusters (the situation could have changed 1196 * while we were sleeping) 1197 * 1198 * c) TODO: Request starts in the same cluster as the in-flight 1199 * allocation ends. Shorten the COW of the in-fight allocation, 1200 * set cluster_offset to write to the same cluster and set up 1201 * the right synchronisation between the in-flight request and 1202 * the new one. 1203 */ 1204 ret = handle_dependencies(bs, start, &cur_bytes, m); 1205 if (ret == -EAGAIN) { 1206 /* Currently handle_dependencies() doesn't yield if we already had 1207 * an allocation. If it did, we would have to clean up the L2Meta 1208 * structs before starting over. */ 1209 assert(*m == NULL); 1210 goto again; 1211 } else if (ret < 0) { 1212 return ret; 1213 } else if (cur_bytes == 0) { 1214 break; 1215 } else { 1216 /* handle_dependencies() may have decreased cur_bytes (shortened 1217 * the allocations below) so that the next dependency is processed 1218 * correctly during the next loop iteration. */ 1219 } 1220 1221 /* 1222 * 2. Count contiguous COPIED clusters. 1223 */ 1224 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1225 if (ret < 0) { 1226 return ret; 1227 } else if (ret) { 1228 continue; 1229 } else if (cur_bytes == 0) { 1230 break; 1231 } 1232 1233 /* 1234 * 3. If the request still hasn't completed, allocate new clusters, 1235 * considering any cluster_offset of steps 1c or 2. 1236 */ 1237 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1238 if (ret < 0) { 1239 return ret; 1240 } else if (ret) { 1241 continue; 1242 } else { 1243 assert(cur_bytes == 0); 1244 break; 1245 } 1246 } 1247 1248 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS); 1249 assert(*num > 0); 1250 assert(*host_offset != 0); 1251 1252 return 0; 1253 } 1254 1255 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1256 const uint8_t *buf, int buf_size) 1257 { 1258 z_stream strm1, *strm = &strm1; 1259 int ret, out_len; 1260 1261 memset(strm, 0, sizeof(*strm)); 1262 1263 strm->next_in = (uint8_t *)buf; 1264 strm->avail_in = buf_size; 1265 strm->next_out = out_buf; 1266 strm->avail_out = out_buf_size; 1267 1268 ret = inflateInit2(strm, -12); 1269 if (ret != Z_OK) 1270 return -1; 1271 ret = inflate(strm, Z_FINISH); 1272 out_len = strm->next_out - out_buf; 1273 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1274 out_len != out_buf_size) { 1275 inflateEnd(strm); 1276 return -1; 1277 } 1278 inflateEnd(strm); 1279 return 0; 1280 } 1281 1282 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1283 { 1284 BDRVQcowState *s = bs->opaque; 1285 int ret, csize, nb_csectors, sector_offset; 1286 uint64_t coffset; 1287 1288 coffset = cluster_offset & s->cluster_offset_mask; 1289 if (s->cluster_cache_offset != coffset) { 1290 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1291 sector_offset = coffset & 511; 1292 csize = nb_csectors * 512 - sector_offset; 1293 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1294 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1295 if (ret < 0) { 1296 return ret; 1297 } 1298 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1299 s->cluster_data + sector_offset, csize) < 0) { 1300 return -EIO; 1301 } 1302 s->cluster_cache_offset = coffset; 1303 } 1304 return 0; 1305 } 1306 1307 /* 1308 * This discards as many clusters of nb_clusters as possible at once (i.e. 1309 * all clusters in the same L2 table) and returns the number of discarded 1310 * clusters. 1311 */ 1312 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1313 unsigned int nb_clusters) 1314 { 1315 BDRVQcowState *s = bs->opaque; 1316 uint64_t *l2_table; 1317 int l2_index; 1318 int ret; 1319 int i; 1320 1321 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1322 if (ret < 0) { 1323 return ret; 1324 } 1325 1326 /* Limit nb_clusters to one L2 table */ 1327 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1328 1329 for (i = 0; i < nb_clusters; i++) { 1330 uint64_t old_offset; 1331 1332 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1333 if ((old_offset & L2E_OFFSET_MASK) == 0) { 1334 continue; 1335 } 1336 1337 /* First remove L2 entries */ 1338 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1339 l2_table[l2_index + i] = cpu_to_be64(0); 1340 1341 /* Then decrease the refcount */ 1342 qcow2_free_any_clusters(bs, old_offset, 1); 1343 } 1344 1345 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1346 if (ret < 0) { 1347 return ret; 1348 } 1349 1350 return nb_clusters; 1351 } 1352 1353 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1354 int nb_sectors) 1355 { 1356 BDRVQcowState *s = bs->opaque; 1357 uint64_t end_offset; 1358 unsigned int nb_clusters; 1359 int ret; 1360 1361 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1362 1363 /* Round start up and end down */ 1364 offset = align_offset(offset, s->cluster_size); 1365 end_offset &= ~(s->cluster_size - 1); 1366 1367 if (offset > end_offset) { 1368 return 0; 1369 } 1370 1371 nb_clusters = size_to_clusters(s, end_offset - offset); 1372 1373 /* Each L2 table is handled by its own loop iteration */ 1374 while (nb_clusters > 0) { 1375 ret = discard_single_l2(bs, offset, nb_clusters); 1376 if (ret < 0) { 1377 return ret; 1378 } 1379 1380 nb_clusters -= ret; 1381 offset += (ret * s->cluster_size); 1382 } 1383 1384 return 0; 1385 } 1386 1387 /* 1388 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1389 * all clusters in the same L2 table) and returns the number of zeroed 1390 * clusters. 1391 */ 1392 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1393 unsigned int nb_clusters) 1394 { 1395 BDRVQcowState *s = bs->opaque; 1396 uint64_t *l2_table; 1397 int l2_index; 1398 int ret; 1399 int i; 1400 1401 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1402 if (ret < 0) { 1403 return ret; 1404 } 1405 1406 /* Limit nb_clusters to one L2 table */ 1407 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1408 1409 for (i = 0; i < nb_clusters; i++) { 1410 uint64_t old_offset; 1411 1412 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1413 1414 /* Update L2 entries */ 1415 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1416 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1417 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1418 qcow2_free_any_clusters(bs, old_offset, 1); 1419 } else { 1420 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1421 } 1422 } 1423 1424 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1425 if (ret < 0) { 1426 return ret; 1427 } 1428 1429 return nb_clusters; 1430 } 1431 1432 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1433 { 1434 BDRVQcowState *s = bs->opaque; 1435 unsigned int nb_clusters; 1436 int ret; 1437 1438 /* The zero flag is only supported by version 3 and newer */ 1439 if (s->qcow_version < 3) { 1440 return -ENOTSUP; 1441 } 1442 1443 /* Each L2 table is handled by its own loop iteration */ 1444 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1445 1446 while (nb_clusters > 0) { 1447 ret = zero_single_l2(bs, offset, nb_clusters); 1448 if (ret < 0) { 1449 return ret; 1450 } 1451 1452 nb_clusters -= ret; 1453 offset += (ret * s->cluster_size); 1454 } 1455 1456 return 0; 1457 } 1458