xref: /openbmc/qemu/block/qcow2-cluster.c (revision 740b1759)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32 
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size, i, ret;
37 
38     if (exact_size >= s->l1_size) {
39         return 0;
40     }
41 
42     new_l1_size = exact_size;
43 
44 #ifdef DEBUG_ALLOC2
45     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47 
48     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50                                        new_l1_size * L1E_SIZE,
51                              (s->l1_size - new_l1_size) * L1E_SIZE, 0);
52     if (ret < 0) {
53         goto fail;
54     }
55 
56     ret = bdrv_flush(bs->file->bs);
57     if (ret < 0) {
58         goto fail;
59     }
60 
61     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64             continue;
65         }
66         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
68         s->l1_table[i] = 0;
69     }
70     return 0;
71 
72 fail:
73     /*
74      * If the write in the l1_table failed the image may contain a partially
75      * overwritten l1_table. In this case it would be better to clear the
76      * l1_table in memory to avoid possible image corruption.
77      */
78     memset(s->l1_table + new_l1_size, 0,
79            (s->l1_size - new_l1_size) * L1E_SIZE);
80     return ret;
81 }
82 
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84                         bool exact_size)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     int new_l1_size2, ret, i;
88     uint64_t *new_l1_table;
89     int64_t old_l1_table_offset, old_l1_size;
90     int64_t new_l1_table_offset, new_l1_size;
91     uint8_t data[12];
92 
93     if (min_size <= s->l1_size)
94         return 0;
95 
96     /* Do a sanity check on min_size before trying to calculate new_l1_size
97      * (this prevents overflows during the while loop for the calculation of
98      * new_l1_size) */
99     if (min_size > INT_MAX / L1E_SIZE) {
100         return -EFBIG;
101     }
102 
103     if (exact_size) {
104         new_l1_size = min_size;
105     } else {
106         /* Bump size up to reduce the number of times we have to grow */
107         new_l1_size = s->l1_size;
108         if (new_l1_size == 0) {
109             new_l1_size = 1;
110         }
111         while (min_size > new_l1_size) {
112             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113         }
114     }
115 
116     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
118         return -EFBIG;
119     }
120 
121 #ifdef DEBUG_ALLOC2
122     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123             s->l1_size, new_l1_size);
124 #endif
125 
126     new_l1_size2 = L1E_SIZE * new_l1_size;
127     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
128     if (new_l1_table == NULL) {
129         return -ENOMEM;
130     }
131     memset(new_l1_table, 0, new_l1_size2);
132 
133     if (s->l1_size) {
134         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
135     }
136 
137     /* write new table (align to cluster) */
138     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
139     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
140     if (new_l1_table_offset < 0) {
141         qemu_vfree(new_l1_table);
142         return new_l1_table_offset;
143     }
144 
145     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
146     if (ret < 0) {
147         goto fail;
148     }
149 
150     /* the L1 position has not yet been updated, so these clusters must
151      * indeed be completely free */
152     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
153                                         new_l1_size2, false);
154     if (ret < 0) {
155         goto fail;
156     }
157 
158     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
159     for(i = 0; i < s->l1_size; i++)
160         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
161     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
162                            new_l1_table, new_l1_size2);
163     if (ret < 0)
164         goto fail;
165     for(i = 0; i < s->l1_size; i++)
166         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
167 
168     /* set new table */
169     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
170     stl_be_p(data, new_l1_size);
171     stq_be_p(data + 4, new_l1_table_offset);
172     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
173                            data, sizeof(data));
174     if (ret < 0) {
175         goto fail;
176     }
177     qemu_vfree(s->l1_table);
178     old_l1_table_offset = s->l1_table_offset;
179     s->l1_table_offset = new_l1_table_offset;
180     s->l1_table = new_l1_table;
181     old_l1_size = s->l1_size;
182     s->l1_size = new_l1_size;
183     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
184                         QCOW2_DISCARD_OTHER);
185     return 0;
186  fail:
187     qemu_vfree(new_l1_table);
188     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189                         QCOW2_DISCARD_OTHER);
190     return ret;
191 }
192 
193 /*
194  * l2_load
195  *
196  * @bs: The BlockDriverState
197  * @offset: A guest offset, used to calculate what slice of the L2
198  *          table to load.
199  * @l2_offset: Offset to the L2 table in the image file.
200  * @l2_slice: Location to store the pointer to the L2 slice.
201  *
202  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203  * that are loaded by the qcow2 cache). If the slice is in the cache,
204  * the cache is used; otherwise the L2 slice is loaded from the image
205  * file.
206  */
207 static int l2_load(BlockDriverState *bs, uint64_t offset,
208                    uint64_t l2_offset, uint64_t **l2_slice)
209 {
210     BDRVQcow2State *s = bs->opaque;
211     int start_of_slice = l2_entry_size(s) *
212         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
213 
214     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
215                            (void **)l2_slice);
216 }
217 
218 /*
219  * Writes an L1 entry to disk (note that depending on the alignment
220  * requirements this function may write more that just one entry in
221  * order to prevent bdrv_pwrite from performing a read-modify-write)
222  */
223 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
224 {
225     BDRVQcow2State *s = bs->opaque;
226     int l1_start_index;
227     int i, ret;
228     int bufsize = MAX(L1E_SIZE,
229                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230     int nentries = bufsize / L1E_SIZE;
231     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
232 
233     if (buf == NULL) {
234         return -ENOMEM;
235     }
236 
237     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
239         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240     }
241 
242     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
243             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
244     if (ret < 0) {
245         return ret;
246     }
247 
248     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
249     ret = bdrv_pwrite_sync(bs->file,
250                            s->l1_table_offset + L1E_SIZE * l1_start_index,
251                            buf, bufsize);
252     if (ret < 0) {
253         return ret;
254     }
255 
256     return 0;
257 }
258 
259 /*
260  * l2_allocate
261  *
262  * Allocate a new l2 entry in the file. If l1_index points to an already
263  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264  * table) copy the contents of the old L2 table into the newly allocated one.
265  * Otherwise the new table is initialized with zeros.
266  *
267  */
268 
269 static int l2_allocate(BlockDriverState *bs, int l1_index)
270 {
271     BDRVQcow2State *s = bs->opaque;
272     uint64_t old_l2_offset;
273     uint64_t *l2_slice = NULL;
274     unsigned slice, slice_size2, n_slices;
275     int64_t l2_offset;
276     int ret;
277 
278     old_l2_offset = s->l1_table[l1_index];
279 
280     trace_qcow2_l2_allocate(bs, l1_index);
281 
282     /* allocate a new l2 entry */
283 
284     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
285     if (l2_offset < 0) {
286         ret = l2_offset;
287         goto fail;
288     }
289 
290     /* The offset must fit in the offset field of the L1 table entry */
291     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
292 
293     /* If we're allocating the table at offset 0 then something is wrong */
294     if (l2_offset == 0) {
295         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296                                 "allocation of L2 table at offset 0");
297         ret = -EIO;
298         goto fail;
299     }
300 
301     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
302     if (ret < 0) {
303         goto fail;
304     }
305 
306     /* allocate a new entry in the l2 cache */
307 
308     slice_size2 = s->l2_slice_size * l2_entry_size(s);
309     n_slices = s->cluster_size / slice_size2;
310 
311     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
312     for (slice = 0; slice < n_slices; slice++) {
313         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
314                                     l2_offset + slice * slice_size2,
315                                     (void **) &l2_slice);
316         if (ret < 0) {
317             goto fail;
318         }
319 
320         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
321             /* if there was no old l2 table, clear the new slice */
322             memset(l2_slice, 0, slice_size2);
323         } else {
324             uint64_t *old_slice;
325             uint64_t old_l2_slice_offset =
326                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
327 
328             /* if there was an old l2 table, read a slice from the disk */
329             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
330             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331                                   (void **) &old_slice);
332             if (ret < 0) {
333                 goto fail;
334             }
335 
336             memcpy(l2_slice, old_slice, slice_size2);
337 
338             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
339         }
340 
341         /* write the l2 slice to the file */
342         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
343 
344         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
345         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
347     }
348 
349     ret = qcow2_cache_flush(bs, s->l2_table_cache);
350     if (ret < 0) {
351         goto fail;
352     }
353 
354     /* update the L1 entry */
355     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
356     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
357     ret = qcow2_write_l1_entry(bs, l1_index);
358     if (ret < 0) {
359         goto fail;
360     }
361 
362     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
363     return 0;
364 
365 fail:
366     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
367     if (l2_slice != NULL) {
368         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
369     }
370     s->l1_table[l1_index] = old_l2_offset;
371     if (l2_offset > 0) {
372         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
373                             QCOW2_DISCARD_ALWAYS);
374     }
375     return ret;
376 }
377 
378 /*
379  * For a given L2 entry, count the number of contiguous subclusters of
380  * the same type starting from @sc_from. Compressed clusters are
381  * treated as if they were divided into subclusters of size
382  * s->subcluster_size.
383  *
384  * Return the number of contiguous subclusters and set @type to the
385  * subcluster type.
386  *
387  * If the L2 entry is invalid return -errno and set @type to
388  * QCOW2_SUBCLUSTER_INVALID.
389  */
390 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
391                                            uint64_t l2_entry,
392                                            uint64_t l2_bitmap,
393                                            unsigned sc_from,
394                                            QCow2SubclusterType *type)
395 {
396     BDRVQcow2State *s = bs->opaque;
397     uint32_t val;
398 
399     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
400 
401     if (*type == QCOW2_SUBCLUSTER_INVALID) {
402         return -EINVAL;
403     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
404         return s->subclusters_per_cluster - sc_from;
405     }
406 
407     switch (*type) {
408     case QCOW2_SUBCLUSTER_NORMAL:
409         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
410         return cto32(val) - sc_from;
411 
412     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
413     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
414         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
415         return cto32(val) - sc_from;
416 
417     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
418     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
419         val = ((l2_bitmap >> 32) | l2_bitmap)
420             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
421         return ctz32(val) - sc_from;
422 
423     default:
424         g_assert_not_reached();
425     }
426 }
427 
428 /*
429  * Return the number of contiguous subclusters of the exact same type
430  * in a given L2 slice, starting from cluster @l2_index, subcluster
431  * @sc_index. Allocated subclusters are required to be contiguous in
432  * the image file.
433  * At most @nb_clusters are checked (note that this means clusters,
434  * not subclusters).
435  * Compressed clusters are always processed one by one but for the
436  * purpose of this count they are treated as if they were divided into
437  * subclusters of size s->subcluster_size.
438  * On failure return -errno and update @l2_index to point to the
439  * invalid entry.
440  */
441 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
442                                         unsigned sc_index, uint64_t *l2_slice,
443                                         unsigned *l2_index)
444 {
445     BDRVQcow2State *s = bs->opaque;
446     int i, count = 0;
447     bool check_offset = false;
448     uint64_t expected_offset = 0;
449     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
450 
451     assert(*l2_index + nb_clusters <= s->l2_slice_size);
452 
453     for (i = 0; i < nb_clusters; i++) {
454         unsigned first_sc = (i == 0) ? sc_index : 0;
455         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
456         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
457         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
458                                                   first_sc, &type);
459         if (ret < 0) {
460             *l2_index += i; /* Point to the invalid entry */
461             return -EIO;
462         }
463         if (i == 0) {
464             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
465                 /* Compressed clusters are always processed one by one */
466                 return ret;
467             }
468             expected_type = type;
469             expected_offset = l2_entry & L2E_OFFSET_MASK;
470             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
471                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
472                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
473         } else if (type != expected_type) {
474             break;
475         } else if (check_offset) {
476             expected_offset += s->cluster_size;
477             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
478                 break;
479             }
480         }
481         count += ret;
482         /* Stop if there are type changes before the end of the cluster */
483         if (first_sc + ret < s->subclusters_per_cluster) {
484             break;
485         }
486     }
487 
488     return count;
489 }
490 
491 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
492                                             uint64_t src_cluster_offset,
493                                             unsigned offset_in_cluster,
494                                             QEMUIOVector *qiov)
495 {
496     int ret;
497 
498     if (qiov->size == 0) {
499         return 0;
500     }
501 
502     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
503 
504     if (!bs->drv) {
505         return -ENOMEDIUM;
506     }
507 
508     /* Call .bdrv_co_readv() directly instead of using the public block-layer
509      * interface.  This avoids double I/O throttling and request tracking,
510      * which can lead to deadlock when block layer copy-on-read is enabled.
511      */
512     ret = bs->drv->bdrv_co_preadv_part(bs,
513                                        src_cluster_offset + offset_in_cluster,
514                                        qiov->size, qiov, 0, 0);
515     if (ret < 0) {
516         return ret;
517     }
518 
519     return 0;
520 }
521 
522 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
523                                              uint64_t cluster_offset,
524                                              unsigned offset_in_cluster,
525                                              QEMUIOVector *qiov)
526 {
527     BDRVQcow2State *s = bs->opaque;
528     int ret;
529 
530     if (qiov->size == 0) {
531         return 0;
532     }
533 
534     ret = qcow2_pre_write_overlap_check(bs, 0,
535             cluster_offset + offset_in_cluster, qiov->size, true);
536     if (ret < 0) {
537         return ret;
538     }
539 
540     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
541     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
542                           qiov->size, qiov, 0);
543     if (ret < 0) {
544         return ret;
545     }
546 
547     return 0;
548 }
549 
550 
551 /*
552  * get_host_offset
553  *
554  * For a given offset of the virtual disk find the equivalent host
555  * offset in the qcow2 file and store it in *host_offset. Neither
556  * offset needs to be aligned to a cluster boundary.
557  *
558  * If the cluster is unallocated then *host_offset will be 0.
559  * If the cluster is compressed then *host_offset will contain the
560  * complete compressed cluster descriptor.
561  *
562  * On entry, *bytes is the maximum number of contiguous bytes starting at
563  * offset that we are interested in.
564  *
565  * On exit, *bytes is the number of bytes starting at offset that have the same
566  * subcluster type and (if applicable) are stored contiguously in the image
567  * file. The subcluster type is stored in *subcluster_type.
568  * Compressed clusters are always processed one by one.
569  *
570  * Returns 0 on success, -errno in error cases.
571  */
572 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
573                           unsigned int *bytes, uint64_t *host_offset,
574                           QCow2SubclusterType *subcluster_type)
575 {
576     BDRVQcow2State *s = bs->opaque;
577     unsigned int l2_index, sc_index;
578     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
579     int sc;
580     unsigned int offset_in_cluster;
581     uint64_t bytes_available, bytes_needed, nb_clusters;
582     QCow2SubclusterType type;
583     int ret;
584 
585     offset_in_cluster = offset_into_cluster(s, offset);
586     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
587 
588     /* compute how many bytes there are between the start of the cluster
589      * containing offset and the end of the l2 slice that contains
590      * the entry pointing to it */
591     bytes_available =
592         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
593         << s->cluster_bits;
594 
595     if (bytes_needed > bytes_available) {
596         bytes_needed = bytes_available;
597     }
598 
599     *host_offset = 0;
600 
601     /* seek to the l2 offset in the l1 table */
602 
603     l1_index = offset_to_l1_index(s, offset);
604     if (l1_index >= s->l1_size) {
605         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
606         goto out;
607     }
608 
609     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
610     if (!l2_offset) {
611         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
612         goto out;
613     }
614 
615     if (offset_into_cluster(s, l2_offset)) {
616         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
617                                 " unaligned (L1 index: %#" PRIx64 ")",
618                                 l2_offset, l1_index);
619         return -EIO;
620     }
621 
622     /* load the l2 slice in memory */
623 
624     ret = l2_load(bs, offset, l2_offset, &l2_slice);
625     if (ret < 0) {
626         return ret;
627     }
628 
629     /* find the cluster offset for the given disk offset */
630 
631     l2_index = offset_to_l2_slice_index(s, offset);
632     sc_index = offset_to_sc_index(s, offset);
633     l2_entry = get_l2_entry(s, l2_slice, l2_index);
634     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
635 
636     nb_clusters = size_to_clusters(s, bytes_needed);
637     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
638      * integers; the minimum cluster size is 512, so this assertion is always
639      * true */
640     assert(nb_clusters <= INT_MAX);
641 
642     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
643     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
644                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
645         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
646                                 " in pre-v3 image (L2 offset: %#" PRIx64
647                                 ", L2 index: %#x)", l2_offset, l2_index);
648         ret = -EIO;
649         goto fail;
650     }
651     switch (type) {
652     case QCOW2_SUBCLUSTER_INVALID:
653         break; /* This is handled by count_contiguous_subclusters() below */
654     case QCOW2_SUBCLUSTER_COMPRESSED:
655         if (has_data_file(bs)) {
656             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
657                                     "entry found in image with external data "
658                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
659                                     "%#x)", l2_offset, l2_index);
660             ret = -EIO;
661             goto fail;
662         }
663         *host_offset = l2_entry & L2E_COMPRESSED_OFFSET_SIZE_MASK;
664         break;
665     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
666     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
667         break;
668     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
669     case QCOW2_SUBCLUSTER_NORMAL:
670     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
671         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
672         *host_offset = host_cluster_offset + offset_in_cluster;
673         if (offset_into_cluster(s, host_cluster_offset)) {
674             qcow2_signal_corruption(bs, true, -1, -1,
675                                     "Cluster allocation offset %#"
676                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
677                                     ", L2 index: %#x)", host_cluster_offset,
678                                     l2_offset, l2_index);
679             ret = -EIO;
680             goto fail;
681         }
682         if (has_data_file(bs) && *host_offset != offset) {
683             qcow2_signal_corruption(bs, true, -1, -1,
684                                     "External data file host cluster offset %#"
685                                     PRIx64 " does not match guest cluster "
686                                     "offset: %#" PRIx64
687                                     ", L2 index: %#x)", host_cluster_offset,
688                                     offset - offset_in_cluster, l2_index);
689             ret = -EIO;
690             goto fail;
691         }
692         break;
693     }
694     default:
695         abort();
696     }
697 
698     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
699                                       l2_slice, &l2_index);
700     if (sc < 0) {
701         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
702                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
703                                 l2_offset, l2_index);
704         ret = -EIO;
705         goto fail;
706     }
707     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
708 
709     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
710 
711 out:
712     if (bytes_available > bytes_needed) {
713         bytes_available = bytes_needed;
714     }
715 
716     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
717      * subtracting offset_in_cluster will therefore definitely yield something
718      * not exceeding UINT_MAX */
719     assert(bytes_available - offset_in_cluster <= UINT_MAX);
720     *bytes = bytes_available - offset_in_cluster;
721 
722     *subcluster_type = type;
723 
724     return 0;
725 
726 fail:
727     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
728     return ret;
729 }
730 
731 /*
732  * get_cluster_table
733  *
734  * for a given disk offset, load (and allocate if needed)
735  * the appropriate slice of its l2 table.
736  *
737  * the cluster index in the l2 slice is given to the caller.
738  *
739  * Returns 0 on success, -errno in failure case
740  */
741 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
742                              uint64_t **new_l2_slice,
743                              int *new_l2_index)
744 {
745     BDRVQcow2State *s = bs->opaque;
746     unsigned int l2_index;
747     uint64_t l1_index, l2_offset;
748     uint64_t *l2_slice = NULL;
749     int ret;
750 
751     /* seek to the l2 offset in the l1 table */
752 
753     l1_index = offset_to_l1_index(s, offset);
754     if (l1_index >= s->l1_size) {
755         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
756         if (ret < 0) {
757             return ret;
758         }
759     }
760 
761     assert(l1_index < s->l1_size);
762     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
763     if (offset_into_cluster(s, l2_offset)) {
764         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
765                                 " unaligned (L1 index: %#" PRIx64 ")",
766                                 l2_offset, l1_index);
767         return -EIO;
768     }
769 
770     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
771         /* First allocate a new L2 table (and do COW if needed) */
772         ret = l2_allocate(bs, l1_index);
773         if (ret < 0) {
774             return ret;
775         }
776 
777         /* Then decrease the refcount of the old table */
778         if (l2_offset) {
779             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
780                                 QCOW2_DISCARD_OTHER);
781         }
782 
783         /* Get the offset of the newly-allocated l2 table */
784         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
785         assert(offset_into_cluster(s, l2_offset) == 0);
786     }
787 
788     /* load the l2 slice in memory */
789     ret = l2_load(bs, offset, l2_offset, &l2_slice);
790     if (ret < 0) {
791         return ret;
792     }
793 
794     /* find the cluster offset for the given disk offset */
795 
796     l2_index = offset_to_l2_slice_index(s, offset);
797 
798     *new_l2_slice = l2_slice;
799     *new_l2_index = l2_index;
800 
801     return 0;
802 }
803 
804 /*
805  * alloc_compressed_cluster_offset
806  *
807  * For a given offset on the virtual disk, allocate a new compressed cluster
808  * and put the host offset of the cluster into *host_offset. If a cluster is
809  * already allocated at the offset, return an error.
810  *
811  * Return 0 on success and -errno in error cases
812  */
813 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
814                                           uint64_t offset,
815                                           int compressed_size,
816                                           uint64_t *host_offset)
817 {
818     BDRVQcow2State *s = bs->opaque;
819     int l2_index, ret;
820     uint64_t *l2_slice;
821     int64_t cluster_offset;
822     int nb_csectors;
823 
824     if (has_data_file(bs)) {
825         return 0;
826     }
827 
828     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
829     if (ret < 0) {
830         return ret;
831     }
832 
833     /* Compression can't overwrite anything. Fail if the cluster was already
834      * allocated. */
835     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
836     if (cluster_offset & L2E_OFFSET_MASK) {
837         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
838         return -EIO;
839     }
840 
841     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
842     if (cluster_offset < 0) {
843         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
844         return cluster_offset;
845     }
846 
847     nb_csectors =
848         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
849         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
850 
851     /* The offset and size must fit in their fields of the L2 table entry */
852     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
853     assert((nb_csectors & s->csize_mask) == nb_csectors);
854 
855     cluster_offset |= QCOW_OFLAG_COMPRESSED |
856                       ((uint64_t)nb_csectors << s->csize_shift);
857 
858     /* update L2 table */
859 
860     /* compressed clusters never have the copied flag */
861 
862     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
863     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
864     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
865     if (has_subclusters(s)) {
866         set_l2_bitmap(s, l2_slice, l2_index, 0);
867     }
868     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
869 
870     *host_offset = cluster_offset & s->cluster_offset_mask;
871     return 0;
872 }
873 
874 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
875 {
876     BDRVQcow2State *s = bs->opaque;
877     Qcow2COWRegion *start = &m->cow_start;
878     Qcow2COWRegion *end = &m->cow_end;
879     unsigned buffer_size;
880     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
881     bool merge_reads;
882     uint8_t *start_buffer, *end_buffer;
883     QEMUIOVector qiov;
884     int ret;
885 
886     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
887     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
888     assert(start->offset + start->nb_bytes <= end->offset);
889 
890     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
891         return 0;
892     }
893 
894     /* If we have to read both the start and end COW regions and the
895      * middle region is not too large then perform just one read
896      * operation */
897     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
898     if (merge_reads) {
899         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
900     } else {
901         /* If we have to do two reads, add some padding in the middle
902          * if necessary to make sure that the end region is optimally
903          * aligned. */
904         size_t align = bdrv_opt_mem_align(bs);
905         assert(align > 0 && align <= UINT_MAX);
906         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
907                UINT_MAX - end->nb_bytes);
908         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
909     }
910 
911     /* Reserve a buffer large enough to store all the data that we're
912      * going to read */
913     start_buffer = qemu_try_blockalign(bs, buffer_size);
914     if (start_buffer == NULL) {
915         return -ENOMEM;
916     }
917     /* The part of the buffer where the end region is located */
918     end_buffer = start_buffer + buffer_size - end->nb_bytes;
919 
920     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
921                                 qemu_iovec_subvec_niov(m->data_qiov,
922                                                        m->data_qiov_offset,
923                                                        data_bytes)
924                                 : 0));
925 
926     qemu_co_mutex_unlock(&s->lock);
927     /* First we read the existing data from both COW regions. We
928      * either read the whole region in one go, or the start and end
929      * regions separately. */
930     if (merge_reads) {
931         qemu_iovec_add(&qiov, start_buffer, buffer_size);
932         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
933     } else {
934         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
935         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
936         if (ret < 0) {
937             goto fail;
938         }
939 
940         qemu_iovec_reset(&qiov);
941         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
942         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
943     }
944     if (ret < 0) {
945         goto fail;
946     }
947 
948     /* Encrypt the data if necessary before writing it */
949     if (bs->encrypted) {
950         ret = qcow2_co_encrypt(bs,
951                                m->alloc_offset + start->offset,
952                                m->offset + start->offset,
953                                start_buffer, start->nb_bytes);
954         if (ret < 0) {
955             goto fail;
956         }
957 
958         ret = qcow2_co_encrypt(bs,
959                                m->alloc_offset + end->offset,
960                                m->offset + end->offset,
961                                end_buffer, end->nb_bytes);
962         if (ret < 0) {
963             goto fail;
964         }
965     }
966 
967     /* And now we can write everything. If we have the guest data we
968      * can write everything in one single operation */
969     if (m->data_qiov) {
970         qemu_iovec_reset(&qiov);
971         if (start->nb_bytes) {
972             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
973         }
974         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
975         if (end->nb_bytes) {
976             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
977         }
978         /* NOTE: we have a write_aio blkdebug event here followed by
979          * a cow_write one in do_perform_cow_write(), but there's only
980          * one single I/O operation */
981         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
982         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
983     } else {
984         /* If there's no guest data then write both COW regions separately */
985         qemu_iovec_reset(&qiov);
986         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
987         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
988         if (ret < 0) {
989             goto fail;
990         }
991 
992         qemu_iovec_reset(&qiov);
993         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
994         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
995     }
996 
997 fail:
998     qemu_co_mutex_lock(&s->lock);
999 
1000     /*
1001      * Before we update the L2 table to actually point to the new cluster, we
1002      * need to be sure that the refcounts have been increased and COW was
1003      * handled.
1004      */
1005     if (ret == 0) {
1006         qcow2_cache_depends_on_flush(s->l2_table_cache);
1007     }
1008 
1009     qemu_vfree(start_buffer);
1010     qemu_iovec_destroy(&qiov);
1011     return ret;
1012 }
1013 
1014 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1015 {
1016     BDRVQcow2State *s = bs->opaque;
1017     int i, j = 0, l2_index, ret;
1018     uint64_t *old_cluster, *l2_slice;
1019     uint64_t cluster_offset = m->alloc_offset;
1020 
1021     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1022     assert(m->nb_clusters > 0);
1023 
1024     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1025     if (old_cluster == NULL) {
1026         ret = -ENOMEM;
1027         goto err;
1028     }
1029 
1030     /* copy content of unmodified sectors */
1031     ret = perform_cow(bs, m);
1032     if (ret < 0) {
1033         goto err;
1034     }
1035 
1036     /* Update L2 table. */
1037     if (s->use_lazy_refcounts) {
1038         qcow2_mark_dirty(bs);
1039     }
1040     if (qcow2_need_accurate_refcounts(s)) {
1041         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1042                                    s->refcount_block_cache);
1043     }
1044 
1045     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1046     if (ret < 0) {
1047         goto err;
1048     }
1049     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1050 
1051     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1052     for (i = 0; i < m->nb_clusters; i++) {
1053         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1054         /* if two concurrent writes happen to the same unallocated cluster
1055          * each write allocates separate cluster and writes data concurrently.
1056          * The first one to complete updates l2 table with pointer to its
1057          * cluster the second one has to do RMW (which is done above by
1058          * perform_cow()), update l2 table with its cluster pointer and free
1059          * old cluster. This is what this loop does */
1060         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1061             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1062         }
1063 
1064         /* The offset must fit in the offset field of the L2 table entry */
1065         assert((offset & L2E_OFFSET_MASK) == offset);
1066 
1067         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1068 
1069         /* Update bitmap with the subclusters that were just written */
1070         if (has_subclusters(s) && !m->prealloc) {
1071             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1072             unsigned written_from = m->cow_start.offset;
1073             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes ?:
1074                 m->nb_clusters << s->cluster_bits;
1075             int first_sc, last_sc;
1076             /* Narrow written_from and written_to down to the current cluster */
1077             written_from = MAX(written_from, i << s->cluster_bits);
1078             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1079             assert(written_from < written_to);
1080             first_sc = offset_to_sc_index(s, written_from);
1081             last_sc  = offset_to_sc_index(s, written_to - 1);
1082             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1083             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1084             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1085         }
1086      }
1087 
1088 
1089     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1090 
1091     /*
1092      * If this was a COW, we need to decrease the refcount of the old cluster.
1093      *
1094      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1095      * clusters), the next write will reuse them anyway.
1096      */
1097     if (!m->keep_old_clusters && j != 0) {
1098         for (i = 0; i < j; i++) {
1099             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1100         }
1101     }
1102 
1103     ret = 0;
1104 err:
1105     g_free(old_cluster);
1106     return ret;
1107  }
1108 
1109 /**
1110  * Frees the allocated clusters because the request failed and they won't
1111  * actually be linked.
1112  */
1113 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1114 {
1115     BDRVQcow2State *s = bs->opaque;
1116     if (!has_data_file(bs) && !m->keep_old_clusters) {
1117         qcow2_free_clusters(bs, m->alloc_offset,
1118                             m->nb_clusters << s->cluster_bits,
1119                             QCOW2_DISCARD_NEVER);
1120     }
1121 }
1122 
1123 /*
1124  * For a given write request, create a new QCowL2Meta structure, add
1125  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1126  * request does not need copy-on-write or changes to the L2 metadata
1127  * then this function does nothing.
1128  *
1129  * @host_cluster_offset points to the beginning of the first cluster.
1130  *
1131  * @guest_offset and @bytes indicate the offset and length of the
1132  * request.
1133  *
1134  * @l2_slice contains the L2 entries of all clusters involved in this
1135  * write request.
1136  *
1137  * If @keep_old is true it means that the clusters were already
1138  * allocated and will be overwritten. If false then the clusters are
1139  * new and we have to decrease the reference count of the old ones.
1140  *
1141  * Returns 0 on success, -errno on failure.
1142  */
1143 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1144                              uint64_t guest_offset, unsigned bytes,
1145                              uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1146 {
1147     BDRVQcow2State *s = bs->opaque;
1148     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1149     uint64_t l2_entry, l2_bitmap;
1150     unsigned cow_start_from, cow_end_to;
1151     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1152     unsigned cow_end_from = cow_start_to + bytes;
1153     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1154     QCowL2Meta *old_m = *m;
1155     QCow2SubclusterType type;
1156     int i;
1157     bool skip_cow = keep_old;
1158 
1159     assert(nb_clusters <= s->l2_slice_size - l2_index);
1160 
1161     /* Check the type of all affected subclusters */
1162     for (i = 0; i < nb_clusters; i++) {
1163         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1164         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1165         if (skip_cow) {
1166             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1167             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1168             int first_sc = offset_to_sc_index(s, write_from);
1169             int last_sc = offset_to_sc_index(s, write_to - 1);
1170             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1171                                                       first_sc, &type);
1172             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1173             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1174                 skip_cow = false;
1175             }
1176         } else {
1177             /* If we can't skip the cow we can still look for invalid entries */
1178             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1179         }
1180         if (type == QCOW2_SUBCLUSTER_INVALID) {
1181             int l1_index = offset_to_l1_index(s, guest_offset);
1182             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1183             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1184                                     "entry found (L2 offset: %#" PRIx64
1185                                     ", L2 index: %#x)",
1186                                     l2_offset, l2_index + i);
1187             return -EIO;
1188         }
1189     }
1190 
1191     if (skip_cow) {
1192         return 0;
1193     }
1194 
1195     /* Get the L2 entry of the first cluster */
1196     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1197     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1198     sc_index = offset_to_sc_index(s, guest_offset);
1199     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1200 
1201     if (!keep_old) {
1202         switch (type) {
1203         case QCOW2_SUBCLUSTER_COMPRESSED:
1204             cow_start_from = 0;
1205             break;
1206         case QCOW2_SUBCLUSTER_NORMAL:
1207         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1208         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1209             if (has_subclusters(s)) {
1210                 /* Skip all leading zero and unallocated subclusters */
1211                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1212                 cow_start_from =
1213                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1214             } else {
1215                 cow_start_from = 0;
1216             }
1217             break;
1218         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1219         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1220             cow_start_from = sc_index << s->subcluster_bits;
1221             break;
1222         default:
1223             g_assert_not_reached();
1224         }
1225     } else {
1226         switch (type) {
1227         case QCOW2_SUBCLUSTER_NORMAL:
1228             cow_start_from = cow_start_to;
1229             break;
1230         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1231         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1232             cow_start_from = sc_index << s->subcluster_bits;
1233             break;
1234         default:
1235             g_assert_not_reached();
1236         }
1237     }
1238 
1239     /* Get the L2 entry of the last cluster */
1240     l2_index += nb_clusters - 1;
1241     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1242     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1243     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1244     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1245 
1246     if (!keep_old) {
1247         switch (type) {
1248         case QCOW2_SUBCLUSTER_COMPRESSED:
1249             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1250             break;
1251         case QCOW2_SUBCLUSTER_NORMAL:
1252         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1253         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1254             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1255             if (has_subclusters(s)) {
1256                 /* Skip all trailing zero and unallocated subclusters */
1257                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1258                 cow_end_to -=
1259                     MIN(s->subclusters_per_cluster - sc_index - 1,
1260                         clz32(alloc_bitmap)) << s->subcluster_bits;
1261             }
1262             break;
1263         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1264         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1265             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1266             break;
1267         default:
1268             g_assert_not_reached();
1269         }
1270     } else {
1271         switch (type) {
1272         case QCOW2_SUBCLUSTER_NORMAL:
1273             cow_end_to = cow_end_from;
1274             break;
1275         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1276         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1277             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1278             break;
1279         default:
1280             g_assert_not_reached();
1281         }
1282     }
1283 
1284     *m = g_malloc0(sizeof(**m));
1285     **m = (QCowL2Meta) {
1286         .next           = old_m,
1287 
1288         .alloc_offset   = host_cluster_offset,
1289         .offset         = start_of_cluster(s, guest_offset),
1290         .nb_clusters    = nb_clusters,
1291 
1292         .keep_old_clusters = keep_old,
1293 
1294         .cow_start = {
1295             .offset     = cow_start_from,
1296             .nb_bytes   = cow_start_to - cow_start_from,
1297         },
1298         .cow_end = {
1299             .offset     = cow_end_from,
1300             .nb_bytes   = cow_end_to - cow_end_from,
1301         },
1302     };
1303 
1304     qemu_co_queue_init(&(*m)->dependent_requests);
1305     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1306 
1307     return 0;
1308 }
1309 
1310 /*
1311  * Returns true if writing to the cluster pointed to by @l2_entry
1312  * requires a new allocation (that is, if the cluster is unallocated
1313  * or has refcount > 1 and therefore cannot be written in-place).
1314  */
1315 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1316 {
1317     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1318     case QCOW2_CLUSTER_NORMAL:
1319     case QCOW2_CLUSTER_ZERO_ALLOC:
1320         if (l2_entry & QCOW_OFLAG_COPIED) {
1321             return false;
1322         }
1323         /* fallthrough */
1324     case QCOW2_CLUSTER_UNALLOCATED:
1325     case QCOW2_CLUSTER_COMPRESSED:
1326     case QCOW2_CLUSTER_ZERO_PLAIN:
1327         return true;
1328     default:
1329         abort();
1330     }
1331 }
1332 
1333 /*
1334  * Returns the number of contiguous clusters that can be written to
1335  * using one single write request, starting from @l2_index.
1336  * At most @nb_clusters are checked.
1337  *
1338  * If @new_alloc is true this counts clusters that are either
1339  * unallocated, or allocated but with refcount > 1 (so they need to be
1340  * newly allocated and COWed).
1341  *
1342  * If @new_alloc is false this counts clusters that are already
1343  * allocated and can be overwritten in-place (this includes clusters
1344  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1345  */
1346 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1347                                        uint64_t *l2_slice, int l2_index,
1348                                        bool new_alloc)
1349 {
1350     BDRVQcow2State *s = bs->opaque;
1351     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1352     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1353     int i;
1354 
1355     for (i = 0; i < nb_clusters; i++) {
1356         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1357         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1358             break;
1359         }
1360         if (!new_alloc) {
1361             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1362                 break;
1363             }
1364             expected_offset += s->cluster_size;
1365         }
1366     }
1367 
1368     assert(i <= nb_clusters);
1369     return i;
1370 }
1371 
1372 /*
1373  * Check if there already is an AIO write request in flight which allocates
1374  * the same cluster. In this case we need to wait until the previous
1375  * request has completed and updated the L2 table accordingly.
1376  *
1377  * Returns:
1378  *   0       if there was no dependency. *cur_bytes indicates the number of
1379  *           bytes from guest_offset that can be read before the next
1380  *           dependency must be processed (or the request is complete)
1381  *
1382  *   -EAGAIN if we had to wait for another request, previously gathered
1383  *           information on cluster allocation may be invalid now. The caller
1384  *           must start over anyway, so consider *cur_bytes undefined.
1385  */
1386 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1387     uint64_t *cur_bytes, QCowL2Meta **m)
1388 {
1389     BDRVQcow2State *s = bs->opaque;
1390     QCowL2Meta *old_alloc;
1391     uint64_t bytes = *cur_bytes;
1392 
1393     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1394 
1395         uint64_t start = guest_offset;
1396         uint64_t end = start + bytes;
1397         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1398         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1399 
1400         if (end <= old_start || start >= old_end) {
1401             /* No intersection */
1402         } else {
1403             if (start < old_start) {
1404                 /* Stop at the start of a running allocation */
1405                 bytes = old_start - start;
1406             } else {
1407                 bytes = 0;
1408             }
1409 
1410             /* Stop if already an l2meta exists. After yielding, it wouldn't
1411              * be valid any more, so we'd have to clean up the old L2Metas
1412              * and deal with requests depending on them before starting to
1413              * gather new ones. Not worth the trouble. */
1414             if (bytes == 0 && *m) {
1415                 *cur_bytes = 0;
1416                 return 0;
1417             }
1418 
1419             if (bytes == 0) {
1420                 /* Wait for the dependency to complete. We need to recheck
1421                  * the free/allocated clusters when we continue. */
1422                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1423                 return -EAGAIN;
1424             }
1425         }
1426     }
1427 
1428     /* Make sure that existing clusters and new allocations are only used up to
1429      * the next dependency if we shortened the request above */
1430     *cur_bytes = bytes;
1431 
1432     return 0;
1433 }
1434 
1435 /*
1436  * Checks how many already allocated clusters that don't require a new
1437  * allocation there are at the given guest_offset (up to *bytes).
1438  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1439  * beginning at this host offset are counted.
1440  *
1441  * Note that guest_offset may not be cluster aligned. In this case, the
1442  * returned *host_offset points to exact byte referenced by guest_offset and
1443  * therefore isn't cluster aligned as well.
1444  *
1445  * Returns:
1446  *   0:     if no allocated clusters are available at the given offset.
1447  *          *bytes is normally unchanged. It is set to 0 if the cluster
1448  *          is allocated and can be overwritten in-place but doesn't have
1449  *          the right physical offset.
1450  *
1451  *   1:     if allocated clusters that can be overwritten in place are
1452  *          available at the requested offset. *bytes may have decreased
1453  *          and describes the length of the area that can be written to.
1454  *
1455  *  -errno: in error cases
1456  */
1457 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1458     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1459 {
1460     BDRVQcow2State *s = bs->opaque;
1461     int l2_index;
1462     uint64_t l2_entry, cluster_offset;
1463     uint64_t *l2_slice;
1464     uint64_t nb_clusters;
1465     unsigned int keep_clusters;
1466     int ret;
1467 
1468     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1469                               *bytes);
1470 
1471     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1472                                       == offset_into_cluster(s, *host_offset));
1473 
1474     /*
1475      * Calculate the number of clusters to look for. We stop at L2 slice
1476      * boundaries to keep things simple.
1477      */
1478     nb_clusters =
1479         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1480 
1481     l2_index = offset_to_l2_slice_index(s, guest_offset);
1482     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1483     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1484     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1485 
1486     /* Find L2 entry for the first involved cluster */
1487     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1488     if (ret < 0) {
1489         return ret;
1490     }
1491 
1492     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1493     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1494 
1495     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1496         if (offset_into_cluster(s, cluster_offset)) {
1497             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1498                                     "%#" PRIx64 " unaligned (guest offset: %#"
1499                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1500                                     "Preallocated zero" : "Data",
1501                                     cluster_offset, guest_offset);
1502             ret = -EIO;
1503             goto out;
1504         }
1505 
1506         /* If a specific host_offset is required, check it */
1507         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1508             *bytes = 0;
1509             ret = 0;
1510             goto out;
1511         }
1512 
1513         /* We keep all QCOW_OFLAG_COPIED clusters */
1514         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1515                                                     l2_index, false);
1516         assert(keep_clusters <= nb_clusters);
1517 
1518         *bytes = MIN(*bytes,
1519                  keep_clusters * s->cluster_size
1520                  - offset_into_cluster(s, guest_offset));
1521         assert(*bytes != 0);
1522 
1523         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1524                                 *bytes, l2_slice, m, true);
1525         if (ret < 0) {
1526             goto out;
1527         }
1528 
1529         ret = 1;
1530     } else {
1531         ret = 0;
1532     }
1533 
1534     /* Cleanup */
1535 out:
1536     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1537 
1538     /* Only return a host offset if we actually made progress. Otherwise we
1539      * would make requirements for handle_alloc() that it can't fulfill */
1540     if (ret > 0) {
1541         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1542     }
1543 
1544     return ret;
1545 }
1546 
1547 /*
1548  * Allocates new clusters for the given guest_offset.
1549  *
1550  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1551  * contain the number of clusters that have been allocated and are contiguous
1552  * in the image file.
1553  *
1554  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1555  * at which the new clusters must start. *nb_clusters can be 0 on return in
1556  * this case if the cluster at host_offset is already in use. If *host_offset
1557  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1558  *
1559  * *host_offset is updated to contain the offset into the image file at which
1560  * the first allocated cluster starts.
1561  *
1562  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1563  * function has been waiting for another request and the allocation must be
1564  * restarted, but the whole request should not be failed.
1565  */
1566 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1567                                    uint64_t *host_offset, uint64_t *nb_clusters)
1568 {
1569     BDRVQcow2State *s = bs->opaque;
1570 
1571     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1572                                          *host_offset, *nb_clusters);
1573 
1574     if (has_data_file(bs)) {
1575         assert(*host_offset == INV_OFFSET ||
1576                *host_offset == start_of_cluster(s, guest_offset));
1577         *host_offset = start_of_cluster(s, guest_offset);
1578         return 0;
1579     }
1580 
1581     /* Allocate new clusters */
1582     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1583     if (*host_offset == INV_OFFSET) {
1584         int64_t cluster_offset =
1585             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1586         if (cluster_offset < 0) {
1587             return cluster_offset;
1588         }
1589         *host_offset = cluster_offset;
1590         return 0;
1591     } else {
1592         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1593         if (ret < 0) {
1594             return ret;
1595         }
1596         *nb_clusters = ret;
1597         return 0;
1598     }
1599 }
1600 
1601 /*
1602  * Allocates new clusters for an area that is either still unallocated or
1603  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1604  * clusters are only allocated if the new allocation can match the specified
1605  * host offset.
1606  *
1607  * Note that guest_offset may not be cluster aligned. In this case, the
1608  * returned *host_offset points to exact byte referenced by guest_offset and
1609  * therefore isn't cluster aligned as well.
1610  *
1611  * Returns:
1612  *   0:     if no clusters could be allocated. *bytes is set to 0,
1613  *          *host_offset is left unchanged.
1614  *
1615  *   1:     if new clusters were allocated. *bytes may be decreased if the
1616  *          new allocation doesn't cover all of the requested area.
1617  *          *host_offset is updated to contain the host offset of the first
1618  *          newly allocated cluster.
1619  *
1620  *  -errno: in error cases
1621  */
1622 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1623     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1624 {
1625     BDRVQcow2State *s = bs->opaque;
1626     int l2_index;
1627     uint64_t *l2_slice;
1628     uint64_t nb_clusters;
1629     int ret;
1630 
1631     uint64_t alloc_cluster_offset;
1632 
1633     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1634                              *bytes);
1635     assert(*bytes > 0);
1636 
1637     /*
1638      * Calculate the number of clusters to look for. We stop at L2 slice
1639      * boundaries to keep things simple.
1640      */
1641     nb_clusters =
1642         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1643 
1644     l2_index = offset_to_l2_slice_index(s, guest_offset);
1645     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1646     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1647     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1648 
1649     /* Find L2 entry for the first involved cluster */
1650     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1651     if (ret < 0) {
1652         return ret;
1653     }
1654 
1655     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1656                                               l2_slice, l2_index, true);
1657 
1658     /* This function is only called when there were no non-COW clusters, so if
1659      * we can't find any unallocated or COW clusters either, something is
1660      * wrong with our code. */
1661     assert(nb_clusters > 0);
1662 
1663     /* Allocate at a given offset in the image file */
1664     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1665         start_of_cluster(s, *host_offset);
1666     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1667                                   &nb_clusters);
1668     if (ret < 0) {
1669         goto out;
1670     }
1671 
1672     /* Can't extend contiguous allocation */
1673     if (nb_clusters == 0) {
1674         *bytes = 0;
1675         ret = 0;
1676         goto out;
1677     }
1678 
1679     assert(alloc_cluster_offset != INV_OFFSET);
1680 
1681     /*
1682      * Save info needed for meta data update.
1683      *
1684      * requested_bytes: Number of bytes from the start of the first
1685      * newly allocated cluster to the end of the (possibly shortened
1686      * before) write request.
1687      *
1688      * avail_bytes: Number of bytes from the start of the first
1689      * newly allocated to the end of the last newly allocated cluster.
1690      *
1691      * nb_bytes: The number of bytes from the start of the first
1692      * newly allocated cluster to the end of the area that the write
1693      * request actually writes to (excluding COW at the end)
1694      */
1695     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1696     int avail_bytes = nb_clusters << s->cluster_bits;
1697     int nb_bytes = MIN(requested_bytes, avail_bytes);
1698 
1699     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1700     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1701     assert(*bytes != 0);
1702 
1703     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1704                             l2_slice, m, false);
1705     if (ret < 0) {
1706         goto out;
1707     }
1708 
1709     ret = 1;
1710 
1711 out:
1712     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1713     return ret;
1714 }
1715 
1716 /*
1717  * For a given area on the virtual disk defined by @offset and @bytes,
1718  * find the corresponding area on the qcow2 image, allocating new
1719  * clusters (or subclusters) if necessary. The result can span a
1720  * combination of allocated and previously unallocated clusters.
1721  *
1722  * Note that offset may not be cluster aligned. In this case, the returned
1723  * *host_offset points to exact byte referenced by offset and therefore
1724  * isn't cluster aligned as well.
1725  *
1726  * On return, @host_offset is set to the beginning of the requested
1727  * area. This area is guaranteed to be contiguous on the qcow2 file
1728  * but it can be smaller than initially requested. In this case @bytes
1729  * is updated with the actual size.
1730  *
1731  * If any clusters or subclusters were allocated then @m contains a
1732  * list with the information of all the affected regions. Note that
1733  * this can happen regardless of whether this function succeeds or
1734  * not. The caller is responsible for updating the L2 metadata of the
1735  * allocated clusters (on success) or freeing them (on failure), and
1736  * for clearing the contents of @m afterwards in both cases.
1737  *
1738  * If the request conflicts with another write request in flight, the coroutine
1739  * is queued and will be reentered when the dependency has completed.
1740  *
1741  * Return 0 on success and -errno in error cases
1742  */
1743 int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1744                             unsigned int *bytes, uint64_t *host_offset,
1745                             QCowL2Meta **m)
1746 {
1747     BDRVQcow2State *s = bs->opaque;
1748     uint64_t start, remaining;
1749     uint64_t cluster_offset;
1750     uint64_t cur_bytes;
1751     int ret;
1752 
1753     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1754 
1755 again:
1756     start = offset;
1757     remaining = *bytes;
1758     cluster_offset = INV_OFFSET;
1759     *host_offset = INV_OFFSET;
1760     cur_bytes = 0;
1761     *m = NULL;
1762 
1763     while (true) {
1764 
1765         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1766             *host_offset = cluster_offset;
1767         }
1768 
1769         assert(remaining >= cur_bytes);
1770 
1771         start           += cur_bytes;
1772         remaining       -= cur_bytes;
1773 
1774         if (cluster_offset != INV_OFFSET) {
1775             cluster_offset += cur_bytes;
1776         }
1777 
1778         if (remaining == 0) {
1779             break;
1780         }
1781 
1782         cur_bytes = remaining;
1783 
1784         /*
1785          * Now start gathering as many contiguous clusters as possible:
1786          *
1787          * 1. Check for overlaps with in-flight allocations
1788          *
1789          *      a) Overlap not in the first cluster -> shorten this request and
1790          *         let the caller handle the rest in its next loop iteration.
1791          *
1792          *      b) Real overlaps of two requests. Yield and restart the search
1793          *         for contiguous clusters (the situation could have changed
1794          *         while we were sleeping)
1795          *
1796          *      c) TODO: Request starts in the same cluster as the in-flight
1797          *         allocation ends. Shorten the COW of the in-fight allocation,
1798          *         set cluster_offset to write to the same cluster and set up
1799          *         the right synchronisation between the in-flight request and
1800          *         the new one.
1801          */
1802         ret = handle_dependencies(bs, start, &cur_bytes, m);
1803         if (ret == -EAGAIN) {
1804             /* Currently handle_dependencies() doesn't yield if we already had
1805              * an allocation. If it did, we would have to clean up the L2Meta
1806              * structs before starting over. */
1807             assert(*m == NULL);
1808             goto again;
1809         } else if (ret < 0) {
1810             return ret;
1811         } else if (cur_bytes == 0) {
1812             break;
1813         } else {
1814             /* handle_dependencies() may have decreased cur_bytes (shortened
1815              * the allocations below) so that the next dependency is processed
1816              * correctly during the next loop iteration. */
1817         }
1818 
1819         /*
1820          * 2. Count contiguous COPIED clusters.
1821          */
1822         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1823         if (ret < 0) {
1824             return ret;
1825         } else if (ret) {
1826             continue;
1827         } else if (cur_bytes == 0) {
1828             break;
1829         }
1830 
1831         /*
1832          * 3. If the request still hasn't completed, allocate new clusters,
1833          *    considering any cluster_offset of steps 1c or 2.
1834          */
1835         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1836         if (ret < 0) {
1837             return ret;
1838         } else if (ret) {
1839             continue;
1840         } else {
1841             assert(cur_bytes == 0);
1842             break;
1843         }
1844     }
1845 
1846     *bytes -= remaining;
1847     assert(*bytes > 0);
1848     assert(*host_offset != INV_OFFSET);
1849     assert(offset_into_cluster(s, *host_offset) ==
1850            offset_into_cluster(s, offset));
1851 
1852     return 0;
1853 }
1854 
1855 /*
1856  * This discards as many clusters of nb_clusters as possible at once (i.e.
1857  * all clusters in the same L2 slice) and returns the number of discarded
1858  * clusters.
1859  */
1860 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1861                                uint64_t nb_clusters,
1862                                enum qcow2_discard_type type, bool full_discard)
1863 {
1864     BDRVQcow2State *s = bs->opaque;
1865     uint64_t *l2_slice;
1866     int l2_index;
1867     int ret;
1868     int i;
1869 
1870     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1871     if (ret < 0) {
1872         return ret;
1873     }
1874 
1875     /* Limit nb_clusters to one L2 slice */
1876     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1877     assert(nb_clusters <= INT_MAX);
1878 
1879     for (i = 0; i < nb_clusters; i++) {
1880         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1881         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1882         uint64_t new_l2_entry = old_l2_entry;
1883         uint64_t new_l2_bitmap = old_l2_bitmap;
1884         QCow2ClusterType cluster_type =
1885             qcow2_get_cluster_type(bs, old_l2_entry);
1886 
1887         /*
1888          * If full_discard is true, the cluster should not read back as zeroes,
1889          * but rather fall through to the backing file.
1890          *
1891          * If full_discard is false, make sure that a discarded area reads back
1892          * as zeroes for v3 images (we cannot do it for v2 without actually
1893          * writing a zero-filled buffer). We can skip the operation if the
1894          * cluster is already marked as zero, or if it's unallocated and we
1895          * don't have a backing file.
1896          *
1897          * TODO We might want to use bdrv_block_status(bs) here, but we're
1898          * holding s->lock, so that doesn't work today.
1899          */
1900         if (full_discard) {
1901             new_l2_entry = new_l2_bitmap = 0;
1902         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1903             if (has_subclusters(s)) {
1904                 new_l2_entry = 0;
1905                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1906             } else {
1907                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1908             }
1909         }
1910 
1911         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1912             continue;
1913         }
1914 
1915         /* First remove L2 entries */
1916         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1917         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1918         if (has_subclusters(s)) {
1919             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1920         }
1921         /* Then decrease the refcount */
1922         qcow2_free_any_cluster(bs, old_l2_entry, type);
1923     }
1924 
1925     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1926 
1927     return nb_clusters;
1928 }
1929 
1930 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1931                           uint64_t bytes, enum qcow2_discard_type type,
1932                           bool full_discard)
1933 {
1934     BDRVQcow2State *s = bs->opaque;
1935     uint64_t end_offset = offset + bytes;
1936     uint64_t nb_clusters;
1937     int64_t cleared;
1938     int ret;
1939 
1940     /* Caller must pass aligned values, except at image end */
1941     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1942     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1943            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1944 
1945     nb_clusters = size_to_clusters(s, bytes);
1946 
1947     s->cache_discards = true;
1948 
1949     /* Each L2 slice is handled by its own loop iteration */
1950     while (nb_clusters > 0) {
1951         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1952                                       full_discard);
1953         if (cleared < 0) {
1954             ret = cleared;
1955             goto fail;
1956         }
1957 
1958         nb_clusters -= cleared;
1959         offset += (cleared * s->cluster_size);
1960     }
1961 
1962     ret = 0;
1963 fail:
1964     s->cache_discards = false;
1965     qcow2_process_discards(bs, ret);
1966 
1967     return ret;
1968 }
1969 
1970 /*
1971  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1972  * all clusters in the same L2 slice) and returns the number of zeroed
1973  * clusters.
1974  */
1975 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1976                             uint64_t nb_clusters, int flags)
1977 {
1978     BDRVQcow2State *s = bs->opaque;
1979     uint64_t *l2_slice;
1980     int l2_index;
1981     int ret;
1982     int i;
1983 
1984     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1985     if (ret < 0) {
1986         return ret;
1987     }
1988 
1989     /* Limit nb_clusters to one L2 slice */
1990     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1991     assert(nb_clusters <= INT_MAX);
1992 
1993     for (i = 0; i < nb_clusters; i++) {
1994         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1995         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1996         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
1997         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
1998             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
1999         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2000         uint64_t new_l2_bitmap = old_l2_bitmap;
2001 
2002         if (has_subclusters(s)) {
2003             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2004         } else {
2005             new_l2_entry |= QCOW_OFLAG_ZERO;
2006         }
2007 
2008         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2009             continue;
2010         }
2011 
2012         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2013         if (unmap) {
2014             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2015         }
2016         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2017         if (has_subclusters(s)) {
2018             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2019         }
2020     }
2021 
2022     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2023 
2024     return nb_clusters;
2025 }
2026 
2027 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2028                                unsigned nb_subclusters)
2029 {
2030     BDRVQcow2State *s = bs->opaque;
2031     uint64_t *l2_slice;
2032     uint64_t old_l2_bitmap, l2_bitmap;
2033     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2034 
2035     /* For full clusters use zero_in_l2_slice() instead */
2036     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2037     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2038     assert(offset_into_subcluster(s, offset) == 0);
2039 
2040     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2041     if (ret < 0) {
2042         return ret;
2043     }
2044 
2045     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2046     case QCOW2_CLUSTER_COMPRESSED:
2047         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2048         goto out;
2049     case QCOW2_CLUSTER_NORMAL:
2050     case QCOW2_CLUSTER_UNALLOCATED:
2051         break;
2052     default:
2053         g_assert_not_reached();
2054     }
2055 
2056     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2057 
2058     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2059     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2060 
2061     if (old_l2_bitmap != l2_bitmap) {
2062         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2063         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2064     }
2065 
2066     ret = 0;
2067 out:
2068     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2069 
2070     return ret;
2071 }
2072 
2073 int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2074                              uint64_t bytes, int flags)
2075 {
2076     BDRVQcow2State *s = bs->opaque;
2077     uint64_t end_offset = offset + bytes;
2078     uint64_t nb_clusters;
2079     unsigned head, tail;
2080     int64_t cleared;
2081     int ret;
2082 
2083     /* If we have to stay in sync with an external data file, zero out
2084      * s->data_file first. */
2085     if (data_file_is_raw(bs)) {
2086         assert(has_data_file(bs));
2087         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2088         if (ret < 0) {
2089             return ret;
2090         }
2091     }
2092 
2093     /* Caller must pass aligned values, except at image end */
2094     assert(offset_into_subcluster(s, offset) == 0);
2095     assert(offset_into_subcluster(s, end_offset) == 0 ||
2096            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2097 
2098     /*
2099      * The zero flag is only supported by version 3 and newer. However, if we
2100      * have no backing file, we can resort to discard in version 2.
2101      */
2102     if (s->qcow_version < 3) {
2103         if (!bs->backing) {
2104             return qcow2_cluster_discard(bs, offset, bytes,
2105                                          QCOW2_DISCARD_REQUEST, false);
2106         }
2107         return -ENOTSUP;
2108     }
2109 
2110     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2111     offset += head;
2112 
2113     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2114         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2115     end_offset -= tail;
2116 
2117     s->cache_discards = true;
2118 
2119     if (head) {
2120         ret = zero_l2_subclusters(bs, offset - head,
2121                                   size_to_subclusters(s, head));
2122         if (ret < 0) {
2123             goto fail;
2124         }
2125     }
2126 
2127     /* Each L2 slice is handled by its own loop iteration */
2128     nb_clusters = size_to_clusters(s, end_offset - offset);
2129 
2130     while (nb_clusters > 0) {
2131         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2132         if (cleared < 0) {
2133             ret = cleared;
2134             goto fail;
2135         }
2136 
2137         nb_clusters -= cleared;
2138         offset += (cleared * s->cluster_size);
2139     }
2140 
2141     if (tail) {
2142         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2143         if (ret < 0) {
2144             goto fail;
2145         }
2146     }
2147 
2148     ret = 0;
2149 fail:
2150     s->cache_discards = false;
2151     qcow2_process_discards(bs, ret);
2152 
2153     return ret;
2154 }
2155 
2156 /*
2157  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2158  * non-backed non-pre-allocated zero clusters).
2159  *
2160  * l1_entries and *visited_l1_entries are used to keep track of progress for
2161  * status_cb(). l1_entries contains the total number of L1 entries and
2162  * *visited_l1_entries counts all visited L1 entries.
2163  */
2164 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2165                                       int l1_size, int64_t *visited_l1_entries,
2166                                       int64_t l1_entries,
2167                                       BlockDriverAmendStatusCB *status_cb,
2168                                       void *cb_opaque)
2169 {
2170     BDRVQcow2State *s = bs->opaque;
2171     bool is_active_l1 = (l1_table == s->l1_table);
2172     uint64_t *l2_slice = NULL;
2173     unsigned slice, slice_size2, n_slices;
2174     int ret;
2175     int i, j;
2176 
2177     /* qcow2_downgrade() is not allowed in images with subclusters */
2178     assert(!has_subclusters(s));
2179 
2180     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2181     n_slices = s->cluster_size / slice_size2;
2182 
2183     if (!is_active_l1) {
2184         /* inactive L2 tables require a buffer to be stored in when loading
2185          * them from disk */
2186         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2187         if (l2_slice == NULL) {
2188             return -ENOMEM;
2189         }
2190     }
2191 
2192     for (i = 0; i < l1_size; i++) {
2193         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2194         uint64_t l2_refcount;
2195 
2196         if (!l2_offset) {
2197             /* unallocated */
2198             (*visited_l1_entries)++;
2199             if (status_cb) {
2200                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2201             }
2202             continue;
2203         }
2204 
2205         if (offset_into_cluster(s, l2_offset)) {
2206             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2207                                     PRIx64 " unaligned (L1 index: %#x)",
2208                                     l2_offset, i);
2209             ret = -EIO;
2210             goto fail;
2211         }
2212 
2213         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2214                                  &l2_refcount);
2215         if (ret < 0) {
2216             goto fail;
2217         }
2218 
2219         for (slice = 0; slice < n_slices; slice++) {
2220             uint64_t slice_offset = l2_offset + slice * slice_size2;
2221             bool l2_dirty = false;
2222             if (is_active_l1) {
2223                 /* get active L2 tables from cache */
2224                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2225                                       (void **)&l2_slice);
2226             } else {
2227                 /* load inactive L2 tables from disk */
2228                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2229             }
2230             if (ret < 0) {
2231                 goto fail;
2232             }
2233 
2234             for (j = 0; j < s->l2_slice_size; j++) {
2235                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2236                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2237                 QCow2ClusterType cluster_type =
2238                     qcow2_get_cluster_type(bs, l2_entry);
2239 
2240                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2241                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2242                     continue;
2243                 }
2244 
2245                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2246                     if (!bs->backing) {
2247                         /*
2248                          * not backed; therefore we can simply deallocate the
2249                          * cluster. No need to call set_l2_bitmap(), this
2250                          * function doesn't support images with subclusters.
2251                          */
2252                         set_l2_entry(s, l2_slice, j, 0);
2253                         l2_dirty = true;
2254                         continue;
2255                     }
2256 
2257                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2258                     if (offset < 0) {
2259                         ret = offset;
2260                         goto fail;
2261                     }
2262 
2263                     /* The offset must fit in the offset field */
2264                     assert((offset & L2E_OFFSET_MASK) == offset);
2265 
2266                     if (l2_refcount > 1) {
2267                         /* For shared L2 tables, set the refcount accordingly
2268                          * (it is already 1 and needs to be l2_refcount) */
2269                         ret = qcow2_update_cluster_refcount(
2270                             bs, offset >> s->cluster_bits,
2271                             refcount_diff(1, l2_refcount), false,
2272                             QCOW2_DISCARD_OTHER);
2273                         if (ret < 0) {
2274                             qcow2_free_clusters(bs, offset, s->cluster_size,
2275                                                 QCOW2_DISCARD_OTHER);
2276                             goto fail;
2277                         }
2278                     }
2279                 }
2280 
2281                 if (offset_into_cluster(s, offset)) {
2282                     int l2_index = slice * s->l2_slice_size + j;
2283                     qcow2_signal_corruption(
2284                         bs, true, -1, -1,
2285                         "Cluster allocation offset "
2286                         "%#" PRIx64 " unaligned (L2 offset: %#"
2287                         PRIx64 ", L2 index: %#x)", offset,
2288                         l2_offset, l2_index);
2289                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2290                         qcow2_free_clusters(bs, offset, s->cluster_size,
2291                                             QCOW2_DISCARD_ALWAYS);
2292                     }
2293                     ret = -EIO;
2294                     goto fail;
2295                 }
2296 
2297                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2298                                                     s->cluster_size, true);
2299                 if (ret < 0) {
2300                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2301                         qcow2_free_clusters(bs, offset, s->cluster_size,
2302                                             QCOW2_DISCARD_ALWAYS);
2303                     }
2304                     goto fail;
2305                 }
2306 
2307                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2308                                          s->cluster_size, 0);
2309                 if (ret < 0) {
2310                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2311                         qcow2_free_clusters(bs, offset, s->cluster_size,
2312                                             QCOW2_DISCARD_ALWAYS);
2313                     }
2314                     goto fail;
2315                 }
2316 
2317                 if (l2_refcount == 1) {
2318                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2319                 } else {
2320                     set_l2_entry(s, l2_slice, j, offset);
2321                 }
2322                 /*
2323                  * No need to call set_l2_bitmap() after set_l2_entry() because
2324                  * this function doesn't support images with subclusters.
2325                  */
2326                 l2_dirty = true;
2327             }
2328 
2329             if (is_active_l1) {
2330                 if (l2_dirty) {
2331                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2332                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2333                 }
2334                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2335             } else {
2336                 if (l2_dirty) {
2337                     ret = qcow2_pre_write_overlap_check(
2338                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2339                         slice_offset, slice_size2, false);
2340                     if (ret < 0) {
2341                         goto fail;
2342                     }
2343 
2344                     ret = bdrv_pwrite(bs->file, slice_offset,
2345                                       l2_slice, slice_size2);
2346                     if (ret < 0) {
2347                         goto fail;
2348                     }
2349                 }
2350             }
2351         }
2352 
2353         (*visited_l1_entries)++;
2354         if (status_cb) {
2355             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2356         }
2357     }
2358 
2359     ret = 0;
2360 
2361 fail:
2362     if (l2_slice) {
2363         if (!is_active_l1) {
2364             qemu_vfree(l2_slice);
2365         } else {
2366             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2367         }
2368     }
2369     return ret;
2370 }
2371 
2372 /*
2373  * For backed images, expands all zero clusters on the image. For non-backed
2374  * images, deallocates all non-pre-allocated zero clusters (and claims the
2375  * allocation for pre-allocated ones). This is important for downgrading to a
2376  * qcow2 version which doesn't yet support metadata zero clusters.
2377  */
2378 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2379                                BlockDriverAmendStatusCB *status_cb,
2380                                void *cb_opaque)
2381 {
2382     BDRVQcow2State *s = bs->opaque;
2383     uint64_t *l1_table = NULL;
2384     int64_t l1_entries = 0, visited_l1_entries = 0;
2385     int ret;
2386     int i, j;
2387 
2388     if (status_cb) {
2389         l1_entries = s->l1_size;
2390         for (i = 0; i < s->nb_snapshots; i++) {
2391             l1_entries += s->snapshots[i].l1_size;
2392         }
2393     }
2394 
2395     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2396                                      &visited_l1_entries, l1_entries,
2397                                      status_cb, cb_opaque);
2398     if (ret < 0) {
2399         goto fail;
2400     }
2401 
2402     /* Inactive L1 tables may point to active L2 tables - therefore it is
2403      * necessary to flush the L2 table cache before trying to access the L2
2404      * tables pointed to by inactive L1 entries (else we might try to expand
2405      * zero clusters that have already been expanded); furthermore, it is also
2406      * necessary to empty the L2 table cache, since it may contain tables which
2407      * are now going to be modified directly on disk, bypassing the cache.
2408      * qcow2_cache_empty() does both for us. */
2409     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2410     if (ret < 0) {
2411         goto fail;
2412     }
2413 
2414     for (i = 0; i < s->nb_snapshots; i++) {
2415         int l1_size2;
2416         uint64_t *new_l1_table;
2417         Error *local_err = NULL;
2418 
2419         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2420                                    s->snapshots[i].l1_size, L1E_SIZE,
2421                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2422                                    &local_err);
2423         if (ret < 0) {
2424             error_report_err(local_err);
2425             goto fail;
2426         }
2427 
2428         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2429         new_l1_table = g_try_realloc(l1_table, l1_size2);
2430 
2431         if (!new_l1_table) {
2432             ret = -ENOMEM;
2433             goto fail;
2434         }
2435 
2436         l1_table = new_l1_table;
2437 
2438         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2439                          l1_table, l1_size2);
2440         if (ret < 0) {
2441             goto fail;
2442         }
2443 
2444         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2445             be64_to_cpus(&l1_table[j]);
2446         }
2447 
2448         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2449                                          &visited_l1_entries, l1_entries,
2450                                          status_cb, cb_opaque);
2451         if (ret < 0) {
2452             goto fail;
2453         }
2454     }
2455 
2456     ret = 0;
2457 
2458 fail:
2459     g_free(l1_table);
2460     return ret;
2461 }
2462