1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block_int.h" 29 #include "block/qcow2.h" 30 31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size) 32 { 33 BDRVQcowState *s = bs->opaque; 34 int new_l1_size, new_l1_size2, ret, i; 35 uint64_t *new_l1_table; 36 int64_t new_l1_table_offset; 37 uint8_t data[12]; 38 39 if (min_size <= s->l1_size) 40 return 0; 41 42 if (exact_size) { 43 new_l1_size = min_size; 44 } else { 45 /* Bump size up to reduce the number of times we have to grow */ 46 new_l1_size = s->l1_size; 47 if (new_l1_size == 0) { 48 new_l1_size = 1; 49 } 50 while (min_size > new_l1_size) { 51 new_l1_size = (new_l1_size * 3 + 1) / 2; 52 } 53 } 54 55 #ifdef DEBUG_ALLOC2 56 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size); 57 #endif 58 59 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 60 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512)); 61 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 62 63 /* write new table (align to cluster) */ 64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 65 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 66 if (new_l1_table_offset < 0) { 67 qemu_free(new_l1_table); 68 return new_l1_table_offset; 69 } 70 bdrv_flush(bs->file); 71 72 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 73 for(i = 0; i < s->l1_size; i++) 74 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 75 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 76 if (ret < 0) 77 goto fail; 78 for(i = 0; i < s->l1_size; i++) 79 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 80 81 /* set new table */ 82 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 83 cpu_to_be32w((uint32_t*)data, new_l1_size); 84 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset); 85 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 86 if (ret < 0) { 87 goto fail; 88 } 89 qemu_free(s->l1_table); 90 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); 91 s->l1_table_offset = new_l1_table_offset; 92 s->l1_table = new_l1_table; 93 s->l1_size = new_l1_size; 94 return 0; 95 fail: 96 qemu_free(new_l1_table); 97 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2); 98 return ret; 99 } 100 101 void qcow2_l2_cache_reset(BlockDriverState *bs) 102 { 103 BDRVQcowState *s = bs->opaque; 104 105 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t)); 106 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t)); 107 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t)); 108 } 109 110 static inline int l2_cache_new_entry(BlockDriverState *bs) 111 { 112 BDRVQcowState *s = bs->opaque; 113 uint32_t min_count; 114 int min_index, i; 115 116 /* find a new entry in the least used one */ 117 min_index = 0; 118 min_count = 0xffffffff; 119 for(i = 0; i < L2_CACHE_SIZE; i++) { 120 if (s->l2_cache_counts[i] < min_count) { 121 min_count = s->l2_cache_counts[i]; 122 min_index = i; 123 } 124 } 125 return min_index; 126 } 127 128 /* 129 * seek_l2_table 130 * 131 * seek l2_offset in the l2_cache table 132 * if not found, return NULL, 133 * if found, 134 * increments the l2 cache hit count of the entry, 135 * if counter overflow, divide by two all counters 136 * return the pointer to the l2 cache entry 137 * 138 */ 139 140 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset) 141 { 142 int i, j; 143 144 for(i = 0; i < L2_CACHE_SIZE; i++) { 145 if (l2_offset == s->l2_cache_offsets[i]) { 146 /* increment the hit count */ 147 if (++s->l2_cache_counts[i] == 0xffffffff) { 148 for(j = 0; j < L2_CACHE_SIZE; j++) { 149 s->l2_cache_counts[j] >>= 1; 150 } 151 } 152 return s->l2_cache + (i << s->l2_bits); 153 } 154 } 155 return NULL; 156 } 157 158 /* 159 * l2_load 160 * 161 * Loads a L2 table into memory. If the table is in the cache, the cache 162 * is used; otherwise the L2 table is loaded from the image file. 163 * 164 * Returns a pointer to the L2 table on success, or NULL if the read from 165 * the image file failed. 166 */ 167 168 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 169 uint64_t **l2_table) 170 { 171 BDRVQcowState *s = bs->opaque; 172 int min_index; 173 int ret; 174 175 /* seek if the table for the given offset is in the cache */ 176 177 *l2_table = seek_l2_table(s, l2_offset); 178 if (*l2_table != NULL) { 179 return 0; 180 } 181 182 /* not found: load a new entry in the least used one */ 183 184 min_index = l2_cache_new_entry(bs); 185 *l2_table = s->l2_cache + (min_index << s->l2_bits); 186 187 BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD); 188 ret = bdrv_pread(bs->file, l2_offset, *l2_table, 189 s->l2_size * sizeof(uint64_t)); 190 if (ret < 0) { 191 qcow2_l2_cache_reset(bs); 192 return ret; 193 } 194 195 s->l2_cache_offsets[min_index] = l2_offset; 196 s->l2_cache_counts[min_index] = 1; 197 198 return 0; 199 } 200 201 /* 202 * Writes one sector of the L1 table to the disk (can't update single entries 203 * and we really don't want bdrv_pread to perform a read-modify-write) 204 */ 205 #define L1_ENTRIES_PER_SECTOR (512 / 8) 206 static int write_l1_entry(BlockDriverState *bs, int l1_index) 207 { 208 BDRVQcowState *s = bs->opaque; 209 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 210 int l1_start_index; 211 int i, ret; 212 213 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 214 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 215 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 216 } 217 218 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 219 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 220 buf, sizeof(buf)); 221 if (ret < 0) { 222 return ret; 223 } 224 225 return 0; 226 } 227 228 /* 229 * l2_allocate 230 * 231 * Allocate a new l2 entry in the file. If l1_index points to an already 232 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 233 * table) copy the contents of the old L2 table into the newly allocated one. 234 * Otherwise the new table is initialized with zeros. 235 * 236 */ 237 238 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 239 { 240 BDRVQcowState *s = bs->opaque; 241 int min_index; 242 uint64_t old_l2_offset; 243 uint64_t *l2_table; 244 int64_t l2_offset; 245 int ret; 246 247 old_l2_offset = s->l1_table[l1_index]; 248 249 /* allocate a new l2 entry */ 250 251 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 252 if (l2_offset < 0) { 253 return l2_offset; 254 } 255 bdrv_flush(bs->file); 256 257 /* allocate a new entry in the l2 cache */ 258 259 min_index = l2_cache_new_entry(bs); 260 l2_table = s->l2_cache + (min_index << s->l2_bits); 261 262 if (old_l2_offset == 0) { 263 /* if there was no old l2 table, clear the new table */ 264 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 265 } else { 266 /* if there was an old l2 table, read it from the disk */ 267 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 268 ret = bdrv_pread(bs->file, old_l2_offset, l2_table, 269 s->l2_size * sizeof(uint64_t)); 270 if (ret < 0) { 271 goto fail; 272 } 273 } 274 /* write the l2 table to the file */ 275 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 276 ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table, 277 s->l2_size * sizeof(uint64_t)); 278 if (ret < 0) { 279 goto fail; 280 } 281 282 /* update the L1 entry */ 283 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 284 ret = write_l1_entry(bs, l1_index); 285 if (ret < 0) { 286 goto fail; 287 } 288 289 /* update the l2 cache entry */ 290 291 s->l2_cache_offsets[min_index] = l2_offset; 292 s->l2_cache_counts[min_index] = 1; 293 294 *table = l2_table; 295 return 0; 296 297 fail: 298 s->l1_table[l1_index] = old_l2_offset; 299 qcow2_l2_cache_reset(bs); 300 return ret; 301 } 302 303 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 304 uint64_t *l2_table, uint64_t start, uint64_t mask) 305 { 306 int i; 307 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask; 308 309 if (!offset) 310 return 0; 311 312 for (i = start; i < start + nb_clusters; i++) 313 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask)) 314 break; 315 316 return (i - start); 317 } 318 319 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 320 { 321 int i = 0; 322 323 while(nb_clusters-- && l2_table[i] == 0) 324 i++; 325 326 return i; 327 } 328 329 /* The crypt function is compatible with the linux cryptoloop 330 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 331 supported */ 332 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 333 uint8_t *out_buf, const uint8_t *in_buf, 334 int nb_sectors, int enc, 335 const AES_KEY *key) 336 { 337 union { 338 uint64_t ll[2]; 339 uint8_t b[16]; 340 } ivec; 341 int i; 342 343 for(i = 0; i < nb_sectors; i++) { 344 ivec.ll[0] = cpu_to_le64(sector_num); 345 ivec.ll[1] = 0; 346 AES_cbc_encrypt(in_buf, out_buf, 512, key, 347 ivec.b, enc); 348 sector_num++; 349 in_buf += 512; 350 out_buf += 512; 351 } 352 } 353 354 355 static int qcow_read(BlockDriverState *bs, int64_t sector_num, 356 uint8_t *buf, int nb_sectors) 357 { 358 BDRVQcowState *s = bs->opaque; 359 int ret, index_in_cluster, n, n1; 360 uint64_t cluster_offset; 361 struct iovec iov; 362 QEMUIOVector qiov; 363 364 while (nb_sectors > 0) { 365 n = nb_sectors; 366 367 ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n, 368 &cluster_offset); 369 if (ret < 0) { 370 return ret; 371 } 372 373 index_in_cluster = sector_num & (s->cluster_sectors - 1); 374 if (!cluster_offset) { 375 if (bs->backing_hd) { 376 /* read from the base image */ 377 iov.iov_base = buf; 378 iov.iov_len = n * 512; 379 qemu_iovec_init_external(&qiov, &iov, 1); 380 381 n1 = qcow2_backing_read1(bs->backing_hd, &qiov, sector_num, n); 382 if (n1 > 0) { 383 BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING); 384 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1); 385 if (ret < 0) 386 return -1; 387 } 388 } else { 389 memset(buf, 0, 512 * n); 390 } 391 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) { 392 if (qcow2_decompress_cluster(bs, cluster_offset) < 0) 393 return -1; 394 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n); 395 } else { 396 BLKDBG_EVENT(bs->file, BLKDBG_READ); 397 ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512); 398 if (ret != n * 512) 399 return -1; 400 if (s->crypt_method) { 401 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0, 402 &s->aes_decrypt_key); 403 } 404 } 405 nb_sectors -= n; 406 sector_num += n; 407 buf += n * 512; 408 } 409 return 0; 410 } 411 412 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect, 413 uint64_t cluster_offset, int n_start, int n_end) 414 { 415 BDRVQcowState *s = bs->opaque; 416 int n, ret; 417 418 n = n_end - n_start; 419 if (n <= 0) 420 return 0; 421 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 422 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n); 423 if (ret < 0) 424 return ret; 425 if (s->crypt_method) { 426 qcow2_encrypt_sectors(s, start_sect + n_start, 427 s->cluster_data, 428 s->cluster_data, n, 1, 429 &s->aes_encrypt_key); 430 } 431 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 432 ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start, 433 s->cluster_data, n); 434 if (ret < 0) 435 return ret; 436 return 0; 437 } 438 439 440 /* 441 * get_cluster_offset 442 * 443 * For a given offset of the disk image, find the cluster offset in 444 * qcow2 file. The offset is stored in *cluster_offset. 445 * 446 * on entry, *num is the number of contiguous clusters we'd like to 447 * access following offset. 448 * 449 * on exit, *num is the number of contiguous clusters we can read. 450 * 451 * Return 0, if the offset is found 452 * Return -errno, otherwise. 453 * 454 */ 455 456 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 457 int *num, uint64_t *cluster_offset) 458 { 459 BDRVQcowState *s = bs->opaque; 460 unsigned int l1_index, l2_index; 461 uint64_t l2_offset, *l2_table; 462 int l1_bits, c; 463 unsigned int index_in_cluster, nb_clusters; 464 uint64_t nb_available, nb_needed; 465 int ret; 466 467 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 468 nb_needed = *num + index_in_cluster; 469 470 l1_bits = s->l2_bits + s->cluster_bits; 471 472 /* compute how many bytes there are between the offset and 473 * the end of the l1 entry 474 */ 475 476 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 477 478 /* compute the number of available sectors */ 479 480 nb_available = (nb_available >> 9) + index_in_cluster; 481 482 if (nb_needed > nb_available) { 483 nb_needed = nb_available; 484 } 485 486 *cluster_offset = 0; 487 488 /* seek the the l2 offset in the l1 table */ 489 490 l1_index = offset >> l1_bits; 491 if (l1_index >= s->l1_size) 492 goto out; 493 494 l2_offset = s->l1_table[l1_index]; 495 496 /* seek the l2 table of the given l2 offset */ 497 498 if (!l2_offset) 499 goto out; 500 501 /* load the l2 table in memory */ 502 503 l2_offset &= ~QCOW_OFLAG_COPIED; 504 ret = l2_load(bs, l2_offset, &l2_table); 505 if (ret < 0) { 506 return ret; 507 } 508 509 /* find the cluster offset for the given disk offset */ 510 511 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 512 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 513 nb_clusters = size_to_clusters(s, nb_needed << 9); 514 515 if (!*cluster_offset) { 516 /* how many empty clusters ? */ 517 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 518 } else { 519 /* how many allocated clusters ? */ 520 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 521 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED); 522 } 523 524 nb_available = (c * s->cluster_sectors); 525 out: 526 if (nb_available > nb_needed) 527 nb_available = nb_needed; 528 529 *num = nb_available - index_in_cluster; 530 531 *cluster_offset &=~QCOW_OFLAG_COPIED; 532 return 0; 533 } 534 535 /* 536 * get_cluster_table 537 * 538 * for a given disk offset, load (and allocate if needed) 539 * the l2 table. 540 * 541 * the l2 table offset in the qcow2 file and the cluster index 542 * in the l2 table are given to the caller. 543 * 544 * Returns 0 on success, -errno in failure case 545 */ 546 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 547 uint64_t **new_l2_table, 548 uint64_t *new_l2_offset, 549 int *new_l2_index) 550 { 551 BDRVQcowState *s = bs->opaque; 552 unsigned int l1_index, l2_index; 553 uint64_t l2_offset; 554 uint64_t *l2_table = NULL; 555 int ret; 556 557 /* seek the the l2 offset in the l1 table */ 558 559 l1_index = offset >> (s->l2_bits + s->cluster_bits); 560 if (l1_index >= s->l1_size) { 561 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 562 if (ret < 0) { 563 return ret; 564 } 565 } 566 l2_offset = s->l1_table[l1_index]; 567 568 /* seek the l2 table of the given l2 offset */ 569 570 if (l2_offset & QCOW_OFLAG_COPIED) { 571 /* load the l2 table in memory */ 572 l2_offset &= ~QCOW_OFLAG_COPIED; 573 ret = l2_load(bs, l2_offset, &l2_table); 574 if (ret < 0) { 575 return ret; 576 } 577 } else { 578 if (l2_offset) 579 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); 580 ret = l2_allocate(bs, l1_index, &l2_table); 581 if (ret < 0) { 582 return ret; 583 } 584 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED; 585 } 586 587 /* find the cluster offset for the given disk offset */ 588 589 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 590 591 *new_l2_table = l2_table; 592 *new_l2_offset = l2_offset; 593 *new_l2_index = l2_index; 594 595 return 0; 596 } 597 598 /* 599 * alloc_compressed_cluster_offset 600 * 601 * For a given offset of the disk image, return cluster offset in 602 * qcow2 file. 603 * 604 * If the offset is not found, allocate a new compressed cluster. 605 * 606 * Return the cluster offset if successful, 607 * Return 0, otherwise. 608 * 609 */ 610 611 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 612 uint64_t offset, 613 int compressed_size) 614 { 615 BDRVQcowState *s = bs->opaque; 616 int l2_index, ret; 617 uint64_t l2_offset, *l2_table; 618 int64_t cluster_offset; 619 int nb_csectors; 620 621 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index); 622 if (ret < 0) { 623 return 0; 624 } 625 626 cluster_offset = be64_to_cpu(l2_table[l2_index]); 627 if (cluster_offset & QCOW_OFLAG_COPIED) 628 return cluster_offset & ~QCOW_OFLAG_COPIED; 629 630 if (cluster_offset) 631 qcow2_free_any_clusters(bs, cluster_offset, 1); 632 633 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 634 if (cluster_offset < 0) { 635 return 0; 636 } 637 638 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 639 (cluster_offset >> 9); 640 641 cluster_offset |= QCOW_OFLAG_COMPRESSED | 642 ((uint64_t)nb_csectors << s->csize_shift); 643 644 /* update L2 table */ 645 646 /* compressed clusters never have the copied flag */ 647 648 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 649 l2_table[l2_index] = cpu_to_be64(cluster_offset); 650 if (bdrv_pwrite_sync(bs->file, 651 l2_offset + l2_index * sizeof(uint64_t), 652 l2_table + l2_index, 653 sizeof(uint64_t)) < 0) 654 return 0; 655 656 return cluster_offset; 657 } 658 659 /* 660 * Write L2 table updates to disk, writing whole sectors to avoid a 661 * read-modify-write in bdrv_pwrite 662 */ 663 #define L2_ENTRIES_PER_SECTOR (512 / 8) 664 static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table, 665 uint64_t l2_offset, int l2_index, int num) 666 { 667 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1); 668 int start_offset = (8 * l2_index) & ~511; 669 int end_offset = (8 * (l2_index + num) + 511) & ~511; 670 size_t len = end_offset - start_offset; 671 int ret; 672 673 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE); 674 ret = bdrv_pwrite(bs->file, l2_offset + start_offset, 675 &l2_table[l2_start_index], len); 676 if (ret < 0) { 677 return ret; 678 } 679 680 return 0; 681 } 682 683 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 684 { 685 BDRVQcowState *s = bs->opaque; 686 int i, j = 0, l2_index, ret; 687 uint64_t *old_cluster, start_sect, l2_offset, *l2_table; 688 uint64_t cluster_offset = m->cluster_offset; 689 690 if (m->nb_clusters == 0) 691 return 0; 692 693 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t)); 694 695 /* copy content of unmodified sectors */ 696 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9; 697 if (m->n_start) { 698 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start); 699 if (ret < 0) 700 goto err; 701 } 702 703 if (m->nb_available & (s->cluster_sectors - 1)) { 704 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1); 705 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9), 706 m->nb_available - end, s->cluster_sectors); 707 if (ret < 0) 708 goto err; 709 } 710 711 /* update L2 table */ 712 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index); 713 if (ret < 0) { 714 goto err; 715 } 716 717 for (i = 0; i < m->nb_clusters; i++) { 718 /* if two concurrent writes happen to the same unallocated cluster 719 * each write allocates separate cluster and writes data concurrently. 720 * The first one to complete updates l2 table with pointer to its 721 * cluster the second one has to do RMW (which is done above by 722 * copy_sectors()), update l2 table with its cluster pointer and free 723 * old cluster. This is what this loop does */ 724 if(l2_table[l2_index + i] != 0) 725 old_cluster[j++] = l2_table[l2_index + i]; 726 727 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 728 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 729 } 730 731 /* 732 * Before we update the L2 table to actually point to the new cluster, we 733 * need to be sure that the refcounts have been increased and COW was 734 * handled. 735 */ 736 bdrv_flush(bs->file); 737 738 ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters); 739 if (ret < 0) { 740 qcow2_l2_cache_reset(bs); 741 goto err; 742 } 743 744 /* 745 * If this was a COW, we need to decrease the refcount of the old cluster. 746 * Also flush bs->file to get the right order for L2 and refcount update. 747 */ 748 if (j != 0) { 749 bdrv_flush(bs->file); 750 for (i = 0; i < j; i++) { 751 qcow2_free_any_clusters(bs, 752 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1); 753 } 754 } 755 756 ret = 0; 757 err: 758 qemu_free(old_cluster); 759 return ret; 760 } 761 762 /* 763 * alloc_cluster_offset 764 * 765 * For a given offset of the disk image, return cluster offset in qcow2 file. 766 * If the offset is not found, allocate a new cluster. 767 * 768 * If the cluster was already allocated, m->nb_clusters is set to 0, 769 * m->depends_on is set to NULL and the other fields in m are meaningless. 770 * 771 * If the cluster is newly allocated, m->nb_clusters is set to the number of 772 * contiguous clusters that have been allocated. This may be 0 if the request 773 * conflict with another write request in flight; in this case, m->depends_on 774 * is set and the remaining fields of m are meaningless. 775 * 776 * If m->nb_clusters is non-zero, the other fields of m are valid and contain 777 * information about the first allocated cluster. 778 * 779 * Return 0 on success and -errno in error cases 780 */ 781 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 782 int n_start, int n_end, int *num, QCowL2Meta *m) 783 { 784 BDRVQcowState *s = bs->opaque; 785 int l2_index, ret; 786 uint64_t l2_offset, *l2_table; 787 int64_t cluster_offset; 788 unsigned int nb_clusters, i = 0; 789 QCowL2Meta *old_alloc; 790 791 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index); 792 if (ret < 0) { 793 return ret; 794 } 795 796 nb_clusters = size_to_clusters(s, n_end << 9); 797 798 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 799 800 cluster_offset = be64_to_cpu(l2_table[l2_index]); 801 802 /* We keep all QCOW_OFLAG_COPIED clusters */ 803 804 if (cluster_offset & QCOW_OFLAG_COPIED) { 805 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size, 806 &l2_table[l2_index], 0, 0); 807 808 cluster_offset &= ~QCOW_OFLAG_COPIED; 809 m->nb_clusters = 0; 810 m->depends_on = NULL; 811 812 goto out; 813 } 814 815 /* for the moment, multiple compressed clusters are not managed */ 816 817 if (cluster_offset & QCOW_OFLAG_COMPRESSED) 818 nb_clusters = 1; 819 820 /* how many available clusters ? */ 821 822 while (i < nb_clusters) { 823 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size, 824 &l2_table[l2_index], i, 0); 825 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) { 826 break; 827 } 828 829 i += count_contiguous_free_clusters(nb_clusters - i, 830 &l2_table[l2_index + i]); 831 if (i >= nb_clusters) { 832 break; 833 } 834 835 cluster_offset = be64_to_cpu(l2_table[l2_index + i]); 836 837 if ((cluster_offset & QCOW_OFLAG_COPIED) || 838 (cluster_offset & QCOW_OFLAG_COMPRESSED)) 839 break; 840 } 841 assert(i <= nb_clusters); 842 nb_clusters = i; 843 844 /* 845 * Check if there already is an AIO write request in flight which allocates 846 * the same cluster. In this case we need to wait until the previous 847 * request has completed and updated the L2 table accordingly. 848 */ 849 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 850 851 uint64_t end_offset = offset + nb_clusters * s->cluster_size; 852 uint64_t old_offset = old_alloc->offset; 853 uint64_t old_end_offset = old_alloc->offset + 854 old_alloc->nb_clusters * s->cluster_size; 855 856 if (end_offset < old_offset || offset > old_end_offset) { 857 /* No intersection */ 858 } else { 859 if (offset < old_offset) { 860 /* Stop at the start of a running allocation */ 861 nb_clusters = (old_offset - offset) >> s->cluster_bits; 862 } else { 863 nb_clusters = 0; 864 } 865 866 if (nb_clusters == 0) { 867 /* Set dependency and wait for a callback */ 868 m->depends_on = old_alloc; 869 m->nb_clusters = 0; 870 *num = 0; 871 return 0; 872 } 873 } 874 } 875 876 if (!nb_clusters) { 877 abort(); 878 } 879 880 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight); 881 882 /* allocate a new cluster */ 883 884 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size); 885 if (cluster_offset < 0) { 886 QLIST_REMOVE(m, next_in_flight); 887 return cluster_offset; 888 } 889 890 /* save info needed for meta data update */ 891 m->offset = offset; 892 m->n_start = n_start; 893 m->nb_clusters = nb_clusters; 894 895 out: 896 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end); 897 m->cluster_offset = cluster_offset; 898 899 *num = m->nb_available - n_start; 900 901 return 0; 902 } 903 904 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 905 const uint8_t *buf, int buf_size) 906 { 907 z_stream strm1, *strm = &strm1; 908 int ret, out_len; 909 910 memset(strm, 0, sizeof(*strm)); 911 912 strm->next_in = (uint8_t *)buf; 913 strm->avail_in = buf_size; 914 strm->next_out = out_buf; 915 strm->avail_out = out_buf_size; 916 917 ret = inflateInit2(strm, -12); 918 if (ret != Z_OK) 919 return -1; 920 ret = inflate(strm, Z_FINISH); 921 out_len = strm->next_out - out_buf; 922 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 923 out_len != out_buf_size) { 924 inflateEnd(strm); 925 return -1; 926 } 927 inflateEnd(strm); 928 return 0; 929 } 930 931 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 932 { 933 BDRVQcowState *s = bs->opaque; 934 int ret, csize, nb_csectors, sector_offset; 935 uint64_t coffset; 936 937 coffset = cluster_offset & s->cluster_offset_mask; 938 if (s->cluster_cache_offset != coffset) { 939 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 940 sector_offset = coffset & 511; 941 csize = nb_csectors * 512 - sector_offset; 942 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 943 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 944 if (ret < 0) { 945 return -1; 946 } 947 if (decompress_buffer(s->cluster_cache, s->cluster_size, 948 s->cluster_data + sector_offset, csize) < 0) { 949 return -1; 950 } 951 s->cluster_cache_offset = coffset; 952 } 953 return 0; 954 } 955