xref: /openbmc/qemu/block/qcow2-cluster.c (revision 77a8257e)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33                         bool exact_size)
34 {
35     BDRVQcowState *s = bs->opaque;
36     int new_l1_size2, ret, i;
37     uint64_t *new_l1_table;
38     int64_t old_l1_table_offset, old_l1_size;
39     int64_t new_l1_table_offset, new_l1_size;
40     uint8_t data[12];
41 
42     if (min_size <= s->l1_size)
43         return 0;
44 
45     /* Do a sanity check on min_size before trying to calculate new_l1_size
46      * (this prevents overflows during the while loop for the calculation of
47      * new_l1_size) */
48     if (min_size > INT_MAX / sizeof(uint64_t)) {
49         return -EFBIG;
50     }
51 
52     if (exact_size) {
53         new_l1_size = min_size;
54     } else {
55         /* Bump size up to reduce the number of times we have to grow */
56         new_l1_size = s->l1_size;
57         if (new_l1_size == 0) {
58             new_l1_size = 1;
59         }
60         while (min_size > new_l1_size) {
61             new_l1_size = (new_l1_size * 3 + 1) / 2;
62         }
63     }
64 
65     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66         return -EFBIG;
67     }
68 
69 #ifdef DEBUG_ALLOC2
70     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71             s->l1_size, new_l1_size);
72 #endif
73 
74     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75     new_l1_table = qemu_try_blockalign(bs->file,
76                                        align_offset(new_l1_size2, 512));
77     if (new_l1_table == NULL) {
78         return -ENOMEM;
79     }
80     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
81 
82     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
83 
84     /* write new table (align to cluster) */
85     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87     if (new_l1_table_offset < 0) {
88         qemu_vfree(new_l1_table);
89         return new_l1_table_offset;
90     }
91 
92     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93     if (ret < 0) {
94         goto fail;
95     }
96 
97     /* the L1 position has not yet been updated, so these clusters must
98      * indeed be completely free */
99     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100                                         new_l1_size2);
101     if (ret < 0) {
102         goto fail;
103     }
104 
105     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106     for(i = 0; i < s->l1_size; i++)
107         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
109     if (ret < 0)
110         goto fail;
111     for(i = 0; i < s->l1_size; i++)
112         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
113 
114     /* set new table */
115     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
116     cpu_to_be32w((uint32_t*)data, new_l1_size);
117     stq_be_p(data + 4, new_l1_table_offset);
118     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
119     if (ret < 0) {
120         goto fail;
121     }
122     qemu_vfree(s->l1_table);
123     old_l1_table_offset = s->l1_table_offset;
124     s->l1_table_offset = new_l1_table_offset;
125     s->l1_table = new_l1_table;
126     old_l1_size = s->l1_size;
127     s->l1_size = new_l1_size;
128     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
129                         QCOW2_DISCARD_OTHER);
130     return 0;
131  fail:
132     qemu_vfree(new_l1_table);
133     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
134                         QCOW2_DISCARD_OTHER);
135     return ret;
136 }
137 
138 /*
139  * l2_load
140  *
141  * Loads a L2 table into memory. If the table is in the cache, the cache
142  * is used; otherwise the L2 table is loaded from the image file.
143  *
144  * Returns a pointer to the L2 table on success, or NULL if the read from
145  * the image file failed.
146  */
147 
148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
149     uint64_t **l2_table)
150 {
151     BDRVQcowState *s = bs->opaque;
152     int ret;
153 
154     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
155 
156     return ret;
157 }
158 
159 /*
160  * Writes one sector of the L1 table to the disk (can't update single entries
161  * and we really don't want bdrv_pread to perform a read-modify-write)
162  */
163 #define L1_ENTRIES_PER_SECTOR (512 / 8)
164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
165 {
166     BDRVQcowState *s = bs->opaque;
167     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
168     int l1_start_index;
169     int i, ret;
170 
171     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
172     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
173          i++)
174     {
175         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
176     }
177 
178     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
179             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
180     if (ret < 0) {
181         return ret;
182     }
183 
184     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
185     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
186         buf, sizeof(buf));
187     if (ret < 0) {
188         return ret;
189     }
190 
191     return 0;
192 }
193 
194 /*
195  * l2_allocate
196  *
197  * Allocate a new l2 entry in the file. If l1_index points to an already
198  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
199  * table) copy the contents of the old L2 table into the newly allocated one.
200  * Otherwise the new table is initialized with zeros.
201  *
202  */
203 
204 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
205 {
206     BDRVQcowState *s = bs->opaque;
207     uint64_t old_l2_offset;
208     uint64_t *l2_table = NULL;
209     int64_t l2_offset;
210     int ret;
211 
212     old_l2_offset = s->l1_table[l1_index];
213 
214     trace_qcow2_l2_allocate(bs, l1_index);
215 
216     /* allocate a new l2 entry */
217 
218     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
219     if (l2_offset < 0) {
220         ret = l2_offset;
221         goto fail;
222     }
223 
224     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
225     if (ret < 0) {
226         goto fail;
227     }
228 
229     /* allocate a new entry in the l2 cache */
230 
231     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
232     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
233     if (ret < 0) {
234         goto fail;
235     }
236 
237     l2_table = *table;
238 
239     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
240         /* if there was no old l2 table, clear the new table */
241         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
242     } else {
243         uint64_t* old_table;
244 
245         /* if there was an old l2 table, read it from the disk */
246         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
247         ret = qcow2_cache_get(bs, s->l2_table_cache,
248             old_l2_offset & L1E_OFFSET_MASK,
249             (void**) &old_table);
250         if (ret < 0) {
251             goto fail;
252         }
253 
254         memcpy(l2_table, old_table, s->cluster_size);
255 
256         ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
257         if (ret < 0) {
258             goto fail;
259         }
260     }
261 
262     /* write the l2 table to the file */
263     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
264 
265     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
266     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
267     ret = qcow2_cache_flush(bs, s->l2_table_cache);
268     if (ret < 0) {
269         goto fail;
270     }
271 
272     /* update the L1 entry */
273     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
274     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
275     ret = qcow2_write_l1_entry(bs, l1_index);
276     if (ret < 0) {
277         goto fail;
278     }
279 
280     *table = l2_table;
281     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
282     return 0;
283 
284 fail:
285     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
286     if (l2_table != NULL) {
287         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
288     }
289     s->l1_table[l1_index] = old_l2_offset;
290     if (l2_offset > 0) {
291         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
292                             QCOW2_DISCARD_ALWAYS);
293     }
294     return ret;
295 }
296 
297 /*
298  * Checks how many clusters in a given L2 table are contiguous in the image
299  * file. As soon as one of the flags in the bitmask stop_flags changes compared
300  * to the first cluster, the search is stopped and the cluster is not counted
301  * as contiguous. (This allows it, for example, to stop at the first compressed
302  * cluster which may require a different handling)
303  */
304 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
305         uint64_t *l2_table, uint64_t stop_flags)
306 {
307     int i;
308     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
309     uint64_t first_entry = be64_to_cpu(l2_table[0]);
310     uint64_t offset = first_entry & mask;
311 
312     if (!offset)
313         return 0;
314 
315     assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
316 
317     for (i = 0; i < nb_clusters; i++) {
318         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
319         if (offset + (uint64_t) i * cluster_size != l2_entry) {
320             break;
321         }
322     }
323 
324 	return i;
325 }
326 
327 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
328 {
329     int i;
330 
331     for (i = 0; i < nb_clusters; i++) {
332         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
333 
334         if (type != QCOW2_CLUSTER_UNALLOCATED) {
335             break;
336         }
337     }
338 
339     return i;
340 }
341 
342 /* The crypt function is compatible with the linux cryptoloop
343    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
344    supported */
345 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
346                            uint8_t *out_buf, const uint8_t *in_buf,
347                            int nb_sectors, int enc,
348                            const AES_KEY *key)
349 {
350     union {
351         uint64_t ll[2];
352         uint8_t b[16];
353     } ivec;
354     int i;
355 
356     for(i = 0; i < nb_sectors; i++) {
357         ivec.ll[0] = cpu_to_le64(sector_num);
358         ivec.ll[1] = 0;
359         AES_cbc_encrypt(in_buf, out_buf, 512, key,
360                         ivec.b, enc);
361         sector_num++;
362         in_buf += 512;
363         out_buf += 512;
364     }
365 }
366 
367 static int coroutine_fn copy_sectors(BlockDriverState *bs,
368                                      uint64_t start_sect,
369                                      uint64_t cluster_offset,
370                                      int n_start, int n_end)
371 {
372     BDRVQcowState *s = bs->opaque;
373     QEMUIOVector qiov;
374     struct iovec iov;
375     int n, ret;
376 
377     n = n_end - n_start;
378     if (n <= 0) {
379         return 0;
380     }
381 
382     iov.iov_len = n * BDRV_SECTOR_SIZE;
383     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
384     if (iov.iov_base == NULL) {
385         return -ENOMEM;
386     }
387 
388     qemu_iovec_init_external(&qiov, &iov, 1);
389 
390     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
391 
392     if (!bs->drv) {
393         ret = -ENOMEDIUM;
394         goto out;
395     }
396 
397     /* Call .bdrv_co_readv() directly instead of using the public block-layer
398      * interface.  This avoids double I/O throttling and request tracking,
399      * which can lead to deadlock when block layer copy-on-read is enabled.
400      */
401     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
402     if (ret < 0) {
403         goto out;
404     }
405 
406     if (s->crypt_method) {
407         qcow2_encrypt_sectors(s, start_sect + n_start,
408                         iov.iov_base, iov.iov_base, n, 1,
409                         &s->aes_encrypt_key);
410     }
411 
412     ret = qcow2_pre_write_overlap_check(bs, 0,
413             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
414     if (ret < 0) {
415         goto out;
416     }
417 
418     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
419     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
420     if (ret < 0) {
421         goto out;
422     }
423 
424     ret = 0;
425 out:
426     qemu_vfree(iov.iov_base);
427     return ret;
428 }
429 
430 
431 /*
432  * get_cluster_offset
433  *
434  * For a given offset of the disk image, find the cluster offset in
435  * qcow2 file. The offset is stored in *cluster_offset.
436  *
437  * on entry, *num is the number of contiguous sectors we'd like to
438  * access following offset.
439  *
440  * on exit, *num is the number of contiguous sectors we can read.
441  *
442  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
443  * cases.
444  */
445 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
446     int *num, uint64_t *cluster_offset)
447 {
448     BDRVQcowState *s = bs->opaque;
449     unsigned int l2_index;
450     uint64_t l1_index, l2_offset, *l2_table;
451     int l1_bits, c;
452     unsigned int index_in_cluster, nb_clusters;
453     uint64_t nb_available, nb_needed;
454     int ret;
455 
456     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
457     nb_needed = *num + index_in_cluster;
458 
459     l1_bits = s->l2_bits + s->cluster_bits;
460 
461     /* compute how many bytes there are between the offset and
462      * the end of the l1 entry
463      */
464 
465     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
466 
467     /* compute the number of available sectors */
468 
469     nb_available = (nb_available >> 9) + index_in_cluster;
470 
471     if (nb_needed > nb_available) {
472         nb_needed = nb_available;
473     }
474 
475     *cluster_offset = 0;
476 
477     /* seek the the l2 offset in the l1 table */
478 
479     l1_index = offset >> l1_bits;
480     if (l1_index >= s->l1_size) {
481         ret = QCOW2_CLUSTER_UNALLOCATED;
482         goto out;
483     }
484 
485     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
486     if (!l2_offset) {
487         ret = QCOW2_CLUSTER_UNALLOCATED;
488         goto out;
489     }
490 
491     if (offset_into_cluster(s, l2_offset)) {
492         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
493                                 " unaligned (L1 index: %#" PRIx64 ")",
494                                 l2_offset, l1_index);
495         return -EIO;
496     }
497 
498     /* load the l2 table in memory */
499 
500     ret = l2_load(bs, l2_offset, &l2_table);
501     if (ret < 0) {
502         return ret;
503     }
504 
505     /* find the cluster offset for the given disk offset */
506 
507     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
508     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
509     nb_clusters = size_to_clusters(s, nb_needed << 9);
510 
511     ret = qcow2_get_cluster_type(*cluster_offset);
512     switch (ret) {
513     case QCOW2_CLUSTER_COMPRESSED:
514         /* Compressed clusters can only be processed one by one */
515         c = 1;
516         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
517         break;
518     case QCOW2_CLUSTER_ZERO:
519         if (s->qcow_version < 3) {
520             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
521                                     " in pre-v3 image (L2 offset: %#" PRIx64
522                                     ", L2 index: %#x)", l2_offset, l2_index);
523             ret = -EIO;
524             goto fail;
525         }
526         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
527                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
528         *cluster_offset = 0;
529         break;
530     case QCOW2_CLUSTER_UNALLOCATED:
531         /* how many empty clusters ? */
532         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
533         *cluster_offset = 0;
534         break;
535     case QCOW2_CLUSTER_NORMAL:
536         /* how many allocated clusters ? */
537         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
538                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
539         *cluster_offset &= L2E_OFFSET_MASK;
540         if (offset_into_cluster(s, *cluster_offset)) {
541             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
542                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
543                                     ", L2 index: %#x)", *cluster_offset,
544                                     l2_offset, l2_index);
545             ret = -EIO;
546             goto fail;
547         }
548         break;
549     default:
550         abort();
551     }
552 
553     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
554 
555     nb_available = (c * s->cluster_sectors);
556 
557 out:
558     if (nb_available > nb_needed)
559         nb_available = nb_needed;
560 
561     *num = nb_available - index_in_cluster;
562 
563     return ret;
564 
565 fail:
566     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
567     return ret;
568 }
569 
570 /*
571  * get_cluster_table
572  *
573  * for a given disk offset, load (and allocate if needed)
574  * the l2 table.
575  *
576  * the l2 table offset in the qcow2 file and the cluster index
577  * in the l2 table are given to the caller.
578  *
579  * Returns 0 on success, -errno in failure case
580  */
581 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
582                              uint64_t **new_l2_table,
583                              int *new_l2_index)
584 {
585     BDRVQcowState *s = bs->opaque;
586     unsigned int l2_index;
587     uint64_t l1_index, l2_offset;
588     uint64_t *l2_table = NULL;
589     int ret;
590 
591     /* seek the the l2 offset in the l1 table */
592 
593     l1_index = offset >> (s->l2_bits + s->cluster_bits);
594     if (l1_index >= s->l1_size) {
595         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
596         if (ret < 0) {
597             return ret;
598         }
599     }
600 
601     assert(l1_index < s->l1_size);
602     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
603     if (offset_into_cluster(s, l2_offset)) {
604         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
605                                 " unaligned (L1 index: %#" PRIx64 ")",
606                                 l2_offset, l1_index);
607         return -EIO;
608     }
609 
610     /* seek the l2 table of the given l2 offset */
611 
612     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
613         /* load the l2 table in memory */
614         ret = l2_load(bs, l2_offset, &l2_table);
615         if (ret < 0) {
616             return ret;
617         }
618     } else {
619         /* First allocate a new L2 table (and do COW if needed) */
620         ret = l2_allocate(bs, l1_index, &l2_table);
621         if (ret < 0) {
622             return ret;
623         }
624 
625         /* Then decrease the refcount of the old table */
626         if (l2_offset) {
627             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
628                                 QCOW2_DISCARD_OTHER);
629         }
630     }
631 
632     /* find the cluster offset for the given disk offset */
633 
634     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
635 
636     *new_l2_table = l2_table;
637     *new_l2_index = l2_index;
638 
639     return 0;
640 }
641 
642 /*
643  * alloc_compressed_cluster_offset
644  *
645  * For a given offset of the disk image, return cluster offset in
646  * qcow2 file.
647  *
648  * If the offset is not found, allocate a new compressed cluster.
649  *
650  * Return the cluster offset if successful,
651  * Return 0, otherwise.
652  *
653  */
654 
655 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
656                                                uint64_t offset,
657                                                int compressed_size)
658 {
659     BDRVQcowState *s = bs->opaque;
660     int l2_index, ret;
661     uint64_t *l2_table;
662     int64_t cluster_offset;
663     int nb_csectors;
664 
665     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
666     if (ret < 0) {
667         return 0;
668     }
669 
670     /* Compression can't overwrite anything. Fail if the cluster was already
671      * allocated. */
672     cluster_offset = be64_to_cpu(l2_table[l2_index]);
673     if (cluster_offset & L2E_OFFSET_MASK) {
674         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
675         return 0;
676     }
677 
678     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
679     if (cluster_offset < 0) {
680         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
681         return 0;
682     }
683 
684     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
685                   (cluster_offset >> 9);
686 
687     cluster_offset |= QCOW_OFLAG_COMPRESSED |
688                       ((uint64_t)nb_csectors << s->csize_shift);
689 
690     /* update L2 table */
691 
692     /* compressed clusters never have the copied flag */
693 
694     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
695     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
696     l2_table[l2_index] = cpu_to_be64(cluster_offset);
697     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
698     if (ret < 0) {
699         return 0;
700     }
701 
702     return cluster_offset;
703 }
704 
705 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
706 {
707     BDRVQcowState *s = bs->opaque;
708     int ret;
709 
710     if (r->nb_sectors == 0) {
711         return 0;
712     }
713 
714     qemu_co_mutex_unlock(&s->lock);
715     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
716                        r->offset / BDRV_SECTOR_SIZE,
717                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
718     qemu_co_mutex_lock(&s->lock);
719 
720     if (ret < 0) {
721         return ret;
722     }
723 
724     /*
725      * Before we update the L2 table to actually point to the new cluster, we
726      * need to be sure that the refcounts have been increased and COW was
727      * handled.
728      */
729     qcow2_cache_depends_on_flush(s->l2_table_cache);
730 
731     return 0;
732 }
733 
734 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
735 {
736     BDRVQcowState *s = bs->opaque;
737     int i, j = 0, l2_index, ret;
738     uint64_t *old_cluster, *l2_table;
739     uint64_t cluster_offset = m->alloc_offset;
740 
741     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
742     assert(m->nb_clusters > 0);
743 
744     old_cluster = g_try_new(uint64_t, m->nb_clusters);
745     if (old_cluster == NULL) {
746         ret = -ENOMEM;
747         goto err;
748     }
749 
750     /* copy content of unmodified sectors */
751     ret = perform_cow(bs, m, &m->cow_start);
752     if (ret < 0) {
753         goto err;
754     }
755 
756     ret = perform_cow(bs, m, &m->cow_end);
757     if (ret < 0) {
758         goto err;
759     }
760 
761     /* Update L2 table. */
762     if (s->use_lazy_refcounts) {
763         qcow2_mark_dirty(bs);
764     }
765     if (qcow2_need_accurate_refcounts(s)) {
766         qcow2_cache_set_dependency(bs, s->l2_table_cache,
767                                    s->refcount_block_cache);
768     }
769 
770     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
771     if (ret < 0) {
772         goto err;
773     }
774     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
775 
776     assert(l2_index + m->nb_clusters <= s->l2_size);
777     for (i = 0; i < m->nb_clusters; i++) {
778         /* if two concurrent writes happen to the same unallocated cluster
779 	 * each write allocates separate cluster and writes data concurrently.
780 	 * The first one to complete updates l2 table with pointer to its
781 	 * cluster the second one has to do RMW (which is done above by
782 	 * copy_sectors()), update l2 table with its cluster pointer and free
783 	 * old cluster. This is what this loop does */
784         if(l2_table[l2_index + i] != 0)
785             old_cluster[j++] = l2_table[l2_index + i];
786 
787         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
788                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
789      }
790 
791 
792     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
793     if (ret < 0) {
794         goto err;
795     }
796 
797     /*
798      * If this was a COW, we need to decrease the refcount of the old cluster.
799      * Also flush bs->file to get the right order for L2 and refcount update.
800      *
801      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
802      * clusters), the next write will reuse them anyway.
803      */
804     if (j != 0) {
805         for (i = 0; i < j; i++) {
806             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
807                                     QCOW2_DISCARD_NEVER);
808         }
809     }
810 
811     ret = 0;
812 err:
813     g_free(old_cluster);
814     return ret;
815  }
816 
817 /*
818  * Returns the number of contiguous clusters that can be used for an allocating
819  * write, but require COW to be performed (this includes yet unallocated space,
820  * which must copy from the backing file)
821  */
822 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
823     uint64_t *l2_table, int l2_index)
824 {
825     int i;
826 
827     for (i = 0; i < nb_clusters; i++) {
828         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
829         int cluster_type = qcow2_get_cluster_type(l2_entry);
830 
831         switch(cluster_type) {
832         case QCOW2_CLUSTER_NORMAL:
833             if (l2_entry & QCOW_OFLAG_COPIED) {
834                 goto out;
835             }
836             break;
837         case QCOW2_CLUSTER_UNALLOCATED:
838         case QCOW2_CLUSTER_COMPRESSED:
839         case QCOW2_CLUSTER_ZERO:
840             break;
841         default:
842             abort();
843         }
844     }
845 
846 out:
847     assert(i <= nb_clusters);
848     return i;
849 }
850 
851 /*
852  * Check if there already is an AIO write request in flight which allocates
853  * the same cluster. In this case we need to wait until the previous
854  * request has completed and updated the L2 table accordingly.
855  *
856  * Returns:
857  *   0       if there was no dependency. *cur_bytes indicates the number of
858  *           bytes from guest_offset that can be read before the next
859  *           dependency must be processed (or the request is complete)
860  *
861  *   -EAGAIN if we had to wait for another request, previously gathered
862  *           information on cluster allocation may be invalid now. The caller
863  *           must start over anyway, so consider *cur_bytes undefined.
864  */
865 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
866     uint64_t *cur_bytes, QCowL2Meta **m)
867 {
868     BDRVQcowState *s = bs->opaque;
869     QCowL2Meta *old_alloc;
870     uint64_t bytes = *cur_bytes;
871 
872     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
873 
874         uint64_t start = guest_offset;
875         uint64_t end = start + bytes;
876         uint64_t old_start = l2meta_cow_start(old_alloc);
877         uint64_t old_end = l2meta_cow_end(old_alloc);
878 
879         if (end <= old_start || start >= old_end) {
880             /* No intersection */
881         } else {
882             if (start < old_start) {
883                 /* Stop at the start of a running allocation */
884                 bytes = old_start - start;
885             } else {
886                 bytes = 0;
887             }
888 
889             /* Stop if already an l2meta exists. After yielding, it wouldn't
890              * be valid any more, so we'd have to clean up the old L2Metas
891              * and deal with requests depending on them before starting to
892              * gather new ones. Not worth the trouble. */
893             if (bytes == 0 && *m) {
894                 *cur_bytes = 0;
895                 return 0;
896             }
897 
898             if (bytes == 0) {
899                 /* Wait for the dependency to complete. We need to recheck
900                  * the free/allocated clusters when we continue. */
901                 qemu_co_mutex_unlock(&s->lock);
902                 qemu_co_queue_wait(&old_alloc->dependent_requests);
903                 qemu_co_mutex_lock(&s->lock);
904                 return -EAGAIN;
905             }
906         }
907     }
908 
909     /* Make sure that existing clusters and new allocations are only used up to
910      * the next dependency if we shortened the request above */
911     *cur_bytes = bytes;
912 
913     return 0;
914 }
915 
916 /*
917  * Checks how many already allocated clusters that don't require a copy on
918  * write there are at the given guest_offset (up to *bytes). If
919  * *host_offset is not zero, only physically contiguous clusters beginning at
920  * this host offset are counted.
921  *
922  * Note that guest_offset may not be cluster aligned. In this case, the
923  * returned *host_offset points to exact byte referenced by guest_offset and
924  * therefore isn't cluster aligned as well.
925  *
926  * Returns:
927  *   0:     if no allocated clusters are available at the given offset.
928  *          *bytes is normally unchanged. It is set to 0 if the cluster
929  *          is allocated and doesn't need COW, but doesn't have the right
930  *          physical offset.
931  *
932  *   1:     if allocated clusters that don't require a COW are available at
933  *          the requested offset. *bytes may have decreased and describes
934  *          the length of the area that can be written to.
935  *
936  *  -errno: in error cases
937  */
938 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
939     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
940 {
941     BDRVQcowState *s = bs->opaque;
942     int l2_index;
943     uint64_t cluster_offset;
944     uint64_t *l2_table;
945     unsigned int nb_clusters;
946     unsigned int keep_clusters;
947     int ret, pret;
948 
949     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
950                               *bytes);
951 
952     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
953                                 == offset_into_cluster(s, *host_offset));
954 
955     /*
956      * Calculate the number of clusters to look for. We stop at L2 table
957      * boundaries to keep things simple.
958      */
959     nb_clusters =
960         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
961 
962     l2_index = offset_to_l2_index(s, guest_offset);
963     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
964 
965     /* Find L2 entry for the first involved cluster */
966     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
967     if (ret < 0) {
968         return ret;
969     }
970 
971     cluster_offset = be64_to_cpu(l2_table[l2_index]);
972 
973     /* Check how many clusters are already allocated and don't need COW */
974     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
975         && (cluster_offset & QCOW_OFLAG_COPIED))
976     {
977         /* If a specific host_offset is required, check it */
978         bool offset_matches =
979             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
980 
981         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
982             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
983                                     "%#llx unaligned (guest offset: %#" PRIx64
984                                     ")", cluster_offset & L2E_OFFSET_MASK,
985                                     guest_offset);
986             ret = -EIO;
987             goto out;
988         }
989 
990         if (*host_offset != 0 && !offset_matches) {
991             *bytes = 0;
992             ret = 0;
993             goto out;
994         }
995 
996         /* We keep all QCOW_OFLAG_COPIED clusters */
997         keep_clusters =
998             count_contiguous_clusters(nb_clusters, s->cluster_size,
999                                       &l2_table[l2_index],
1000                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1001         assert(keep_clusters <= nb_clusters);
1002 
1003         *bytes = MIN(*bytes,
1004                  keep_clusters * s->cluster_size
1005                  - offset_into_cluster(s, guest_offset));
1006 
1007         ret = 1;
1008     } else {
1009         ret = 0;
1010     }
1011 
1012     /* Cleanup */
1013 out:
1014     pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1015     if (pret < 0) {
1016         return pret;
1017     }
1018 
1019     /* Only return a host offset if we actually made progress. Otherwise we
1020      * would make requirements for handle_alloc() that it can't fulfill */
1021     if (ret > 0) {
1022         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1023                      + offset_into_cluster(s, guest_offset);
1024     }
1025 
1026     return ret;
1027 }
1028 
1029 /*
1030  * Allocates new clusters for the given guest_offset.
1031  *
1032  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1033  * contain the number of clusters that have been allocated and are contiguous
1034  * in the image file.
1035  *
1036  * If *host_offset is non-zero, it specifies the offset in the image file at
1037  * which the new clusters must start. *nb_clusters can be 0 on return in this
1038  * case if the cluster at host_offset is already in use. If *host_offset is
1039  * zero, the clusters can be allocated anywhere in the image file.
1040  *
1041  * *host_offset is updated to contain the offset into the image file at which
1042  * the first allocated cluster starts.
1043  *
1044  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1045  * function has been waiting for another request and the allocation must be
1046  * restarted, but the whole request should not be failed.
1047  */
1048 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1049     uint64_t *host_offset, unsigned int *nb_clusters)
1050 {
1051     BDRVQcowState *s = bs->opaque;
1052 
1053     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1054                                          *host_offset, *nb_clusters);
1055 
1056     /* Allocate new clusters */
1057     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1058     if (*host_offset == 0) {
1059         int64_t cluster_offset =
1060             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1061         if (cluster_offset < 0) {
1062             return cluster_offset;
1063         }
1064         *host_offset = cluster_offset;
1065         return 0;
1066     } else {
1067         int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1068         if (ret < 0) {
1069             return ret;
1070         }
1071         *nb_clusters = ret;
1072         return 0;
1073     }
1074 }
1075 
1076 /*
1077  * Allocates new clusters for an area that either is yet unallocated or needs a
1078  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1079  * the new allocation can match the specified host offset.
1080  *
1081  * Note that guest_offset may not be cluster aligned. In this case, the
1082  * returned *host_offset points to exact byte referenced by guest_offset and
1083  * therefore isn't cluster aligned as well.
1084  *
1085  * Returns:
1086  *   0:     if no clusters could be allocated. *bytes is set to 0,
1087  *          *host_offset is left unchanged.
1088  *
1089  *   1:     if new clusters were allocated. *bytes may be decreased if the
1090  *          new allocation doesn't cover all of the requested area.
1091  *          *host_offset is updated to contain the host offset of the first
1092  *          newly allocated cluster.
1093  *
1094  *  -errno: in error cases
1095  */
1096 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1097     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1098 {
1099     BDRVQcowState *s = bs->opaque;
1100     int l2_index;
1101     uint64_t *l2_table;
1102     uint64_t entry;
1103     unsigned int nb_clusters;
1104     int ret;
1105 
1106     uint64_t alloc_cluster_offset;
1107 
1108     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1109                              *bytes);
1110     assert(*bytes > 0);
1111 
1112     /*
1113      * Calculate the number of clusters to look for. We stop at L2 table
1114      * boundaries to keep things simple.
1115      */
1116     nb_clusters =
1117         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1118 
1119     l2_index = offset_to_l2_index(s, guest_offset);
1120     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1121 
1122     /* Find L2 entry for the first involved cluster */
1123     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1124     if (ret < 0) {
1125         return ret;
1126     }
1127 
1128     entry = be64_to_cpu(l2_table[l2_index]);
1129 
1130     /* For the moment, overwrite compressed clusters one by one */
1131     if (entry & QCOW_OFLAG_COMPRESSED) {
1132         nb_clusters = 1;
1133     } else {
1134         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1135     }
1136 
1137     /* This function is only called when there were no non-COW clusters, so if
1138      * we can't find any unallocated or COW clusters either, something is
1139      * wrong with our code. */
1140     assert(nb_clusters > 0);
1141 
1142     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1143     if (ret < 0) {
1144         return ret;
1145     }
1146 
1147     /* Allocate, if necessary at a given offset in the image file */
1148     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1149     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1150                                   &nb_clusters);
1151     if (ret < 0) {
1152         goto fail;
1153     }
1154 
1155     /* Can't extend contiguous allocation */
1156     if (nb_clusters == 0) {
1157         *bytes = 0;
1158         return 0;
1159     }
1160 
1161     /* !*host_offset would overwrite the image header and is reserved for "no
1162      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1163      * following overlap check; do that now to avoid having an invalid value in
1164      * *host_offset. */
1165     if (!alloc_cluster_offset) {
1166         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1167                                             nb_clusters * s->cluster_size);
1168         assert(ret < 0);
1169         goto fail;
1170     }
1171 
1172     /*
1173      * Save info needed for meta data update.
1174      *
1175      * requested_sectors: Number of sectors from the start of the first
1176      * newly allocated cluster to the end of the (possibly shortened
1177      * before) write request.
1178      *
1179      * avail_sectors: Number of sectors from the start of the first
1180      * newly allocated to the end of the last newly allocated cluster.
1181      *
1182      * nb_sectors: The number of sectors from the start of the first
1183      * newly allocated cluster to the end of the area that the write
1184      * request actually writes to (excluding COW at the end)
1185      */
1186     int requested_sectors =
1187         (*bytes + offset_into_cluster(s, guest_offset))
1188         >> BDRV_SECTOR_BITS;
1189     int avail_sectors = nb_clusters
1190                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1191     int alloc_n_start = offset_into_cluster(s, guest_offset)
1192                         >> BDRV_SECTOR_BITS;
1193     int nb_sectors = MIN(requested_sectors, avail_sectors);
1194     QCowL2Meta *old_m = *m;
1195 
1196     *m = g_malloc0(sizeof(**m));
1197 
1198     **m = (QCowL2Meta) {
1199         .next           = old_m,
1200 
1201         .alloc_offset   = alloc_cluster_offset,
1202         .offset         = start_of_cluster(s, guest_offset),
1203         .nb_clusters    = nb_clusters,
1204         .nb_available   = nb_sectors,
1205 
1206         .cow_start = {
1207             .offset     = 0,
1208             .nb_sectors = alloc_n_start,
1209         },
1210         .cow_end = {
1211             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1212             .nb_sectors = avail_sectors - nb_sectors,
1213         },
1214     };
1215     qemu_co_queue_init(&(*m)->dependent_requests);
1216     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1217 
1218     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1219     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1220                          - offset_into_cluster(s, guest_offset));
1221     assert(*bytes != 0);
1222 
1223     return 1;
1224 
1225 fail:
1226     if (*m && (*m)->nb_clusters > 0) {
1227         QLIST_REMOVE(*m, next_in_flight);
1228     }
1229     return ret;
1230 }
1231 
1232 /*
1233  * alloc_cluster_offset
1234  *
1235  * For a given offset on the virtual disk, find the cluster offset in qcow2
1236  * file. If the offset is not found, allocate a new cluster.
1237  *
1238  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1239  * other fields in m are meaningless.
1240  *
1241  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1242  * contiguous clusters that have been allocated. In this case, the other
1243  * fields of m are valid and contain information about the first allocated
1244  * cluster.
1245  *
1246  * If the request conflicts with another write request in flight, the coroutine
1247  * is queued and will be reentered when the dependency has completed.
1248  *
1249  * Return 0 on success and -errno in error cases
1250  */
1251 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1252     int *num, uint64_t *host_offset, QCowL2Meta **m)
1253 {
1254     BDRVQcowState *s = bs->opaque;
1255     uint64_t start, remaining;
1256     uint64_t cluster_offset;
1257     uint64_t cur_bytes;
1258     int ret;
1259 
1260     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1261 
1262     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1263 
1264 again:
1265     start = offset;
1266     remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1267     cluster_offset = 0;
1268     *host_offset = 0;
1269     cur_bytes = 0;
1270     *m = NULL;
1271 
1272     while (true) {
1273 
1274         if (!*host_offset) {
1275             *host_offset = start_of_cluster(s, cluster_offset);
1276         }
1277 
1278         assert(remaining >= cur_bytes);
1279 
1280         start           += cur_bytes;
1281         remaining       -= cur_bytes;
1282         cluster_offset  += cur_bytes;
1283 
1284         if (remaining == 0) {
1285             break;
1286         }
1287 
1288         cur_bytes = remaining;
1289 
1290         /*
1291          * Now start gathering as many contiguous clusters as possible:
1292          *
1293          * 1. Check for overlaps with in-flight allocations
1294          *
1295          *      a) Overlap not in the first cluster -> shorten this request and
1296          *         let the caller handle the rest in its next loop iteration.
1297          *
1298          *      b) Real overlaps of two requests. Yield and restart the search
1299          *         for contiguous clusters (the situation could have changed
1300          *         while we were sleeping)
1301          *
1302          *      c) TODO: Request starts in the same cluster as the in-flight
1303          *         allocation ends. Shorten the COW of the in-fight allocation,
1304          *         set cluster_offset to write to the same cluster and set up
1305          *         the right synchronisation between the in-flight request and
1306          *         the new one.
1307          */
1308         ret = handle_dependencies(bs, start, &cur_bytes, m);
1309         if (ret == -EAGAIN) {
1310             /* Currently handle_dependencies() doesn't yield if we already had
1311              * an allocation. If it did, we would have to clean up the L2Meta
1312              * structs before starting over. */
1313             assert(*m == NULL);
1314             goto again;
1315         } else if (ret < 0) {
1316             return ret;
1317         } else if (cur_bytes == 0) {
1318             break;
1319         } else {
1320             /* handle_dependencies() may have decreased cur_bytes (shortened
1321              * the allocations below) so that the next dependency is processed
1322              * correctly during the next loop iteration. */
1323         }
1324 
1325         /*
1326          * 2. Count contiguous COPIED clusters.
1327          */
1328         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1329         if (ret < 0) {
1330             return ret;
1331         } else if (ret) {
1332             continue;
1333         } else if (cur_bytes == 0) {
1334             break;
1335         }
1336 
1337         /*
1338          * 3. If the request still hasn't completed, allocate new clusters,
1339          *    considering any cluster_offset of steps 1c or 2.
1340          */
1341         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1342         if (ret < 0) {
1343             return ret;
1344         } else if (ret) {
1345             continue;
1346         } else {
1347             assert(cur_bytes == 0);
1348             break;
1349         }
1350     }
1351 
1352     *num -= remaining >> BDRV_SECTOR_BITS;
1353     assert(*num > 0);
1354     assert(*host_offset != 0);
1355 
1356     return 0;
1357 }
1358 
1359 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1360                              const uint8_t *buf, int buf_size)
1361 {
1362     z_stream strm1, *strm = &strm1;
1363     int ret, out_len;
1364 
1365     memset(strm, 0, sizeof(*strm));
1366 
1367     strm->next_in = (uint8_t *)buf;
1368     strm->avail_in = buf_size;
1369     strm->next_out = out_buf;
1370     strm->avail_out = out_buf_size;
1371 
1372     ret = inflateInit2(strm, -12);
1373     if (ret != Z_OK)
1374         return -1;
1375     ret = inflate(strm, Z_FINISH);
1376     out_len = strm->next_out - out_buf;
1377     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1378         out_len != out_buf_size) {
1379         inflateEnd(strm);
1380         return -1;
1381     }
1382     inflateEnd(strm);
1383     return 0;
1384 }
1385 
1386 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1387 {
1388     BDRVQcowState *s = bs->opaque;
1389     int ret, csize, nb_csectors, sector_offset;
1390     uint64_t coffset;
1391 
1392     coffset = cluster_offset & s->cluster_offset_mask;
1393     if (s->cluster_cache_offset != coffset) {
1394         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1395         sector_offset = coffset & 511;
1396         csize = nb_csectors * 512 - sector_offset;
1397         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1398         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1399         if (ret < 0) {
1400             return ret;
1401         }
1402         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1403                               s->cluster_data + sector_offset, csize) < 0) {
1404             return -EIO;
1405         }
1406         s->cluster_cache_offset = coffset;
1407     }
1408     return 0;
1409 }
1410 
1411 /*
1412  * This discards as many clusters of nb_clusters as possible at once (i.e.
1413  * all clusters in the same L2 table) and returns the number of discarded
1414  * clusters.
1415  */
1416 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1417     unsigned int nb_clusters, enum qcow2_discard_type type, bool full_discard)
1418 {
1419     BDRVQcowState *s = bs->opaque;
1420     uint64_t *l2_table;
1421     int l2_index;
1422     int ret;
1423     int i;
1424 
1425     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1426     if (ret < 0) {
1427         return ret;
1428     }
1429 
1430     /* Limit nb_clusters to one L2 table */
1431     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1432 
1433     for (i = 0; i < nb_clusters; i++) {
1434         uint64_t old_l2_entry;
1435 
1436         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1437 
1438         /*
1439          * If full_discard is false, make sure that a discarded area reads back
1440          * as zeroes for v3 images (we cannot do it for v2 without actually
1441          * writing a zero-filled buffer). We can skip the operation if the
1442          * cluster is already marked as zero, or if it's unallocated and we
1443          * don't have a backing file.
1444          *
1445          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1446          * holding s->lock, so that doesn't work today.
1447          *
1448          * If full_discard is true, the sector should not read back as zeroes,
1449          * but rather fall through to the backing file.
1450          */
1451         switch (qcow2_get_cluster_type(old_l2_entry)) {
1452             case QCOW2_CLUSTER_UNALLOCATED:
1453                 if (full_discard || !bs->backing_hd) {
1454                     continue;
1455                 }
1456                 break;
1457 
1458             case QCOW2_CLUSTER_ZERO:
1459                 if (!full_discard) {
1460                     continue;
1461                 }
1462                 break;
1463 
1464             case QCOW2_CLUSTER_NORMAL:
1465             case QCOW2_CLUSTER_COMPRESSED:
1466                 break;
1467 
1468             default:
1469                 abort();
1470         }
1471 
1472         /* First remove L2 entries */
1473         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1474         if (!full_discard && s->qcow_version >= 3) {
1475             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1476         } else {
1477             l2_table[l2_index + i] = cpu_to_be64(0);
1478         }
1479 
1480         /* Then decrease the refcount */
1481         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1482     }
1483 
1484     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1485     if (ret < 0) {
1486         return ret;
1487     }
1488 
1489     return nb_clusters;
1490 }
1491 
1492 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1493     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1494 {
1495     BDRVQcowState *s = bs->opaque;
1496     uint64_t end_offset;
1497     unsigned int nb_clusters;
1498     int ret;
1499 
1500     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1501 
1502     /* Round start up and end down */
1503     offset = align_offset(offset, s->cluster_size);
1504     end_offset = start_of_cluster(s, end_offset);
1505 
1506     if (offset > end_offset) {
1507         return 0;
1508     }
1509 
1510     nb_clusters = size_to_clusters(s, end_offset - offset);
1511 
1512     s->cache_discards = true;
1513 
1514     /* Each L2 table is handled by its own loop iteration */
1515     while (nb_clusters > 0) {
1516         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1517         if (ret < 0) {
1518             goto fail;
1519         }
1520 
1521         nb_clusters -= ret;
1522         offset += (ret * s->cluster_size);
1523     }
1524 
1525     ret = 0;
1526 fail:
1527     s->cache_discards = false;
1528     qcow2_process_discards(bs, ret);
1529 
1530     return ret;
1531 }
1532 
1533 /*
1534  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1535  * all clusters in the same L2 table) and returns the number of zeroed
1536  * clusters.
1537  */
1538 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1539     unsigned int nb_clusters)
1540 {
1541     BDRVQcowState *s = bs->opaque;
1542     uint64_t *l2_table;
1543     int l2_index;
1544     int ret;
1545     int i;
1546 
1547     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1548     if (ret < 0) {
1549         return ret;
1550     }
1551 
1552     /* Limit nb_clusters to one L2 table */
1553     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1554 
1555     for (i = 0; i < nb_clusters; i++) {
1556         uint64_t old_offset;
1557 
1558         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1559 
1560         /* Update L2 entries */
1561         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1562         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1563             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1564             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1565         } else {
1566             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1567         }
1568     }
1569 
1570     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1571     if (ret < 0) {
1572         return ret;
1573     }
1574 
1575     return nb_clusters;
1576 }
1577 
1578 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1579 {
1580     BDRVQcowState *s = bs->opaque;
1581     unsigned int nb_clusters;
1582     int ret;
1583 
1584     /* The zero flag is only supported by version 3 and newer */
1585     if (s->qcow_version < 3) {
1586         return -ENOTSUP;
1587     }
1588 
1589     /* Each L2 table is handled by its own loop iteration */
1590     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1591 
1592     s->cache_discards = true;
1593 
1594     while (nb_clusters > 0) {
1595         ret = zero_single_l2(bs, offset, nb_clusters);
1596         if (ret < 0) {
1597             goto fail;
1598         }
1599 
1600         nb_clusters -= ret;
1601         offset += (ret * s->cluster_size);
1602     }
1603 
1604     ret = 0;
1605 fail:
1606     s->cache_discards = false;
1607     qcow2_process_discards(bs, ret);
1608 
1609     return ret;
1610 }
1611 
1612 /*
1613  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1614  * non-backed non-pre-allocated zero clusters).
1615  *
1616  * l1_entries and *visited_l1_entries are used to keep track of progress for
1617  * status_cb(). l1_entries contains the total number of L1 entries and
1618  * *visited_l1_entries counts all visited L1 entries.
1619  */
1620 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1621                                       int l1_size, int64_t *visited_l1_entries,
1622                                       int64_t l1_entries,
1623                                       BlockDriverAmendStatusCB *status_cb)
1624 {
1625     BDRVQcowState *s = bs->opaque;
1626     bool is_active_l1 = (l1_table == s->l1_table);
1627     uint64_t *l2_table = NULL;
1628     int ret;
1629     int i, j;
1630 
1631     if (!is_active_l1) {
1632         /* inactive L2 tables require a buffer to be stored in when loading
1633          * them from disk */
1634         l2_table = qemu_try_blockalign(bs->file, s->cluster_size);
1635         if (l2_table == NULL) {
1636             return -ENOMEM;
1637         }
1638     }
1639 
1640     for (i = 0; i < l1_size; i++) {
1641         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1642         bool l2_dirty = false;
1643         uint64_t l2_refcount;
1644 
1645         if (!l2_offset) {
1646             /* unallocated */
1647             (*visited_l1_entries)++;
1648             if (status_cb) {
1649                 status_cb(bs, *visited_l1_entries, l1_entries);
1650             }
1651             continue;
1652         }
1653 
1654         if (offset_into_cluster(s, l2_offset)) {
1655             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1656                                     PRIx64 " unaligned (L1 index: %#x)",
1657                                     l2_offset, i);
1658             ret = -EIO;
1659             goto fail;
1660         }
1661 
1662         if (is_active_l1) {
1663             /* get active L2 tables from cache */
1664             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1665                     (void **)&l2_table);
1666         } else {
1667             /* load inactive L2 tables from disk */
1668             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1669                     (void *)l2_table, s->cluster_sectors);
1670         }
1671         if (ret < 0) {
1672             goto fail;
1673         }
1674 
1675         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1676                                  &l2_refcount);
1677         if (ret < 0) {
1678             goto fail;
1679         }
1680 
1681         for (j = 0; j < s->l2_size; j++) {
1682             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1683             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1684             int cluster_type = qcow2_get_cluster_type(l2_entry);
1685             bool preallocated = offset != 0;
1686 
1687             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1688                 continue;
1689             }
1690 
1691             if (!preallocated) {
1692                 if (!bs->backing_hd) {
1693                     /* not backed; therefore we can simply deallocate the
1694                      * cluster */
1695                     l2_table[j] = 0;
1696                     l2_dirty = true;
1697                     continue;
1698                 }
1699 
1700                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1701                 if (offset < 0) {
1702                     ret = offset;
1703                     goto fail;
1704                 }
1705 
1706                 if (l2_refcount > 1) {
1707                     /* For shared L2 tables, set the refcount accordingly (it is
1708                      * already 1 and needs to be l2_refcount) */
1709                     ret = qcow2_update_cluster_refcount(bs,
1710                             offset >> s->cluster_bits,
1711                             refcount_diff(1, l2_refcount), false,
1712                             QCOW2_DISCARD_OTHER);
1713                     if (ret < 0) {
1714                         qcow2_free_clusters(bs, offset, s->cluster_size,
1715                                             QCOW2_DISCARD_OTHER);
1716                         goto fail;
1717                     }
1718                 }
1719             }
1720 
1721             if (offset_into_cluster(s, offset)) {
1722                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1723                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1724                                         PRIx64 ", L2 index: %#x)", offset,
1725                                         l2_offset, j);
1726                 if (!preallocated) {
1727                     qcow2_free_clusters(bs, offset, s->cluster_size,
1728                                         QCOW2_DISCARD_ALWAYS);
1729                 }
1730                 ret = -EIO;
1731                 goto fail;
1732             }
1733 
1734             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1735             if (ret < 0) {
1736                 if (!preallocated) {
1737                     qcow2_free_clusters(bs, offset, s->cluster_size,
1738                                         QCOW2_DISCARD_ALWAYS);
1739                 }
1740                 goto fail;
1741             }
1742 
1743             ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1744                                     s->cluster_sectors, 0);
1745             if (ret < 0) {
1746                 if (!preallocated) {
1747                     qcow2_free_clusters(bs, offset, s->cluster_size,
1748                                         QCOW2_DISCARD_ALWAYS);
1749                 }
1750                 goto fail;
1751             }
1752 
1753             if (l2_refcount == 1) {
1754                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1755             } else {
1756                 l2_table[j] = cpu_to_be64(offset);
1757             }
1758             l2_dirty = true;
1759         }
1760 
1761         if (is_active_l1) {
1762             if (l2_dirty) {
1763                 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1764                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1765             }
1766             ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1767             if (ret < 0) {
1768                 l2_table = NULL;
1769                 goto fail;
1770             }
1771         } else {
1772             if (l2_dirty) {
1773                 ret = qcow2_pre_write_overlap_check(bs,
1774                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1775                         s->cluster_size);
1776                 if (ret < 0) {
1777                     goto fail;
1778                 }
1779 
1780                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1781                         (void *)l2_table, s->cluster_sectors);
1782                 if (ret < 0) {
1783                     goto fail;
1784                 }
1785             }
1786         }
1787 
1788         (*visited_l1_entries)++;
1789         if (status_cb) {
1790             status_cb(bs, *visited_l1_entries, l1_entries);
1791         }
1792     }
1793 
1794     ret = 0;
1795 
1796 fail:
1797     if (l2_table) {
1798         if (!is_active_l1) {
1799             qemu_vfree(l2_table);
1800         } else {
1801             if (ret < 0) {
1802                 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1803             } else {
1804                 ret = qcow2_cache_put(bs, s->l2_table_cache,
1805                         (void **)&l2_table);
1806             }
1807         }
1808     }
1809     return ret;
1810 }
1811 
1812 /*
1813  * For backed images, expands all zero clusters on the image. For non-backed
1814  * images, deallocates all non-pre-allocated zero clusters (and claims the
1815  * allocation for pre-allocated ones). This is important for downgrading to a
1816  * qcow2 version which doesn't yet support metadata zero clusters.
1817  */
1818 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1819                                BlockDriverAmendStatusCB *status_cb)
1820 {
1821     BDRVQcowState *s = bs->opaque;
1822     uint64_t *l1_table = NULL;
1823     int64_t l1_entries = 0, visited_l1_entries = 0;
1824     int ret;
1825     int i, j;
1826 
1827     if (status_cb) {
1828         l1_entries = s->l1_size;
1829         for (i = 0; i < s->nb_snapshots; i++) {
1830             l1_entries += s->snapshots[i].l1_size;
1831         }
1832     }
1833 
1834     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1835                                      &visited_l1_entries, l1_entries,
1836                                      status_cb);
1837     if (ret < 0) {
1838         goto fail;
1839     }
1840 
1841     /* Inactive L1 tables may point to active L2 tables - therefore it is
1842      * necessary to flush the L2 table cache before trying to access the L2
1843      * tables pointed to by inactive L1 entries (else we might try to expand
1844      * zero clusters that have already been expanded); furthermore, it is also
1845      * necessary to empty the L2 table cache, since it may contain tables which
1846      * are now going to be modified directly on disk, bypassing the cache.
1847      * qcow2_cache_empty() does both for us. */
1848     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1849     if (ret < 0) {
1850         goto fail;
1851     }
1852 
1853     for (i = 0; i < s->nb_snapshots; i++) {
1854         int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1855                 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1856 
1857         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1858 
1859         ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1860                 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1861         if (ret < 0) {
1862             goto fail;
1863         }
1864 
1865         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1866             be64_to_cpus(&l1_table[j]);
1867         }
1868 
1869         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1870                                          &visited_l1_entries, l1_entries,
1871                                          status_cb);
1872         if (ret < 0) {
1873             goto fail;
1874         }
1875     }
1876 
1877     ret = 0;
1878 
1879 fail:
1880     g_free(l1_table);
1881     return ret;
1882 }
1883