xref: /openbmc/qemu/block/qcow2-cluster.c (revision 6b034aa1)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 {
34     BDRVQcowState *s = bs->opaque;
35     int new_l1_size, new_l1_size2, ret, i;
36     uint64_t *new_l1_table;
37     int64_t new_l1_table_offset;
38     uint8_t data[12];
39 
40     if (min_size <= s->l1_size)
41         return 0;
42 
43     if (exact_size) {
44         new_l1_size = min_size;
45     } else {
46         /* Bump size up to reduce the number of times we have to grow */
47         new_l1_size = s->l1_size;
48         if (new_l1_size == 0) {
49             new_l1_size = 1;
50         }
51         while (min_size > new_l1_size) {
52             new_l1_size = (new_l1_size * 3 + 1) / 2;
53         }
54     }
55 
56 #ifdef DEBUG_ALLOC2
57     fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
59 
60     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61     new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63 
64     /* write new table (align to cluster) */
65     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67     if (new_l1_table_offset < 0) {
68         g_free(new_l1_table);
69         return new_l1_table_offset;
70     }
71 
72     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73     if (ret < 0) {
74         goto fail;
75     }
76 
77     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78     for(i = 0; i < s->l1_size; i++)
79         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81     if (ret < 0)
82         goto fail;
83     for(i = 0; i < s->l1_size; i++)
84         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85 
86     /* set new table */
87     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88     cpu_to_be32w((uint32_t*)data, new_l1_size);
89     cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91     if (ret < 0) {
92         goto fail;
93     }
94     g_free(s->l1_table);
95     qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96     s->l1_table_offset = new_l1_table_offset;
97     s->l1_table = new_l1_table;
98     s->l1_size = new_l1_size;
99     return 0;
100  fail:
101     g_free(new_l1_table);
102     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103     return ret;
104 }
105 
106 /*
107  * l2_load
108  *
109  * Loads a L2 table into memory. If the table is in the cache, the cache
110  * is used; otherwise the L2 table is loaded from the image file.
111  *
112  * Returns a pointer to the L2 table on success, or NULL if the read from
113  * the image file failed.
114  */
115 
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117     uint64_t **l2_table)
118 {
119     BDRVQcowState *s = bs->opaque;
120     int ret;
121 
122     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123 
124     return ret;
125 }
126 
127 /*
128  * Writes one sector of the L1 table to the disk (can't update single entries
129  * and we really don't want bdrv_pread to perform a read-modify-write)
130  */
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 {
134     BDRVQcowState *s = bs->opaque;
135     uint64_t buf[L1_ENTRIES_PER_SECTOR];
136     int l1_start_index;
137     int i, ret;
138 
139     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142     }
143 
144     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146         buf, sizeof(buf));
147     if (ret < 0) {
148         return ret;
149     }
150 
151     return 0;
152 }
153 
154 /*
155  * l2_allocate
156  *
157  * Allocate a new l2 entry in the file. If l1_index points to an already
158  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159  * table) copy the contents of the old L2 table into the newly allocated one.
160  * Otherwise the new table is initialized with zeros.
161  *
162  */
163 
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 {
166     BDRVQcowState *s = bs->opaque;
167     uint64_t old_l2_offset;
168     uint64_t *l2_table;
169     int64_t l2_offset;
170     int ret;
171 
172     old_l2_offset = s->l1_table[l1_index];
173 
174     trace_qcow2_l2_allocate(bs, l1_index);
175 
176     /* allocate a new l2 entry */
177 
178     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179     if (l2_offset < 0) {
180         return l2_offset;
181     }
182 
183     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184     if (ret < 0) {
185         goto fail;
186     }
187 
188     /* allocate a new entry in the l2 cache */
189 
190     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192     if (ret < 0) {
193         return ret;
194     }
195 
196     l2_table = *table;
197 
198     if (old_l2_offset == 0) {
199         /* if there was no old l2 table, clear the new table */
200         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201     } else {
202         uint64_t* old_table;
203 
204         /* if there was an old l2 table, read it from the disk */
205         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206         ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
207             (void**) &old_table);
208         if (ret < 0) {
209             goto fail;
210         }
211 
212         memcpy(l2_table, old_table, s->cluster_size);
213 
214         ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
215         if (ret < 0) {
216             goto fail;
217         }
218     }
219 
220     /* write the l2 table to the file */
221     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
222 
223     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
224     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
225     ret = qcow2_cache_flush(bs, s->l2_table_cache);
226     if (ret < 0) {
227         goto fail;
228     }
229 
230     /* update the L1 entry */
231     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
232     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
233     ret = write_l1_entry(bs, l1_index);
234     if (ret < 0) {
235         goto fail;
236     }
237 
238     *table = l2_table;
239     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
240     return 0;
241 
242 fail:
243     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
244     qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
245     s->l1_table[l1_index] = old_l2_offset;
246     return ret;
247 }
248 
249 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
250         uint64_t *l2_table, uint64_t start, uint64_t mask)
251 {
252     int i;
253     uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
254 
255     if (!offset)
256         return 0;
257 
258     for (i = start; i < start + nb_clusters; i++)
259         if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
260             break;
261 
262 	return (i - start);
263 }
264 
265 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
266 {
267     int i = 0;
268 
269     while(nb_clusters-- && l2_table[i] == 0)
270         i++;
271 
272     return i;
273 }
274 
275 /* The crypt function is compatible with the linux cryptoloop
276    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
277    supported */
278 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
279                            uint8_t *out_buf, const uint8_t *in_buf,
280                            int nb_sectors, int enc,
281                            const AES_KEY *key)
282 {
283     union {
284         uint64_t ll[2];
285         uint8_t b[16];
286     } ivec;
287     int i;
288 
289     for(i = 0; i < nb_sectors; i++) {
290         ivec.ll[0] = cpu_to_le64(sector_num);
291         ivec.ll[1] = 0;
292         AES_cbc_encrypt(in_buf, out_buf, 512, key,
293                         ivec.b, enc);
294         sector_num++;
295         in_buf += 512;
296         out_buf += 512;
297     }
298 }
299 
300 static int coroutine_fn copy_sectors(BlockDriverState *bs,
301                                      uint64_t start_sect,
302                                      uint64_t cluster_offset,
303                                      int n_start, int n_end)
304 {
305     BDRVQcowState *s = bs->opaque;
306     QEMUIOVector qiov;
307     struct iovec iov;
308     int n, ret;
309 
310     /*
311      * If this is the last cluster and it is only partially used, we must only
312      * copy until the end of the image, or bdrv_check_request will fail for the
313      * bdrv_read/write calls below.
314      */
315     if (start_sect + n_end > bs->total_sectors) {
316         n_end = bs->total_sectors - start_sect;
317     }
318 
319     n = n_end - n_start;
320     if (n <= 0) {
321         return 0;
322     }
323 
324     iov.iov_len = n * BDRV_SECTOR_SIZE;
325     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
326 
327     qemu_iovec_init_external(&qiov, &iov, 1);
328 
329     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
330 
331     /* Call .bdrv_co_readv() directly instead of using the public block-layer
332      * interface.  This avoids double I/O throttling and request tracking,
333      * which can lead to deadlock when block layer copy-on-read is enabled.
334      */
335     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
336     if (ret < 0) {
337         goto out;
338     }
339 
340     if (s->crypt_method) {
341         qcow2_encrypt_sectors(s, start_sect + n_start,
342                         iov.iov_base, iov.iov_base, n, 1,
343                         &s->aes_encrypt_key);
344     }
345 
346     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
347     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
348     if (ret < 0) {
349         goto out;
350     }
351 
352     ret = 0;
353 out:
354     qemu_vfree(iov.iov_base);
355     return ret;
356 }
357 
358 
359 /*
360  * get_cluster_offset
361  *
362  * For a given offset of the disk image, find the cluster offset in
363  * qcow2 file. The offset is stored in *cluster_offset.
364  *
365  * on entry, *num is the number of contiguous sectors we'd like to
366  * access following offset.
367  *
368  * on exit, *num is the number of contiguous sectors we can read.
369  *
370  * Return 0, if the offset is found
371  * Return -errno, otherwise.
372  *
373  */
374 
375 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
376     int *num, uint64_t *cluster_offset)
377 {
378     BDRVQcowState *s = bs->opaque;
379     unsigned int l1_index, l2_index;
380     uint64_t l2_offset, *l2_table;
381     int l1_bits, c;
382     unsigned int index_in_cluster, nb_clusters;
383     uint64_t nb_available, nb_needed;
384     int ret;
385 
386     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
387     nb_needed = *num + index_in_cluster;
388 
389     l1_bits = s->l2_bits + s->cluster_bits;
390 
391     /* compute how many bytes there are between the offset and
392      * the end of the l1 entry
393      */
394 
395     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
396 
397     /* compute the number of available sectors */
398 
399     nb_available = (nb_available >> 9) + index_in_cluster;
400 
401     if (nb_needed > nb_available) {
402         nb_needed = nb_available;
403     }
404 
405     *cluster_offset = 0;
406 
407     /* seek the the l2 offset in the l1 table */
408 
409     l1_index = offset >> l1_bits;
410     if (l1_index >= s->l1_size)
411         goto out;
412 
413     l2_offset = s->l1_table[l1_index];
414 
415     /* seek the l2 table of the given l2 offset */
416 
417     if (!l2_offset)
418         goto out;
419 
420     /* load the l2 table in memory */
421 
422     l2_offset &= ~QCOW_OFLAG_COPIED;
423     ret = l2_load(bs, l2_offset, &l2_table);
424     if (ret < 0) {
425         return ret;
426     }
427 
428     /* find the cluster offset for the given disk offset */
429 
430     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
431     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
432     nb_clusters = size_to_clusters(s, nb_needed << 9);
433 
434     if (!*cluster_offset) {
435         /* how many empty clusters ? */
436         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
437     } else {
438         /* how many allocated clusters ? */
439         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
440                 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
441     }
442 
443     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
444 
445    nb_available = (c * s->cluster_sectors);
446 out:
447     if (nb_available > nb_needed)
448         nb_available = nb_needed;
449 
450     *num = nb_available - index_in_cluster;
451 
452     *cluster_offset &=~QCOW_OFLAG_COPIED;
453     return 0;
454 }
455 
456 /*
457  * get_cluster_table
458  *
459  * for a given disk offset, load (and allocate if needed)
460  * the l2 table.
461  *
462  * the l2 table offset in the qcow2 file and the cluster index
463  * in the l2 table are given to the caller.
464  *
465  * Returns 0 on success, -errno in failure case
466  */
467 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
468                              uint64_t **new_l2_table,
469                              int *new_l2_index)
470 {
471     BDRVQcowState *s = bs->opaque;
472     unsigned int l1_index, l2_index;
473     uint64_t l2_offset;
474     uint64_t *l2_table = NULL;
475     int ret;
476 
477     /* seek the the l2 offset in the l1 table */
478 
479     l1_index = offset >> (s->l2_bits + s->cluster_bits);
480     if (l1_index >= s->l1_size) {
481         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
482         if (ret < 0) {
483             return ret;
484         }
485     }
486     l2_offset = s->l1_table[l1_index];
487 
488     /* seek the l2 table of the given l2 offset */
489 
490     if (l2_offset & QCOW_OFLAG_COPIED) {
491         /* load the l2 table in memory */
492         l2_offset &= ~QCOW_OFLAG_COPIED;
493         ret = l2_load(bs, l2_offset, &l2_table);
494         if (ret < 0) {
495             return ret;
496         }
497     } else {
498         /* First allocate a new L2 table (and do COW if needed) */
499         ret = l2_allocate(bs, l1_index, &l2_table);
500         if (ret < 0) {
501             return ret;
502         }
503 
504         /* Then decrease the refcount of the old table */
505         if (l2_offset) {
506             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
507         }
508         l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
509     }
510 
511     /* find the cluster offset for the given disk offset */
512 
513     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
514 
515     *new_l2_table = l2_table;
516     *new_l2_index = l2_index;
517 
518     return 0;
519 }
520 
521 /*
522  * alloc_compressed_cluster_offset
523  *
524  * For a given offset of the disk image, return cluster offset in
525  * qcow2 file.
526  *
527  * If the offset is not found, allocate a new compressed cluster.
528  *
529  * Return the cluster offset if successful,
530  * Return 0, otherwise.
531  *
532  */
533 
534 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
535                                                uint64_t offset,
536                                                int compressed_size)
537 {
538     BDRVQcowState *s = bs->opaque;
539     int l2_index, ret;
540     uint64_t *l2_table;
541     int64_t cluster_offset;
542     int nb_csectors;
543 
544     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
545     if (ret < 0) {
546         return 0;
547     }
548 
549     cluster_offset = be64_to_cpu(l2_table[l2_index]);
550     if (cluster_offset & QCOW_OFLAG_COPIED) {
551         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
552         return 0;
553     }
554 
555     if (cluster_offset)
556         qcow2_free_any_clusters(bs, cluster_offset, 1);
557 
558     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
559     if (cluster_offset < 0) {
560         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
561         return 0;
562     }
563 
564     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
565                   (cluster_offset >> 9);
566 
567     cluster_offset |= QCOW_OFLAG_COMPRESSED |
568                       ((uint64_t)nb_csectors << s->csize_shift);
569 
570     /* update L2 table */
571 
572     /* compressed clusters never have the copied flag */
573 
574     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
575     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
576     l2_table[l2_index] = cpu_to_be64(cluster_offset);
577     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
578     if (ret < 0) {
579         return 0;
580     }
581 
582     return cluster_offset;
583 }
584 
585 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
586 {
587     BDRVQcowState *s = bs->opaque;
588     int i, j = 0, l2_index, ret;
589     uint64_t *old_cluster, start_sect, *l2_table;
590     uint64_t cluster_offset = m->alloc_offset;
591     bool cow = false;
592 
593     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
594 
595     if (m->nb_clusters == 0)
596         return 0;
597 
598     old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
599 
600     /* copy content of unmodified sectors */
601     start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
602     if (m->n_start) {
603         cow = true;
604         qemu_co_mutex_unlock(&s->lock);
605         ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
606         qemu_co_mutex_lock(&s->lock);
607         if (ret < 0)
608             goto err;
609     }
610 
611     if (m->nb_available & (s->cluster_sectors - 1)) {
612         uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
613         cow = true;
614         qemu_co_mutex_unlock(&s->lock);
615         ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
616                 m->nb_available - end, s->cluster_sectors);
617         qemu_co_mutex_lock(&s->lock);
618         if (ret < 0)
619             goto err;
620     }
621 
622     /*
623      * Update L2 table.
624      *
625      * Before we update the L2 table to actually point to the new cluster, we
626      * need to be sure that the refcounts have been increased and COW was
627      * handled.
628      */
629     if (cow) {
630         qcow2_cache_depends_on_flush(s->l2_table_cache);
631     }
632 
633     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
634     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
635     if (ret < 0) {
636         goto err;
637     }
638     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
639 
640     for (i = 0; i < m->nb_clusters; i++) {
641         /* if two concurrent writes happen to the same unallocated cluster
642 	 * each write allocates separate cluster and writes data concurrently.
643 	 * The first one to complete updates l2 table with pointer to its
644 	 * cluster the second one has to do RMW (which is done above by
645 	 * copy_sectors()), update l2 table with its cluster pointer and free
646 	 * old cluster. This is what this loop does */
647         if(l2_table[l2_index + i] != 0)
648             old_cluster[j++] = l2_table[l2_index + i];
649 
650         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
651                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
652      }
653 
654 
655     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
656     if (ret < 0) {
657         goto err;
658     }
659 
660     /*
661      * If this was a COW, we need to decrease the refcount of the old cluster.
662      * Also flush bs->file to get the right order for L2 and refcount update.
663      */
664     if (j != 0) {
665         for (i = 0; i < j; i++) {
666             qcow2_free_any_clusters(bs,
667                 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
668         }
669     }
670 
671     ret = 0;
672 err:
673     g_free(old_cluster);
674     return ret;
675  }
676 
677 /*
678  * Returns the number of contiguous clusters that can be used for an allocating
679  * write, but require COW to be performed (this includes yet unallocated space,
680  * which must copy from the backing file)
681  */
682 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
683     uint64_t *l2_table, int l2_index)
684 {
685     int i = 0;
686     uint64_t cluster_offset;
687 
688     while (i < nb_clusters) {
689         i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
690                 &l2_table[l2_index], i, 0);
691         if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
692             break;
693         }
694 
695         i += count_contiguous_free_clusters(nb_clusters - i,
696                 &l2_table[l2_index + i]);
697         if (i >= nb_clusters) {
698             break;
699         }
700 
701         cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
702 
703         if ((cluster_offset & QCOW_OFLAG_COPIED) ||
704                 (cluster_offset & QCOW_OFLAG_COMPRESSED))
705             break;
706     }
707 
708     assert(i <= nb_clusters);
709     return i;
710 }
711 
712 /*
713  * Allocates new clusters for the given guest_offset.
714  *
715  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
716  * contain the number of clusters that have been allocated and are contiguous
717  * in the image file.
718  *
719  * If *host_offset is non-zero, it specifies the offset in the image file at
720  * which the new clusters must start. *nb_clusters can be 0 on return in this
721  * case if the cluster at host_offset is already in use. If *host_offset is
722  * zero, the clusters can be allocated anywhere in the image file.
723  *
724  * *host_offset is updated to contain the offset into the image file at which
725  * the first allocated cluster starts.
726  *
727  * Return 0 on success and -errno in error cases. -EAGAIN means that the
728  * function has been waiting for another request and the allocation must be
729  * restarted, but the whole request should not be failed.
730  */
731 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
732     uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
733 {
734     BDRVQcowState *s = bs->opaque;
735     int64_t cluster_offset;
736     QCowL2Meta *old_alloc;
737 
738     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
739                                          *host_offset, *nb_clusters);
740 
741     /*
742      * Check if there already is an AIO write request in flight which allocates
743      * the same cluster. In this case we need to wait until the previous
744      * request has completed and updated the L2 table accordingly.
745      */
746     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
747 
748         uint64_t start = guest_offset >> s->cluster_bits;
749         uint64_t end = start + *nb_clusters;
750         uint64_t old_start = old_alloc->offset >> s->cluster_bits;
751         uint64_t old_end = old_start + old_alloc->nb_clusters;
752 
753         if (end < old_start || start > old_end) {
754             /* No intersection */
755         } else {
756             if (start < old_start) {
757                 /* Stop at the start of a running allocation */
758                 *nb_clusters = old_start - start;
759             } else {
760                 *nb_clusters = 0;
761             }
762 
763             if (*nb_clusters == 0) {
764                 /* Wait for the dependency to complete. We need to recheck
765                  * the free/allocated clusters when we continue. */
766                 qemu_co_mutex_unlock(&s->lock);
767                 qemu_co_queue_wait(&old_alloc->dependent_requests);
768                 qemu_co_mutex_lock(&s->lock);
769                 return -EAGAIN;
770             }
771         }
772     }
773 
774     if (!*nb_clusters) {
775         abort();
776     }
777 
778     /* Allocate new clusters */
779     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
780     if (*host_offset == 0) {
781         cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
782     } else {
783         cluster_offset = *host_offset;
784         *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
785     }
786 
787     if (cluster_offset < 0) {
788         return cluster_offset;
789     }
790     *host_offset = cluster_offset;
791     return 0;
792 }
793 
794 /*
795  * alloc_cluster_offset
796  *
797  * For a given offset on the virtual disk, find the cluster offset in qcow2
798  * file. If the offset is not found, allocate a new cluster.
799  *
800  * If the cluster was already allocated, m->nb_clusters is set to 0 and
801  * other fields in m are meaningless.
802  *
803  * If the cluster is newly allocated, m->nb_clusters is set to the number of
804  * contiguous clusters that have been allocated. In this case, the other
805  * fields of m are valid and contain information about the first allocated
806  * cluster.
807  *
808  * If the request conflicts with another write request in flight, the coroutine
809  * is queued and will be reentered when the dependency has completed.
810  *
811  * Return 0 on success and -errno in error cases
812  */
813 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
814     int n_start, int n_end, int *num, QCowL2Meta *m)
815 {
816     BDRVQcowState *s = bs->opaque;
817     int l2_index, ret, sectors;
818     uint64_t *l2_table;
819     unsigned int nb_clusters, keep_clusters;
820     uint64_t cluster_offset;
821 
822     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
823                                       n_start, n_end);
824 
825     /* Find L2 entry for the first involved cluster */
826     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
827     if (ret < 0) {
828         return ret;
829     }
830 
831     /*
832      * Calculate the number of clusters to look for. We stop at L2 table
833      * boundaries to keep things simple.
834      */
835 again:
836     nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
837                       s->l2_size - l2_index);
838 
839     cluster_offset = be64_to_cpu(l2_table[l2_index]);
840 
841     /*
842      * Check how many clusters are already allocated and don't need COW, and how
843      * many need a new allocation.
844      */
845     if (cluster_offset & QCOW_OFLAG_COPIED) {
846         /* We keep all QCOW_OFLAG_COPIED clusters */
847         keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
848                                                   &l2_table[l2_index], 0, 0);
849         assert(keep_clusters <= nb_clusters);
850         nb_clusters -= keep_clusters;
851     } else {
852         /* For the moment, overwrite compressed clusters one by one */
853         if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
854             nb_clusters = 1;
855         } else {
856             nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
857         }
858 
859         keep_clusters = 0;
860         cluster_offset = 0;
861     }
862 
863     cluster_offset &= ~QCOW_OFLAG_COPIED;
864 
865     /* If there is something left to allocate, do that now */
866     *m = (QCowL2Meta) {
867         .cluster_offset     = cluster_offset,
868         .nb_clusters        = 0,
869     };
870     qemu_co_queue_init(&m->dependent_requests);
871 
872     if (nb_clusters > 0) {
873         uint64_t alloc_offset;
874         uint64_t alloc_cluster_offset;
875         uint64_t keep_bytes = keep_clusters * s->cluster_size;
876 
877         /* Calculate start and size of allocation */
878         alloc_offset = offset + keep_bytes;
879 
880         if (keep_clusters == 0) {
881             alloc_cluster_offset = 0;
882         } else {
883             alloc_cluster_offset = cluster_offset + keep_bytes;
884         }
885 
886         /* Allocate, if necessary at a given offset in the image file */
887         ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
888                                       &nb_clusters, l2_table);
889         if (ret == -EAGAIN) {
890             goto again;
891         } else if (ret < 0) {
892             goto fail;
893         }
894 
895         /* save info needed for meta data update */
896         if (nb_clusters > 0) {
897             int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
898             int avail_sectors = (keep_clusters + nb_clusters)
899                                 << (s->cluster_bits - BDRV_SECTOR_BITS);
900 
901             *m = (QCowL2Meta) {
902                 .cluster_offset = keep_clusters == 0 ?
903                                   alloc_cluster_offset : cluster_offset,
904                 .alloc_offset   = alloc_cluster_offset,
905                 .offset         = alloc_offset,
906                 .n_start        = keep_clusters == 0 ? n_start : 0,
907                 .nb_clusters    = nb_clusters,
908                 .nb_available   = MIN(requested_sectors, avail_sectors),
909             };
910             qemu_co_queue_init(&m->dependent_requests);
911             QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
912         }
913     }
914 
915     /* Some cleanup work */
916     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
917     if (ret < 0) {
918         goto fail_put;
919     }
920 
921     sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
922     if (sectors > n_end) {
923         sectors = n_end;
924     }
925 
926     assert(sectors > n_start);
927     *num = sectors - n_start;
928 
929     return 0;
930 
931 fail:
932     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
933 fail_put:
934     if (nb_clusters > 0) {
935         QLIST_REMOVE(m, next_in_flight);
936     }
937     return ret;
938 }
939 
940 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
941                              const uint8_t *buf, int buf_size)
942 {
943     z_stream strm1, *strm = &strm1;
944     int ret, out_len;
945 
946     memset(strm, 0, sizeof(*strm));
947 
948     strm->next_in = (uint8_t *)buf;
949     strm->avail_in = buf_size;
950     strm->next_out = out_buf;
951     strm->avail_out = out_buf_size;
952 
953     ret = inflateInit2(strm, -12);
954     if (ret != Z_OK)
955         return -1;
956     ret = inflate(strm, Z_FINISH);
957     out_len = strm->next_out - out_buf;
958     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
959         out_len != out_buf_size) {
960         inflateEnd(strm);
961         return -1;
962     }
963     inflateEnd(strm);
964     return 0;
965 }
966 
967 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
968 {
969     BDRVQcowState *s = bs->opaque;
970     int ret, csize, nb_csectors, sector_offset;
971     uint64_t coffset;
972 
973     coffset = cluster_offset & s->cluster_offset_mask;
974     if (s->cluster_cache_offset != coffset) {
975         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
976         sector_offset = coffset & 511;
977         csize = nb_csectors * 512 - sector_offset;
978         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
979         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
980         if (ret < 0) {
981             return ret;
982         }
983         if (decompress_buffer(s->cluster_cache, s->cluster_size,
984                               s->cluster_data + sector_offset, csize) < 0) {
985             return -EIO;
986         }
987         s->cluster_cache_offset = coffset;
988     }
989     return 0;
990 }
991 
992 /*
993  * This discards as many clusters of nb_clusters as possible at once (i.e.
994  * all clusters in the same L2 table) and returns the number of discarded
995  * clusters.
996  */
997 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
998     unsigned int nb_clusters)
999 {
1000     BDRVQcowState *s = bs->opaque;
1001     uint64_t *l2_table;
1002     int l2_index;
1003     int ret;
1004     int i;
1005 
1006     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1007     if (ret < 0) {
1008         return ret;
1009     }
1010 
1011     /* Limit nb_clusters to one L2 table */
1012     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1013 
1014     for (i = 0; i < nb_clusters; i++) {
1015         uint64_t old_offset;
1016 
1017         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1018         old_offset &= ~QCOW_OFLAG_COPIED;
1019 
1020         if (old_offset == 0) {
1021             continue;
1022         }
1023 
1024         /* First remove L2 entries */
1025         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1026         l2_table[l2_index + i] = cpu_to_be64(0);
1027 
1028         /* Then decrease the refcount */
1029         qcow2_free_any_clusters(bs, old_offset, 1);
1030     }
1031 
1032     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1033     if (ret < 0) {
1034         return ret;
1035     }
1036 
1037     return nb_clusters;
1038 }
1039 
1040 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1041     int nb_sectors)
1042 {
1043     BDRVQcowState *s = bs->opaque;
1044     uint64_t end_offset;
1045     unsigned int nb_clusters;
1046     int ret;
1047 
1048     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1049 
1050     /* Round start up and end down */
1051     offset = align_offset(offset, s->cluster_size);
1052     end_offset &= ~(s->cluster_size - 1);
1053 
1054     if (offset > end_offset) {
1055         return 0;
1056     }
1057 
1058     nb_clusters = size_to_clusters(s, end_offset - offset);
1059 
1060     /* Each L2 table is handled by its own loop iteration */
1061     while (nb_clusters > 0) {
1062         ret = discard_single_l2(bs, offset, nb_clusters);
1063         if (ret < 0) {
1064             return ret;
1065         }
1066 
1067         nb_clusters -= ret;
1068         offset += (ret * s->cluster_size);
1069     }
1070 
1071     return 0;
1072 }
1073