xref: /openbmc/qemu/block/qcow2-cluster.c (revision 4b9fa0b4)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32 
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size, i, ret;
37 
38     if (exact_size >= s->l1_size) {
39         return 0;
40     }
41 
42     new_l1_size = exact_size;
43 
44 #ifdef DEBUG_ALLOC2
45     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47 
48     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50                                        new_l1_size * sizeof(uint64_t),
51                              (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
52     if (ret < 0) {
53         goto fail;
54     }
55 
56     ret = bdrv_flush(bs->file->bs);
57     if (ret < 0) {
58         goto fail;
59     }
60 
61     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64             continue;
65         }
66         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
68         s->l1_table[i] = 0;
69     }
70     return 0;
71 
72 fail:
73     /*
74      * If the write in the l1_table failed the image may contain a partially
75      * overwritten l1_table. In this case it would be better to clear the
76      * l1_table in memory to avoid possible image corruption.
77      */
78     memset(s->l1_table + new_l1_size, 0,
79            (s->l1_size - new_l1_size) * sizeof(uint64_t));
80     return ret;
81 }
82 
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84                         bool exact_size)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     int new_l1_size2, ret, i;
88     uint64_t *new_l1_table;
89     int64_t old_l1_table_offset, old_l1_size;
90     int64_t new_l1_table_offset, new_l1_size;
91     uint8_t data[12];
92 
93     if (min_size <= s->l1_size)
94         return 0;
95 
96     /* Do a sanity check on min_size before trying to calculate new_l1_size
97      * (this prevents overflows during the while loop for the calculation of
98      * new_l1_size) */
99     if (min_size > INT_MAX / sizeof(uint64_t)) {
100         return -EFBIG;
101     }
102 
103     if (exact_size) {
104         new_l1_size = min_size;
105     } else {
106         /* Bump size up to reduce the number of times we have to grow */
107         new_l1_size = s->l1_size;
108         if (new_l1_size == 0) {
109             new_l1_size = 1;
110         }
111         while (min_size > new_l1_size) {
112             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113         }
114     }
115 
116     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
118         return -EFBIG;
119     }
120 
121 #ifdef DEBUG_ALLOC2
122     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123             s->l1_size, new_l1_size);
124 #endif
125 
126     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
127     new_l1_table = qemu_try_blockalign(bs->file->bs,
128                                        ROUND_UP(new_l1_size2, 512));
129     if (new_l1_table == NULL) {
130         return -ENOMEM;
131     }
132     memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
133 
134     if (s->l1_size) {
135         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
136     }
137 
138     /* write new table (align to cluster) */
139     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
140     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
141     if (new_l1_table_offset < 0) {
142         qemu_vfree(new_l1_table);
143         return new_l1_table_offset;
144     }
145 
146     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
147     if (ret < 0) {
148         goto fail;
149     }
150 
151     /* the L1 position has not yet been updated, so these clusters must
152      * indeed be completely free */
153     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
154                                         new_l1_size2, false);
155     if (ret < 0) {
156         goto fail;
157     }
158 
159     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
160     for(i = 0; i < s->l1_size; i++)
161         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
162     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
163                            new_l1_table, new_l1_size2);
164     if (ret < 0)
165         goto fail;
166     for(i = 0; i < s->l1_size; i++)
167         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
168 
169     /* set new table */
170     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
171     stl_be_p(data, new_l1_size);
172     stq_be_p(data + 4, new_l1_table_offset);
173     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
174                            data, sizeof(data));
175     if (ret < 0) {
176         goto fail;
177     }
178     qemu_vfree(s->l1_table);
179     old_l1_table_offset = s->l1_table_offset;
180     s->l1_table_offset = new_l1_table_offset;
181     s->l1_table = new_l1_table;
182     old_l1_size = s->l1_size;
183     s->l1_size = new_l1_size;
184     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
185                         QCOW2_DISCARD_OTHER);
186     return 0;
187  fail:
188     qemu_vfree(new_l1_table);
189     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
190                         QCOW2_DISCARD_OTHER);
191     return ret;
192 }
193 
194 /*
195  * l2_load
196  *
197  * @bs: The BlockDriverState
198  * @offset: A guest offset, used to calculate what slice of the L2
199  *          table to load.
200  * @l2_offset: Offset to the L2 table in the image file.
201  * @l2_slice: Location to store the pointer to the L2 slice.
202  *
203  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
204  * that are loaded by the qcow2 cache). If the slice is in the cache,
205  * the cache is used; otherwise the L2 slice is loaded from the image
206  * file.
207  */
208 static int l2_load(BlockDriverState *bs, uint64_t offset,
209                    uint64_t l2_offset, uint64_t **l2_slice)
210 {
211     BDRVQcow2State *s = bs->opaque;
212     int start_of_slice = sizeof(uint64_t) *
213         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
214 
215     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
216                            (void **)l2_slice);
217 }
218 
219 /*
220  * Writes one sector of the L1 table to the disk (can't update single entries
221  * and we really don't want bdrv_pread to perform a read-modify-write)
222  */
223 #define L1_ENTRIES_PER_SECTOR (512 / 8)
224 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
225 {
226     BDRVQcow2State *s = bs->opaque;
227     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
228     int l1_start_index;
229     int i, ret;
230 
231     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
232     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
233          i++)
234     {
235         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
236     }
237 
238     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
239             s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
240     if (ret < 0) {
241         return ret;
242     }
243 
244     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
245     ret = bdrv_pwrite_sync(bs->file,
246                            s->l1_table_offset + 8 * l1_start_index,
247                            buf, sizeof(buf));
248     if (ret < 0) {
249         return ret;
250     }
251 
252     return 0;
253 }
254 
255 /*
256  * l2_allocate
257  *
258  * Allocate a new l2 entry in the file. If l1_index points to an already
259  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
260  * table) copy the contents of the old L2 table into the newly allocated one.
261  * Otherwise the new table is initialized with zeros.
262  *
263  */
264 
265 static int l2_allocate(BlockDriverState *bs, int l1_index)
266 {
267     BDRVQcow2State *s = bs->opaque;
268     uint64_t old_l2_offset;
269     uint64_t *l2_slice = NULL;
270     unsigned slice, slice_size2, n_slices;
271     int64_t l2_offset;
272     int ret;
273 
274     old_l2_offset = s->l1_table[l1_index];
275 
276     trace_qcow2_l2_allocate(bs, l1_index);
277 
278     /* allocate a new l2 entry */
279 
280     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
281     if (l2_offset < 0) {
282         ret = l2_offset;
283         goto fail;
284     }
285 
286     /* The offset must fit in the offset field of the L1 table entry */
287     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
288 
289     /* If we're allocating the table at offset 0 then something is wrong */
290     if (l2_offset == 0) {
291         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
292                                 "allocation of L2 table at offset 0");
293         ret = -EIO;
294         goto fail;
295     }
296 
297     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
298     if (ret < 0) {
299         goto fail;
300     }
301 
302     /* allocate a new entry in the l2 cache */
303 
304     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
305     n_slices = s->cluster_size / slice_size2;
306 
307     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
308     for (slice = 0; slice < n_slices; slice++) {
309         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
310                                     l2_offset + slice * slice_size2,
311                                     (void **) &l2_slice);
312         if (ret < 0) {
313             goto fail;
314         }
315 
316         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
317             /* if there was no old l2 table, clear the new slice */
318             memset(l2_slice, 0, slice_size2);
319         } else {
320             uint64_t *old_slice;
321             uint64_t old_l2_slice_offset =
322                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
323 
324             /* if there was an old l2 table, read a slice from the disk */
325             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
326             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
327                                   (void **) &old_slice);
328             if (ret < 0) {
329                 goto fail;
330             }
331 
332             memcpy(l2_slice, old_slice, slice_size2);
333 
334             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
335         }
336 
337         /* write the l2 slice to the file */
338         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
339 
340         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
341         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
342         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
343     }
344 
345     ret = qcow2_cache_flush(bs, s->l2_table_cache);
346     if (ret < 0) {
347         goto fail;
348     }
349 
350     /* update the L1 entry */
351     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
352     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
353     ret = qcow2_write_l1_entry(bs, l1_index);
354     if (ret < 0) {
355         goto fail;
356     }
357 
358     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
359     return 0;
360 
361 fail:
362     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
363     if (l2_slice != NULL) {
364         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
365     }
366     s->l1_table[l1_index] = old_l2_offset;
367     if (l2_offset > 0) {
368         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
369                             QCOW2_DISCARD_ALWAYS);
370     }
371     return ret;
372 }
373 
374 /*
375  * Checks how many clusters in a given L2 slice are contiguous in the image
376  * file. As soon as one of the flags in the bitmask stop_flags changes compared
377  * to the first cluster, the search is stopped and the cluster is not counted
378  * as contiguous. (This allows it, for example, to stop at the first compressed
379  * cluster which may require a different handling)
380  */
381 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
382         int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
383 {
384     int i;
385     QCow2ClusterType first_cluster_type;
386     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
387     uint64_t first_entry = be64_to_cpu(l2_slice[0]);
388     uint64_t offset = first_entry & mask;
389 
390     first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
391     if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
392         return 0;
393     }
394 
395     /* must be allocated */
396     assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
397            first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
398 
399     for (i = 0; i < nb_clusters; i++) {
400         uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
401         if (offset + (uint64_t) i * cluster_size != l2_entry) {
402             break;
403         }
404     }
405 
406         return i;
407 }
408 
409 /*
410  * Checks how many consecutive unallocated clusters in a given L2
411  * slice have the same cluster type.
412  */
413 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
414                                                  int nb_clusters,
415                                                  uint64_t *l2_slice,
416                                                  QCow2ClusterType wanted_type)
417 {
418     int i;
419 
420     assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
421            wanted_type == QCOW2_CLUSTER_UNALLOCATED);
422     for (i = 0; i < nb_clusters; i++) {
423         uint64_t entry = be64_to_cpu(l2_slice[i]);
424         QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
425 
426         if (type != wanted_type) {
427             break;
428         }
429     }
430 
431     return i;
432 }
433 
434 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
435                                             uint64_t src_cluster_offset,
436                                             unsigned offset_in_cluster,
437                                             QEMUIOVector *qiov)
438 {
439     int ret;
440 
441     if (qiov->size == 0) {
442         return 0;
443     }
444 
445     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
446 
447     if (!bs->drv) {
448         return -ENOMEDIUM;
449     }
450 
451     /* Call .bdrv_co_readv() directly instead of using the public block-layer
452      * interface.  This avoids double I/O throttling and request tracking,
453      * which can lead to deadlock when block layer copy-on-read is enabled.
454      */
455     ret = bs->drv->bdrv_co_preadv_part(bs,
456                                        src_cluster_offset + offset_in_cluster,
457                                        qiov->size, qiov, 0, 0);
458     if (ret < 0) {
459         return ret;
460     }
461 
462     return 0;
463 }
464 
465 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
466                                              uint64_t cluster_offset,
467                                              unsigned offset_in_cluster,
468                                              QEMUIOVector *qiov)
469 {
470     BDRVQcow2State *s = bs->opaque;
471     int ret;
472 
473     if (qiov->size == 0) {
474         return 0;
475     }
476 
477     ret = qcow2_pre_write_overlap_check(bs, 0,
478             cluster_offset + offset_in_cluster, qiov->size, true);
479     if (ret < 0) {
480         return ret;
481     }
482 
483     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
484     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
485                           qiov->size, qiov, 0);
486     if (ret < 0) {
487         return ret;
488     }
489 
490     return 0;
491 }
492 
493 
494 /*
495  * get_cluster_offset
496  *
497  * For a given offset of the virtual disk, find the cluster type and offset in
498  * the qcow2 file. The offset is stored in *cluster_offset.
499  *
500  * On entry, *bytes is the maximum number of contiguous bytes starting at
501  * offset that we are interested in.
502  *
503  * On exit, *bytes is the number of bytes starting at offset that have the same
504  * cluster type and (if applicable) are stored contiguously in the image file.
505  * Compressed clusters are always returned one by one.
506  *
507  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
508  * cases.
509  */
510 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
511                              unsigned int *bytes, uint64_t *cluster_offset)
512 {
513     BDRVQcow2State *s = bs->opaque;
514     unsigned int l2_index;
515     uint64_t l1_index, l2_offset, *l2_slice;
516     int c;
517     unsigned int offset_in_cluster;
518     uint64_t bytes_available, bytes_needed, nb_clusters;
519     QCow2ClusterType type;
520     int ret;
521 
522     offset_in_cluster = offset_into_cluster(s, offset);
523     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
524 
525     /* compute how many bytes there are between the start of the cluster
526      * containing offset and the end of the l2 slice that contains
527      * the entry pointing to it */
528     bytes_available =
529         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
530         << s->cluster_bits;
531 
532     if (bytes_needed > bytes_available) {
533         bytes_needed = bytes_available;
534     }
535 
536     *cluster_offset = 0;
537 
538     /* seek to the l2 offset in the l1 table */
539 
540     l1_index = offset_to_l1_index(s, offset);
541     if (l1_index >= s->l1_size) {
542         type = QCOW2_CLUSTER_UNALLOCATED;
543         goto out;
544     }
545 
546     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
547     if (!l2_offset) {
548         type = QCOW2_CLUSTER_UNALLOCATED;
549         goto out;
550     }
551 
552     if (offset_into_cluster(s, l2_offset)) {
553         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
554                                 " unaligned (L1 index: %#" PRIx64 ")",
555                                 l2_offset, l1_index);
556         return -EIO;
557     }
558 
559     /* load the l2 slice in memory */
560 
561     ret = l2_load(bs, offset, l2_offset, &l2_slice);
562     if (ret < 0) {
563         return ret;
564     }
565 
566     /* find the cluster offset for the given disk offset */
567 
568     l2_index = offset_to_l2_slice_index(s, offset);
569     *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
570 
571     nb_clusters = size_to_clusters(s, bytes_needed);
572     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
573      * integers; the minimum cluster size is 512, so this assertion is always
574      * true */
575     assert(nb_clusters <= INT_MAX);
576 
577     type = qcow2_get_cluster_type(bs, *cluster_offset);
578     if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
579                                 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
580         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
581                                 " in pre-v3 image (L2 offset: %#" PRIx64
582                                 ", L2 index: %#x)", l2_offset, l2_index);
583         ret = -EIO;
584         goto fail;
585     }
586     switch (type) {
587     case QCOW2_CLUSTER_COMPRESSED:
588         if (has_data_file(bs)) {
589             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
590                                     "entry found in image with external data "
591                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
592                                     "%#x)", l2_offset, l2_index);
593             ret = -EIO;
594             goto fail;
595         }
596         /* Compressed clusters can only be processed one by one */
597         c = 1;
598         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
599         break;
600     case QCOW2_CLUSTER_ZERO_PLAIN:
601     case QCOW2_CLUSTER_UNALLOCATED:
602         /* how many empty clusters ? */
603         c = count_contiguous_clusters_unallocated(bs, nb_clusters,
604                                                   &l2_slice[l2_index], type);
605         *cluster_offset = 0;
606         break;
607     case QCOW2_CLUSTER_ZERO_ALLOC:
608     case QCOW2_CLUSTER_NORMAL:
609         /* how many allocated clusters ? */
610         c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
611                                       &l2_slice[l2_index], QCOW_OFLAG_ZERO);
612         *cluster_offset &= L2E_OFFSET_MASK;
613         if (offset_into_cluster(s, *cluster_offset)) {
614             qcow2_signal_corruption(bs, true, -1, -1,
615                                     "Cluster allocation offset %#"
616                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
617                                     ", L2 index: %#x)", *cluster_offset,
618                                     l2_offset, l2_index);
619             ret = -EIO;
620             goto fail;
621         }
622         if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
623         {
624             qcow2_signal_corruption(bs, true, -1, -1,
625                                     "External data file host cluster offset %#"
626                                     PRIx64 " does not match guest cluster "
627                                     "offset: %#" PRIx64
628                                     ", L2 index: %#x)", *cluster_offset,
629                                     offset - offset_in_cluster, l2_index);
630             ret = -EIO;
631             goto fail;
632         }
633         break;
634     default:
635         abort();
636     }
637 
638     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
639 
640     bytes_available = (int64_t)c * s->cluster_size;
641 
642 out:
643     if (bytes_available > bytes_needed) {
644         bytes_available = bytes_needed;
645     }
646 
647     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
648      * subtracting offset_in_cluster will therefore definitely yield something
649      * not exceeding UINT_MAX */
650     assert(bytes_available - offset_in_cluster <= UINT_MAX);
651     *bytes = bytes_available - offset_in_cluster;
652 
653     return type;
654 
655 fail:
656     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
657     return ret;
658 }
659 
660 /*
661  * get_cluster_table
662  *
663  * for a given disk offset, load (and allocate if needed)
664  * the appropriate slice of its l2 table.
665  *
666  * the cluster index in the l2 slice is given to the caller.
667  *
668  * Returns 0 on success, -errno in failure case
669  */
670 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
671                              uint64_t **new_l2_slice,
672                              int *new_l2_index)
673 {
674     BDRVQcow2State *s = bs->opaque;
675     unsigned int l2_index;
676     uint64_t l1_index, l2_offset;
677     uint64_t *l2_slice = NULL;
678     int ret;
679 
680     /* seek to the l2 offset in the l1 table */
681 
682     l1_index = offset_to_l1_index(s, offset);
683     if (l1_index >= s->l1_size) {
684         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
685         if (ret < 0) {
686             return ret;
687         }
688     }
689 
690     assert(l1_index < s->l1_size);
691     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
692     if (offset_into_cluster(s, l2_offset)) {
693         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
694                                 " unaligned (L1 index: %#" PRIx64 ")",
695                                 l2_offset, l1_index);
696         return -EIO;
697     }
698 
699     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
700         /* First allocate a new L2 table (and do COW if needed) */
701         ret = l2_allocate(bs, l1_index);
702         if (ret < 0) {
703             return ret;
704         }
705 
706         /* Then decrease the refcount of the old table */
707         if (l2_offset) {
708             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
709                                 QCOW2_DISCARD_OTHER);
710         }
711 
712         /* Get the offset of the newly-allocated l2 table */
713         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
714         assert(offset_into_cluster(s, l2_offset) == 0);
715     }
716 
717     /* load the l2 slice in memory */
718     ret = l2_load(bs, offset, l2_offset, &l2_slice);
719     if (ret < 0) {
720         return ret;
721     }
722 
723     /* find the cluster offset for the given disk offset */
724 
725     l2_index = offset_to_l2_slice_index(s, offset);
726 
727     *new_l2_slice = l2_slice;
728     *new_l2_index = l2_index;
729 
730     return 0;
731 }
732 
733 /*
734  * alloc_compressed_cluster_offset
735  *
736  * For a given offset on the virtual disk, allocate a new compressed cluster
737  * and put the host offset of the cluster into *host_offset. If a cluster is
738  * already allocated at the offset, return an error.
739  *
740  * Return 0 on success and -errno in error cases
741  */
742 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
743                                           uint64_t offset,
744                                           int compressed_size,
745                                           uint64_t *host_offset)
746 {
747     BDRVQcow2State *s = bs->opaque;
748     int l2_index, ret;
749     uint64_t *l2_slice;
750     int64_t cluster_offset;
751     int nb_csectors;
752 
753     if (has_data_file(bs)) {
754         return 0;
755     }
756 
757     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
758     if (ret < 0) {
759         return ret;
760     }
761 
762     /* Compression can't overwrite anything. Fail if the cluster was already
763      * allocated. */
764     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
765     if (cluster_offset & L2E_OFFSET_MASK) {
766         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
767         return -EIO;
768     }
769 
770     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
771     if (cluster_offset < 0) {
772         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
773         return cluster_offset;
774     }
775 
776     nb_csectors =
777         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
778         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
779 
780     cluster_offset |= QCOW_OFLAG_COMPRESSED |
781                       ((uint64_t)nb_csectors << s->csize_shift);
782 
783     /* update L2 table */
784 
785     /* compressed clusters never have the copied flag */
786 
787     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
788     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
789     l2_slice[l2_index] = cpu_to_be64(cluster_offset);
790     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
791 
792     *host_offset = cluster_offset & s->cluster_offset_mask;
793     return 0;
794 }
795 
796 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
797 {
798     BDRVQcow2State *s = bs->opaque;
799     Qcow2COWRegion *start = &m->cow_start;
800     Qcow2COWRegion *end = &m->cow_end;
801     unsigned buffer_size;
802     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
803     bool merge_reads;
804     uint8_t *start_buffer, *end_buffer;
805     QEMUIOVector qiov;
806     int ret;
807 
808     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
809     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
810     assert(start->offset + start->nb_bytes <= end->offset);
811 
812     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
813         return 0;
814     }
815 
816     /* If we have to read both the start and end COW regions and the
817      * middle region is not too large then perform just one read
818      * operation */
819     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
820     if (merge_reads) {
821         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
822     } else {
823         /* If we have to do two reads, add some padding in the middle
824          * if necessary to make sure that the end region is optimally
825          * aligned. */
826         size_t align = bdrv_opt_mem_align(bs);
827         assert(align > 0 && align <= UINT_MAX);
828         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
829                UINT_MAX - end->nb_bytes);
830         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
831     }
832 
833     /* Reserve a buffer large enough to store all the data that we're
834      * going to read */
835     start_buffer = qemu_try_blockalign(bs, buffer_size);
836     if (start_buffer == NULL) {
837         return -ENOMEM;
838     }
839     /* The part of the buffer where the end region is located */
840     end_buffer = start_buffer + buffer_size - end->nb_bytes;
841 
842     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
843                                 qemu_iovec_subvec_niov(m->data_qiov,
844                                                        m->data_qiov_offset,
845                                                        data_bytes)
846                                 : 0));
847 
848     qemu_co_mutex_unlock(&s->lock);
849     /* First we read the existing data from both COW regions. We
850      * either read the whole region in one go, or the start and end
851      * regions separately. */
852     if (merge_reads) {
853         qemu_iovec_add(&qiov, start_buffer, buffer_size);
854         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
855     } else {
856         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
857         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
858         if (ret < 0) {
859             goto fail;
860         }
861 
862         qemu_iovec_reset(&qiov);
863         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
864         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
865     }
866     if (ret < 0) {
867         goto fail;
868     }
869 
870     /* Encrypt the data if necessary before writing it */
871     if (bs->encrypted) {
872         ret = qcow2_co_encrypt(bs,
873                                m->alloc_offset + start->offset,
874                                m->offset + start->offset,
875                                start_buffer, start->nb_bytes);
876         if (ret < 0) {
877             goto fail;
878         }
879 
880         ret = qcow2_co_encrypt(bs,
881                                m->alloc_offset + end->offset,
882                                m->offset + end->offset,
883                                end_buffer, end->nb_bytes);
884         if (ret < 0) {
885             goto fail;
886         }
887     }
888 
889     /* And now we can write everything. If we have the guest data we
890      * can write everything in one single operation */
891     if (m->data_qiov) {
892         qemu_iovec_reset(&qiov);
893         if (start->nb_bytes) {
894             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
895         }
896         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
897         if (end->nb_bytes) {
898             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
899         }
900         /* NOTE: we have a write_aio blkdebug event here followed by
901          * a cow_write one in do_perform_cow_write(), but there's only
902          * one single I/O operation */
903         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
904         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
905     } else {
906         /* If there's no guest data then write both COW regions separately */
907         qemu_iovec_reset(&qiov);
908         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
909         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
910         if (ret < 0) {
911             goto fail;
912         }
913 
914         qemu_iovec_reset(&qiov);
915         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
916         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
917     }
918 
919 fail:
920     qemu_co_mutex_lock(&s->lock);
921 
922     /*
923      * Before we update the L2 table to actually point to the new cluster, we
924      * need to be sure that the refcounts have been increased and COW was
925      * handled.
926      */
927     if (ret == 0) {
928         qcow2_cache_depends_on_flush(s->l2_table_cache);
929     }
930 
931     qemu_vfree(start_buffer);
932     qemu_iovec_destroy(&qiov);
933     return ret;
934 }
935 
936 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
937 {
938     BDRVQcow2State *s = bs->opaque;
939     int i, j = 0, l2_index, ret;
940     uint64_t *old_cluster, *l2_slice;
941     uint64_t cluster_offset = m->alloc_offset;
942 
943     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
944     assert(m->nb_clusters > 0);
945 
946     old_cluster = g_try_new(uint64_t, m->nb_clusters);
947     if (old_cluster == NULL) {
948         ret = -ENOMEM;
949         goto err;
950     }
951 
952     /* copy content of unmodified sectors */
953     ret = perform_cow(bs, m);
954     if (ret < 0) {
955         goto err;
956     }
957 
958     /* Update L2 table. */
959     if (s->use_lazy_refcounts) {
960         qcow2_mark_dirty(bs);
961     }
962     if (qcow2_need_accurate_refcounts(s)) {
963         qcow2_cache_set_dependency(bs, s->l2_table_cache,
964                                    s->refcount_block_cache);
965     }
966 
967     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
968     if (ret < 0) {
969         goto err;
970     }
971     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
972 
973     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
974     for (i = 0; i < m->nb_clusters; i++) {
975         /* if two concurrent writes happen to the same unallocated cluster
976          * each write allocates separate cluster and writes data concurrently.
977          * The first one to complete updates l2 table with pointer to its
978          * cluster the second one has to do RMW (which is done above by
979          * perform_cow()), update l2 table with its cluster pointer and free
980          * old cluster. This is what this loop does */
981         if (l2_slice[l2_index + i] != 0) {
982             old_cluster[j++] = l2_slice[l2_index + i];
983         }
984 
985         l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
986                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
987      }
988 
989 
990     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
991 
992     /*
993      * If this was a COW, we need to decrease the refcount of the old cluster.
994      *
995      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
996      * clusters), the next write will reuse them anyway.
997      */
998     if (!m->keep_old_clusters && j != 0) {
999         for (i = 0; i < j; i++) {
1000             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1001                                     QCOW2_DISCARD_NEVER);
1002         }
1003     }
1004 
1005     ret = 0;
1006 err:
1007     g_free(old_cluster);
1008     return ret;
1009  }
1010 
1011 /**
1012  * Frees the allocated clusters because the request failed and they won't
1013  * actually be linked.
1014  */
1015 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1016 {
1017     BDRVQcow2State *s = bs->opaque;
1018     qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1019                         QCOW2_DISCARD_NEVER);
1020 }
1021 
1022 /*
1023  * Returns the number of contiguous clusters that can be used for an allocating
1024  * write, but require COW to be performed (this includes yet unallocated space,
1025  * which must copy from the backing file)
1026  */
1027 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1028     uint64_t *l2_slice, int l2_index)
1029 {
1030     int i;
1031 
1032     for (i = 0; i < nb_clusters; i++) {
1033         uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1034         QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1035 
1036         switch(cluster_type) {
1037         case QCOW2_CLUSTER_NORMAL:
1038             if (l2_entry & QCOW_OFLAG_COPIED) {
1039                 goto out;
1040             }
1041             break;
1042         case QCOW2_CLUSTER_UNALLOCATED:
1043         case QCOW2_CLUSTER_COMPRESSED:
1044         case QCOW2_CLUSTER_ZERO_PLAIN:
1045         case QCOW2_CLUSTER_ZERO_ALLOC:
1046             break;
1047         default:
1048             abort();
1049         }
1050     }
1051 
1052 out:
1053     assert(i <= nb_clusters);
1054     return i;
1055 }
1056 
1057 /*
1058  * Check if there already is an AIO write request in flight which allocates
1059  * the same cluster. In this case we need to wait until the previous
1060  * request has completed and updated the L2 table accordingly.
1061  *
1062  * Returns:
1063  *   0       if there was no dependency. *cur_bytes indicates the number of
1064  *           bytes from guest_offset that can be read before the next
1065  *           dependency must be processed (or the request is complete)
1066  *
1067  *   -EAGAIN if we had to wait for another request, previously gathered
1068  *           information on cluster allocation may be invalid now. The caller
1069  *           must start over anyway, so consider *cur_bytes undefined.
1070  */
1071 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1072     uint64_t *cur_bytes, QCowL2Meta **m)
1073 {
1074     BDRVQcow2State *s = bs->opaque;
1075     QCowL2Meta *old_alloc;
1076     uint64_t bytes = *cur_bytes;
1077 
1078     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1079 
1080         uint64_t start = guest_offset;
1081         uint64_t end = start + bytes;
1082         uint64_t old_start = l2meta_cow_start(old_alloc);
1083         uint64_t old_end = l2meta_cow_end(old_alloc);
1084 
1085         if (end <= old_start || start >= old_end) {
1086             /* No intersection */
1087         } else {
1088             if (start < old_start) {
1089                 /* Stop at the start of a running allocation */
1090                 bytes = old_start - start;
1091             } else {
1092                 bytes = 0;
1093             }
1094 
1095             /* Stop if already an l2meta exists. After yielding, it wouldn't
1096              * be valid any more, so we'd have to clean up the old L2Metas
1097              * and deal with requests depending on them before starting to
1098              * gather new ones. Not worth the trouble. */
1099             if (bytes == 0 && *m) {
1100                 *cur_bytes = 0;
1101                 return 0;
1102             }
1103 
1104             if (bytes == 0) {
1105                 /* Wait for the dependency to complete. We need to recheck
1106                  * the free/allocated clusters when we continue. */
1107                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1108                 return -EAGAIN;
1109             }
1110         }
1111     }
1112 
1113     /* Make sure that existing clusters and new allocations are only used up to
1114      * the next dependency if we shortened the request above */
1115     *cur_bytes = bytes;
1116 
1117     return 0;
1118 }
1119 
1120 /*
1121  * Checks how many already allocated clusters that don't require a copy on
1122  * write there are at the given guest_offset (up to *bytes). If *host_offset is
1123  * not INV_OFFSET, only physically contiguous clusters beginning at this host
1124  * offset are counted.
1125  *
1126  * Note that guest_offset may not be cluster aligned. In this case, the
1127  * returned *host_offset points to exact byte referenced by guest_offset and
1128  * therefore isn't cluster aligned as well.
1129  *
1130  * Returns:
1131  *   0:     if no allocated clusters are available at the given offset.
1132  *          *bytes is normally unchanged. It is set to 0 if the cluster
1133  *          is allocated and doesn't need COW, but doesn't have the right
1134  *          physical offset.
1135  *
1136  *   1:     if allocated clusters that don't require a COW are available at
1137  *          the requested offset. *bytes may have decreased and describes
1138  *          the length of the area that can be written to.
1139  *
1140  *  -errno: in error cases
1141  */
1142 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1143     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1144 {
1145     BDRVQcow2State *s = bs->opaque;
1146     int l2_index;
1147     uint64_t cluster_offset;
1148     uint64_t *l2_slice;
1149     uint64_t nb_clusters;
1150     unsigned int keep_clusters;
1151     int ret;
1152 
1153     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1154                               *bytes);
1155 
1156     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1157                                       == offset_into_cluster(s, *host_offset));
1158 
1159     /*
1160      * Calculate the number of clusters to look for. We stop at L2 slice
1161      * boundaries to keep things simple.
1162      */
1163     nb_clusters =
1164         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1165 
1166     l2_index = offset_to_l2_slice_index(s, guest_offset);
1167     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1168     assert(nb_clusters <= INT_MAX);
1169 
1170     /* Find L2 entry for the first involved cluster */
1171     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1172     if (ret < 0) {
1173         return ret;
1174     }
1175 
1176     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1177 
1178     /* Check how many clusters are already allocated and don't need COW */
1179     if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1180         && (cluster_offset & QCOW_OFLAG_COPIED))
1181     {
1182         /* If a specific host_offset is required, check it */
1183         bool offset_matches =
1184             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1185 
1186         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1187             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1188                                     "%#llx unaligned (guest offset: %#" PRIx64
1189                                     ")", cluster_offset & L2E_OFFSET_MASK,
1190                                     guest_offset);
1191             ret = -EIO;
1192             goto out;
1193         }
1194 
1195         if (*host_offset != INV_OFFSET && !offset_matches) {
1196             *bytes = 0;
1197             ret = 0;
1198             goto out;
1199         }
1200 
1201         /* We keep all QCOW_OFLAG_COPIED clusters */
1202         keep_clusters =
1203             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1204                                       &l2_slice[l2_index],
1205                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1206         assert(keep_clusters <= nb_clusters);
1207 
1208         *bytes = MIN(*bytes,
1209                  keep_clusters * s->cluster_size
1210                  - offset_into_cluster(s, guest_offset));
1211 
1212         ret = 1;
1213     } else {
1214         ret = 0;
1215     }
1216 
1217     /* Cleanup */
1218 out:
1219     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1220 
1221     /* Only return a host offset if we actually made progress. Otherwise we
1222      * would make requirements for handle_alloc() that it can't fulfill */
1223     if (ret > 0) {
1224         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1225                      + offset_into_cluster(s, guest_offset);
1226     }
1227 
1228     return ret;
1229 }
1230 
1231 /*
1232  * Allocates new clusters for the given guest_offset.
1233  *
1234  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1235  * contain the number of clusters that have been allocated and are contiguous
1236  * in the image file.
1237  *
1238  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1239  * at which the new clusters must start. *nb_clusters can be 0 on return in
1240  * this case if the cluster at host_offset is already in use. If *host_offset
1241  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1242  *
1243  * *host_offset is updated to contain the offset into the image file at which
1244  * the first allocated cluster starts.
1245  *
1246  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1247  * function has been waiting for another request and the allocation must be
1248  * restarted, but the whole request should not be failed.
1249  */
1250 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1251                                    uint64_t *host_offset, uint64_t *nb_clusters)
1252 {
1253     BDRVQcow2State *s = bs->opaque;
1254 
1255     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1256                                          *host_offset, *nb_clusters);
1257 
1258     if (has_data_file(bs)) {
1259         assert(*host_offset == INV_OFFSET ||
1260                *host_offset == start_of_cluster(s, guest_offset));
1261         *host_offset = start_of_cluster(s, guest_offset);
1262         return 0;
1263     }
1264 
1265     /* Allocate new clusters */
1266     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1267     if (*host_offset == INV_OFFSET) {
1268         int64_t cluster_offset =
1269             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1270         if (cluster_offset < 0) {
1271             return cluster_offset;
1272         }
1273         *host_offset = cluster_offset;
1274         return 0;
1275     } else {
1276         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1277         if (ret < 0) {
1278             return ret;
1279         }
1280         *nb_clusters = ret;
1281         return 0;
1282     }
1283 }
1284 
1285 /*
1286  * Allocates new clusters for an area that either is yet unallocated or needs a
1287  * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1288  * allocated if the new allocation can match the specified host offset.
1289  *
1290  * Note that guest_offset may not be cluster aligned. In this case, the
1291  * returned *host_offset points to exact byte referenced by guest_offset and
1292  * therefore isn't cluster aligned as well.
1293  *
1294  * Returns:
1295  *   0:     if no clusters could be allocated. *bytes is set to 0,
1296  *          *host_offset is left unchanged.
1297  *
1298  *   1:     if new clusters were allocated. *bytes may be decreased if the
1299  *          new allocation doesn't cover all of the requested area.
1300  *          *host_offset is updated to contain the host offset of the first
1301  *          newly allocated cluster.
1302  *
1303  *  -errno: in error cases
1304  */
1305 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1306     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1307 {
1308     BDRVQcow2State *s = bs->opaque;
1309     int l2_index;
1310     uint64_t *l2_slice;
1311     uint64_t entry;
1312     uint64_t nb_clusters;
1313     int ret;
1314     bool keep_old_clusters = false;
1315 
1316     uint64_t alloc_cluster_offset = INV_OFFSET;
1317 
1318     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1319                              *bytes);
1320     assert(*bytes > 0);
1321 
1322     /*
1323      * Calculate the number of clusters to look for. We stop at L2 slice
1324      * boundaries to keep things simple.
1325      */
1326     nb_clusters =
1327         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1328 
1329     l2_index = offset_to_l2_slice_index(s, guest_offset);
1330     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1331     assert(nb_clusters <= INT_MAX);
1332 
1333     /* Limit total allocation byte count to INT_MAX */
1334     nb_clusters = MIN(nb_clusters, INT_MAX >> s->cluster_bits);
1335 
1336     /* Find L2 entry for the first involved cluster */
1337     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1338     if (ret < 0) {
1339         return ret;
1340     }
1341 
1342     entry = be64_to_cpu(l2_slice[l2_index]);
1343     nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1344 
1345     /* This function is only called when there were no non-COW clusters, so if
1346      * we can't find any unallocated or COW clusters either, something is
1347      * wrong with our code. */
1348     assert(nb_clusters > 0);
1349 
1350     if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1351         (entry & QCOW_OFLAG_COPIED) &&
1352         (*host_offset == INV_OFFSET ||
1353          start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1354     {
1355         int preallocated_nb_clusters;
1356 
1357         if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1358             qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1359                                     "cluster offset %#llx unaligned (guest "
1360                                     "offset: %#" PRIx64 ")",
1361                                     entry & L2E_OFFSET_MASK, guest_offset);
1362             ret = -EIO;
1363             goto fail;
1364         }
1365 
1366         /* Try to reuse preallocated zero clusters; contiguous normal clusters
1367          * would be fine, too, but count_cow_clusters() above has limited
1368          * nb_clusters already to a range of COW clusters */
1369         preallocated_nb_clusters =
1370             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1371                                       &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1372         assert(preallocated_nb_clusters > 0);
1373 
1374         nb_clusters = preallocated_nb_clusters;
1375         alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1376 
1377         /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1378          * should not free them. */
1379         keep_old_clusters = true;
1380     }
1381 
1382     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1383 
1384     if (alloc_cluster_offset == INV_OFFSET) {
1385         /* Allocate, if necessary at a given offset in the image file */
1386         alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1387                                start_of_cluster(s, *host_offset);
1388         ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1389                                       &nb_clusters);
1390         if (ret < 0) {
1391             goto fail;
1392         }
1393 
1394         /* Can't extend contiguous allocation */
1395         if (nb_clusters == 0) {
1396             *bytes = 0;
1397             return 0;
1398         }
1399 
1400         assert(alloc_cluster_offset != INV_OFFSET);
1401     }
1402 
1403     /*
1404      * Save info needed for meta data update.
1405      *
1406      * requested_bytes: Number of bytes from the start of the first
1407      * newly allocated cluster to the end of the (possibly shortened
1408      * before) write request.
1409      *
1410      * avail_bytes: Number of bytes from the start of the first
1411      * newly allocated to the end of the last newly allocated cluster.
1412      *
1413      * nb_bytes: The number of bytes from the start of the first
1414      * newly allocated cluster to the end of the area that the write
1415      * request actually writes to (excluding COW at the end)
1416      */
1417     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1418     int avail_bytes = nb_clusters << s->cluster_bits;
1419     int nb_bytes = MIN(requested_bytes, avail_bytes);
1420     QCowL2Meta *old_m = *m;
1421 
1422     *m = g_malloc0(sizeof(**m));
1423 
1424     **m = (QCowL2Meta) {
1425         .next           = old_m,
1426 
1427         .alloc_offset   = alloc_cluster_offset,
1428         .offset         = start_of_cluster(s, guest_offset),
1429         .nb_clusters    = nb_clusters,
1430 
1431         .keep_old_clusters  = keep_old_clusters,
1432 
1433         .cow_start = {
1434             .offset     = 0,
1435             .nb_bytes   = offset_into_cluster(s, guest_offset),
1436         },
1437         .cow_end = {
1438             .offset     = nb_bytes,
1439             .nb_bytes   = avail_bytes - nb_bytes,
1440         },
1441     };
1442     qemu_co_queue_init(&(*m)->dependent_requests);
1443     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1444 
1445     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1446     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1447     assert(*bytes != 0);
1448 
1449     return 1;
1450 
1451 fail:
1452     if (*m && (*m)->nb_clusters > 0) {
1453         QLIST_REMOVE(*m, next_in_flight);
1454     }
1455     return ret;
1456 }
1457 
1458 /*
1459  * alloc_cluster_offset
1460  *
1461  * For a given offset on the virtual disk, find the cluster offset in qcow2
1462  * file. If the offset is not found, allocate a new cluster.
1463  *
1464  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1465  * other fields in m are meaningless.
1466  *
1467  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1468  * contiguous clusters that have been allocated. In this case, the other
1469  * fields of m are valid and contain information about the first allocated
1470  * cluster.
1471  *
1472  * If the request conflicts with another write request in flight, the coroutine
1473  * is queued and will be reentered when the dependency has completed.
1474  *
1475  * Return 0 on success and -errno in error cases
1476  */
1477 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1478                                unsigned int *bytes, uint64_t *host_offset,
1479                                QCowL2Meta **m)
1480 {
1481     BDRVQcow2State *s = bs->opaque;
1482     uint64_t start, remaining;
1483     uint64_t cluster_offset;
1484     uint64_t cur_bytes;
1485     int ret;
1486 
1487     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1488 
1489 again:
1490     start = offset;
1491     remaining = *bytes;
1492     cluster_offset = INV_OFFSET;
1493     *host_offset = INV_OFFSET;
1494     cur_bytes = 0;
1495     *m = NULL;
1496 
1497     while (true) {
1498 
1499         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1500             *host_offset = start_of_cluster(s, cluster_offset);
1501         }
1502 
1503         assert(remaining >= cur_bytes);
1504 
1505         start           += cur_bytes;
1506         remaining       -= cur_bytes;
1507 
1508         if (cluster_offset != INV_OFFSET) {
1509             cluster_offset += cur_bytes;
1510         }
1511 
1512         if (remaining == 0) {
1513             break;
1514         }
1515 
1516         cur_bytes = remaining;
1517 
1518         /*
1519          * Now start gathering as many contiguous clusters as possible:
1520          *
1521          * 1. Check for overlaps with in-flight allocations
1522          *
1523          *      a) Overlap not in the first cluster -> shorten this request and
1524          *         let the caller handle the rest in its next loop iteration.
1525          *
1526          *      b) Real overlaps of two requests. Yield and restart the search
1527          *         for contiguous clusters (the situation could have changed
1528          *         while we were sleeping)
1529          *
1530          *      c) TODO: Request starts in the same cluster as the in-flight
1531          *         allocation ends. Shorten the COW of the in-fight allocation,
1532          *         set cluster_offset to write to the same cluster and set up
1533          *         the right synchronisation between the in-flight request and
1534          *         the new one.
1535          */
1536         ret = handle_dependencies(bs, start, &cur_bytes, m);
1537         if (ret == -EAGAIN) {
1538             /* Currently handle_dependencies() doesn't yield if we already had
1539              * an allocation. If it did, we would have to clean up the L2Meta
1540              * structs before starting over. */
1541             assert(*m == NULL);
1542             goto again;
1543         } else if (ret < 0) {
1544             return ret;
1545         } else if (cur_bytes == 0) {
1546             break;
1547         } else {
1548             /* handle_dependencies() may have decreased cur_bytes (shortened
1549              * the allocations below) so that the next dependency is processed
1550              * correctly during the next loop iteration. */
1551         }
1552 
1553         /*
1554          * 2. Count contiguous COPIED clusters.
1555          */
1556         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1557         if (ret < 0) {
1558             return ret;
1559         } else if (ret) {
1560             continue;
1561         } else if (cur_bytes == 0) {
1562             break;
1563         }
1564 
1565         /*
1566          * 3. If the request still hasn't completed, allocate new clusters,
1567          *    considering any cluster_offset of steps 1c or 2.
1568          */
1569         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1570         if (ret < 0) {
1571             return ret;
1572         } else if (ret) {
1573             continue;
1574         } else {
1575             assert(cur_bytes == 0);
1576             break;
1577         }
1578     }
1579 
1580     *bytes -= remaining;
1581     assert(*bytes > 0);
1582     assert(*host_offset != INV_OFFSET);
1583 
1584     return 0;
1585 }
1586 
1587 /*
1588  * This discards as many clusters of nb_clusters as possible at once (i.e.
1589  * all clusters in the same L2 slice) and returns the number of discarded
1590  * clusters.
1591  */
1592 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1593                                uint64_t nb_clusters,
1594                                enum qcow2_discard_type type, bool full_discard)
1595 {
1596     BDRVQcow2State *s = bs->opaque;
1597     uint64_t *l2_slice;
1598     int l2_index;
1599     int ret;
1600     int i;
1601 
1602     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1603     if (ret < 0) {
1604         return ret;
1605     }
1606 
1607     /* Limit nb_clusters to one L2 slice */
1608     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1609     assert(nb_clusters <= INT_MAX);
1610 
1611     for (i = 0; i < nb_clusters; i++) {
1612         uint64_t old_l2_entry;
1613 
1614         old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1615 
1616         /*
1617          * If full_discard is false, make sure that a discarded area reads back
1618          * as zeroes for v3 images (we cannot do it for v2 without actually
1619          * writing a zero-filled buffer). We can skip the operation if the
1620          * cluster is already marked as zero, or if it's unallocated and we
1621          * don't have a backing file.
1622          *
1623          * TODO We might want to use bdrv_block_status(bs) here, but we're
1624          * holding s->lock, so that doesn't work today.
1625          *
1626          * If full_discard is true, the sector should not read back as zeroes,
1627          * but rather fall through to the backing file.
1628          */
1629         switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1630         case QCOW2_CLUSTER_UNALLOCATED:
1631             if (full_discard || !bs->backing) {
1632                 continue;
1633             }
1634             break;
1635 
1636         case QCOW2_CLUSTER_ZERO_PLAIN:
1637             if (!full_discard) {
1638                 continue;
1639             }
1640             break;
1641 
1642         case QCOW2_CLUSTER_ZERO_ALLOC:
1643         case QCOW2_CLUSTER_NORMAL:
1644         case QCOW2_CLUSTER_COMPRESSED:
1645             break;
1646 
1647         default:
1648             abort();
1649         }
1650 
1651         /* First remove L2 entries */
1652         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1653         if (!full_discard && s->qcow_version >= 3) {
1654             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1655         } else {
1656             l2_slice[l2_index + i] = cpu_to_be64(0);
1657         }
1658 
1659         /* Then decrease the refcount */
1660         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1661     }
1662 
1663     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1664 
1665     return nb_clusters;
1666 }
1667 
1668 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1669                           uint64_t bytes, enum qcow2_discard_type type,
1670                           bool full_discard)
1671 {
1672     BDRVQcow2State *s = bs->opaque;
1673     uint64_t end_offset = offset + bytes;
1674     uint64_t nb_clusters;
1675     int64_t cleared;
1676     int ret;
1677 
1678     /* Caller must pass aligned values, except at image end */
1679     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1680     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1681            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1682 
1683     nb_clusters = size_to_clusters(s, bytes);
1684 
1685     s->cache_discards = true;
1686 
1687     /* Each L2 slice is handled by its own loop iteration */
1688     while (nb_clusters > 0) {
1689         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1690                                       full_discard);
1691         if (cleared < 0) {
1692             ret = cleared;
1693             goto fail;
1694         }
1695 
1696         nb_clusters -= cleared;
1697         offset += (cleared * s->cluster_size);
1698     }
1699 
1700     ret = 0;
1701 fail:
1702     s->cache_discards = false;
1703     qcow2_process_discards(bs, ret);
1704 
1705     return ret;
1706 }
1707 
1708 /*
1709  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1710  * all clusters in the same L2 slice) and returns the number of zeroed
1711  * clusters.
1712  */
1713 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1714                             uint64_t nb_clusters, int flags)
1715 {
1716     BDRVQcow2State *s = bs->opaque;
1717     uint64_t *l2_slice;
1718     int l2_index;
1719     int ret;
1720     int i;
1721     bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1722 
1723     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1724     if (ret < 0) {
1725         return ret;
1726     }
1727 
1728     /* Limit nb_clusters to one L2 slice */
1729     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1730     assert(nb_clusters <= INT_MAX);
1731 
1732     for (i = 0; i < nb_clusters; i++) {
1733         uint64_t old_offset;
1734         QCow2ClusterType cluster_type;
1735 
1736         old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1737 
1738         /*
1739          * Minimize L2 changes if the cluster already reads back as
1740          * zeroes with correct allocation.
1741          */
1742         cluster_type = qcow2_get_cluster_type(bs, old_offset);
1743         if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1744             (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1745             continue;
1746         }
1747 
1748         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1749         if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1750             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1751             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1752         } else {
1753             l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1754         }
1755     }
1756 
1757     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1758 
1759     return nb_clusters;
1760 }
1761 
1762 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1763                           uint64_t bytes, int flags)
1764 {
1765     BDRVQcow2State *s = bs->opaque;
1766     uint64_t end_offset = offset + bytes;
1767     uint64_t nb_clusters;
1768     int64_t cleared;
1769     int ret;
1770 
1771     /* If we have to stay in sync with an external data file, zero out
1772      * s->data_file first. */
1773     if (data_file_is_raw(bs)) {
1774         assert(has_data_file(bs));
1775         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1776         if (ret < 0) {
1777             return ret;
1778         }
1779     }
1780 
1781     /* Caller must pass aligned values, except at image end */
1782     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1783     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1784            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1785 
1786     /* The zero flag is only supported by version 3 and newer */
1787     if (s->qcow_version < 3) {
1788         return -ENOTSUP;
1789     }
1790 
1791     /* Each L2 slice is handled by its own loop iteration */
1792     nb_clusters = size_to_clusters(s, bytes);
1793 
1794     s->cache_discards = true;
1795 
1796     while (nb_clusters > 0) {
1797         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1798         if (cleared < 0) {
1799             ret = cleared;
1800             goto fail;
1801         }
1802 
1803         nb_clusters -= cleared;
1804         offset += (cleared * s->cluster_size);
1805     }
1806 
1807     ret = 0;
1808 fail:
1809     s->cache_discards = false;
1810     qcow2_process_discards(bs, ret);
1811 
1812     return ret;
1813 }
1814 
1815 /*
1816  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1817  * non-backed non-pre-allocated zero clusters).
1818  *
1819  * l1_entries and *visited_l1_entries are used to keep track of progress for
1820  * status_cb(). l1_entries contains the total number of L1 entries and
1821  * *visited_l1_entries counts all visited L1 entries.
1822  */
1823 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1824                                       int l1_size, int64_t *visited_l1_entries,
1825                                       int64_t l1_entries,
1826                                       BlockDriverAmendStatusCB *status_cb,
1827                                       void *cb_opaque)
1828 {
1829     BDRVQcow2State *s = bs->opaque;
1830     bool is_active_l1 = (l1_table == s->l1_table);
1831     uint64_t *l2_slice = NULL;
1832     unsigned slice, slice_size2, n_slices;
1833     int ret;
1834     int i, j;
1835 
1836     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1837     n_slices = s->cluster_size / slice_size2;
1838 
1839     if (!is_active_l1) {
1840         /* inactive L2 tables require a buffer to be stored in when loading
1841          * them from disk */
1842         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1843         if (l2_slice == NULL) {
1844             return -ENOMEM;
1845         }
1846     }
1847 
1848     for (i = 0; i < l1_size; i++) {
1849         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1850         uint64_t l2_refcount;
1851 
1852         if (!l2_offset) {
1853             /* unallocated */
1854             (*visited_l1_entries)++;
1855             if (status_cb) {
1856                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1857             }
1858             continue;
1859         }
1860 
1861         if (offset_into_cluster(s, l2_offset)) {
1862             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1863                                     PRIx64 " unaligned (L1 index: %#x)",
1864                                     l2_offset, i);
1865             ret = -EIO;
1866             goto fail;
1867         }
1868 
1869         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1870                                  &l2_refcount);
1871         if (ret < 0) {
1872             goto fail;
1873         }
1874 
1875         for (slice = 0; slice < n_slices; slice++) {
1876             uint64_t slice_offset = l2_offset + slice * slice_size2;
1877             bool l2_dirty = false;
1878             if (is_active_l1) {
1879                 /* get active L2 tables from cache */
1880                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1881                                       (void **)&l2_slice);
1882             } else {
1883                 /* load inactive L2 tables from disk */
1884                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1885             }
1886             if (ret < 0) {
1887                 goto fail;
1888             }
1889 
1890             for (j = 0; j < s->l2_slice_size; j++) {
1891                 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1892                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1893                 QCow2ClusterType cluster_type =
1894                     qcow2_get_cluster_type(bs, l2_entry);
1895 
1896                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1897                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1898                     continue;
1899                 }
1900 
1901                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1902                     if (!bs->backing) {
1903                         /* not backed; therefore we can simply deallocate the
1904                          * cluster */
1905                         l2_slice[j] = 0;
1906                         l2_dirty = true;
1907                         continue;
1908                     }
1909 
1910                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
1911                     if (offset < 0) {
1912                         ret = offset;
1913                         goto fail;
1914                     }
1915 
1916                     if (l2_refcount > 1) {
1917                         /* For shared L2 tables, set the refcount accordingly
1918                          * (it is already 1 and needs to be l2_refcount) */
1919                         ret = qcow2_update_cluster_refcount(
1920                             bs, offset >> s->cluster_bits,
1921                             refcount_diff(1, l2_refcount), false,
1922                             QCOW2_DISCARD_OTHER);
1923                         if (ret < 0) {
1924                             qcow2_free_clusters(bs, offset, s->cluster_size,
1925                                                 QCOW2_DISCARD_OTHER);
1926                             goto fail;
1927                         }
1928                     }
1929                 }
1930 
1931                 if (offset_into_cluster(s, offset)) {
1932                     int l2_index = slice * s->l2_slice_size + j;
1933                     qcow2_signal_corruption(
1934                         bs, true, -1, -1,
1935                         "Cluster allocation offset "
1936                         "%#" PRIx64 " unaligned (L2 offset: %#"
1937                         PRIx64 ", L2 index: %#x)", offset,
1938                         l2_offset, l2_index);
1939                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1940                         qcow2_free_clusters(bs, offset, s->cluster_size,
1941                                             QCOW2_DISCARD_ALWAYS);
1942                     }
1943                     ret = -EIO;
1944                     goto fail;
1945                 }
1946 
1947                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1948                                                     s->cluster_size, true);
1949                 if (ret < 0) {
1950                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1951                         qcow2_free_clusters(bs, offset, s->cluster_size,
1952                                             QCOW2_DISCARD_ALWAYS);
1953                     }
1954                     goto fail;
1955                 }
1956 
1957                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1958                                          s->cluster_size, 0);
1959                 if (ret < 0) {
1960                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1961                         qcow2_free_clusters(bs, offset, s->cluster_size,
1962                                             QCOW2_DISCARD_ALWAYS);
1963                     }
1964                     goto fail;
1965                 }
1966 
1967                 if (l2_refcount == 1) {
1968                     l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1969                 } else {
1970                     l2_slice[j] = cpu_to_be64(offset);
1971                 }
1972                 l2_dirty = true;
1973             }
1974 
1975             if (is_active_l1) {
1976                 if (l2_dirty) {
1977                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1978                     qcow2_cache_depends_on_flush(s->l2_table_cache);
1979                 }
1980                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1981             } else {
1982                 if (l2_dirty) {
1983                     ret = qcow2_pre_write_overlap_check(
1984                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
1985                         slice_offset, slice_size2, false);
1986                     if (ret < 0) {
1987                         goto fail;
1988                     }
1989 
1990                     ret = bdrv_pwrite(bs->file, slice_offset,
1991                                       l2_slice, slice_size2);
1992                     if (ret < 0) {
1993                         goto fail;
1994                     }
1995                 }
1996             }
1997         }
1998 
1999         (*visited_l1_entries)++;
2000         if (status_cb) {
2001             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2002         }
2003     }
2004 
2005     ret = 0;
2006 
2007 fail:
2008     if (l2_slice) {
2009         if (!is_active_l1) {
2010             qemu_vfree(l2_slice);
2011         } else {
2012             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2013         }
2014     }
2015     return ret;
2016 }
2017 
2018 /*
2019  * For backed images, expands all zero clusters on the image. For non-backed
2020  * images, deallocates all non-pre-allocated zero clusters (and claims the
2021  * allocation for pre-allocated ones). This is important for downgrading to a
2022  * qcow2 version which doesn't yet support metadata zero clusters.
2023  */
2024 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2025                                BlockDriverAmendStatusCB *status_cb,
2026                                void *cb_opaque)
2027 {
2028     BDRVQcow2State *s = bs->opaque;
2029     uint64_t *l1_table = NULL;
2030     int64_t l1_entries = 0, visited_l1_entries = 0;
2031     int ret;
2032     int i, j;
2033 
2034     if (status_cb) {
2035         l1_entries = s->l1_size;
2036         for (i = 0; i < s->nb_snapshots; i++) {
2037             l1_entries += s->snapshots[i].l1_size;
2038         }
2039     }
2040 
2041     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2042                                      &visited_l1_entries, l1_entries,
2043                                      status_cb, cb_opaque);
2044     if (ret < 0) {
2045         goto fail;
2046     }
2047 
2048     /* Inactive L1 tables may point to active L2 tables - therefore it is
2049      * necessary to flush the L2 table cache before trying to access the L2
2050      * tables pointed to by inactive L1 entries (else we might try to expand
2051      * zero clusters that have already been expanded); furthermore, it is also
2052      * necessary to empty the L2 table cache, since it may contain tables which
2053      * are now going to be modified directly on disk, bypassing the cache.
2054      * qcow2_cache_empty() does both for us. */
2055     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2056     if (ret < 0) {
2057         goto fail;
2058     }
2059 
2060     for (i = 0; i < s->nb_snapshots; i++) {
2061         int l1_size2;
2062         uint64_t *new_l1_table;
2063         Error *local_err = NULL;
2064 
2065         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2066                                    s->snapshots[i].l1_size, sizeof(uint64_t),
2067                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2068                                    &local_err);
2069         if (ret < 0) {
2070             error_report_err(local_err);
2071             goto fail;
2072         }
2073 
2074         l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2075         new_l1_table = g_try_realloc(l1_table, l1_size2);
2076 
2077         if (!new_l1_table) {
2078             ret = -ENOMEM;
2079             goto fail;
2080         }
2081 
2082         l1_table = new_l1_table;
2083 
2084         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2085                          l1_table, l1_size2);
2086         if (ret < 0) {
2087             goto fail;
2088         }
2089 
2090         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2091             be64_to_cpus(&l1_table[j]);
2092         }
2093 
2094         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2095                                          &visited_l1_entries, l1_entries,
2096                                          status_cb, cb_opaque);
2097         if (ret < 0) {
2098             goto fail;
2099         }
2100     }
2101 
2102     ret = 0;
2103 
2104 fail:
2105     g_free(l1_table);
2106     return ret;
2107 }
2108