1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qemu-common.h" 30 #include "block/block_int.h" 31 #include "block/qcow2.h" 32 #include "qemu/bswap.h" 33 #include "trace.h" 34 35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 36 bool exact_size) 37 { 38 BDRVQcow2State *s = bs->opaque; 39 int new_l1_size2, ret, i; 40 uint64_t *new_l1_table; 41 int64_t old_l1_table_offset, old_l1_size; 42 int64_t new_l1_table_offset, new_l1_size; 43 uint8_t data[12]; 44 45 if (min_size <= s->l1_size) 46 return 0; 47 48 /* Do a sanity check on min_size before trying to calculate new_l1_size 49 * (this prevents overflows during the while loop for the calculation of 50 * new_l1_size) */ 51 if (min_size > INT_MAX / sizeof(uint64_t)) { 52 return -EFBIG; 53 } 54 55 if (exact_size) { 56 new_l1_size = min_size; 57 } else { 58 /* Bump size up to reduce the number of times we have to grow */ 59 new_l1_size = s->l1_size; 60 if (new_l1_size == 0) { 61 new_l1_size = 1; 62 } 63 while (min_size > new_l1_size) { 64 new_l1_size = (new_l1_size * 3 + 1) / 2; 65 } 66 } 67 68 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 69 return -EFBIG; 70 } 71 72 #ifdef DEBUG_ALLOC2 73 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 74 s->l1_size, new_l1_size); 75 #endif 76 77 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 78 new_l1_table = qemu_try_blockalign(bs->file->bs, 79 align_offset(new_l1_size2, 512)); 80 if (new_l1_table == NULL) { 81 return -ENOMEM; 82 } 83 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 84 85 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 86 87 /* write new table (align to cluster) */ 88 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 89 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 90 if (new_l1_table_offset < 0) { 91 qemu_vfree(new_l1_table); 92 return new_l1_table_offset; 93 } 94 95 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 96 if (ret < 0) { 97 goto fail; 98 } 99 100 /* the L1 position has not yet been updated, so these clusters must 101 * indeed be completely free */ 102 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 103 new_l1_size2); 104 if (ret < 0) { 105 goto fail; 106 } 107 108 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 109 for(i = 0; i < s->l1_size; i++) 110 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 111 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset, 112 new_l1_table, new_l1_size2); 113 if (ret < 0) 114 goto fail; 115 for(i = 0; i < s->l1_size; i++) 116 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 117 118 /* set new table */ 119 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 120 cpu_to_be32w((uint32_t*)data, new_l1_size); 121 stq_be_p(data + 4, new_l1_table_offset); 122 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size), 123 data, sizeof(data)); 124 if (ret < 0) { 125 goto fail; 126 } 127 qemu_vfree(s->l1_table); 128 old_l1_table_offset = s->l1_table_offset; 129 s->l1_table_offset = new_l1_table_offset; 130 s->l1_table = new_l1_table; 131 old_l1_size = s->l1_size; 132 s->l1_size = new_l1_size; 133 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 134 QCOW2_DISCARD_OTHER); 135 return 0; 136 fail: 137 qemu_vfree(new_l1_table); 138 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 139 QCOW2_DISCARD_OTHER); 140 return ret; 141 } 142 143 /* 144 * l2_load 145 * 146 * Loads a L2 table into memory. If the table is in the cache, the cache 147 * is used; otherwise the L2 table is loaded from the image file. 148 * 149 * Returns a pointer to the L2 table on success, or NULL if the read from 150 * the image file failed. 151 */ 152 153 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 154 uint64_t **l2_table) 155 { 156 BDRVQcow2State *s = bs->opaque; 157 int ret; 158 159 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 160 161 return ret; 162 } 163 164 /* 165 * Writes one sector of the L1 table to the disk (can't update single entries 166 * and we really don't want bdrv_pread to perform a read-modify-write) 167 */ 168 #define L1_ENTRIES_PER_SECTOR (512 / 8) 169 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 170 { 171 BDRVQcow2State *s = bs->opaque; 172 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 173 int l1_start_index; 174 int i, ret; 175 176 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 177 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 178 i++) 179 { 180 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 181 } 182 183 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 184 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 185 if (ret < 0) { 186 return ret; 187 } 188 189 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 190 ret = bdrv_pwrite_sync(bs->file->bs, 191 s->l1_table_offset + 8 * l1_start_index, 192 buf, sizeof(buf)); 193 if (ret < 0) { 194 return ret; 195 } 196 197 return 0; 198 } 199 200 /* 201 * l2_allocate 202 * 203 * Allocate a new l2 entry in the file. If l1_index points to an already 204 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 205 * table) copy the contents of the old L2 table into the newly allocated one. 206 * Otherwise the new table is initialized with zeros. 207 * 208 */ 209 210 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 211 { 212 BDRVQcow2State *s = bs->opaque; 213 uint64_t old_l2_offset; 214 uint64_t *l2_table = NULL; 215 int64_t l2_offset; 216 int ret; 217 218 old_l2_offset = s->l1_table[l1_index]; 219 220 trace_qcow2_l2_allocate(bs, l1_index); 221 222 /* allocate a new l2 entry */ 223 224 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 225 if (l2_offset < 0) { 226 ret = l2_offset; 227 goto fail; 228 } 229 230 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 231 if (ret < 0) { 232 goto fail; 233 } 234 235 /* allocate a new entry in the l2 cache */ 236 237 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 238 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 239 if (ret < 0) { 240 goto fail; 241 } 242 243 l2_table = *table; 244 245 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 246 /* if there was no old l2 table, clear the new table */ 247 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 248 } else { 249 uint64_t* old_table; 250 251 /* if there was an old l2 table, read it from the disk */ 252 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 253 ret = qcow2_cache_get(bs, s->l2_table_cache, 254 old_l2_offset & L1E_OFFSET_MASK, 255 (void**) &old_table); 256 if (ret < 0) { 257 goto fail; 258 } 259 260 memcpy(l2_table, old_table, s->cluster_size); 261 262 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); 263 } 264 265 /* write the l2 table to the file */ 266 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 267 268 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 269 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 270 ret = qcow2_cache_flush(bs, s->l2_table_cache); 271 if (ret < 0) { 272 goto fail; 273 } 274 275 /* update the L1 entry */ 276 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 277 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 278 ret = qcow2_write_l1_entry(bs, l1_index); 279 if (ret < 0) { 280 goto fail; 281 } 282 283 *table = l2_table; 284 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 285 return 0; 286 287 fail: 288 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 289 if (l2_table != NULL) { 290 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 291 } 292 s->l1_table[l1_index] = old_l2_offset; 293 if (l2_offset > 0) { 294 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 295 QCOW2_DISCARD_ALWAYS); 296 } 297 return ret; 298 } 299 300 /* 301 * Checks how many clusters in a given L2 table are contiguous in the image 302 * file. As soon as one of the flags in the bitmask stop_flags changes compared 303 * to the first cluster, the search is stopped and the cluster is not counted 304 * as contiguous. (This allows it, for example, to stop at the first compressed 305 * cluster which may require a different handling) 306 */ 307 static int count_contiguous_clusters(int nb_clusters, int cluster_size, 308 uint64_t *l2_table, uint64_t stop_flags) 309 { 310 int i; 311 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 312 uint64_t first_entry = be64_to_cpu(l2_table[0]); 313 uint64_t offset = first_entry & mask; 314 315 if (!offset) 316 return 0; 317 318 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); 319 320 for (i = 0; i < nb_clusters; i++) { 321 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 322 if (offset + (uint64_t) i * cluster_size != l2_entry) { 323 break; 324 } 325 } 326 327 return i; 328 } 329 330 static int count_contiguous_clusters_by_type(int nb_clusters, 331 uint64_t *l2_table, 332 int wanted_type) 333 { 334 int i; 335 336 for (i = 0; i < nb_clusters; i++) { 337 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 338 339 if (type != wanted_type) { 340 break; 341 } 342 } 343 344 return i; 345 } 346 347 /* The crypt function is compatible with the linux cryptoloop 348 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 349 supported */ 350 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, 351 uint8_t *out_buf, const uint8_t *in_buf, 352 int nb_sectors, bool enc, 353 Error **errp) 354 { 355 union { 356 uint64_t ll[2]; 357 uint8_t b[16]; 358 } ivec; 359 int i; 360 int ret; 361 362 for(i = 0; i < nb_sectors; i++) { 363 ivec.ll[0] = cpu_to_le64(sector_num); 364 ivec.ll[1] = 0; 365 if (qcrypto_cipher_setiv(s->cipher, 366 ivec.b, G_N_ELEMENTS(ivec.b), 367 errp) < 0) { 368 return -1; 369 } 370 if (enc) { 371 ret = qcrypto_cipher_encrypt(s->cipher, 372 in_buf, 373 out_buf, 374 512, 375 errp); 376 } else { 377 ret = qcrypto_cipher_decrypt(s->cipher, 378 in_buf, 379 out_buf, 380 512, 381 errp); 382 } 383 if (ret < 0) { 384 return -1; 385 } 386 sector_num++; 387 in_buf += 512; 388 out_buf += 512; 389 } 390 return 0; 391 } 392 393 static int coroutine_fn copy_sectors(BlockDriverState *bs, 394 uint64_t start_sect, 395 uint64_t cluster_offset, 396 int n_start, int n_end) 397 { 398 BDRVQcow2State *s = bs->opaque; 399 QEMUIOVector qiov; 400 struct iovec iov; 401 int n, ret; 402 403 n = n_end - n_start; 404 if (n <= 0) { 405 return 0; 406 } 407 408 iov.iov_len = n * BDRV_SECTOR_SIZE; 409 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 410 if (iov.iov_base == NULL) { 411 return -ENOMEM; 412 } 413 414 qemu_iovec_init_external(&qiov, &iov, 1); 415 416 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 417 418 if (!bs->drv) { 419 ret = -ENOMEDIUM; 420 goto out; 421 } 422 423 /* Call .bdrv_co_readv() directly instead of using the public block-layer 424 * interface. This avoids double I/O throttling and request tracking, 425 * which can lead to deadlock when block layer copy-on-read is enabled. 426 */ 427 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 428 if (ret < 0) { 429 goto out; 430 } 431 432 if (bs->encrypted) { 433 Error *err = NULL; 434 assert(s->cipher); 435 if (qcow2_encrypt_sectors(s, start_sect + n_start, 436 iov.iov_base, iov.iov_base, n, 437 true, &err) < 0) { 438 ret = -EIO; 439 error_free(err); 440 goto out; 441 } 442 } 443 444 ret = qcow2_pre_write_overlap_check(bs, 0, 445 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 446 if (ret < 0) { 447 goto out; 448 } 449 450 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 451 ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n, 452 &qiov); 453 if (ret < 0) { 454 goto out; 455 } 456 457 ret = 0; 458 out: 459 qemu_vfree(iov.iov_base); 460 return ret; 461 } 462 463 464 /* 465 * get_cluster_offset 466 * 467 * For a given offset of the disk image, find the cluster offset in 468 * qcow2 file. The offset is stored in *cluster_offset. 469 * 470 * on entry, *num is the number of contiguous sectors we'd like to 471 * access following offset. 472 * 473 * on exit, *num is the number of contiguous sectors we can read. 474 * 475 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 476 * cases. 477 */ 478 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 479 int *num, uint64_t *cluster_offset) 480 { 481 BDRVQcow2State *s = bs->opaque; 482 unsigned int l2_index; 483 uint64_t l1_index, l2_offset, *l2_table; 484 int l1_bits, c; 485 unsigned int index_in_cluster, nb_clusters; 486 uint64_t nb_available, nb_needed; 487 int ret; 488 489 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 490 nb_needed = *num + index_in_cluster; 491 492 l1_bits = s->l2_bits + s->cluster_bits; 493 494 /* compute how many bytes there are between the offset and 495 * the end of the l1 entry 496 */ 497 498 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 499 500 /* compute the number of available sectors */ 501 502 nb_available = (nb_available >> 9) + index_in_cluster; 503 504 if (nb_needed > nb_available) { 505 nb_needed = nb_available; 506 } 507 assert(nb_needed <= INT_MAX); 508 509 *cluster_offset = 0; 510 511 /* seek to the l2 offset in the l1 table */ 512 513 l1_index = offset >> l1_bits; 514 if (l1_index >= s->l1_size) { 515 ret = QCOW2_CLUSTER_UNALLOCATED; 516 goto out; 517 } 518 519 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 520 if (!l2_offset) { 521 ret = QCOW2_CLUSTER_UNALLOCATED; 522 goto out; 523 } 524 525 if (offset_into_cluster(s, l2_offset)) { 526 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 527 " unaligned (L1 index: %#" PRIx64 ")", 528 l2_offset, l1_index); 529 return -EIO; 530 } 531 532 /* load the l2 table in memory */ 533 534 ret = l2_load(bs, l2_offset, &l2_table); 535 if (ret < 0) { 536 return ret; 537 } 538 539 /* find the cluster offset for the given disk offset */ 540 541 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 542 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 543 544 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ 545 nb_clusters = size_to_clusters(s, nb_needed << 9); 546 547 ret = qcow2_get_cluster_type(*cluster_offset); 548 switch (ret) { 549 case QCOW2_CLUSTER_COMPRESSED: 550 /* Compressed clusters can only be processed one by one */ 551 c = 1; 552 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 553 break; 554 case QCOW2_CLUSTER_ZERO: 555 if (s->qcow_version < 3) { 556 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 557 " in pre-v3 image (L2 offset: %#" PRIx64 558 ", L2 index: %#x)", l2_offset, l2_index); 559 ret = -EIO; 560 goto fail; 561 } 562 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 563 QCOW2_CLUSTER_ZERO); 564 *cluster_offset = 0; 565 break; 566 case QCOW2_CLUSTER_UNALLOCATED: 567 /* how many empty clusters ? */ 568 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 569 QCOW2_CLUSTER_UNALLOCATED); 570 *cluster_offset = 0; 571 break; 572 case QCOW2_CLUSTER_NORMAL: 573 /* how many allocated clusters ? */ 574 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 575 &l2_table[l2_index], QCOW_OFLAG_ZERO); 576 *cluster_offset &= L2E_OFFSET_MASK; 577 if (offset_into_cluster(s, *cluster_offset)) { 578 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" 579 PRIx64 " unaligned (L2 offset: %#" PRIx64 580 ", L2 index: %#x)", *cluster_offset, 581 l2_offset, l2_index); 582 ret = -EIO; 583 goto fail; 584 } 585 break; 586 default: 587 abort(); 588 } 589 590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 591 592 nb_available = (c * s->cluster_sectors); 593 594 out: 595 if (nb_available > nb_needed) 596 nb_available = nb_needed; 597 598 *num = nb_available - index_in_cluster; 599 600 return ret; 601 602 fail: 603 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 604 return ret; 605 } 606 607 /* 608 * get_cluster_table 609 * 610 * for a given disk offset, load (and allocate if needed) 611 * the l2 table. 612 * 613 * the l2 table offset in the qcow2 file and the cluster index 614 * in the l2 table are given to the caller. 615 * 616 * Returns 0 on success, -errno in failure case 617 */ 618 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 619 uint64_t **new_l2_table, 620 int *new_l2_index) 621 { 622 BDRVQcow2State *s = bs->opaque; 623 unsigned int l2_index; 624 uint64_t l1_index, l2_offset; 625 uint64_t *l2_table = NULL; 626 int ret; 627 628 /* seek to the l2 offset in the l1 table */ 629 630 l1_index = offset >> (s->l2_bits + s->cluster_bits); 631 if (l1_index >= s->l1_size) { 632 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 633 if (ret < 0) { 634 return ret; 635 } 636 } 637 638 assert(l1_index < s->l1_size); 639 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 640 if (offset_into_cluster(s, l2_offset)) { 641 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 642 " unaligned (L1 index: %#" PRIx64 ")", 643 l2_offset, l1_index); 644 return -EIO; 645 } 646 647 /* seek the l2 table of the given l2 offset */ 648 649 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 650 /* load the l2 table in memory */ 651 ret = l2_load(bs, l2_offset, &l2_table); 652 if (ret < 0) { 653 return ret; 654 } 655 } else { 656 /* First allocate a new L2 table (and do COW if needed) */ 657 ret = l2_allocate(bs, l1_index, &l2_table); 658 if (ret < 0) { 659 return ret; 660 } 661 662 /* Then decrease the refcount of the old table */ 663 if (l2_offset) { 664 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 665 QCOW2_DISCARD_OTHER); 666 } 667 } 668 669 /* find the cluster offset for the given disk offset */ 670 671 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 672 673 *new_l2_table = l2_table; 674 *new_l2_index = l2_index; 675 676 return 0; 677 } 678 679 /* 680 * alloc_compressed_cluster_offset 681 * 682 * For a given offset of the disk image, return cluster offset in 683 * qcow2 file. 684 * 685 * If the offset is not found, allocate a new compressed cluster. 686 * 687 * Return the cluster offset if successful, 688 * Return 0, otherwise. 689 * 690 */ 691 692 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 693 uint64_t offset, 694 int compressed_size) 695 { 696 BDRVQcow2State *s = bs->opaque; 697 int l2_index, ret; 698 uint64_t *l2_table; 699 int64_t cluster_offset; 700 int nb_csectors; 701 702 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 703 if (ret < 0) { 704 return 0; 705 } 706 707 /* Compression can't overwrite anything. Fail if the cluster was already 708 * allocated. */ 709 cluster_offset = be64_to_cpu(l2_table[l2_index]); 710 if (cluster_offset & L2E_OFFSET_MASK) { 711 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 712 return 0; 713 } 714 715 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 716 if (cluster_offset < 0) { 717 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 718 return 0; 719 } 720 721 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 722 (cluster_offset >> 9); 723 724 cluster_offset |= QCOW_OFLAG_COMPRESSED | 725 ((uint64_t)nb_csectors << s->csize_shift); 726 727 /* update L2 table */ 728 729 /* compressed clusters never have the copied flag */ 730 731 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 732 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 733 l2_table[l2_index] = cpu_to_be64(cluster_offset); 734 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 735 736 return cluster_offset; 737 } 738 739 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 740 { 741 BDRVQcow2State *s = bs->opaque; 742 int ret; 743 744 if (r->nb_sectors == 0) { 745 return 0; 746 } 747 748 qemu_co_mutex_unlock(&s->lock); 749 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 750 r->offset / BDRV_SECTOR_SIZE, 751 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 752 qemu_co_mutex_lock(&s->lock); 753 754 if (ret < 0) { 755 return ret; 756 } 757 758 /* 759 * Before we update the L2 table to actually point to the new cluster, we 760 * need to be sure that the refcounts have been increased and COW was 761 * handled. 762 */ 763 qcow2_cache_depends_on_flush(s->l2_table_cache); 764 765 return 0; 766 } 767 768 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 769 { 770 BDRVQcow2State *s = bs->opaque; 771 int i, j = 0, l2_index, ret; 772 uint64_t *old_cluster, *l2_table; 773 uint64_t cluster_offset = m->alloc_offset; 774 775 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 776 assert(m->nb_clusters > 0); 777 778 old_cluster = g_try_new(uint64_t, m->nb_clusters); 779 if (old_cluster == NULL) { 780 ret = -ENOMEM; 781 goto err; 782 } 783 784 /* copy content of unmodified sectors */ 785 ret = perform_cow(bs, m, &m->cow_start); 786 if (ret < 0) { 787 goto err; 788 } 789 790 ret = perform_cow(bs, m, &m->cow_end); 791 if (ret < 0) { 792 goto err; 793 } 794 795 /* Update L2 table. */ 796 if (s->use_lazy_refcounts) { 797 qcow2_mark_dirty(bs); 798 } 799 if (qcow2_need_accurate_refcounts(s)) { 800 qcow2_cache_set_dependency(bs, s->l2_table_cache, 801 s->refcount_block_cache); 802 } 803 804 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 805 if (ret < 0) { 806 goto err; 807 } 808 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 809 810 assert(l2_index + m->nb_clusters <= s->l2_size); 811 for (i = 0; i < m->nb_clusters; i++) { 812 /* if two concurrent writes happen to the same unallocated cluster 813 * each write allocates separate cluster and writes data concurrently. 814 * The first one to complete updates l2 table with pointer to its 815 * cluster the second one has to do RMW (which is done above by 816 * copy_sectors()), update l2 table with its cluster pointer and free 817 * old cluster. This is what this loop does */ 818 if(l2_table[l2_index + i] != 0) 819 old_cluster[j++] = l2_table[l2_index + i]; 820 821 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 822 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 823 } 824 825 826 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 827 828 /* 829 * If this was a COW, we need to decrease the refcount of the old cluster. 830 * 831 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 832 * clusters), the next write will reuse them anyway. 833 */ 834 if (j != 0) { 835 for (i = 0; i < j; i++) { 836 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 837 QCOW2_DISCARD_NEVER); 838 } 839 } 840 841 ret = 0; 842 err: 843 g_free(old_cluster); 844 return ret; 845 } 846 847 /* 848 * Returns the number of contiguous clusters that can be used for an allocating 849 * write, but require COW to be performed (this includes yet unallocated space, 850 * which must copy from the backing file) 851 */ 852 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, 853 uint64_t *l2_table, int l2_index) 854 { 855 int i; 856 857 for (i = 0; i < nb_clusters; i++) { 858 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 859 int cluster_type = qcow2_get_cluster_type(l2_entry); 860 861 switch(cluster_type) { 862 case QCOW2_CLUSTER_NORMAL: 863 if (l2_entry & QCOW_OFLAG_COPIED) { 864 goto out; 865 } 866 break; 867 case QCOW2_CLUSTER_UNALLOCATED: 868 case QCOW2_CLUSTER_COMPRESSED: 869 case QCOW2_CLUSTER_ZERO: 870 break; 871 default: 872 abort(); 873 } 874 } 875 876 out: 877 assert(i <= nb_clusters); 878 return i; 879 } 880 881 /* 882 * Check if there already is an AIO write request in flight which allocates 883 * the same cluster. In this case we need to wait until the previous 884 * request has completed and updated the L2 table accordingly. 885 * 886 * Returns: 887 * 0 if there was no dependency. *cur_bytes indicates the number of 888 * bytes from guest_offset that can be read before the next 889 * dependency must be processed (or the request is complete) 890 * 891 * -EAGAIN if we had to wait for another request, previously gathered 892 * information on cluster allocation may be invalid now. The caller 893 * must start over anyway, so consider *cur_bytes undefined. 894 */ 895 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 896 uint64_t *cur_bytes, QCowL2Meta **m) 897 { 898 BDRVQcow2State *s = bs->opaque; 899 QCowL2Meta *old_alloc; 900 uint64_t bytes = *cur_bytes; 901 902 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 903 904 uint64_t start = guest_offset; 905 uint64_t end = start + bytes; 906 uint64_t old_start = l2meta_cow_start(old_alloc); 907 uint64_t old_end = l2meta_cow_end(old_alloc); 908 909 if (end <= old_start || start >= old_end) { 910 /* No intersection */ 911 } else { 912 if (start < old_start) { 913 /* Stop at the start of a running allocation */ 914 bytes = old_start - start; 915 } else { 916 bytes = 0; 917 } 918 919 /* Stop if already an l2meta exists. After yielding, it wouldn't 920 * be valid any more, so we'd have to clean up the old L2Metas 921 * and deal with requests depending on them before starting to 922 * gather new ones. Not worth the trouble. */ 923 if (bytes == 0 && *m) { 924 *cur_bytes = 0; 925 return 0; 926 } 927 928 if (bytes == 0) { 929 /* Wait for the dependency to complete. We need to recheck 930 * the free/allocated clusters when we continue. */ 931 qemu_co_mutex_unlock(&s->lock); 932 qemu_co_queue_wait(&old_alloc->dependent_requests); 933 qemu_co_mutex_lock(&s->lock); 934 return -EAGAIN; 935 } 936 } 937 } 938 939 /* Make sure that existing clusters and new allocations are only used up to 940 * the next dependency if we shortened the request above */ 941 *cur_bytes = bytes; 942 943 return 0; 944 } 945 946 /* 947 * Checks how many already allocated clusters that don't require a copy on 948 * write there are at the given guest_offset (up to *bytes). If 949 * *host_offset is not zero, only physically contiguous clusters beginning at 950 * this host offset are counted. 951 * 952 * Note that guest_offset may not be cluster aligned. In this case, the 953 * returned *host_offset points to exact byte referenced by guest_offset and 954 * therefore isn't cluster aligned as well. 955 * 956 * Returns: 957 * 0: if no allocated clusters are available at the given offset. 958 * *bytes is normally unchanged. It is set to 0 if the cluster 959 * is allocated and doesn't need COW, but doesn't have the right 960 * physical offset. 961 * 962 * 1: if allocated clusters that don't require a COW are available at 963 * the requested offset. *bytes may have decreased and describes 964 * the length of the area that can be written to. 965 * 966 * -errno: in error cases 967 */ 968 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 969 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 970 { 971 BDRVQcow2State *s = bs->opaque; 972 int l2_index; 973 uint64_t cluster_offset; 974 uint64_t *l2_table; 975 uint64_t nb_clusters; 976 unsigned int keep_clusters; 977 int ret; 978 979 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 980 *bytes); 981 982 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 983 == offset_into_cluster(s, *host_offset)); 984 985 /* 986 * Calculate the number of clusters to look for. We stop at L2 table 987 * boundaries to keep things simple. 988 */ 989 nb_clusters = 990 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 991 992 l2_index = offset_to_l2_index(s, guest_offset); 993 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 994 assert(nb_clusters <= INT_MAX); 995 996 /* Find L2 entry for the first involved cluster */ 997 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 998 if (ret < 0) { 999 return ret; 1000 } 1001 1002 cluster_offset = be64_to_cpu(l2_table[l2_index]); 1003 1004 /* Check how many clusters are already allocated and don't need COW */ 1005 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 1006 && (cluster_offset & QCOW_OFLAG_COPIED)) 1007 { 1008 /* If a specific host_offset is required, check it */ 1009 bool offset_matches = 1010 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1011 1012 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1013 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1014 "%#llx unaligned (guest offset: %#" PRIx64 1015 ")", cluster_offset & L2E_OFFSET_MASK, 1016 guest_offset); 1017 ret = -EIO; 1018 goto out; 1019 } 1020 1021 if (*host_offset != 0 && !offset_matches) { 1022 *bytes = 0; 1023 ret = 0; 1024 goto out; 1025 } 1026 1027 /* We keep all QCOW_OFLAG_COPIED clusters */ 1028 keep_clusters = 1029 count_contiguous_clusters(nb_clusters, s->cluster_size, 1030 &l2_table[l2_index], 1031 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1032 assert(keep_clusters <= nb_clusters); 1033 1034 *bytes = MIN(*bytes, 1035 keep_clusters * s->cluster_size 1036 - offset_into_cluster(s, guest_offset)); 1037 1038 ret = 1; 1039 } else { 1040 ret = 0; 1041 } 1042 1043 /* Cleanup */ 1044 out: 1045 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1046 1047 /* Only return a host offset if we actually made progress. Otherwise we 1048 * would make requirements for handle_alloc() that it can't fulfill */ 1049 if (ret > 0) { 1050 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1051 + offset_into_cluster(s, guest_offset); 1052 } 1053 1054 return ret; 1055 } 1056 1057 /* 1058 * Allocates new clusters for the given guest_offset. 1059 * 1060 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1061 * contain the number of clusters that have been allocated and are contiguous 1062 * in the image file. 1063 * 1064 * If *host_offset is non-zero, it specifies the offset in the image file at 1065 * which the new clusters must start. *nb_clusters can be 0 on return in this 1066 * case if the cluster at host_offset is already in use. If *host_offset is 1067 * zero, the clusters can be allocated anywhere in the image file. 1068 * 1069 * *host_offset is updated to contain the offset into the image file at which 1070 * the first allocated cluster starts. 1071 * 1072 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1073 * function has been waiting for another request and the allocation must be 1074 * restarted, but the whole request should not be failed. 1075 */ 1076 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1077 uint64_t *host_offset, uint64_t *nb_clusters) 1078 { 1079 BDRVQcow2State *s = bs->opaque; 1080 1081 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1082 *host_offset, *nb_clusters); 1083 1084 /* Allocate new clusters */ 1085 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1086 if (*host_offset == 0) { 1087 int64_t cluster_offset = 1088 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1089 if (cluster_offset < 0) { 1090 return cluster_offset; 1091 } 1092 *host_offset = cluster_offset; 1093 return 0; 1094 } else { 1095 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1096 if (ret < 0) { 1097 return ret; 1098 } 1099 *nb_clusters = ret; 1100 return 0; 1101 } 1102 } 1103 1104 /* 1105 * Allocates new clusters for an area that either is yet unallocated or needs a 1106 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1107 * the new allocation can match the specified host offset. 1108 * 1109 * Note that guest_offset may not be cluster aligned. In this case, the 1110 * returned *host_offset points to exact byte referenced by guest_offset and 1111 * therefore isn't cluster aligned as well. 1112 * 1113 * Returns: 1114 * 0: if no clusters could be allocated. *bytes is set to 0, 1115 * *host_offset is left unchanged. 1116 * 1117 * 1: if new clusters were allocated. *bytes may be decreased if the 1118 * new allocation doesn't cover all of the requested area. 1119 * *host_offset is updated to contain the host offset of the first 1120 * newly allocated cluster. 1121 * 1122 * -errno: in error cases 1123 */ 1124 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1125 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1126 { 1127 BDRVQcow2State *s = bs->opaque; 1128 int l2_index; 1129 uint64_t *l2_table; 1130 uint64_t entry; 1131 uint64_t nb_clusters; 1132 int ret; 1133 1134 uint64_t alloc_cluster_offset; 1135 1136 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1137 *bytes); 1138 assert(*bytes > 0); 1139 1140 /* 1141 * Calculate the number of clusters to look for. We stop at L2 table 1142 * boundaries to keep things simple. 1143 */ 1144 nb_clusters = 1145 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1146 1147 l2_index = offset_to_l2_index(s, guest_offset); 1148 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1149 assert(nb_clusters <= INT_MAX); 1150 1151 /* Find L2 entry for the first involved cluster */ 1152 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1153 if (ret < 0) { 1154 return ret; 1155 } 1156 1157 entry = be64_to_cpu(l2_table[l2_index]); 1158 1159 /* For the moment, overwrite compressed clusters one by one */ 1160 if (entry & QCOW_OFLAG_COMPRESSED) { 1161 nb_clusters = 1; 1162 } else { 1163 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1164 } 1165 1166 /* This function is only called when there were no non-COW clusters, so if 1167 * we can't find any unallocated or COW clusters either, something is 1168 * wrong with our code. */ 1169 assert(nb_clusters > 0); 1170 1171 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1172 1173 /* Allocate, if necessary at a given offset in the image file */ 1174 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1175 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1176 &nb_clusters); 1177 if (ret < 0) { 1178 goto fail; 1179 } 1180 1181 /* Can't extend contiguous allocation */ 1182 if (nb_clusters == 0) { 1183 *bytes = 0; 1184 return 0; 1185 } 1186 1187 /* !*host_offset would overwrite the image header and is reserved for "no 1188 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1189 * following overlap check; do that now to avoid having an invalid value in 1190 * *host_offset. */ 1191 if (!alloc_cluster_offset) { 1192 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1193 nb_clusters * s->cluster_size); 1194 assert(ret < 0); 1195 goto fail; 1196 } 1197 1198 /* 1199 * Save info needed for meta data update. 1200 * 1201 * requested_sectors: Number of sectors from the start of the first 1202 * newly allocated cluster to the end of the (possibly shortened 1203 * before) write request. 1204 * 1205 * avail_sectors: Number of sectors from the start of the first 1206 * newly allocated to the end of the last newly allocated cluster. 1207 * 1208 * nb_sectors: The number of sectors from the start of the first 1209 * newly allocated cluster to the end of the area that the write 1210 * request actually writes to (excluding COW at the end) 1211 */ 1212 int requested_sectors = 1213 (*bytes + offset_into_cluster(s, guest_offset)) 1214 >> BDRV_SECTOR_BITS; 1215 int avail_sectors = nb_clusters 1216 << (s->cluster_bits - BDRV_SECTOR_BITS); 1217 int alloc_n_start = offset_into_cluster(s, guest_offset) 1218 >> BDRV_SECTOR_BITS; 1219 int nb_sectors = MIN(requested_sectors, avail_sectors); 1220 QCowL2Meta *old_m = *m; 1221 1222 *m = g_malloc0(sizeof(**m)); 1223 1224 **m = (QCowL2Meta) { 1225 .next = old_m, 1226 1227 .alloc_offset = alloc_cluster_offset, 1228 .offset = start_of_cluster(s, guest_offset), 1229 .nb_clusters = nb_clusters, 1230 .nb_available = nb_sectors, 1231 1232 .cow_start = { 1233 .offset = 0, 1234 .nb_sectors = alloc_n_start, 1235 }, 1236 .cow_end = { 1237 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1238 .nb_sectors = avail_sectors - nb_sectors, 1239 }, 1240 }; 1241 qemu_co_queue_init(&(*m)->dependent_requests); 1242 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1243 1244 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1245 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1246 - offset_into_cluster(s, guest_offset)); 1247 assert(*bytes != 0); 1248 1249 return 1; 1250 1251 fail: 1252 if (*m && (*m)->nb_clusters > 0) { 1253 QLIST_REMOVE(*m, next_in_flight); 1254 } 1255 return ret; 1256 } 1257 1258 /* 1259 * alloc_cluster_offset 1260 * 1261 * For a given offset on the virtual disk, find the cluster offset in qcow2 1262 * file. If the offset is not found, allocate a new cluster. 1263 * 1264 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1265 * other fields in m are meaningless. 1266 * 1267 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1268 * contiguous clusters that have been allocated. In this case, the other 1269 * fields of m are valid and contain information about the first allocated 1270 * cluster. 1271 * 1272 * If the request conflicts with another write request in flight, the coroutine 1273 * is queued and will be reentered when the dependency has completed. 1274 * 1275 * Return 0 on success and -errno in error cases 1276 */ 1277 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1278 int *num, uint64_t *host_offset, QCowL2Meta **m) 1279 { 1280 BDRVQcow2State *s = bs->opaque; 1281 uint64_t start, remaining; 1282 uint64_t cluster_offset; 1283 uint64_t cur_bytes; 1284 int ret; 1285 1286 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1287 1288 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1289 1290 again: 1291 start = offset; 1292 remaining = (uint64_t)*num << BDRV_SECTOR_BITS; 1293 cluster_offset = 0; 1294 *host_offset = 0; 1295 cur_bytes = 0; 1296 *m = NULL; 1297 1298 while (true) { 1299 1300 if (!*host_offset) { 1301 *host_offset = start_of_cluster(s, cluster_offset); 1302 } 1303 1304 assert(remaining >= cur_bytes); 1305 1306 start += cur_bytes; 1307 remaining -= cur_bytes; 1308 cluster_offset += cur_bytes; 1309 1310 if (remaining == 0) { 1311 break; 1312 } 1313 1314 cur_bytes = remaining; 1315 1316 /* 1317 * Now start gathering as many contiguous clusters as possible: 1318 * 1319 * 1. Check for overlaps with in-flight allocations 1320 * 1321 * a) Overlap not in the first cluster -> shorten this request and 1322 * let the caller handle the rest in its next loop iteration. 1323 * 1324 * b) Real overlaps of two requests. Yield and restart the search 1325 * for contiguous clusters (the situation could have changed 1326 * while we were sleeping) 1327 * 1328 * c) TODO: Request starts in the same cluster as the in-flight 1329 * allocation ends. Shorten the COW of the in-fight allocation, 1330 * set cluster_offset to write to the same cluster and set up 1331 * the right synchronisation between the in-flight request and 1332 * the new one. 1333 */ 1334 ret = handle_dependencies(bs, start, &cur_bytes, m); 1335 if (ret == -EAGAIN) { 1336 /* Currently handle_dependencies() doesn't yield if we already had 1337 * an allocation. If it did, we would have to clean up the L2Meta 1338 * structs before starting over. */ 1339 assert(*m == NULL); 1340 goto again; 1341 } else if (ret < 0) { 1342 return ret; 1343 } else if (cur_bytes == 0) { 1344 break; 1345 } else { 1346 /* handle_dependencies() may have decreased cur_bytes (shortened 1347 * the allocations below) so that the next dependency is processed 1348 * correctly during the next loop iteration. */ 1349 } 1350 1351 /* 1352 * 2. Count contiguous COPIED clusters. 1353 */ 1354 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1355 if (ret < 0) { 1356 return ret; 1357 } else if (ret) { 1358 continue; 1359 } else if (cur_bytes == 0) { 1360 break; 1361 } 1362 1363 /* 1364 * 3. If the request still hasn't completed, allocate new clusters, 1365 * considering any cluster_offset of steps 1c or 2. 1366 */ 1367 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1368 if (ret < 0) { 1369 return ret; 1370 } else if (ret) { 1371 continue; 1372 } else { 1373 assert(cur_bytes == 0); 1374 break; 1375 } 1376 } 1377 1378 *num -= remaining >> BDRV_SECTOR_BITS; 1379 assert(*num > 0); 1380 assert(*host_offset != 0); 1381 1382 return 0; 1383 } 1384 1385 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1386 const uint8_t *buf, int buf_size) 1387 { 1388 z_stream strm1, *strm = &strm1; 1389 int ret, out_len; 1390 1391 memset(strm, 0, sizeof(*strm)); 1392 1393 strm->next_in = (uint8_t *)buf; 1394 strm->avail_in = buf_size; 1395 strm->next_out = out_buf; 1396 strm->avail_out = out_buf_size; 1397 1398 ret = inflateInit2(strm, -12); 1399 if (ret != Z_OK) 1400 return -1; 1401 ret = inflate(strm, Z_FINISH); 1402 out_len = strm->next_out - out_buf; 1403 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1404 out_len != out_buf_size) { 1405 inflateEnd(strm); 1406 return -1; 1407 } 1408 inflateEnd(strm); 1409 return 0; 1410 } 1411 1412 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1413 { 1414 BDRVQcow2State *s = bs->opaque; 1415 int ret, csize, nb_csectors, sector_offset; 1416 uint64_t coffset; 1417 1418 coffset = cluster_offset & s->cluster_offset_mask; 1419 if (s->cluster_cache_offset != coffset) { 1420 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1421 sector_offset = coffset & 511; 1422 csize = nb_csectors * 512 - sector_offset; 1423 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1424 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data, 1425 nb_csectors); 1426 if (ret < 0) { 1427 return ret; 1428 } 1429 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1430 s->cluster_data + sector_offset, csize) < 0) { 1431 return -EIO; 1432 } 1433 s->cluster_cache_offset = coffset; 1434 } 1435 return 0; 1436 } 1437 1438 /* 1439 * This discards as many clusters of nb_clusters as possible at once (i.e. 1440 * all clusters in the same L2 table) and returns the number of discarded 1441 * clusters. 1442 */ 1443 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1444 uint64_t nb_clusters, enum qcow2_discard_type type, 1445 bool full_discard) 1446 { 1447 BDRVQcow2State *s = bs->opaque; 1448 uint64_t *l2_table; 1449 int l2_index; 1450 int ret; 1451 int i; 1452 1453 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1454 if (ret < 0) { 1455 return ret; 1456 } 1457 1458 /* Limit nb_clusters to one L2 table */ 1459 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1460 assert(nb_clusters <= INT_MAX); 1461 1462 for (i = 0; i < nb_clusters; i++) { 1463 uint64_t old_l2_entry; 1464 1465 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1466 1467 /* 1468 * If full_discard is false, make sure that a discarded area reads back 1469 * as zeroes for v3 images (we cannot do it for v2 without actually 1470 * writing a zero-filled buffer). We can skip the operation if the 1471 * cluster is already marked as zero, or if it's unallocated and we 1472 * don't have a backing file. 1473 * 1474 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1475 * holding s->lock, so that doesn't work today. 1476 * 1477 * If full_discard is true, the sector should not read back as zeroes, 1478 * but rather fall through to the backing file. 1479 */ 1480 switch (qcow2_get_cluster_type(old_l2_entry)) { 1481 case QCOW2_CLUSTER_UNALLOCATED: 1482 if (full_discard || !bs->backing) { 1483 continue; 1484 } 1485 break; 1486 1487 case QCOW2_CLUSTER_ZERO: 1488 if (!full_discard) { 1489 continue; 1490 } 1491 break; 1492 1493 case QCOW2_CLUSTER_NORMAL: 1494 case QCOW2_CLUSTER_COMPRESSED: 1495 break; 1496 1497 default: 1498 abort(); 1499 } 1500 1501 /* First remove L2 entries */ 1502 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1503 if (!full_discard && s->qcow_version >= 3) { 1504 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1505 } else { 1506 l2_table[l2_index + i] = cpu_to_be64(0); 1507 } 1508 1509 /* Then decrease the refcount */ 1510 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1511 } 1512 1513 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1514 1515 return nb_clusters; 1516 } 1517 1518 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1519 int nb_sectors, enum qcow2_discard_type type, bool full_discard) 1520 { 1521 BDRVQcow2State *s = bs->opaque; 1522 uint64_t end_offset; 1523 uint64_t nb_clusters; 1524 int ret; 1525 1526 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1527 1528 /* Round start up and end down */ 1529 offset = align_offset(offset, s->cluster_size); 1530 end_offset = start_of_cluster(s, end_offset); 1531 1532 if (offset > end_offset) { 1533 return 0; 1534 } 1535 1536 nb_clusters = size_to_clusters(s, end_offset - offset); 1537 1538 s->cache_discards = true; 1539 1540 /* Each L2 table is handled by its own loop iteration */ 1541 while (nb_clusters > 0) { 1542 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); 1543 if (ret < 0) { 1544 goto fail; 1545 } 1546 1547 nb_clusters -= ret; 1548 offset += (ret * s->cluster_size); 1549 } 1550 1551 ret = 0; 1552 fail: 1553 s->cache_discards = false; 1554 qcow2_process_discards(bs, ret); 1555 1556 return ret; 1557 } 1558 1559 /* 1560 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1561 * all clusters in the same L2 table) and returns the number of zeroed 1562 * clusters. 1563 */ 1564 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1565 uint64_t nb_clusters) 1566 { 1567 BDRVQcow2State *s = bs->opaque; 1568 uint64_t *l2_table; 1569 int l2_index; 1570 int ret; 1571 int i; 1572 1573 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1574 if (ret < 0) { 1575 return ret; 1576 } 1577 1578 /* Limit nb_clusters to one L2 table */ 1579 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1580 assert(nb_clusters <= INT_MAX); 1581 1582 for (i = 0; i < nb_clusters; i++) { 1583 uint64_t old_offset; 1584 1585 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1586 1587 /* Update L2 entries */ 1588 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1589 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1590 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1591 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1592 } else { 1593 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1594 } 1595 } 1596 1597 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1598 1599 return nb_clusters; 1600 } 1601 1602 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1603 { 1604 BDRVQcow2State *s = bs->opaque; 1605 uint64_t nb_clusters; 1606 int ret; 1607 1608 /* The zero flag is only supported by version 3 and newer */ 1609 if (s->qcow_version < 3) { 1610 return -ENOTSUP; 1611 } 1612 1613 /* Each L2 table is handled by its own loop iteration */ 1614 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1615 1616 s->cache_discards = true; 1617 1618 while (nb_clusters > 0) { 1619 ret = zero_single_l2(bs, offset, nb_clusters); 1620 if (ret < 0) { 1621 goto fail; 1622 } 1623 1624 nb_clusters -= ret; 1625 offset += (ret * s->cluster_size); 1626 } 1627 1628 ret = 0; 1629 fail: 1630 s->cache_discards = false; 1631 qcow2_process_discards(bs, ret); 1632 1633 return ret; 1634 } 1635 1636 /* 1637 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1638 * non-backed non-pre-allocated zero clusters). 1639 * 1640 * l1_entries and *visited_l1_entries are used to keep track of progress for 1641 * status_cb(). l1_entries contains the total number of L1 entries and 1642 * *visited_l1_entries counts all visited L1 entries. 1643 */ 1644 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1645 int l1_size, int64_t *visited_l1_entries, 1646 int64_t l1_entries, 1647 BlockDriverAmendStatusCB *status_cb, 1648 void *cb_opaque) 1649 { 1650 BDRVQcow2State *s = bs->opaque; 1651 bool is_active_l1 = (l1_table == s->l1_table); 1652 uint64_t *l2_table = NULL; 1653 int ret; 1654 int i, j; 1655 1656 if (!is_active_l1) { 1657 /* inactive L2 tables require a buffer to be stored in when loading 1658 * them from disk */ 1659 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); 1660 if (l2_table == NULL) { 1661 return -ENOMEM; 1662 } 1663 } 1664 1665 for (i = 0; i < l1_size; i++) { 1666 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1667 bool l2_dirty = false; 1668 uint64_t l2_refcount; 1669 1670 if (!l2_offset) { 1671 /* unallocated */ 1672 (*visited_l1_entries)++; 1673 if (status_cb) { 1674 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1675 } 1676 continue; 1677 } 1678 1679 if (offset_into_cluster(s, l2_offset)) { 1680 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1681 PRIx64 " unaligned (L1 index: %#x)", 1682 l2_offset, i); 1683 ret = -EIO; 1684 goto fail; 1685 } 1686 1687 if (is_active_l1) { 1688 /* get active L2 tables from cache */ 1689 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1690 (void **)&l2_table); 1691 } else { 1692 /* load inactive L2 tables from disk */ 1693 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1694 (void *)l2_table, s->cluster_sectors); 1695 } 1696 if (ret < 0) { 1697 goto fail; 1698 } 1699 1700 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1701 &l2_refcount); 1702 if (ret < 0) { 1703 goto fail; 1704 } 1705 1706 for (j = 0; j < s->l2_size; j++) { 1707 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1708 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1709 int cluster_type = qcow2_get_cluster_type(l2_entry); 1710 bool preallocated = offset != 0; 1711 1712 if (cluster_type != QCOW2_CLUSTER_ZERO) { 1713 continue; 1714 } 1715 1716 if (!preallocated) { 1717 if (!bs->backing) { 1718 /* not backed; therefore we can simply deallocate the 1719 * cluster */ 1720 l2_table[j] = 0; 1721 l2_dirty = true; 1722 continue; 1723 } 1724 1725 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1726 if (offset < 0) { 1727 ret = offset; 1728 goto fail; 1729 } 1730 1731 if (l2_refcount > 1) { 1732 /* For shared L2 tables, set the refcount accordingly (it is 1733 * already 1 and needs to be l2_refcount) */ 1734 ret = qcow2_update_cluster_refcount(bs, 1735 offset >> s->cluster_bits, 1736 refcount_diff(1, l2_refcount), false, 1737 QCOW2_DISCARD_OTHER); 1738 if (ret < 0) { 1739 qcow2_free_clusters(bs, offset, s->cluster_size, 1740 QCOW2_DISCARD_OTHER); 1741 goto fail; 1742 } 1743 } 1744 } 1745 1746 if (offset_into_cluster(s, offset)) { 1747 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1748 "%#" PRIx64 " unaligned (L2 offset: %#" 1749 PRIx64 ", L2 index: %#x)", offset, 1750 l2_offset, j); 1751 if (!preallocated) { 1752 qcow2_free_clusters(bs, offset, s->cluster_size, 1753 QCOW2_DISCARD_ALWAYS); 1754 } 1755 ret = -EIO; 1756 goto fail; 1757 } 1758 1759 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1760 if (ret < 0) { 1761 if (!preallocated) { 1762 qcow2_free_clusters(bs, offset, s->cluster_size, 1763 QCOW2_DISCARD_ALWAYS); 1764 } 1765 goto fail; 1766 } 1767 1768 ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE, 1769 s->cluster_sectors, 0); 1770 if (ret < 0) { 1771 if (!preallocated) { 1772 qcow2_free_clusters(bs, offset, s->cluster_size, 1773 QCOW2_DISCARD_ALWAYS); 1774 } 1775 goto fail; 1776 } 1777 1778 if (l2_refcount == 1) { 1779 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1780 } else { 1781 l2_table[j] = cpu_to_be64(offset); 1782 } 1783 l2_dirty = true; 1784 } 1785 1786 if (is_active_l1) { 1787 if (l2_dirty) { 1788 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1789 qcow2_cache_depends_on_flush(s->l2_table_cache); 1790 } 1791 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1792 } else { 1793 if (l2_dirty) { 1794 ret = qcow2_pre_write_overlap_check(bs, 1795 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1796 s->cluster_size); 1797 if (ret < 0) { 1798 goto fail; 1799 } 1800 1801 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1802 (void *)l2_table, s->cluster_sectors); 1803 if (ret < 0) { 1804 goto fail; 1805 } 1806 } 1807 } 1808 1809 (*visited_l1_entries)++; 1810 if (status_cb) { 1811 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1812 } 1813 } 1814 1815 ret = 0; 1816 1817 fail: 1818 if (l2_table) { 1819 if (!is_active_l1) { 1820 qemu_vfree(l2_table); 1821 } else { 1822 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1823 } 1824 } 1825 return ret; 1826 } 1827 1828 /* 1829 * For backed images, expands all zero clusters on the image. For non-backed 1830 * images, deallocates all non-pre-allocated zero clusters (and claims the 1831 * allocation for pre-allocated ones). This is important for downgrading to a 1832 * qcow2 version which doesn't yet support metadata zero clusters. 1833 */ 1834 int qcow2_expand_zero_clusters(BlockDriverState *bs, 1835 BlockDriverAmendStatusCB *status_cb, 1836 void *cb_opaque) 1837 { 1838 BDRVQcow2State *s = bs->opaque; 1839 uint64_t *l1_table = NULL; 1840 int64_t l1_entries = 0, visited_l1_entries = 0; 1841 int ret; 1842 int i, j; 1843 1844 if (status_cb) { 1845 l1_entries = s->l1_size; 1846 for (i = 0; i < s->nb_snapshots; i++) { 1847 l1_entries += s->snapshots[i].l1_size; 1848 } 1849 } 1850 1851 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1852 &visited_l1_entries, l1_entries, 1853 status_cb, cb_opaque); 1854 if (ret < 0) { 1855 goto fail; 1856 } 1857 1858 /* Inactive L1 tables may point to active L2 tables - therefore it is 1859 * necessary to flush the L2 table cache before trying to access the L2 1860 * tables pointed to by inactive L1 entries (else we might try to expand 1861 * zero clusters that have already been expanded); furthermore, it is also 1862 * necessary to empty the L2 table cache, since it may contain tables which 1863 * are now going to be modified directly on disk, bypassing the cache. 1864 * qcow2_cache_empty() does both for us. */ 1865 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1866 if (ret < 0) { 1867 goto fail; 1868 } 1869 1870 for (i = 0; i < s->nb_snapshots; i++) { 1871 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1872 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1873 1874 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1875 1876 ret = bdrv_read(bs->file->bs, 1877 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, 1878 (void *)l1_table, l1_sectors); 1879 if (ret < 0) { 1880 goto fail; 1881 } 1882 1883 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1884 be64_to_cpus(&l1_table[j]); 1885 } 1886 1887 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1888 &visited_l1_entries, l1_entries, 1889 status_cb, cb_opaque); 1890 if (ret < 0) { 1891 goto fail; 1892 } 1893 } 1894 1895 ret = 0; 1896 1897 fail: 1898 g_free(l1_table); 1899 return ret; 1900 } 1901