xref: /openbmc/qemu/block/qcow2-cluster.c (revision 5c570902)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33                         bool exact_size)
34 {
35     BDRVQcowState *s = bs->opaque;
36     int new_l1_size2, ret, i;
37     uint64_t *new_l1_table;
38     int64_t old_l1_table_offset, old_l1_size;
39     int64_t new_l1_table_offset, new_l1_size;
40     uint8_t data[12];
41 
42     if (min_size <= s->l1_size)
43         return 0;
44 
45     if (exact_size) {
46         new_l1_size = min_size;
47     } else {
48         /* Bump size up to reduce the number of times we have to grow */
49         new_l1_size = s->l1_size;
50         if (new_l1_size == 0) {
51             new_l1_size = 1;
52         }
53         while (min_size > new_l1_size) {
54             new_l1_size = (new_l1_size * 3 + 1) / 2;
55         }
56     }
57 
58     if (new_l1_size > INT_MAX) {
59         return -EFBIG;
60     }
61 
62 #ifdef DEBUG_ALLOC2
63     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
64             s->l1_size, new_l1_size);
65 #endif
66 
67     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
68     new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
69     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
70 
71     /* write new table (align to cluster) */
72     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
73     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
74     if (new_l1_table_offset < 0) {
75         g_free(new_l1_table);
76         return new_l1_table_offset;
77     }
78 
79     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
80     if (ret < 0) {
81         goto fail;
82     }
83 
84     /* the L1 position has not yet been updated, so these clusters must
85      * indeed be completely free */
86     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
87                                         new_l1_size2);
88     if (ret < 0) {
89         goto fail;
90     }
91 
92     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
93     for(i = 0; i < s->l1_size; i++)
94         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
95     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
96     if (ret < 0)
97         goto fail;
98     for(i = 0; i < s->l1_size; i++)
99         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
100 
101     /* set new table */
102     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
103     cpu_to_be32w((uint32_t*)data, new_l1_size);
104     stq_be_p(data + 4, new_l1_table_offset);
105     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
106     if (ret < 0) {
107         goto fail;
108     }
109     g_free(s->l1_table);
110     old_l1_table_offset = s->l1_table_offset;
111     s->l1_table_offset = new_l1_table_offset;
112     s->l1_table = new_l1_table;
113     old_l1_size = s->l1_size;
114     s->l1_size = new_l1_size;
115     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
116                         QCOW2_DISCARD_OTHER);
117     return 0;
118  fail:
119     g_free(new_l1_table);
120     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
121                         QCOW2_DISCARD_OTHER);
122     return ret;
123 }
124 
125 /*
126  * l2_load
127  *
128  * Loads a L2 table into memory. If the table is in the cache, the cache
129  * is used; otherwise the L2 table is loaded from the image file.
130  *
131  * Returns a pointer to the L2 table on success, or NULL if the read from
132  * the image file failed.
133  */
134 
135 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
136     uint64_t **l2_table)
137 {
138     BDRVQcowState *s = bs->opaque;
139     int ret;
140 
141     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
142 
143     return ret;
144 }
145 
146 /*
147  * Writes one sector of the L1 table to the disk (can't update single entries
148  * and we really don't want bdrv_pread to perform a read-modify-write)
149  */
150 #define L1_ENTRIES_PER_SECTOR (512 / 8)
151 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
152 {
153     BDRVQcowState *s = bs->opaque;
154     uint64_t buf[L1_ENTRIES_PER_SECTOR];
155     int l1_start_index;
156     int i, ret;
157 
158     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
159     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
160         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
161     }
162 
163     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
164             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
165     if (ret < 0) {
166         return ret;
167     }
168 
169     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
170     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
171         buf, sizeof(buf));
172     if (ret < 0) {
173         return ret;
174     }
175 
176     return 0;
177 }
178 
179 /*
180  * l2_allocate
181  *
182  * Allocate a new l2 entry in the file. If l1_index points to an already
183  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
184  * table) copy the contents of the old L2 table into the newly allocated one.
185  * Otherwise the new table is initialized with zeros.
186  *
187  */
188 
189 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
190 {
191     BDRVQcowState *s = bs->opaque;
192     uint64_t old_l2_offset;
193     uint64_t *l2_table = NULL;
194     int64_t l2_offset;
195     int ret;
196 
197     old_l2_offset = s->l1_table[l1_index];
198 
199     trace_qcow2_l2_allocate(bs, l1_index);
200 
201     /* allocate a new l2 entry */
202 
203     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
204     if (l2_offset < 0) {
205         ret = l2_offset;
206         goto fail;
207     }
208 
209     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
210     if (ret < 0) {
211         goto fail;
212     }
213 
214     /* allocate a new entry in the l2 cache */
215 
216     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
217     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
218     if (ret < 0) {
219         goto fail;
220     }
221 
222     l2_table = *table;
223 
224     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
225         /* if there was no old l2 table, clear the new table */
226         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
227     } else {
228         uint64_t* old_table;
229 
230         /* if there was an old l2 table, read it from the disk */
231         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
232         ret = qcow2_cache_get(bs, s->l2_table_cache,
233             old_l2_offset & L1E_OFFSET_MASK,
234             (void**) &old_table);
235         if (ret < 0) {
236             goto fail;
237         }
238 
239         memcpy(l2_table, old_table, s->cluster_size);
240 
241         ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
242         if (ret < 0) {
243             goto fail;
244         }
245     }
246 
247     /* write the l2 table to the file */
248     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
249 
250     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
251     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
252     ret = qcow2_cache_flush(bs, s->l2_table_cache);
253     if (ret < 0) {
254         goto fail;
255     }
256 
257     /* update the L1 entry */
258     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
259     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
260     ret = qcow2_write_l1_entry(bs, l1_index);
261     if (ret < 0) {
262         goto fail;
263     }
264 
265     *table = l2_table;
266     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
267     return 0;
268 
269 fail:
270     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
271     if (l2_table != NULL) {
272         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
273     }
274     s->l1_table[l1_index] = old_l2_offset;
275     if (l2_offset > 0) {
276         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
277                             QCOW2_DISCARD_ALWAYS);
278     }
279     return ret;
280 }
281 
282 /*
283  * Checks how many clusters in a given L2 table are contiguous in the image
284  * file. As soon as one of the flags in the bitmask stop_flags changes compared
285  * to the first cluster, the search is stopped and the cluster is not counted
286  * as contiguous. (This allows it, for example, to stop at the first compressed
287  * cluster which may require a different handling)
288  */
289 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
290         uint64_t *l2_table, uint64_t stop_flags)
291 {
292     int i;
293     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
294     uint64_t first_entry = be64_to_cpu(l2_table[0]);
295     uint64_t offset = first_entry & mask;
296 
297     if (!offset)
298         return 0;
299 
300     assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
301 
302     for (i = 0; i < nb_clusters; i++) {
303         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
304         if (offset + (uint64_t) i * cluster_size != l2_entry) {
305             break;
306         }
307     }
308 
309 	return i;
310 }
311 
312 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
313 {
314     int i;
315 
316     for (i = 0; i < nb_clusters; i++) {
317         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
318 
319         if (type != QCOW2_CLUSTER_UNALLOCATED) {
320             break;
321         }
322     }
323 
324     return i;
325 }
326 
327 /* The crypt function is compatible with the linux cryptoloop
328    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
329    supported */
330 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
331                            uint8_t *out_buf, const uint8_t *in_buf,
332                            int nb_sectors, int enc,
333                            const AES_KEY *key)
334 {
335     union {
336         uint64_t ll[2];
337         uint8_t b[16];
338     } ivec;
339     int i;
340 
341     for(i = 0; i < nb_sectors; i++) {
342         ivec.ll[0] = cpu_to_le64(sector_num);
343         ivec.ll[1] = 0;
344         AES_cbc_encrypt(in_buf, out_buf, 512, key,
345                         ivec.b, enc);
346         sector_num++;
347         in_buf += 512;
348         out_buf += 512;
349     }
350 }
351 
352 static int coroutine_fn copy_sectors(BlockDriverState *bs,
353                                      uint64_t start_sect,
354                                      uint64_t cluster_offset,
355                                      int n_start, int n_end)
356 {
357     BDRVQcowState *s = bs->opaque;
358     QEMUIOVector qiov;
359     struct iovec iov;
360     int n, ret;
361 
362     /*
363      * If this is the last cluster and it is only partially used, we must only
364      * copy until the end of the image, or bdrv_check_request will fail for the
365      * bdrv_read/write calls below.
366      */
367     if (start_sect + n_end > bs->total_sectors) {
368         n_end = bs->total_sectors - start_sect;
369     }
370 
371     n = n_end - n_start;
372     if (n <= 0) {
373         return 0;
374     }
375 
376     iov.iov_len = n * BDRV_SECTOR_SIZE;
377     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
378 
379     qemu_iovec_init_external(&qiov, &iov, 1);
380 
381     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
382 
383     /* Call .bdrv_co_readv() directly instead of using the public block-layer
384      * interface.  This avoids double I/O throttling and request tracking,
385      * which can lead to deadlock when block layer copy-on-read is enabled.
386      */
387     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
388     if (ret < 0) {
389         goto out;
390     }
391 
392     if (s->crypt_method) {
393         qcow2_encrypt_sectors(s, start_sect + n_start,
394                         iov.iov_base, iov.iov_base, n, 1,
395                         &s->aes_encrypt_key);
396     }
397 
398     ret = qcow2_pre_write_overlap_check(bs, 0,
399             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
400     if (ret < 0) {
401         goto out;
402     }
403 
404     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
405     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
406     if (ret < 0) {
407         goto out;
408     }
409 
410     ret = 0;
411 out:
412     qemu_vfree(iov.iov_base);
413     return ret;
414 }
415 
416 
417 /*
418  * get_cluster_offset
419  *
420  * For a given offset of the disk image, find the cluster offset in
421  * qcow2 file. The offset is stored in *cluster_offset.
422  *
423  * on entry, *num is the number of contiguous sectors we'd like to
424  * access following offset.
425  *
426  * on exit, *num is the number of contiguous sectors we can read.
427  *
428  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
429  * cases.
430  */
431 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
432     int *num, uint64_t *cluster_offset)
433 {
434     BDRVQcowState *s = bs->opaque;
435     unsigned int l2_index;
436     uint64_t l1_index, l2_offset, *l2_table;
437     int l1_bits, c;
438     unsigned int index_in_cluster, nb_clusters;
439     uint64_t nb_available, nb_needed;
440     int ret;
441 
442     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
443     nb_needed = *num + index_in_cluster;
444 
445     l1_bits = s->l2_bits + s->cluster_bits;
446 
447     /* compute how many bytes there are between the offset and
448      * the end of the l1 entry
449      */
450 
451     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
452 
453     /* compute the number of available sectors */
454 
455     nb_available = (nb_available >> 9) + index_in_cluster;
456 
457     if (nb_needed > nb_available) {
458         nb_needed = nb_available;
459     }
460 
461     *cluster_offset = 0;
462 
463     /* seek the the l2 offset in the l1 table */
464 
465     l1_index = offset >> l1_bits;
466     if (l1_index >= s->l1_size) {
467         ret = QCOW2_CLUSTER_UNALLOCATED;
468         goto out;
469     }
470 
471     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
472     if (!l2_offset) {
473         ret = QCOW2_CLUSTER_UNALLOCATED;
474         goto out;
475     }
476 
477     /* load the l2 table in memory */
478 
479     ret = l2_load(bs, l2_offset, &l2_table);
480     if (ret < 0) {
481         return ret;
482     }
483 
484     /* find the cluster offset for the given disk offset */
485 
486     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
487     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
488     nb_clusters = size_to_clusters(s, nb_needed << 9);
489 
490     ret = qcow2_get_cluster_type(*cluster_offset);
491     switch (ret) {
492     case QCOW2_CLUSTER_COMPRESSED:
493         /* Compressed clusters can only be processed one by one */
494         c = 1;
495         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
496         break;
497     case QCOW2_CLUSTER_ZERO:
498         if (s->qcow_version < 3) {
499             return -EIO;
500         }
501         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
502                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
503         *cluster_offset = 0;
504         break;
505     case QCOW2_CLUSTER_UNALLOCATED:
506         /* how many empty clusters ? */
507         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
508         *cluster_offset = 0;
509         break;
510     case QCOW2_CLUSTER_NORMAL:
511         /* how many allocated clusters ? */
512         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
513                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
514         *cluster_offset &= L2E_OFFSET_MASK;
515         break;
516     default:
517         abort();
518     }
519 
520     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
521 
522     nb_available = (c * s->cluster_sectors);
523 
524 out:
525     if (nb_available > nb_needed)
526         nb_available = nb_needed;
527 
528     *num = nb_available - index_in_cluster;
529 
530     return ret;
531 }
532 
533 /*
534  * get_cluster_table
535  *
536  * for a given disk offset, load (and allocate if needed)
537  * the l2 table.
538  *
539  * the l2 table offset in the qcow2 file and the cluster index
540  * in the l2 table are given to the caller.
541  *
542  * Returns 0 on success, -errno in failure case
543  */
544 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
545                              uint64_t **new_l2_table,
546                              int *new_l2_index)
547 {
548     BDRVQcowState *s = bs->opaque;
549     unsigned int l2_index;
550     uint64_t l1_index, l2_offset;
551     uint64_t *l2_table = NULL;
552     int ret;
553 
554     /* seek the the l2 offset in the l1 table */
555 
556     l1_index = offset >> (s->l2_bits + s->cluster_bits);
557     if (l1_index >= s->l1_size) {
558         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
559         if (ret < 0) {
560             return ret;
561         }
562     }
563 
564     assert(l1_index < s->l1_size);
565     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
566 
567     /* seek the l2 table of the given l2 offset */
568 
569     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
570         /* load the l2 table in memory */
571         ret = l2_load(bs, l2_offset, &l2_table);
572         if (ret < 0) {
573             return ret;
574         }
575     } else {
576         /* First allocate a new L2 table (and do COW if needed) */
577         ret = l2_allocate(bs, l1_index, &l2_table);
578         if (ret < 0) {
579             return ret;
580         }
581 
582         /* Then decrease the refcount of the old table */
583         if (l2_offset) {
584             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
585                                 QCOW2_DISCARD_OTHER);
586         }
587     }
588 
589     /* find the cluster offset for the given disk offset */
590 
591     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
592 
593     *new_l2_table = l2_table;
594     *new_l2_index = l2_index;
595 
596     return 0;
597 }
598 
599 /*
600  * alloc_compressed_cluster_offset
601  *
602  * For a given offset of the disk image, return cluster offset in
603  * qcow2 file.
604  *
605  * If the offset is not found, allocate a new compressed cluster.
606  *
607  * Return the cluster offset if successful,
608  * Return 0, otherwise.
609  *
610  */
611 
612 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
613                                                uint64_t offset,
614                                                int compressed_size)
615 {
616     BDRVQcowState *s = bs->opaque;
617     int l2_index, ret;
618     uint64_t *l2_table;
619     int64_t cluster_offset;
620     int nb_csectors;
621 
622     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
623     if (ret < 0) {
624         return 0;
625     }
626 
627     /* Compression can't overwrite anything. Fail if the cluster was already
628      * allocated. */
629     cluster_offset = be64_to_cpu(l2_table[l2_index]);
630     if (cluster_offset & L2E_OFFSET_MASK) {
631         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
632         return 0;
633     }
634 
635     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
636     if (cluster_offset < 0) {
637         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
638         return 0;
639     }
640 
641     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
642                   (cluster_offset >> 9);
643 
644     cluster_offset |= QCOW_OFLAG_COMPRESSED |
645                       ((uint64_t)nb_csectors << s->csize_shift);
646 
647     /* update L2 table */
648 
649     /* compressed clusters never have the copied flag */
650 
651     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
652     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
653     l2_table[l2_index] = cpu_to_be64(cluster_offset);
654     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
655     if (ret < 0) {
656         return 0;
657     }
658 
659     return cluster_offset;
660 }
661 
662 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
663 {
664     BDRVQcowState *s = bs->opaque;
665     int ret;
666 
667     if (r->nb_sectors == 0) {
668         return 0;
669     }
670 
671     qemu_co_mutex_unlock(&s->lock);
672     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
673                        r->offset / BDRV_SECTOR_SIZE,
674                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
675     qemu_co_mutex_lock(&s->lock);
676 
677     if (ret < 0) {
678         return ret;
679     }
680 
681     /*
682      * Before we update the L2 table to actually point to the new cluster, we
683      * need to be sure that the refcounts have been increased and COW was
684      * handled.
685      */
686     qcow2_cache_depends_on_flush(s->l2_table_cache);
687 
688     return 0;
689 }
690 
691 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
692 {
693     BDRVQcowState *s = bs->opaque;
694     int i, j = 0, l2_index, ret;
695     uint64_t *old_cluster, *l2_table;
696     uint64_t cluster_offset = m->alloc_offset;
697 
698     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
699     assert(m->nb_clusters > 0);
700 
701     old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
702 
703     /* copy content of unmodified sectors */
704     ret = perform_cow(bs, m, &m->cow_start);
705     if (ret < 0) {
706         goto err;
707     }
708 
709     ret = perform_cow(bs, m, &m->cow_end);
710     if (ret < 0) {
711         goto err;
712     }
713 
714     /* Update L2 table. */
715     if (s->use_lazy_refcounts) {
716         qcow2_mark_dirty(bs);
717     }
718     if (qcow2_need_accurate_refcounts(s)) {
719         qcow2_cache_set_dependency(bs, s->l2_table_cache,
720                                    s->refcount_block_cache);
721     }
722 
723     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
724     if (ret < 0) {
725         goto err;
726     }
727     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
728 
729     assert(l2_index + m->nb_clusters <= s->l2_size);
730     for (i = 0; i < m->nb_clusters; i++) {
731         /* if two concurrent writes happen to the same unallocated cluster
732 	 * each write allocates separate cluster and writes data concurrently.
733 	 * The first one to complete updates l2 table with pointer to its
734 	 * cluster the second one has to do RMW (which is done above by
735 	 * copy_sectors()), update l2 table with its cluster pointer and free
736 	 * old cluster. This is what this loop does */
737         if(l2_table[l2_index + i] != 0)
738             old_cluster[j++] = l2_table[l2_index + i];
739 
740         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
741                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
742      }
743 
744 
745     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
746     if (ret < 0) {
747         goto err;
748     }
749 
750     /*
751      * If this was a COW, we need to decrease the refcount of the old cluster.
752      * Also flush bs->file to get the right order for L2 and refcount update.
753      *
754      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
755      * clusters), the next write will reuse them anyway.
756      */
757     if (j != 0) {
758         for (i = 0; i < j; i++) {
759             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
760                                     QCOW2_DISCARD_NEVER);
761         }
762     }
763 
764     ret = 0;
765 err:
766     g_free(old_cluster);
767     return ret;
768  }
769 
770 /*
771  * Returns the number of contiguous clusters that can be used for an allocating
772  * write, but require COW to be performed (this includes yet unallocated space,
773  * which must copy from the backing file)
774  */
775 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
776     uint64_t *l2_table, int l2_index)
777 {
778     int i;
779 
780     for (i = 0; i < nb_clusters; i++) {
781         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
782         int cluster_type = qcow2_get_cluster_type(l2_entry);
783 
784         switch(cluster_type) {
785         case QCOW2_CLUSTER_NORMAL:
786             if (l2_entry & QCOW_OFLAG_COPIED) {
787                 goto out;
788             }
789             break;
790         case QCOW2_CLUSTER_UNALLOCATED:
791         case QCOW2_CLUSTER_COMPRESSED:
792         case QCOW2_CLUSTER_ZERO:
793             break;
794         default:
795             abort();
796         }
797     }
798 
799 out:
800     assert(i <= nb_clusters);
801     return i;
802 }
803 
804 /*
805  * Check if there already is an AIO write request in flight which allocates
806  * the same cluster. In this case we need to wait until the previous
807  * request has completed and updated the L2 table accordingly.
808  *
809  * Returns:
810  *   0       if there was no dependency. *cur_bytes indicates the number of
811  *           bytes from guest_offset that can be read before the next
812  *           dependency must be processed (or the request is complete)
813  *
814  *   -EAGAIN if we had to wait for another request, previously gathered
815  *           information on cluster allocation may be invalid now. The caller
816  *           must start over anyway, so consider *cur_bytes undefined.
817  */
818 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
819     uint64_t *cur_bytes, QCowL2Meta **m)
820 {
821     BDRVQcowState *s = bs->opaque;
822     QCowL2Meta *old_alloc;
823     uint64_t bytes = *cur_bytes;
824 
825     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
826 
827         uint64_t start = guest_offset;
828         uint64_t end = start + bytes;
829         uint64_t old_start = l2meta_cow_start(old_alloc);
830         uint64_t old_end = l2meta_cow_end(old_alloc);
831 
832         if (end <= old_start || start >= old_end) {
833             /* No intersection */
834         } else {
835             if (start < old_start) {
836                 /* Stop at the start of a running allocation */
837                 bytes = old_start - start;
838             } else {
839                 bytes = 0;
840             }
841 
842             /* Stop if already an l2meta exists. After yielding, it wouldn't
843              * be valid any more, so we'd have to clean up the old L2Metas
844              * and deal with requests depending on them before starting to
845              * gather new ones. Not worth the trouble. */
846             if (bytes == 0 && *m) {
847                 *cur_bytes = 0;
848                 return 0;
849             }
850 
851             if (bytes == 0) {
852                 /* Wait for the dependency to complete. We need to recheck
853                  * the free/allocated clusters when we continue. */
854                 qemu_co_mutex_unlock(&s->lock);
855                 qemu_co_queue_wait(&old_alloc->dependent_requests);
856                 qemu_co_mutex_lock(&s->lock);
857                 return -EAGAIN;
858             }
859         }
860     }
861 
862     /* Make sure that existing clusters and new allocations are only used up to
863      * the next dependency if we shortened the request above */
864     *cur_bytes = bytes;
865 
866     return 0;
867 }
868 
869 /*
870  * Checks how many already allocated clusters that don't require a copy on
871  * write there are at the given guest_offset (up to *bytes). If
872  * *host_offset is not zero, only physically contiguous clusters beginning at
873  * this host offset are counted.
874  *
875  * Note that guest_offset may not be cluster aligned. In this case, the
876  * returned *host_offset points to exact byte referenced by guest_offset and
877  * therefore isn't cluster aligned as well.
878  *
879  * Returns:
880  *   0:     if no allocated clusters are available at the given offset.
881  *          *bytes is normally unchanged. It is set to 0 if the cluster
882  *          is allocated and doesn't need COW, but doesn't have the right
883  *          physical offset.
884  *
885  *   1:     if allocated clusters that don't require a COW are available at
886  *          the requested offset. *bytes may have decreased and describes
887  *          the length of the area that can be written to.
888  *
889  *  -errno: in error cases
890  */
891 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
892     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
893 {
894     BDRVQcowState *s = bs->opaque;
895     int l2_index;
896     uint64_t cluster_offset;
897     uint64_t *l2_table;
898     unsigned int nb_clusters;
899     unsigned int keep_clusters;
900     int ret, pret;
901 
902     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
903                               *bytes);
904 
905     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
906                                 == offset_into_cluster(s, *host_offset));
907 
908     /*
909      * Calculate the number of clusters to look for. We stop at L2 table
910      * boundaries to keep things simple.
911      */
912     nb_clusters =
913         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
914 
915     l2_index = offset_to_l2_index(s, guest_offset);
916     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
917 
918     /* Find L2 entry for the first involved cluster */
919     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
920     if (ret < 0) {
921         return ret;
922     }
923 
924     cluster_offset = be64_to_cpu(l2_table[l2_index]);
925 
926     /* Check how many clusters are already allocated and don't need COW */
927     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
928         && (cluster_offset & QCOW_OFLAG_COPIED))
929     {
930         /* If a specific host_offset is required, check it */
931         bool offset_matches =
932             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
933 
934         if (*host_offset != 0 && !offset_matches) {
935             *bytes = 0;
936             ret = 0;
937             goto out;
938         }
939 
940         /* We keep all QCOW_OFLAG_COPIED clusters */
941         keep_clusters =
942             count_contiguous_clusters(nb_clusters, s->cluster_size,
943                                       &l2_table[l2_index],
944                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
945         assert(keep_clusters <= nb_clusters);
946 
947         *bytes = MIN(*bytes,
948                  keep_clusters * s->cluster_size
949                  - offset_into_cluster(s, guest_offset));
950 
951         ret = 1;
952     } else {
953         ret = 0;
954     }
955 
956     /* Cleanup */
957 out:
958     pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
959     if (pret < 0) {
960         return pret;
961     }
962 
963     /* Only return a host offset if we actually made progress. Otherwise we
964      * would make requirements for handle_alloc() that it can't fulfill */
965     if (ret) {
966         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
967                      + offset_into_cluster(s, guest_offset);
968     }
969 
970     return ret;
971 }
972 
973 /*
974  * Allocates new clusters for the given guest_offset.
975  *
976  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
977  * contain the number of clusters that have been allocated and are contiguous
978  * in the image file.
979  *
980  * If *host_offset is non-zero, it specifies the offset in the image file at
981  * which the new clusters must start. *nb_clusters can be 0 on return in this
982  * case if the cluster at host_offset is already in use. If *host_offset is
983  * zero, the clusters can be allocated anywhere in the image file.
984  *
985  * *host_offset is updated to contain the offset into the image file at which
986  * the first allocated cluster starts.
987  *
988  * Return 0 on success and -errno in error cases. -EAGAIN means that the
989  * function has been waiting for another request and the allocation must be
990  * restarted, but the whole request should not be failed.
991  */
992 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
993     uint64_t *host_offset, unsigned int *nb_clusters)
994 {
995     BDRVQcowState *s = bs->opaque;
996 
997     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
998                                          *host_offset, *nb_clusters);
999 
1000     /* Allocate new clusters */
1001     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1002     if (*host_offset == 0) {
1003         int64_t cluster_offset =
1004             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1005         if (cluster_offset < 0) {
1006             return cluster_offset;
1007         }
1008         *host_offset = cluster_offset;
1009         return 0;
1010     } else {
1011         int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1012         if (ret < 0) {
1013             return ret;
1014         }
1015         *nb_clusters = ret;
1016         return 0;
1017     }
1018 }
1019 
1020 /*
1021  * Allocates new clusters for an area that either is yet unallocated or needs a
1022  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1023  * the new allocation can match the specified host offset.
1024  *
1025  * Note that guest_offset may not be cluster aligned. In this case, the
1026  * returned *host_offset points to exact byte referenced by guest_offset and
1027  * therefore isn't cluster aligned as well.
1028  *
1029  * Returns:
1030  *   0:     if no clusters could be allocated. *bytes is set to 0,
1031  *          *host_offset is left unchanged.
1032  *
1033  *   1:     if new clusters were allocated. *bytes may be decreased if the
1034  *          new allocation doesn't cover all of the requested area.
1035  *          *host_offset is updated to contain the host offset of the first
1036  *          newly allocated cluster.
1037  *
1038  *  -errno: in error cases
1039  */
1040 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1041     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1042 {
1043     BDRVQcowState *s = bs->opaque;
1044     int l2_index;
1045     uint64_t *l2_table;
1046     uint64_t entry;
1047     unsigned int nb_clusters;
1048     int ret;
1049 
1050     uint64_t alloc_cluster_offset;
1051 
1052     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1053                              *bytes);
1054     assert(*bytes > 0);
1055 
1056     /*
1057      * Calculate the number of clusters to look for. We stop at L2 table
1058      * boundaries to keep things simple.
1059      */
1060     nb_clusters =
1061         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1062 
1063     l2_index = offset_to_l2_index(s, guest_offset);
1064     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1065 
1066     /* Find L2 entry for the first involved cluster */
1067     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1068     if (ret < 0) {
1069         return ret;
1070     }
1071 
1072     entry = be64_to_cpu(l2_table[l2_index]);
1073 
1074     /* For the moment, overwrite compressed clusters one by one */
1075     if (entry & QCOW_OFLAG_COMPRESSED) {
1076         nb_clusters = 1;
1077     } else {
1078         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1079     }
1080 
1081     /* This function is only called when there were no non-COW clusters, so if
1082      * we can't find any unallocated or COW clusters either, something is
1083      * wrong with our code. */
1084     assert(nb_clusters > 0);
1085 
1086     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1087     if (ret < 0) {
1088         return ret;
1089     }
1090 
1091     /* Allocate, if necessary at a given offset in the image file */
1092     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1093     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1094                                   &nb_clusters);
1095     if (ret < 0) {
1096         goto fail;
1097     }
1098 
1099     /* Can't extend contiguous allocation */
1100     if (nb_clusters == 0) {
1101         *bytes = 0;
1102         return 0;
1103     }
1104 
1105     /*
1106      * Save info needed for meta data update.
1107      *
1108      * requested_sectors: Number of sectors from the start of the first
1109      * newly allocated cluster to the end of the (possibly shortened
1110      * before) write request.
1111      *
1112      * avail_sectors: Number of sectors from the start of the first
1113      * newly allocated to the end of the last newly allocated cluster.
1114      *
1115      * nb_sectors: The number of sectors from the start of the first
1116      * newly allocated cluster to the end of the area that the write
1117      * request actually writes to (excluding COW at the end)
1118      */
1119     int requested_sectors =
1120         (*bytes + offset_into_cluster(s, guest_offset))
1121         >> BDRV_SECTOR_BITS;
1122     int avail_sectors = nb_clusters
1123                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1124     int alloc_n_start = offset_into_cluster(s, guest_offset)
1125                         >> BDRV_SECTOR_BITS;
1126     int nb_sectors = MIN(requested_sectors, avail_sectors);
1127     QCowL2Meta *old_m = *m;
1128 
1129     *m = g_malloc0(sizeof(**m));
1130 
1131     **m = (QCowL2Meta) {
1132         .next           = old_m,
1133 
1134         .alloc_offset   = alloc_cluster_offset,
1135         .offset         = start_of_cluster(s, guest_offset),
1136         .nb_clusters    = nb_clusters,
1137         .nb_available   = nb_sectors,
1138 
1139         .cow_start = {
1140             .offset     = 0,
1141             .nb_sectors = alloc_n_start,
1142         },
1143         .cow_end = {
1144             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1145             .nb_sectors = avail_sectors - nb_sectors,
1146         },
1147     };
1148     qemu_co_queue_init(&(*m)->dependent_requests);
1149     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1150 
1151     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1152     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1153                          - offset_into_cluster(s, guest_offset));
1154     assert(*bytes != 0);
1155 
1156     return 1;
1157 
1158 fail:
1159     if (*m && (*m)->nb_clusters > 0) {
1160         QLIST_REMOVE(*m, next_in_flight);
1161     }
1162     return ret;
1163 }
1164 
1165 /*
1166  * alloc_cluster_offset
1167  *
1168  * For a given offset on the virtual disk, find the cluster offset in qcow2
1169  * file. If the offset is not found, allocate a new cluster.
1170  *
1171  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1172  * other fields in m are meaningless.
1173  *
1174  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1175  * contiguous clusters that have been allocated. In this case, the other
1176  * fields of m are valid and contain information about the first allocated
1177  * cluster.
1178  *
1179  * If the request conflicts with another write request in flight, the coroutine
1180  * is queued and will be reentered when the dependency has completed.
1181  *
1182  * Return 0 on success and -errno in error cases
1183  */
1184 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1185     int *num, uint64_t *host_offset, QCowL2Meta **m)
1186 {
1187     BDRVQcowState *s = bs->opaque;
1188     uint64_t start, remaining;
1189     uint64_t cluster_offset;
1190     uint64_t cur_bytes;
1191     int ret;
1192 
1193     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1194 
1195     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1196 
1197 again:
1198     start = offset;
1199     remaining = *num << BDRV_SECTOR_BITS;
1200     cluster_offset = 0;
1201     *host_offset = 0;
1202     cur_bytes = 0;
1203     *m = NULL;
1204 
1205     while (true) {
1206 
1207         if (!*host_offset) {
1208             *host_offset = start_of_cluster(s, cluster_offset);
1209         }
1210 
1211         assert(remaining >= cur_bytes);
1212 
1213         start           += cur_bytes;
1214         remaining       -= cur_bytes;
1215         cluster_offset  += cur_bytes;
1216 
1217         if (remaining == 0) {
1218             break;
1219         }
1220 
1221         cur_bytes = remaining;
1222 
1223         /*
1224          * Now start gathering as many contiguous clusters as possible:
1225          *
1226          * 1. Check for overlaps with in-flight allocations
1227          *
1228          *      a) Overlap not in the first cluster -> shorten this request and
1229          *         let the caller handle the rest in its next loop iteration.
1230          *
1231          *      b) Real overlaps of two requests. Yield and restart the search
1232          *         for contiguous clusters (the situation could have changed
1233          *         while we were sleeping)
1234          *
1235          *      c) TODO: Request starts in the same cluster as the in-flight
1236          *         allocation ends. Shorten the COW of the in-fight allocation,
1237          *         set cluster_offset to write to the same cluster and set up
1238          *         the right synchronisation between the in-flight request and
1239          *         the new one.
1240          */
1241         ret = handle_dependencies(bs, start, &cur_bytes, m);
1242         if (ret == -EAGAIN) {
1243             /* Currently handle_dependencies() doesn't yield if we already had
1244              * an allocation. If it did, we would have to clean up the L2Meta
1245              * structs before starting over. */
1246             assert(*m == NULL);
1247             goto again;
1248         } else if (ret < 0) {
1249             return ret;
1250         } else if (cur_bytes == 0) {
1251             break;
1252         } else {
1253             /* handle_dependencies() may have decreased cur_bytes (shortened
1254              * the allocations below) so that the next dependency is processed
1255              * correctly during the next loop iteration. */
1256         }
1257 
1258         /*
1259          * 2. Count contiguous COPIED clusters.
1260          */
1261         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1262         if (ret < 0) {
1263             return ret;
1264         } else if (ret) {
1265             continue;
1266         } else if (cur_bytes == 0) {
1267             break;
1268         }
1269 
1270         /*
1271          * 3. If the request still hasn't completed, allocate new clusters,
1272          *    considering any cluster_offset of steps 1c or 2.
1273          */
1274         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1275         if (ret < 0) {
1276             return ret;
1277         } else if (ret) {
1278             continue;
1279         } else {
1280             assert(cur_bytes == 0);
1281             break;
1282         }
1283     }
1284 
1285     *num -= remaining >> BDRV_SECTOR_BITS;
1286     assert(*num > 0);
1287     assert(*host_offset != 0);
1288 
1289     return 0;
1290 }
1291 
1292 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1293                              const uint8_t *buf, int buf_size)
1294 {
1295     z_stream strm1, *strm = &strm1;
1296     int ret, out_len;
1297 
1298     memset(strm, 0, sizeof(*strm));
1299 
1300     strm->next_in = (uint8_t *)buf;
1301     strm->avail_in = buf_size;
1302     strm->next_out = out_buf;
1303     strm->avail_out = out_buf_size;
1304 
1305     ret = inflateInit2(strm, -12);
1306     if (ret != Z_OK)
1307         return -1;
1308     ret = inflate(strm, Z_FINISH);
1309     out_len = strm->next_out - out_buf;
1310     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1311         out_len != out_buf_size) {
1312         inflateEnd(strm);
1313         return -1;
1314     }
1315     inflateEnd(strm);
1316     return 0;
1317 }
1318 
1319 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1320 {
1321     BDRVQcowState *s = bs->opaque;
1322     int ret, csize, nb_csectors, sector_offset;
1323     uint64_t coffset;
1324 
1325     coffset = cluster_offset & s->cluster_offset_mask;
1326     if (s->cluster_cache_offset != coffset) {
1327         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1328         sector_offset = coffset & 511;
1329         csize = nb_csectors * 512 - sector_offset;
1330         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1331         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1332         if (ret < 0) {
1333             return ret;
1334         }
1335         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1336                               s->cluster_data + sector_offset, csize) < 0) {
1337             return -EIO;
1338         }
1339         s->cluster_cache_offset = coffset;
1340     }
1341     return 0;
1342 }
1343 
1344 /*
1345  * This discards as many clusters of nb_clusters as possible at once (i.e.
1346  * all clusters in the same L2 table) and returns the number of discarded
1347  * clusters.
1348  */
1349 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1350     unsigned int nb_clusters, enum qcow2_discard_type type)
1351 {
1352     BDRVQcowState *s = bs->opaque;
1353     uint64_t *l2_table;
1354     int l2_index;
1355     int ret;
1356     int i;
1357 
1358     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1359     if (ret < 0) {
1360         return ret;
1361     }
1362 
1363     /* Limit nb_clusters to one L2 table */
1364     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1365 
1366     for (i = 0; i < nb_clusters; i++) {
1367         uint64_t old_offset;
1368 
1369         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1370         if ((old_offset & L2E_OFFSET_MASK) == 0) {
1371             continue;
1372         }
1373 
1374         /* First remove L2 entries */
1375         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1376         l2_table[l2_index + i] = cpu_to_be64(0);
1377 
1378         /* Then decrease the refcount */
1379         qcow2_free_any_clusters(bs, old_offset, 1, type);
1380     }
1381 
1382     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1383     if (ret < 0) {
1384         return ret;
1385     }
1386 
1387     return nb_clusters;
1388 }
1389 
1390 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1391     int nb_sectors, enum qcow2_discard_type type)
1392 {
1393     BDRVQcowState *s = bs->opaque;
1394     uint64_t end_offset;
1395     unsigned int nb_clusters;
1396     int ret;
1397 
1398     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1399 
1400     /* Round start up and end down */
1401     offset = align_offset(offset, s->cluster_size);
1402     end_offset = start_of_cluster(s, end_offset);
1403 
1404     if (offset > end_offset) {
1405         return 0;
1406     }
1407 
1408     nb_clusters = size_to_clusters(s, end_offset - offset);
1409 
1410     s->cache_discards = true;
1411 
1412     /* Each L2 table is handled by its own loop iteration */
1413     while (nb_clusters > 0) {
1414         ret = discard_single_l2(bs, offset, nb_clusters, type);
1415         if (ret < 0) {
1416             goto fail;
1417         }
1418 
1419         nb_clusters -= ret;
1420         offset += (ret * s->cluster_size);
1421     }
1422 
1423     ret = 0;
1424 fail:
1425     s->cache_discards = false;
1426     qcow2_process_discards(bs, ret);
1427 
1428     return ret;
1429 }
1430 
1431 /*
1432  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1433  * all clusters in the same L2 table) and returns the number of zeroed
1434  * clusters.
1435  */
1436 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1437     unsigned int nb_clusters)
1438 {
1439     BDRVQcowState *s = bs->opaque;
1440     uint64_t *l2_table;
1441     int l2_index;
1442     int ret;
1443     int i;
1444 
1445     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1446     if (ret < 0) {
1447         return ret;
1448     }
1449 
1450     /* Limit nb_clusters to one L2 table */
1451     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1452 
1453     for (i = 0; i < nb_clusters; i++) {
1454         uint64_t old_offset;
1455 
1456         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1457 
1458         /* Update L2 entries */
1459         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1460         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1461             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1462             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1463         } else {
1464             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1465         }
1466     }
1467 
1468     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1469     if (ret < 0) {
1470         return ret;
1471     }
1472 
1473     return nb_clusters;
1474 }
1475 
1476 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1477 {
1478     BDRVQcowState *s = bs->opaque;
1479     unsigned int nb_clusters;
1480     int ret;
1481 
1482     /* The zero flag is only supported by version 3 and newer */
1483     if (s->qcow_version < 3) {
1484         return -ENOTSUP;
1485     }
1486 
1487     /* Each L2 table is handled by its own loop iteration */
1488     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1489 
1490     s->cache_discards = true;
1491 
1492     while (nb_clusters > 0) {
1493         ret = zero_single_l2(bs, offset, nb_clusters);
1494         if (ret < 0) {
1495             goto fail;
1496         }
1497 
1498         nb_clusters -= ret;
1499         offset += (ret * s->cluster_size);
1500     }
1501 
1502     ret = 0;
1503 fail:
1504     s->cache_discards = false;
1505     qcow2_process_discards(bs, ret);
1506 
1507     return ret;
1508 }
1509 
1510 /*
1511  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1512  * non-backed non-pre-allocated zero clusters).
1513  *
1514  * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1515  * the image file; a bit gets set if the corresponding cluster has been used for
1516  * zero expansion (i.e., has been filled with zeroes and is referenced from an
1517  * L2 table). nb_clusters contains the total cluster count of the image file,
1518  * i.e., the number of bits in expanded_clusters.
1519  */
1520 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1521                                       int l1_size, uint8_t **expanded_clusters,
1522                                       uint64_t *nb_clusters)
1523 {
1524     BDRVQcowState *s = bs->opaque;
1525     bool is_active_l1 = (l1_table == s->l1_table);
1526     uint64_t *l2_table = NULL;
1527     int ret;
1528     int i, j;
1529 
1530     if (!is_active_l1) {
1531         /* inactive L2 tables require a buffer to be stored in when loading
1532          * them from disk */
1533         l2_table = qemu_blockalign(bs, s->cluster_size);
1534     }
1535 
1536     for (i = 0; i < l1_size; i++) {
1537         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1538         bool l2_dirty = false;
1539 
1540         if (!l2_offset) {
1541             /* unallocated */
1542             continue;
1543         }
1544 
1545         if (is_active_l1) {
1546             /* get active L2 tables from cache */
1547             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1548                     (void **)&l2_table);
1549         } else {
1550             /* load inactive L2 tables from disk */
1551             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1552                     (void *)l2_table, s->cluster_sectors);
1553         }
1554         if (ret < 0) {
1555             goto fail;
1556         }
1557 
1558         for (j = 0; j < s->l2_size; j++) {
1559             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1560             int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1561             int cluster_type = qcow2_get_cluster_type(l2_entry);
1562             bool preallocated = offset != 0;
1563 
1564             if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1565                 cluster_index = offset >> s->cluster_bits;
1566                 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1567                 if ((*expanded_clusters)[cluster_index / 8] &
1568                     (1 << (cluster_index % 8))) {
1569                     /* Probably a shared L2 table; this cluster was a zero
1570                      * cluster which has been expanded, its refcount
1571                      * therefore most likely requires an update. */
1572                     ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1573                                                         QCOW2_DISCARD_NEVER);
1574                     if (ret < 0) {
1575                         goto fail;
1576                     }
1577                     /* Since we just increased the refcount, the COPIED flag may
1578                      * no longer be set. */
1579                     l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1580                     l2_dirty = true;
1581                 }
1582                 continue;
1583             }
1584             else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1585                 continue;
1586             }
1587 
1588             if (!preallocated) {
1589                 if (!bs->backing_hd) {
1590                     /* not backed; therefore we can simply deallocate the
1591                      * cluster */
1592                     l2_table[j] = 0;
1593                     l2_dirty = true;
1594                     continue;
1595                 }
1596 
1597                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1598                 if (offset < 0) {
1599                     ret = offset;
1600                     goto fail;
1601                 }
1602             }
1603 
1604             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1605             if (ret < 0) {
1606                 if (!preallocated) {
1607                     qcow2_free_clusters(bs, offset, s->cluster_size,
1608                                         QCOW2_DISCARD_ALWAYS);
1609                 }
1610                 goto fail;
1611             }
1612 
1613             ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1614                                     s->cluster_sectors, 0);
1615             if (ret < 0) {
1616                 if (!preallocated) {
1617                     qcow2_free_clusters(bs, offset, s->cluster_size,
1618                                         QCOW2_DISCARD_ALWAYS);
1619                 }
1620                 goto fail;
1621             }
1622 
1623             l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1624             l2_dirty = true;
1625 
1626             cluster_index = offset >> s->cluster_bits;
1627 
1628             if (cluster_index >= *nb_clusters) {
1629                 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1630                 uint64_t new_bitmap_size;
1631                 /* The offset may lie beyond the old end of the underlying image
1632                  * file for growable files only */
1633                 assert(bs->file->growable);
1634                 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1635                                                 BDRV_SECTOR_SIZE);
1636                 new_bitmap_size = (*nb_clusters + 7) / 8;
1637                 *expanded_clusters = g_realloc(*expanded_clusters,
1638                                                new_bitmap_size);
1639                 /* clear the newly allocated space */
1640                 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1641                        new_bitmap_size - old_bitmap_size);
1642             }
1643 
1644             assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1645             (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
1646         }
1647 
1648         if (is_active_l1) {
1649             if (l2_dirty) {
1650                 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1651                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1652             }
1653             ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1654             if (ret < 0) {
1655                 l2_table = NULL;
1656                 goto fail;
1657             }
1658         } else {
1659             if (l2_dirty) {
1660                 ret = qcow2_pre_write_overlap_check(bs,
1661                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1662                         s->cluster_size);
1663                 if (ret < 0) {
1664                     goto fail;
1665                 }
1666 
1667                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1668                         (void *)l2_table, s->cluster_sectors);
1669                 if (ret < 0) {
1670                     goto fail;
1671                 }
1672             }
1673         }
1674     }
1675 
1676     ret = 0;
1677 
1678 fail:
1679     if (l2_table) {
1680         if (!is_active_l1) {
1681             qemu_vfree(l2_table);
1682         } else {
1683             if (ret < 0) {
1684                 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1685             } else {
1686                 ret = qcow2_cache_put(bs, s->l2_table_cache,
1687                         (void **)&l2_table);
1688             }
1689         }
1690     }
1691     return ret;
1692 }
1693 
1694 /*
1695  * For backed images, expands all zero clusters on the image. For non-backed
1696  * images, deallocates all non-pre-allocated zero clusters (and claims the
1697  * allocation for pre-allocated ones). This is important for downgrading to a
1698  * qcow2 version which doesn't yet support metadata zero clusters.
1699  */
1700 int qcow2_expand_zero_clusters(BlockDriverState *bs)
1701 {
1702     BDRVQcowState *s = bs->opaque;
1703     uint64_t *l1_table = NULL;
1704     uint64_t nb_clusters;
1705     uint8_t *expanded_clusters;
1706     int ret;
1707     int i, j;
1708 
1709     nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1710                                    BDRV_SECTOR_SIZE);
1711     expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1712 
1713     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1714                                      &expanded_clusters, &nb_clusters);
1715     if (ret < 0) {
1716         goto fail;
1717     }
1718 
1719     /* Inactive L1 tables may point to active L2 tables - therefore it is
1720      * necessary to flush the L2 table cache before trying to access the L2
1721      * tables pointed to by inactive L1 entries (else we might try to expand
1722      * zero clusters that have already been expanded); furthermore, it is also
1723      * necessary to empty the L2 table cache, since it may contain tables which
1724      * are now going to be modified directly on disk, bypassing the cache.
1725      * qcow2_cache_empty() does both for us. */
1726     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1727     if (ret < 0) {
1728         goto fail;
1729     }
1730 
1731     for (i = 0; i < s->nb_snapshots; i++) {
1732         int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1733                 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1734 
1735         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1736 
1737         ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1738                 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1739         if (ret < 0) {
1740             goto fail;
1741         }
1742 
1743         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1744             be64_to_cpus(&l1_table[j]);
1745         }
1746 
1747         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1748                                          &expanded_clusters, &nb_clusters);
1749         if (ret < 0) {
1750             goto fail;
1751         }
1752     }
1753 
1754     ret = 0;
1755 
1756 fail:
1757     g_free(expanded_clusters);
1758     g_free(l1_table);
1759     return ret;
1760 }
1761