xref: /openbmc/qemu/block/qcow2-cluster.c (revision 41a1a9c4)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33                         bool exact_size)
34 {
35     BDRVQcowState *s = bs->opaque;
36     int new_l1_size2, ret, i;
37     uint64_t *new_l1_table;
38     int64_t old_l1_table_offset, old_l1_size;
39     int64_t new_l1_table_offset, new_l1_size;
40     uint8_t data[12];
41 
42     if (min_size <= s->l1_size)
43         return 0;
44 
45     /* Do a sanity check on min_size before trying to calculate new_l1_size
46      * (this prevents overflows during the while loop for the calculation of
47      * new_l1_size) */
48     if (min_size > INT_MAX / sizeof(uint64_t)) {
49         return -EFBIG;
50     }
51 
52     if (exact_size) {
53         new_l1_size = min_size;
54     } else {
55         /* Bump size up to reduce the number of times we have to grow */
56         new_l1_size = s->l1_size;
57         if (new_l1_size == 0) {
58             new_l1_size = 1;
59         }
60         while (min_size > new_l1_size) {
61             new_l1_size = (new_l1_size * 3 + 1) / 2;
62         }
63     }
64 
65     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66         return -EFBIG;
67     }
68 
69 #ifdef DEBUG_ALLOC2
70     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71             s->l1_size, new_l1_size);
72 #endif
73 
74     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75     new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
76     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
77 
78     /* write new table (align to cluster) */
79     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
80     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
81     if (new_l1_table_offset < 0) {
82         g_free(new_l1_table);
83         return new_l1_table_offset;
84     }
85 
86     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
87     if (ret < 0) {
88         goto fail;
89     }
90 
91     /* the L1 position has not yet been updated, so these clusters must
92      * indeed be completely free */
93     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
94                                         new_l1_size2);
95     if (ret < 0) {
96         goto fail;
97     }
98 
99     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
100     for(i = 0; i < s->l1_size; i++)
101         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
102     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
103     if (ret < 0)
104         goto fail;
105     for(i = 0; i < s->l1_size; i++)
106         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
107 
108     /* set new table */
109     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
110     cpu_to_be32w((uint32_t*)data, new_l1_size);
111     stq_be_p(data + 4, new_l1_table_offset);
112     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
113     if (ret < 0) {
114         goto fail;
115     }
116     g_free(s->l1_table);
117     old_l1_table_offset = s->l1_table_offset;
118     s->l1_table_offset = new_l1_table_offset;
119     s->l1_table = new_l1_table;
120     old_l1_size = s->l1_size;
121     s->l1_size = new_l1_size;
122     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
123                         QCOW2_DISCARD_OTHER);
124     return 0;
125  fail:
126     g_free(new_l1_table);
127     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
128                         QCOW2_DISCARD_OTHER);
129     return ret;
130 }
131 
132 /*
133  * l2_load
134  *
135  * Loads a L2 table into memory. If the table is in the cache, the cache
136  * is used; otherwise the L2 table is loaded from the image file.
137  *
138  * Returns a pointer to the L2 table on success, or NULL if the read from
139  * the image file failed.
140  */
141 
142 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
143     uint64_t **l2_table)
144 {
145     BDRVQcowState *s = bs->opaque;
146     int ret;
147 
148     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
149 
150     return ret;
151 }
152 
153 /*
154  * Writes one sector of the L1 table to the disk (can't update single entries
155  * and we really don't want bdrv_pread to perform a read-modify-write)
156  */
157 #define L1_ENTRIES_PER_SECTOR (512 / 8)
158 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
159 {
160     BDRVQcowState *s = bs->opaque;
161     uint64_t buf[L1_ENTRIES_PER_SECTOR];
162     int l1_start_index;
163     int i, ret;
164 
165     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
166     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
167         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
168     }
169 
170     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
171             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
172     if (ret < 0) {
173         return ret;
174     }
175 
176     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
177     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
178         buf, sizeof(buf));
179     if (ret < 0) {
180         return ret;
181     }
182 
183     return 0;
184 }
185 
186 /*
187  * l2_allocate
188  *
189  * Allocate a new l2 entry in the file. If l1_index points to an already
190  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
191  * table) copy the contents of the old L2 table into the newly allocated one.
192  * Otherwise the new table is initialized with zeros.
193  *
194  */
195 
196 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
197 {
198     BDRVQcowState *s = bs->opaque;
199     uint64_t old_l2_offset;
200     uint64_t *l2_table = NULL;
201     int64_t l2_offset;
202     int ret;
203 
204     old_l2_offset = s->l1_table[l1_index];
205 
206     trace_qcow2_l2_allocate(bs, l1_index);
207 
208     /* allocate a new l2 entry */
209 
210     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
211     if (l2_offset < 0) {
212         ret = l2_offset;
213         goto fail;
214     }
215 
216     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
217     if (ret < 0) {
218         goto fail;
219     }
220 
221     /* allocate a new entry in the l2 cache */
222 
223     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
224     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
225     if (ret < 0) {
226         goto fail;
227     }
228 
229     l2_table = *table;
230 
231     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
232         /* if there was no old l2 table, clear the new table */
233         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
234     } else {
235         uint64_t* old_table;
236 
237         /* if there was an old l2 table, read it from the disk */
238         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
239         ret = qcow2_cache_get(bs, s->l2_table_cache,
240             old_l2_offset & L1E_OFFSET_MASK,
241             (void**) &old_table);
242         if (ret < 0) {
243             goto fail;
244         }
245 
246         memcpy(l2_table, old_table, s->cluster_size);
247 
248         ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
249         if (ret < 0) {
250             goto fail;
251         }
252     }
253 
254     /* write the l2 table to the file */
255     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
256 
257     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
258     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
259     ret = qcow2_cache_flush(bs, s->l2_table_cache);
260     if (ret < 0) {
261         goto fail;
262     }
263 
264     /* update the L1 entry */
265     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
266     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
267     ret = qcow2_write_l1_entry(bs, l1_index);
268     if (ret < 0) {
269         goto fail;
270     }
271 
272     *table = l2_table;
273     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
274     return 0;
275 
276 fail:
277     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
278     if (l2_table != NULL) {
279         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
280     }
281     s->l1_table[l1_index] = old_l2_offset;
282     if (l2_offset > 0) {
283         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
284                             QCOW2_DISCARD_ALWAYS);
285     }
286     return ret;
287 }
288 
289 /*
290  * Checks how many clusters in a given L2 table are contiguous in the image
291  * file. As soon as one of the flags in the bitmask stop_flags changes compared
292  * to the first cluster, the search is stopped and the cluster is not counted
293  * as contiguous. (This allows it, for example, to stop at the first compressed
294  * cluster which may require a different handling)
295  */
296 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
297         uint64_t *l2_table, uint64_t stop_flags)
298 {
299     int i;
300     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
301     uint64_t first_entry = be64_to_cpu(l2_table[0]);
302     uint64_t offset = first_entry & mask;
303 
304     if (!offset)
305         return 0;
306 
307     assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
308 
309     for (i = 0; i < nb_clusters; i++) {
310         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
311         if (offset + (uint64_t) i * cluster_size != l2_entry) {
312             break;
313         }
314     }
315 
316 	return i;
317 }
318 
319 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
320 {
321     int i;
322 
323     for (i = 0; i < nb_clusters; i++) {
324         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
325 
326         if (type != QCOW2_CLUSTER_UNALLOCATED) {
327             break;
328         }
329     }
330 
331     return i;
332 }
333 
334 /* The crypt function is compatible with the linux cryptoloop
335    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
336    supported */
337 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
338                            uint8_t *out_buf, const uint8_t *in_buf,
339                            int nb_sectors, int enc,
340                            const AES_KEY *key)
341 {
342     union {
343         uint64_t ll[2];
344         uint8_t b[16];
345     } ivec;
346     int i;
347 
348     for(i = 0; i < nb_sectors; i++) {
349         ivec.ll[0] = cpu_to_le64(sector_num);
350         ivec.ll[1] = 0;
351         AES_cbc_encrypt(in_buf, out_buf, 512, key,
352                         ivec.b, enc);
353         sector_num++;
354         in_buf += 512;
355         out_buf += 512;
356     }
357 }
358 
359 static int coroutine_fn copy_sectors(BlockDriverState *bs,
360                                      uint64_t start_sect,
361                                      uint64_t cluster_offset,
362                                      int n_start, int n_end)
363 {
364     BDRVQcowState *s = bs->opaque;
365     QEMUIOVector qiov;
366     struct iovec iov;
367     int n, ret;
368 
369     n = n_end - n_start;
370     if (n <= 0) {
371         return 0;
372     }
373 
374     iov.iov_len = n * BDRV_SECTOR_SIZE;
375     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
376 
377     qemu_iovec_init_external(&qiov, &iov, 1);
378 
379     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
380 
381     if (!bs->drv) {
382         ret = -ENOMEDIUM;
383         goto out;
384     }
385 
386     /* Call .bdrv_co_readv() directly instead of using the public block-layer
387      * interface.  This avoids double I/O throttling and request tracking,
388      * which can lead to deadlock when block layer copy-on-read is enabled.
389      */
390     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
391     if (ret < 0) {
392         goto out;
393     }
394 
395     if (s->crypt_method) {
396         qcow2_encrypt_sectors(s, start_sect + n_start,
397                         iov.iov_base, iov.iov_base, n, 1,
398                         &s->aes_encrypt_key);
399     }
400 
401     ret = qcow2_pre_write_overlap_check(bs, 0,
402             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
403     if (ret < 0) {
404         goto out;
405     }
406 
407     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
408     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
409     if (ret < 0) {
410         goto out;
411     }
412 
413     ret = 0;
414 out:
415     qemu_vfree(iov.iov_base);
416     return ret;
417 }
418 
419 
420 /*
421  * get_cluster_offset
422  *
423  * For a given offset of the disk image, find the cluster offset in
424  * qcow2 file. The offset is stored in *cluster_offset.
425  *
426  * on entry, *num is the number of contiguous sectors we'd like to
427  * access following offset.
428  *
429  * on exit, *num is the number of contiguous sectors we can read.
430  *
431  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
432  * cases.
433  */
434 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
435     int *num, uint64_t *cluster_offset)
436 {
437     BDRVQcowState *s = bs->opaque;
438     unsigned int l2_index;
439     uint64_t l1_index, l2_offset, *l2_table;
440     int l1_bits, c;
441     unsigned int index_in_cluster, nb_clusters;
442     uint64_t nb_available, nb_needed;
443     int ret;
444 
445     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
446     nb_needed = *num + index_in_cluster;
447 
448     l1_bits = s->l2_bits + s->cluster_bits;
449 
450     /* compute how many bytes there are between the offset and
451      * the end of the l1 entry
452      */
453 
454     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
455 
456     /* compute the number of available sectors */
457 
458     nb_available = (nb_available >> 9) + index_in_cluster;
459 
460     if (nb_needed > nb_available) {
461         nb_needed = nb_available;
462     }
463 
464     *cluster_offset = 0;
465 
466     /* seek the the l2 offset in the l1 table */
467 
468     l1_index = offset >> l1_bits;
469     if (l1_index >= s->l1_size) {
470         ret = QCOW2_CLUSTER_UNALLOCATED;
471         goto out;
472     }
473 
474     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
475     if (!l2_offset) {
476         ret = QCOW2_CLUSTER_UNALLOCATED;
477         goto out;
478     }
479 
480     /* load the l2 table in memory */
481 
482     ret = l2_load(bs, l2_offset, &l2_table);
483     if (ret < 0) {
484         return ret;
485     }
486 
487     /* find the cluster offset for the given disk offset */
488 
489     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
490     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
491     nb_clusters = size_to_clusters(s, nb_needed << 9);
492 
493     ret = qcow2_get_cluster_type(*cluster_offset);
494     switch (ret) {
495     case QCOW2_CLUSTER_COMPRESSED:
496         /* Compressed clusters can only be processed one by one */
497         c = 1;
498         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
499         break;
500     case QCOW2_CLUSTER_ZERO:
501         if (s->qcow_version < 3) {
502             qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
503             return -EIO;
504         }
505         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
506                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
507         *cluster_offset = 0;
508         break;
509     case QCOW2_CLUSTER_UNALLOCATED:
510         /* how many empty clusters ? */
511         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
512         *cluster_offset = 0;
513         break;
514     case QCOW2_CLUSTER_NORMAL:
515         /* how many allocated clusters ? */
516         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
517                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
518         *cluster_offset &= L2E_OFFSET_MASK;
519         break;
520     default:
521         abort();
522     }
523 
524     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
525 
526     nb_available = (c * s->cluster_sectors);
527 
528 out:
529     if (nb_available > nb_needed)
530         nb_available = nb_needed;
531 
532     *num = nb_available - index_in_cluster;
533 
534     return ret;
535 }
536 
537 /*
538  * get_cluster_table
539  *
540  * for a given disk offset, load (and allocate if needed)
541  * the l2 table.
542  *
543  * the l2 table offset in the qcow2 file and the cluster index
544  * in the l2 table are given to the caller.
545  *
546  * Returns 0 on success, -errno in failure case
547  */
548 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
549                              uint64_t **new_l2_table,
550                              int *new_l2_index)
551 {
552     BDRVQcowState *s = bs->opaque;
553     unsigned int l2_index;
554     uint64_t l1_index, l2_offset;
555     uint64_t *l2_table = NULL;
556     int ret;
557 
558     /* seek the the l2 offset in the l1 table */
559 
560     l1_index = offset >> (s->l2_bits + s->cluster_bits);
561     if (l1_index >= s->l1_size) {
562         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
563         if (ret < 0) {
564             return ret;
565         }
566     }
567 
568     assert(l1_index < s->l1_size);
569     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
570 
571     /* seek the l2 table of the given l2 offset */
572 
573     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
574         /* load the l2 table in memory */
575         ret = l2_load(bs, l2_offset, &l2_table);
576         if (ret < 0) {
577             return ret;
578         }
579     } else {
580         /* First allocate a new L2 table (and do COW if needed) */
581         ret = l2_allocate(bs, l1_index, &l2_table);
582         if (ret < 0) {
583             return ret;
584         }
585 
586         /* Then decrease the refcount of the old table */
587         if (l2_offset) {
588             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
589                                 QCOW2_DISCARD_OTHER);
590         }
591     }
592 
593     /* find the cluster offset for the given disk offset */
594 
595     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
596 
597     *new_l2_table = l2_table;
598     *new_l2_index = l2_index;
599 
600     return 0;
601 }
602 
603 /*
604  * alloc_compressed_cluster_offset
605  *
606  * For a given offset of the disk image, return cluster offset in
607  * qcow2 file.
608  *
609  * If the offset is not found, allocate a new compressed cluster.
610  *
611  * Return the cluster offset if successful,
612  * Return 0, otherwise.
613  *
614  */
615 
616 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
617                                                uint64_t offset,
618                                                int compressed_size)
619 {
620     BDRVQcowState *s = bs->opaque;
621     int l2_index, ret;
622     uint64_t *l2_table;
623     int64_t cluster_offset;
624     int nb_csectors;
625 
626     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
627     if (ret < 0) {
628         return 0;
629     }
630 
631     /* Compression can't overwrite anything. Fail if the cluster was already
632      * allocated. */
633     cluster_offset = be64_to_cpu(l2_table[l2_index]);
634     if (cluster_offset & L2E_OFFSET_MASK) {
635         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
636         return 0;
637     }
638 
639     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
640     if (cluster_offset < 0) {
641         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
642         return 0;
643     }
644 
645     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
646                   (cluster_offset >> 9);
647 
648     cluster_offset |= QCOW_OFLAG_COMPRESSED |
649                       ((uint64_t)nb_csectors << s->csize_shift);
650 
651     /* update L2 table */
652 
653     /* compressed clusters never have the copied flag */
654 
655     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
656     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
657     l2_table[l2_index] = cpu_to_be64(cluster_offset);
658     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
659     if (ret < 0) {
660         return 0;
661     }
662 
663     return cluster_offset;
664 }
665 
666 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
667 {
668     BDRVQcowState *s = bs->opaque;
669     int ret;
670 
671     if (r->nb_sectors == 0) {
672         return 0;
673     }
674 
675     qemu_co_mutex_unlock(&s->lock);
676     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
677                        r->offset / BDRV_SECTOR_SIZE,
678                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
679     qemu_co_mutex_lock(&s->lock);
680 
681     if (ret < 0) {
682         return ret;
683     }
684 
685     /*
686      * Before we update the L2 table to actually point to the new cluster, we
687      * need to be sure that the refcounts have been increased and COW was
688      * handled.
689      */
690     qcow2_cache_depends_on_flush(s->l2_table_cache);
691 
692     return 0;
693 }
694 
695 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
696 {
697     BDRVQcowState *s = bs->opaque;
698     int i, j = 0, l2_index, ret;
699     uint64_t *old_cluster, *l2_table;
700     uint64_t cluster_offset = m->alloc_offset;
701 
702     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
703     assert(m->nb_clusters > 0);
704 
705     old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
706 
707     /* copy content of unmodified sectors */
708     ret = perform_cow(bs, m, &m->cow_start);
709     if (ret < 0) {
710         goto err;
711     }
712 
713     ret = perform_cow(bs, m, &m->cow_end);
714     if (ret < 0) {
715         goto err;
716     }
717 
718     /* Update L2 table. */
719     if (s->use_lazy_refcounts) {
720         qcow2_mark_dirty(bs);
721     }
722     if (qcow2_need_accurate_refcounts(s)) {
723         qcow2_cache_set_dependency(bs, s->l2_table_cache,
724                                    s->refcount_block_cache);
725     }
726 
727     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
728     if (ret < 0) {
729         goto err;
730     }
731     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
732 
733     assert(l2_index + m->nb_clusters <= s->l2_size);
734     for (i = 0; i < m->nb_clusters; i++) {
735         /* if two concurrent writes happen to the same unallocated cluster
736 	 * each write allocates separate cluster and writes data concurrently.
737 	 * The first one to complete updates l2 table with pointer to its
738 	 * cluster the second one has to do RMW (which is done above by
739 	 * copy_sectors()), update l2 table with its cluster pointer and free
740 	 * old cluster. This is what this loop does */
741         if(l2_table[l2_index + i] != 0)
742             old_cluster[j++] = l2_table[l2_index + i];
743 
744         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
745                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
746      }
747 
748 
749     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
750     if (ret < 0) {
751         goto err;
752     }
753 
754     /*
755      * If this was a COW, we need to decrease the refcount of the old cluster.
756      * Also flush bs->file to get the right order for L2 and refcount update.
757      *
758      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
759      * clusters), the next write will reuse them anyway.
760      */
761     if (j != 0) {
762         for (i = 0; i < j; i++) {
763             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
764                                     QCOW2_DISCARD_NEVER);
765         }
766     }
767 
768     ret = 0;
769 err:
770     g_free(old_cluster);
771     return ret;
772  }
773 
774 /*
775  * Returns the number of contiguous clusters that can be used for an allocating
776  * write, but require COW to be performed (this includes yet unallocated space,
777  * which must copy from the backing file)
778  */
779 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
780     uint64_t *l2_table, int l2_index)
781 {
782     int i;
783 
784     for (i = 0; i < nb_clusters; i++) {
785         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
786         int cluster_type = qcow2_get_cluster_type(l2_entry);
787 
788         switch(cluster_type) {
789         case QCOW2_CLUSTER_NORMAL:
790             if (l2_entry & QCOW_OFLAG_COPIED) {
791                 goto out;
792             }
793             break;
794         case QCOW2_CLUSTER_UNALLOCATED:
795         case QCOW2_CLUSTER_COMPRESSED:
796         case QCOW2_CLUSTER_ZERO:
797             break;
798         default:
799             abort();
800         }
801     }
802 
803 out:
804     assert(i <= nb_clusters);
805     return i;
806 }
807 
808 /*
809  * Check if there already is an AIO write request in flight which allocates
810  * the same cluster. In this case we need to wait until the previous
811  * request has completed and updated the L2 table accordingly.
812  *
813  * Returns:
814  *   0       if there was no dependency. *cur_bytes indicates the number of
815  *           bytes from guest_offset that can be read before the next
816  *           dependency must be processed (or the request is complete)
817  *
818  *   -EAGAIN if we had to wait for another request, previously gathered
819  *           information on cluster allocation may be invalid now. The caller
820  *           must start over anyway, so consider *cur_bytes undefined.
821  */
822 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
823     uint64_t *cur_bytes, QCowL2Meta **m)
824 {
825     BDRVQcowState *s = bs->opaque;
826     QCowL2Meta *old_alloc;
827     uint64_t bytes = *cur_bytes;
828 
829     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
830 
831         uint64_t start = guest_offset;
832         uint64_t end = start + bytes;
833         uint64_t old_start = l2meta_cow_start(old_alloc);
834         uint64_t old_end = l2meta_cow_end(old_alloc);
835 
836         if (end <= old_start || start >= old_end) {
837             /* No intersection */
838         } else {
839             if (start < old_start) {
840                 /* Stop at the start of a running allocation */
841                 bytes = old_start - start;
842             } else {
843                 bytes = 0;
844             }
845 
846             /* Stop if already an l2meta exists. After yielding, it wouldn't
847              * be valid any more, so we'd have to clean up the old L2Metas
848              * and deal with requests depending on them before starting to
849              * gather new ones. Not worth the trouble. */
850             if (bytes == 0 && *m) {
851                 *cur_bytes = 0;
852                 return 0;
853             }
854 
855             if (bytes == 0) {
856                 /* Wait for the dependency to complete. We need to recheck
857                  * the free/allocated clusters when we continue. */
858                 qemu_co_mutex_unlock(&s->lock);
859                 qemu_co_queue_wait(&old_alloc->dependent_requests);
860                 qemu_co_mutex_lock(&s->lock);
861                 return -EAGAIN;
862             }
863         }
864     }
865 
866     /* Make sure that existing clusters and new allocations are only used up to
867      * the next dependency if we shortened the request above */
868     *cur_bytes = bytes;
869 
870     return 0;
871 }
872 
873 /*
874  * Checks how many already allocated clusters that don't require a copy on
875  * write there are at the given guest_offset (up to *bytes). If
876  * *host_offset is not zero, only physically contiguous clusters beginning at
877  * this host offset are counted.
878  *
879  * Note that guest_offset may not be cluster aligned. In this case, the
880  * returned *host_offset points to exact byte referenced by guest_offset and
881  * therefore isn't cluster aligned as well.
882  *
883  * Returns:
884  *   0:     if no allocated clusters are available at the given offset.
885  *          *bytes is normally unchanged. It is set to 0 if the cluster
886  *          is allocated and doesn't need COW, but doesn't have the right
887  *          physical offset.
888  *
889  *   1:     if allocated clusters that don't require a COW are available at
890  *          the requested offset. *bytes may have decreased and describes
891  *          the length of the area that can be written to.
892  *
893  *  -errno: in error cases
894  */
895 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
896     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
897 {
898     BDRVQcowState *s = bs->opaque;
899     int l2_index;
900     uint64_t cluster_offset;
901     uint64_t *l2_table;
902     unsigned int nb_clusters;
903     unsigned int keep_clusters;
904     int ret, pret;
905 
906     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
907                               *bytes);
908 
909     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
910                                 == offset_into_cluster(s, *host_offset));
911 
912     /*
913      * Calculate the number of clusters to look for. We stop at L2 table
914      * boundaries to keep things simple.
915      */
916     nb_clusters =
917         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
918 
919     l2_index = offset_to_l2_index(s, guest_offset);
920     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
921 
922     /* Find L2 entry for the first involved cluster */
923     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
924     if (ret < 0) {
925         return ret;
926     }
927 
928     cluster_offset = be64_to_cpu(l2_table[l2_index]);
929 
930     /* Check how many clusters are already allocated and don't need COW */
931     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
932         && (cluster_offset & QCOW_OFLAG_COPIED))
933     {
934         /* If a specific host_offset is required, check it */
935         bool offset_matches =
936             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
937 
938         if (*host_offset != 0 && !offset_matches) {
939             *bytes = 0;
940             ret = 0;
941             goto out;
942         }
943 
944         /* We keep all QCOW_OFLAG_COPIED clusters */
945         keep_clusters =
946             count_contiguous_clusters(nb_clusters, s->cluster_size,
947                                       &l2_table[l2_index],
948                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
949         assert(keep_clusters <= nb_clusters);
950 
951         *bytes = MIN(*bytes,
952                  keep_clusters * s->cluster_size
953                  - offset_into_cluster(s, guest_offset));
954 
955         ret = 1;
956     } else {
957         ret = 0;
958     }
959 
960     /* Cleanup */
961 out:
962     pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
963     if (pret < 0) {
964         return pret;
965     }
966 
967     /* Only return a host offset if we actually made progress. Otherwise we
968      * would make requirements for handle_alloc() that it can't fulfill */
969     if (ret) {
970         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
971                      + offset_into_cluster(s, guest_offset);
972     }
973 
974     return ret;
975 }
976 
977 /*
978  * Allocates new clusters for the given guest_offset.
979  *
980  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
981  * contain the number of clusters that have been allocated and are contiguous
982  * in the image file.
983  *
984  * If *host_offset is non-zero, it specifies the offset in the image file at
985  * which the new clusters must start. *nb_clusters can be 0 on return in this
986  * case if the cluster at host_offset is already in use. If *host_offset is
987  * zero, the clusters can be allocated anywhere in the image file.
988  *
989  * *host_offset is updated to contain the offset into the image file at which
990  * the first allocated cluster starts.
991  *
992  * Return 0 on success and -errno in error cases. -EAGAIN means that the
993  * function has been waiting for another request and the allocation must be
994  * restarted, but the whole request should not be failed.
995  */
996 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
997     uint64_t *host_offset, unsigned int *nb_clusters)
998 {
999     BDRVQcowState *s = bs->opaque;
1000 
1001     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1002                                          *host_offset, *nb_clusters);
1003 
1004     /* Allocate new clusters */
1005     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1006     if (*host_offset == 0) {
1007         int64_t cluster_offset =
1008             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1009         if (cluster_offset < 0) {
1010             return cluster_offset;
1011         }
1012         *host_offset = cluster_offset;
1013         return 0;
1014     } else {
1015         int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1016         if (ret < 0) {
1017             return ret;
1018         }
1019         *nb_clusters = ret;
1020         return 0;
1021     }
1022 }
1023 
1024 /*
1025  * Allocates new clusters for an area that either is yet unallocated or needs a
1026  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1027  * the new allocation can match the specified host offset.
1028  *
1029  * Note that guest_offset may not be cluster aligned. In this case, the
1030  * returned *host_offset points to exact byte referenced by guest_offset and
1031  * therefore isn't cluster aligned as well.
1032  *
1033  * Returns:
1034  *   0:     if no clusters could be allocated. *bytes is set to 0,
1035  *          *host_offset is left unchanged.
1036  *
1037  *   1:     if new clusters were allocated. *bytes may be decreased if the
1038  *          new allocation doesn't cover all of the requested area.
1039  *          *host_offset is updated to contain the host offset of the first
1040  *          newly allocated cluster.
1041  *
1042  *  -errno: in error cases
1043  */
1044 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1045     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1046 {
1047     BDRVQcowState *s = bs->opaque;
1048     int l2_index;
1049     uint64_t *l2_table;
1050     uint64_t entry;
1051     unsigned int nb_clusters;
1052     int ret;
1053 
1054     uint64_t alloc_cluster_offset;
1055 
1056     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1057                              *bytes);
1058     assert(*bytes > 0);
1059 
1060     /*
1061      * Calculate the number of clusters to look for. We stop at L2 table
1062      * boundaries to keep things simple.
1063      */
1064     nb_clusters =
1065         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1066 
1067     l2_index = offset_to_l2_index(s, guest_offset);
1068     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1069 
1070     /* Find L2 entry for the first involved cluster */
1071     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1072     if (ret < 0) {
1073         return ret;
1074     }
1075 
1076     entry = be64_to_cpu(l2_table[l2_index]);
1077 
1078     /* For the moment, overwrite compressed clusters one by one */
1079     if (entry & QCOW_OFLAG_COMPRESSED) {
1080         nb_clusters = 1;
1081     } else {
1082         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1083     }
1084 
1085     /* This function is only called when there were no non-COW clusters, so if
1086      * we can't find any unallocated or COW clusters either, something is
1087      * wrong with our code. */
1088     assert(nb_clusters > 0);
1089 
1090     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1091     if (ret < 0) {
1092         return ret;
1093     }
1094 
1095     /* Allocate, if necessary at a given offset in the image file */
1096     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1097     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1098                                   &nb_clusters);
1099     if (ret < 0) {
1100         goto fail;
1101     }
1102 
1103     /* Can't extend contiguous allocation */
1104     if (nb_clusters == 0) {
1105         *bytes = 0;
1106         return 0;
1107     }
1108 
1109     /*
1110      * Save info needed for meta data update.
1111      *
1112      * requested_sectors: Number of sectors from the start of the first
1113      * newly allocated cluster to the end of the (possibly shortened
1114      * before) write request.
1115      *
1116      * avail_sectors: Number of sectors from the start of the first
1117      * newly allocated to the end of the last newly allocated cluster.
1118      *
1119      * nb_sectors: The number of sectors from the start of the first
1120      * newly allocated cluster to the end of the area that the write
1121      * request actually writes to (excluding COW at the end)
1122      */
1123     int requested_sectors =
1124         (*bytes + offset_into_cluster(s, guest_offset))
1125         >> BDRV_SECTOR_BITS;
1126     int avail_sectors = nb_clusters
1127                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1128     int alloc_n_start = offset_into_cluster(s, guest_offset)
1129                         >> BDRV_SECTOR_BITS;
1130     int nb_sectors = MIN(requested_sectors, avail_sectors);
1131     QCowL2Meta *old_m = *m;
1132 
1133     *m = g_malloc0(sizeof(**m));
1134 
1135     **m = (QCowL2Meta) {
1136         .next           = old_m,
1137 
1138         .alloc_offset   = alloc_cluster_offset,
1139         .offset         = start_of_cluster(s, guest_offset),
1140         .nb_clusters    = nb_clusters,
1141         .nb_available   = nb_sectors,
1142 
1143         .cow_start = {
1144             .offset     = 0,
1145             .nb_sectors = alloc_n_start,
1146         },
1147         .cow_end = {
1148             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1149             .nb_sectors = avail_sectors - nb_sectors,
1150         },
1151     };
1152     qemu_co_queue_init(&(*m)->dependent_requests);
1153     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1154 
1155     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1156     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1157                          - offset_into_cluster(s, guest_offset));
1158     assert(*bytes != 0);
1159 
1160     return 1;
1161 
1162 fail:
1163     if (*m && (*m)->nb_clusters > 0) {
1164         QLIST_REMOVE(*m, next_in_flight);
1165     }
1166     return ret;
1167 }
1168 
1169 /*
1170  * alloc_cluster_offset
1171  *
1172  * For a given offset on the virtual disk, find the cluster offset in qcow2
1173  * file. If the offset is not found, allocate a new cluster.
1174  *
1175  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1176  * other fields in m are meaningless.
1177  *
1178  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1179  * contiguous clusters that have been allocated. In this case, the other
1180  * fields of m are valid and contain information about the first allocated
1181  * cluster.
1182  *
1183  * If the request conflicts with another write request in flight, the coroutine
1184  * is queued and will be reentered when the dependency has completed.
1185  *
1186  * Return 0 on success and -errno in error cases
1187  */
1188 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1189     int *num, uint64_t *host_offset, QCowL2Meta **m)
1190 {
1191     BDRVQcowState *s = bs->opaque;
1192     uint64_t start, remaining;
1193     uint64_t cluster_offset;
1194     uint64_t cur_bytes;
1195     int ret;
1196 
1197     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1198 
1199     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1200 
1201 again:
1202     start = offset;
1203     remaining = *num << BDRV_SECTOR_BITS;
1204     cluster_offset = 0;
1205     *host_offset = 0;
1206     cur_bytes = 0;
1207     *m = NULL;
1208 
1209     while (true) {
1210 
1211         if (!*host_offset) {
1212             *host_offset = start_of_cluster(s, cluster_offset);
1213         }
1214 
1215         assert(remaining >= cur_bytes);
1216 
1217         start           += cur_bytes;
1218         remaining       -= cur_bytes;
1219         cluster_offset  += cur_bytes;
1220 
1221         if (remaining == 0) {
1222             break;
1223         }
1224 
1225         cur_bytes = remaining;
1226 
1227         /*
1228          * Now start gathering as many contiguous clusters as possible:
1229          *
1230          * 1. Check for overlaps with in-flight allocations
1231          *
1232          *      a) Overlap not in the first cluster -> shorten this request and
1233          *         let the caller handle the rest in its next loop iteration.
1234          *
1235          *      b) Real overlaps of two requests. Yield and restart the search
1236          *         for contiguous clusters (the situation could have changed
1237          *         while we were sleeping)
1238          *
1239          *      c) TODO: Request starts in the same cluster as the in-flight
1240          *         allocation ends. Shorten the COW of the in-fight allocation,
1241          *         set cluster_offset to write to the same cluster and set up
1242          *         the right synchronisation between the in-flight request and
1243          *         the new one.
1244          */
1245         ret = handle_dependencies(bs, start, &cur_bytes, m);
1246         if (ret == -EAGAIN) {
1247             /* Currently handle_dependencies() doesn't yield if we already had
1248              * an allocation. If it did, we would have to clean up the L2Meta
1249              * structs before starting over. */
1250             assert(*m == NULL);
1251             goto again;
1252         } else if (ret < 0) {
1253             return ret;
1254         } else if (cur_bytes == 0) {
1255             break;
1256         } else {
1257             /* handle_dependencies() may have decreased cur_bytes (shortened
1258              * the allocations below) so that the next dependency is processed
1259              * correctly during the next loop iteration. */
1260         }
1261 
1262         /*
1263          * 2. Count contiguous COPIED clusters.
1264          */
1265         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1266         if (ret < 0) {
1267             return ret;
1268         } else if (ret) {
1269             continue;
1270         } else if (cur_bytes == 0) {
1271             break;
1272         }
1273 
1274         /*
1275          * 3. If the request still hasn't completed, allocate new clusters,
1276          *    considering any cluster_offset of steps 1c or 2.
1277          */
1278         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1279         if (ret < 0) {
1280             return ret;
1281         } else if (ret) {
1282             continue;
1283         } else {
1284             assert(cur_bytes == 0);
1285             break;
1286         }
1287     }
1288 
1289     *num -= remaining >> BDRV_SECTOR_BITS;
1290     assert(*num > 0);
1291     assert(*host_offset != 0);
1292 
1293     return 0;
1294 }
1295 
1296 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1297                              const uint8_t *buf, int buf_size)
1298 {
1299     z_stream strm1, *strm = &strm1;
1300     int ret, out_len;
1301 
1302     memset(strm, 0, sizeof(*strm));
1303 
1304     strm->next_in = (uint8_t *)buf;
1305     strm->avail_in = buf_size;
1306     strm->next_out = out_buf;
1307     strm->avail_out = out_buf_size;
1308 
1309     ret = inflateInit2(strm, -12);
1310     if (ret != Z_OK)
1311         return -1;
1312     ret = inflate(strm, Z_FINISH);
1313     out_len = strm->next_out - out_buf;
1314     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1315         out_len != out_buf_size) {
1316         inflateEnd(strm);
1317         return -1;
1318     }
1319     inflateEnd(strm);
1320     return 0;
1321 }
1322 
1323 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1324 {
1325     BDRVQcowState *s = bs->opaque;
1326     int ret, csize, nb_csectors, sector_offset;
1327     uint64_t coffset;
1328 
1329     coffset = cluster_offset & s->cluster_offset_mask;
1330     if (s->cluster_cache_offset != coffset) {
1331         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1332         sector_offset = coffset & 511;
1333         csize = nb_csectors * 512 - sector_offset;
1334         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1335         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1336         if (ret < 0) {
1337             return ret;
1338         }
1339         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1340                               s->cluster_data + sector_offset, csize) < 0) {
1341             return -EIO;
1342         }
1343         s->cluster_cache_offset = coffset;
1344     }
1345     return 0;
1346 }
1347 
1348 /*
1349  * This discards as many clusters of nb_clusters as possible at once (i.e.
1350  * all clusters in the same L2 table) and returns the number of discarded
1351  * clusters.
1352  */
1353 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1354     unsigned int nb_clusters, enum qcow2_discard_type type)
1355 {
1356     BDRVQcowState *s = bs->opaque;
1357     uint64_t *l2_table;
1358     int l2_index;
1359     int ret;
1360     int i;
1361 
1362     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1363     if (ret < 0) {
1364         return ret;
1365     }
1366 
1367     /* Limit nb_clusters to one L2 table */
1368     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1369 
1370     for (i = 0; i < nb_clusters; i++) {
1371         uint64_t old_l2_entry;
1372 
1373         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1374 
1375         /*
1376          * Make sure that a discarded area reads back as zeroes for v3 images
1377          * (we cannot do it for v2 without actually writing a zero-filled
1378          * buffer). We can skip the operation if the cluster is already marked
1379          * as zero, or if it's unallocated and we don't have a backing file.
1380          *
1381          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1382          * holding s->lock, so that doesn't work today.
1383          */
1384         switch (qcow2_get_cluster_type(old_l2_entry)) {
1385             case QCOW2_CLUSTER_UNALLOCATED:
1386                 if (!bs->backing_hd) {
1387                     continue;
1388                 }
1389                 break;
1390 
1391             case QCOW2_CLUSTER_ZERO:
1392                 continue;
1393 
1394             case QCOW2_CLUSTER_NORMAL:
1395             case QCOW2_CLUSTER_COMPRESSED:
1396                 break;
1397 
1398             default:
1399                 abort();
1400         }
1401 
1402         /* First remove L2 entries */
1403         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1404         if (s->qcow_version >= 3) {
1405             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1406         } else {
1407             l2_table[l2_index + i] = cpu_to_be64(0);
1408         }
1409 
1410         /* Then decrease the refcount */
1411         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1412     }
1413 
1414     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1415     if (ret < 0) {
1416         return ret;
1417     }
1418 
1419     return nb_clusters;
1420 }
1421 
1422 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1423     int nb_sectors, enum qcow2_discard_type type)
1424 {
1425     BDRVQcowState *s = bs->opaque;
1426     uint64_t end_offset;
1427     unsigned int nb_clusters;
1428     int ret;
1429 
1430     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1431 
1432     /* Round start up and end down */
1433     offset = align_offset(offset, s->cluster_size);
1434     end_offset = start_of_cluster(s, end_offset);
1435 
1436     if (offset > end_offset) {
1437         return 0;
1438     }
1439 
1440     nb_clusters = size_to_clusters(s, end_offset - offset);
1441 
1442     s->cache_discards = true;
1443 
1444     /* Each L2 table is handled by its own loop iteration */
1445     while (nb_clusters > 0) {
1446         ret = discard_single_l2(bs, offset, nb_clusters, type);
1447         if (ret < 0) {
1448             goto fail;
1449         }
1450 
1451         nb_clusters -= ret;
1452         offset += (ret * s->cluster_size);
1453     }
1454 
1455     ret = 0;
1456 fail:
1457     s->cache_discards = false;
1458     qcow2_process_discards(bs, ret);
1459 
1460     return ret;
1461 }
1462 
1463 /*
1464  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1465  * all clusters in the same L2 table) and returns the number of zeroed
1466  * clusters.
1467  */
1468 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1469     unsigned int nb_clusters)
1470 {
1471     BDRVQcowState *s = bs->opaque;
1472     uint64_t *l2_table;
1473     int l2_index;
1474     int ret;
1475     int i;
1476 
1477     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1478     if (ret < 0) {
1479         return ret;
1480     }
1481 
1482     /* Limit nb_clusters to one L2 table */
1483     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1484 
1485     for (i = 0; i < nb_clusters; i++) {
1486         uint64_t old_offset;
1487 
1488         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1489 
1490         /* Update L2 entries */
1491         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1492         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1493             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1494             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1495         } else {
1496             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1497         }
1498     }
1499 
1500     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1501     if (ret < 0) {
1502         return ret;
1503     }
1504 
1505     return nb_clusters;
1506 }
1507 
1508 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1509 {
1510     BDRVQcowState *s = bs->opaque;
1511     unsigned int nb_clusters;
1512     int ret;
1513 
1514     /* The zero flag is only supported by version 3 and newer */
1515     if (s->qcow_version < 3) {
1516         return -ENOTSUP;
1517     }
1518 
1519     /* Each L2 table is handled by its own loop iteration */
1520     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1521 
1522     s->cache_discards = true;
1523 
1524     while (nb_clusters > 0) {
1525         ret = zero_single_l2(bs, offset, nb_clusters);
1526         if (ret < 0) {
1527             goto fail;
1528         }
1529 
1530         nb_clusters -= ret;
1531         offset += (ret * s->cluster_size);
1532     }
1533 
1534     ret = 0;
1535 fail:
1536     s->cache_discards = false;
1537     qcow2_process_discards(bs, ret);
1538 
1539     return ret;
1540 }
1541 
1542 /*
1543  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1544  * non-backed non-pre-allocated zero clusters).
1545  *
1546  * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1547  * the image file; a bit gets set if the corresponding cluster has been used for
1548  * zero expansion (i.e., has been filled with zeroes and is referenced from an
1549  * L2 table). nb_clusters contains the total cluster count of the image file,
1550  * i.e., the number of bits in expanded_clusters.
1551  */
1552 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1553                                       int l1_size, uint8_t **expanded_clusters,
1554                                       uint64_t *nb_clusters)
1555 {
1556     BDRVQcowState *s = bs->opaque;
1557     bool is_active_l1 = (l1_table == s->l1_table);
1558     uint64_t *l2_table = NULL;
1559     int ret;
1560     int i, j;
1561 
1562     if (!is_active_l1) {
1563         /* inactive L2 tables require a buffer to be stored in when loading
1564          * them from disk */
1565         l2_table = qemu_blockalign(bs, s->cluster_size);
1566     }
1567 
1568     for (i = 0; i < l1_size; i++) {
1569         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1570         bool l2_dirty = false;
1571 
1572         if (!l2_offset) {
1573             /* unallocated */
1574             continue;
1575         }
1576 
1577         if (is_active_l1) {
1578             /* get active L2 tables from cache */
1579             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1580                     (void **)&l2_table);
1581         } else {
1582             /* load inactive L2 tables from disk */
1583             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1584                     (void *)l2_table, s->cluster_sectors);
1585         }
1586         if (ret < 0) {
1587             goto fail;
1588         }
1589 
1590         for (j = 0; j < s->l2_size; j++) {
1591             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1592             int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1593             int cluster_type = qcow2_get_cluster_type(l2_entry);
1594             bool preallocated = offset != 0;
1595 
1596             if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1597                 cluster_index = offset >> s->cluster_bits;
1598                 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1599                 if ((*expanded_clusters)[cluster_index / 8] &
1600                     (1 << (cluster_index % 8))) {
1601                     /* Probably a shared L2 table; this cluster was a zero
1602                      * cluster which has been expanded, its refcount
1603                      * therefore most likely requires an update. */
1604                     ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1605                                                         QCOW2_DISCARD_NEVER);
1606                     if (ret < 0) {
1607                         goto fail;
1608                     }
1609                     /* Since we just increased the refcount, the COPIED flag may
1610                      * no longer be set. */
1611                     l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1612                     l2_dirty = true;
1613                 }
1614                 continue;
1615             }
1616             else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1617                 continue;
1618             }
1619 
1620             if (!preallocated) {
1621                 if (!bs->backing_hd) {
1622                     /* not backed; therefore we can simply deallocate the
1623                      * cluster */
1624                     l2_table[j] = 0;
1625                     l2_dirty = true;
1626                     continue;
1627                 }
1628 
1629                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1630                 if (offset < 0) {
1631                     ret = offset;
1632                     goto fail;
1633                 }
1634             }
1635 
1636             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1637             if (ret < 0) {
1638                 if (!preallocated) {
1639                     qcow2_free_clusters(bs, offset, s->cluster_size,
1640                                         QCOW2_DISCARD_ALWAYS);
1641                 }
1642                 goto fail;
1643             }
1644 
1645             ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1646                                     s->cluster_sectors, 0);
1647             if (ret < 0) {
1648                 if (!preallocated) {
1649                     qcow2_free_clusters(bs, offset, s->cluster_size,
1650                                         QCOW2_DISCARD_ALWAYS);
1651                 }
1652                 goto fail;
1653             }
1654 
1655             l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1656             l2_dirty = true;
1657 
1658             cluster_index = offset >> s->cluster_bits;
1659 
1660             if (cluster_index >= *nb_clusters) {
1661                 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1662                 uint64_t new_bitmap_size;
1663                 /* The offset may lie beyond the old end of the underlying image
1664                  * file for growable files only */
1665                 assert(bs->file->growable);
1666                 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1667                                                 BDRV_SECTOR_SIZE);
1668                 new_bitmap_size = (*nb_clusters + 7) / 8;
1669                 *expanded_clusters = g_realloc(*expanded_clusters,
1670                                                new_bitmap_size);
1671                 /* clear the newly allocated space */
1672                 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1673                        new_bitmap_size - old_bitmap_size);
1674             }
1675 
1676             assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1677             (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
1678         }
1679 
1680         if (is_active_l1) {
1681             if (l2_dirty) {
1682                 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1683                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1684             }
1685             ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1686             if (ret < 0) {
1687                 l2_table = NULL;
1688                 goto fail;
1689             }
1690         } else {
1691             if (l2_dirty) {
1692                 ret = qcow2_pre_write_overlap_check(bs,
1693                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1694                         s->cluster_size);
1695                 if (ret < 0) {
1696                     goto fail;
1697                 }
1698 
1699                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1700                         (void *)l2_table, s->cluster_sectors);
1701                 if (ret < 0) {
1702                     goto fail;
1703                 }
1704             }
1705         }
1706     }
1707 
1708     ret = 0;
1709 
1710 fail:
1711     if (l2_table) {
1712         if (!is_active_l1) {
1713             qemu_vfree(l2_table);
1714         } else {
1715             if (ret < 0) {
1716                 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1717             } else {
1718                 ret = qcow2_cache_put(bs, s->l2_table_cache,
1719                         (void **)&l2_table);
1720             }
1721         }
1722     }
1723     return ret;
1724 }
1725 
1726 /*
1727  * For backed images, expands all zero clusters on the image. For non-backed
1728  * images, deallocates all non-pre-allocated zero clusters (and claims the
1729  * allocation for pre-allocated ones). This is important for downgrading to a
1730  * qcow2 version which doesn't yet support metadata zero clusters.
1731  */
1732 int qcow2_expand_zero_clusters(BlockDriverState *bs)
1733 {
1734     BDRVQcowState *s = bs->opaque;
1735     uint64_t *l1_table = NULL;
1736     uint64_t nb_clusters;
1737     uint8_t *expanded_clusters;
1738     int ret;
1739     int i, j;
1740 
1741     nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1742                                    BDRV_SECTOR_SIZE);
1743     expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1744 
1745     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1746                                      &expanded_clusters, &nb_clusters);
1747     if (ret < 0) {
1748         goto fail;
1749     }
1750 
1751     /* Inactive L1 tables may point to active L2 tables - therefore it is
1752      * necessary to flush the L2 table cache before trying to access the L2
1753      * tables pointed to by inactive L1 entries (else we might try to expand
1754      * zero clusters that have already been expanded); furthermore, it is also
1755      * necessary to empty the L2 table cache, since it may contain tables which
1756      * are now going to be modified directly on disk, bypassing the cache.
1757      * qcow2_cache_empty() does both for us. */
1758     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1759     if (ret < 0) {
1760         goto fail;
1761     }
1762 
1763     for (i = 0; i < s->nb_snapshots; i++) {
1764         int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1765                 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1766 
1767         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1768 
1769         ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1770                 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1771         if (ret < 0) {
1772             goto fail;
1773         }
1774 
1775         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1776             be64_to_cpus(&l1_table[j]);
1777         }
1778 
1779         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1780                                          &expanded_clusters, &nb_clusters);
1781         if (ret < 0) {
1782             goto fail;
1783         }
1784     }
1785 
1786     ret = 0;
1787 
1788 fail:
1789     g_free(expanded_clusters);
1790     g_free(l1_table);
1791     return ret;
1792 }
1793