1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t old_l1_table_offset, old_l1_size; 39 int64_t new_l1_table_offset, new_l1_size; 40 uint8_t data[12]; 41 42 if (min_size <= s->l1_size) 43 return 0; 44 45 /* Do a sanity check on min_size before trying to calculate new_l1_size 46 * (this prevents overflows during the while loop for the calculation of 47 * new_l1_size) */ 48 if (min_size > INT_MAX / sizeof(uint64_t)) { 49 return -EFBIG; 50 } 51 52 if (exact_size) { 53 new_l1_size = min_size; 54 } else { 55 /* Bump size up to reduce the number of times we have to grow */ 56 new_l1_size = s->l1_size; 57 if (new_l1_size == 0) { 58 new_l1_size = 1; 59 } 60 while (min_size > new_l1_size) { 61 new_l1_size = (new_l1_size * 3 + 1) / 2; 62 } 63 } 64 65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 66 return -EFBIG; 67 } 68 69 #ifdef DEBUG_ALLOC2 70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 71 s->l1_size, new_l1_size); 72 #endif 73 74 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 75 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 76 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 77 78 /* write new table (align to cluster) */ 79 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 80 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 81 if (new_l1_table_offset < 0) { 82 g_free(new_l1_table); 83 return new_l1_table_offset; 84 } 85 86 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 87 if (ret < 0) { 88 goto fail; 89 } 90 91 /* the L1 position has not yet been updated, so these clusters must 92 * indeed be completely free */ 93 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 94 new_l1_size2); 95 if (ret < 0) { 96 goto fail; 97 } 98 99 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 100 for(i = 0; i < s->l1_size; i++) 101 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 102 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 103 if (ret < 0) 104 goto fail; 105 for(i = 0; i < s->l1_size; i++) 106 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 107 108 /* set new table */ 109 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 110 cpu_to_be32w((uint32_t*)data, new_l1_size); 111 stq_be_p(data + 4, new_l1_table_offset); 112 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 113 if (ret < 0) { 114 goto fail; 115 } 116 g_free(s->l1_table); 117 old_l1_table_offset = s->l1_table_offset; 118 s->l1_table_offset = new_l1_table_offset; 119 s->l1_table = new_l1_table; 120 old_l1_size = s->l1_size; 121 s->l1_size = new_l1_size; 122 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 123 QCOW2_DISCARD_OTHER); 124 return 0; 125 fail: 126 g_free(new_l1_table); 127 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 128 QCOW2_DISCARD_OTHER); 129 return ret; 130 } 131 132 /* 133 * l2_load 134 * 135 * Loads a L2 table into memory. If the table is in the cache, the cache 136 * is used; otherwise the L2 table is loaded from the image file. 137 * 138 * Returns a pointer to the L2 table on success, or NULL if the read from 139 * the image file failed. 140 */ 141 142 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 143 uint64_t **l2_table) 144 { 145 BDRVQcowState *s = bs->opaque; 146 int ret; 147 148 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 149 150 return ret; 151 } 152 153 /* 154 * Writes one sector of the L1 table to the disk (can't update single entries 155 * and we really don't want bdrv_pread to perform a read-modify-write) 156 */ 157 #define L1_ENTRIES_PER_SECTOR (512 / 8) 158 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 159 { 160 BDRVQcowState *s = bs->opaque; 161 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 162 int l1_start_index; 163 int i, ret; 164 165 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 166 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 167 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 168 } 169 170 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 171 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 172 if (ret < 0) { 173 return ret; 174 } 175 176 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 177 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 178 buf, sizeof(buf)); 179 if (ret < 0) { 180 return ret; 181 } 182 183 return 0; 184 } 185 186 /* 187 * l2_allocate 188 * 189 * Allocate a new l2 entry in the file. If l1_index points to an already 190 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 191 * table) copy the contents of the old L2 table into the newly allocated one. 192 * Otherwise the new table is initialized with zeros. 193 * 194 */ 195 196 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 197 { 198 BDRVQcowState *s = bs->opaque; 199 uint64_t old_l2_offset; 200 uint64_t *l2_table = NULL; 201 int64_t l2_offset; 202 int ret; 203 204 old_l2_offset = s->l1_table[l1_index]; 205 206 trace_qcow2_l2_allocate(bs, l1_index); 207 208 /* allocate a new l2 entry */ 209 210 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 211 if (l2_offset < 0) { 212 ret = l2_offset; 213 goto fail; 214 } 215 216 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 217 if (ret < 0) { 218 goto fail; 219 } 220 221 /* allocate a new entry in the l2 cache */ 222 223 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 224 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 225 if (ret < 0) { 226 goto fail; 227 } 228 229 l2_table = *table; 230 231 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 232 /* if there was no old l2 table, clear the new table */ 233 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 234 } else { 235 uint64_t* old_table; 236 237 /* if there was an old l2 table, read it from the disk */ 238 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 239 ret = qcow2_cache_get(bs, s->l2_table_cache, 240 old_l2_offset & L1E_OFFSET_MASK, 241 (void**) &old_table); 242 if (ret < 0) { 243 goto fail; 244 } 245 246 memcpy(l2_table, old_table, s->cluster_size); 247 248 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 249 if (ret < 0) { 250 goto fail; 251 } 252 } 253 254 /* write the l2 table to the file */ 255 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 256 257 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 258 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 259 ret = qcow2_cache_flush(bs, s->l2_table_cache); 260 if (ret < 0) { 261 goto fail; 262 } 263 264 /* update the L1 entry */ 265 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 266 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 267 ret = qcow2_write_l1_entry(bs, l1_index); 268 if (ret < 0) { 269 goto fail; 270 } 271 272 *table = l2_table; 273 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 274 return 0; 275 276 fail: 277 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 278 if (l2_table != NULL) { 279 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 280 } 281 s->l1_table[l1_index] = old_l2_offset; 282 if (l2_offset > 0) { 283 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 284 QCOW2_DISCARD_ALWAYS); 285 } 286 return ret; 287 } 288 289 /* 290 * Checks how many clusters in a given L2 table are contiguous in the image 291 * file. As soon as one of the flags in the bitmask stop_flags changes compared 292 * to the first cluster, the search is stopped and the cluster is not counted 293 * as contiguous. (This allows it, for example, to stop at the first compressed 294 * cluster which may require a different handling) 295 */ 296 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 297 uint64_t *l2_table, uint64_t stop_flags) 298 { 299 int i; 300 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 301 uint64_t first_entry = be64_to_cpu(l2_table[0]); 302 uint64_t offset = first_entry & mask; 303 304 if (!offset) 305 return 0; 306 307 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); 308 309 for (i = 0; i < nb_clusters; i++) { 310 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 311 if (offset + (uint64_t) i * cluster_size != l2_entry) { 312 break; 313 } 314 } 315 316 return i; 317 } 318 319 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 320 { 321 int i; 322 323 for (i = 0; i < nb_clusters; i++) { 324 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 325 326 if (type != QCOW2_CLUSTER_UNALLOCATED) { 327 break; 328 } 329 } 330 331 return i; 332 } 333 334 /* The crypt function is compatible with the linux cryptoloop 335 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 336 supported */ 337 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 338 uint8_t *out_buf, const uint8_t *in_buf, 339 int nb_sectors, int enc, 340 const AES_KEY *key) 341 { 342 union { 343 uint64_t ll[2]; 344 uint8_t b[16]; 345 } ivec; 346 int i; 347 348 for(i = 0; i < nb_sectors; i++) { 349 ivec.ll[0] = cpu_to_le64(sector_num); 350 ivec.ll[1] = 0; 351 AES_cbc_encrypt(in_buf, out_buf, 512, key, 352 ivec.b, enc); 353 sector_num++; 354 in_buf += 512; 355 out_buf += 512; 356 } 357 } 358 359 static int coroutine_fn copy_sectors(BlockDriverState *bs, 360 uint64_t start_sect, 361 uint64_t cluster_offset, 362 int n_start, int n_end) 363 { 364 BDRVQcowState *s = bs->opaque; 365 QEMUIOVector qiov; 366 struct iovec iov; 367 int n, ret; 368 369 n = n_end - n_start; 370 if (n <= 0) { 371 return 0; 372 } 373 374 iov.iov_len = n * BDRV_SECTOR_SIZE; 375 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 376 377 qemu_iovec_init_external(&qiov, &iov, 1); 378 379 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 380 381 if (!bs->drv) { 382 ret = -ENOMEDIUM; 383 goto out; 384 } 385 386 /* Call .bdrv_co_readv() directly instead of using the public block-layer 387 * interface. This avoids double I/O throttling and request tracking, 388 * which can lead to deadlock when block layer copy-on-read is enabled. 389 */ 390 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 391 if (ret < 0) { 392 goto out; 393 } 394 395 if (s->crypt_method) { 396 qcow2_encrypt_sectors(s, start_sect + n_start, 397 iov.iov_base, iov.iov_base, n, 1, 398 &s->aes_encrypt_key); 399 } 400 401 ret = qcow2_pre_write_overlap_check(bs, 0, 402 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 403 if (ret < 0) { 404 goto out; 405 } 406 407 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 408 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 409 if (ret < 0) { 410 goto out; 411 } 412 413 ret = 0; 414 out: 415 qemu_vfree(iov.iov_base); 416 return ret; 417 } 418 419 420 /* 421 * get_cluster_offset 422 * 423 * For a given offset of the disk image, find the cluster offset in 424 * qcow2 file. The offset is stored in *cluster_offset. 425 * 426 * on entry, *num is the number of contiguous sectors we'd like to 427 * access following offset. 428 * 429 * on exit, *num is the number of contiguous sectors we can read. 430 * 431 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 432 * cases. 433 */ 434 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 435 int *num, uint64_t *cluster_offset) 436 { 437 BDRVQcowState *s = bs->opaque; 438 unsigned int l2_index; 439 uint64_t l1_index, l2_offset, *l2_table; 440 int l1_bits, c; 441 unsigned int index_in_cluster, nb_clusters; 442 uint64_t nb_available, nb_needed; 443 int ret; 444 445 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 446 nb_needed = *num + index_in_cluster; 447 448 l1_bits = s->l2_bits + s->cluster_bits; 449 450 /* compute how many bytes there are between the offset and 451 * the end of the l1 entry 452 */ 453 454 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 455 456 /* compute the number of available sectors */ 457 458 nb_available = (nb_available >> 9) + index_in_cluster; 459 460 if (nb_needed > nb_available) { 461 nb_needed = nb_available; 462 } 463 464 *cluster_offset = 0; 465 466 /* seek the the l2 offset in the l1 table */ 467 468 l1_index = offset >> l1_bits; 469 if (l1_index >= s->l1_size) { 470 ret = QCOW2_CLUSTER_UNALLOCATED; 471 goto out; 472 } 473 474 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 475 if (!l2_offset) { 476 ret = QCOW2_CLUSTER_UNALLOCATED; 477 goto out; 478 } 479 480 /* load the l2 table in memory */ 481 482 ret = l2_load(bs, l2_offset, &l2_table); 483 if (ret < 0) { 484 return ret; 485 } 486 487 /* find the cluster offset for the given disk offset */ 488 489 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 490 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 491 nb_clusters = size_to_clusters(s, nb_needed << 9); 492 493 ret = qcow2_get_cluster_type(*cluster_offset); 494 switch (ret) { 495 case QCOW2_CLUSTER_COMPRESSED: 496 /* Compressed clusters can only be processed one by one */ 497 c = 1; 498 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 499 break; 500 case QCOW2_CLUSTER_ZERO: 501 if (s->qcow_version < 3) { 502 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 503 return -EIO; 504 } 505 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 506 &l2_table[l2_index], QCOW_OFLAG_ZERO); 507 *cluster_offset = 0; 508 break; 509 case QCOW2_CLUSTER_UNALLOCATED: 510 /* how many empty clusters ? */ 511 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 512 *cluster_offset = 0; 513 break; 514 case QCOW2_CLUSTER_NORMAL: 515 /* how many allocated clusters ? */ 516 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 517 &l2_table[l2_index], QCOW_OFLAG_ZERO); 518 *cluster_offset &= L2E_OFFSET_MASK; 519 break; 520 default: 521 abort(); 522 } 523 524 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 525 526 nb_available = (c * s->cluster_sectors); 527 528 out: 529 if (nb_available > nb_needed) 530 nb_available = nb_needed; 531 532 *num = nb_available - index_in_cluster; 533 534 return ret; 535 } 536 537 /* 538 * get_cluster_table 539 * 540 * for a given disk offset, load (and allocate if needed) 541 * the l2 table. 542 * 543 * the l2 table offset in the qcow2 file and the cluster index 544 * in the l2 table are given to the caller. 545 * 546 * Returns 0 on success, -errno in failure case 547 */ 548 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 549 uint64_t **new_l2_table, 550 int *new_l2_index) 551 { 552 BDRVQcowState *s = bs->opaque; 553 unsigned int l2_index; 554 uint64_t l1_index, l2_offset; 555 uint64_t *l2_table = NULL; 556 int ret; 557 558 /* seek the the l2 offset in the l1 table */ 559 560 l1_index = offset >> (s->l2_bits + s->cluster_bits); 561 if (l1_index >= s->l1_size) { 562 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 563 if (ret < 0) { 564 return ret; 565 } 566 } 567 568 assert(l1_index < s->l1_size); 569 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 570 571 /* seek the l2 table of the given l2 offset */ 572 573 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 574 /* load the l2 table in memory */ 575 ret = l2_load(bs, l2_offset, &l2_table); 576 if (ret < 0) { 577 return ret; 578 } 579 } else { 580 /* First allocate a new L2 table (and do COW if needed) */ 581 ret = l2_allocate(bs, l1_index, &l2_table); 582 if (ret < 0) { 583 return ret; 584 } 585 586 /* Then decrease the refcount of the old table */ 587 if (l2_offset) { 588 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 589 QCOW2_DISCARD_OTHER); 590 } 591 } 592 593 /* find the cluster offset for the given disk offset */ 594 595 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 596 597 *new_l2_table = l2_table; 598 *new_l2_index = l2_index; 599 600 return 0; 601 } 602 603 /* 604 * alloc_compressed_cluster_offset 605 * 606 * For a given offset of the disk image, return cluster offset in 607 * qcow2 file. 608 * 609 * If the offset is not found, allocate a new compressed cluster. 610 * 611 * Return the cluster offset if successful, 612 * Return 0, otherwise. 613 * 614 */ 615 616 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 617 uint64_t offset, 618 int compressed_size) 619 { 620 BDRVQcowState *s = bs->opaque; 621 int l2_index, ret; 622 uint64_t *l2_table; 623 int64_t cluster_offset; 624 int nb_csectors; 625 626 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 627 if (ret < 0) { 628 return 0; 629 } 630 631 /* Compression can't overwrite anything. Fail if the cluster was already 632 * allocated. */ 633 cluster_offset = be64_to_cpu(l2_table[l2_index]); 634 if (cluster_offset & L2E_OFFSET_MASK) { 635 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 636 return 0; 637 } 638 639 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 640 if (cluster_offset < 0) { 641 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 642 return 0; 643 } 644 645 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 646 (cluster_offset >> 9); 647 648 cluster_offset |= QCOW_OFLAG_COMPRESSED | 649 ((uint64_t)nb_csectors << s->csize_shift); 650 651 /* update L2 table */ 652 653 /* compressed clusters never have the copied flag */ 654 655 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 656 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 657 l2_table[l2_index] = cpu_to_be64(cluster_offset); 658 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 659 if (ret < 0) { 660 return 0; 661 } 662 663 return cluster_offset; 664 } 665 666 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 667 { 668 BDRVQcowState *s = bs->opaque; 669 int ret; 670 671 if (r->nb_sectors == 0) { 672 return 0; 673 } 674 675 qemu_co_mutex_unlock(&s->lock); 676 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 677 r->offset / BDRV_SECTOR_SIZE, 678 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 679 qemu_co_mutex_lock(&s->lock); 680 681 if (ret < 0) { 682 return ret; 683 } 684 685 /* 686 * Before we update the L2 table to actually point to the new cluster, we 687 * need to be sure that the refcounts have been increased and COW was 688 * handled. 689 */ 690 qcow2_cache_depends_on_flush(s->l2_table_cache); 691 692 return 0; 693 } 694 695 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 696 { 697 BDRVQcowState *s = bs->opaque; 698 int i, j = 0, l2_index, ret; 699 uint64_t *old_cluster, *l2_table; 700 uint64_t cluster_offset = m->alloc_offset; 701 702 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 703 assert(m->nb_clusters > 0); 704 705 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 706 707 /* copy content of unmodified sectors */ 708 ret = perform_cow(bs, m, &m->cow_start); 709 if (ret < 0) { 710 goto err; 711 } 712 713 ret = perform_cow(bs, m, &m->cow_end); 714 if (ret < 0) { 715 goto err; 716 } 717 718 /* Update L2 table. */ 719 if (s->use_lazy_refcounts) { 720 qcow2_mark_dirty(bs); 721 } 722 if (qcow2_need_accurate_refcounts(s)) { 723 qcow2_cache_set_dependency(bs, s->l2_table_cache, 724 s->refcount_block_cache); 725 } 726 727 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 728 if (ret < 0) { 729 goto err; 730 } 731 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 732 733 assert(l2_index + m->nb_clusters <= s->l2_size); 734 for (i = 0; i < m->nb_clusters; i++) { 735 /* if two concurrent writes happen to the same unallocated cluster 736 * each write allocates separate cluster and writes data concurrently. 737 * The first one to complete updates l2 table with pointer to its 738 * cluster the second one has to do RMW (which is done above by 739 * copy_sectors()), update l2 table with its cluster pointer and free 740 * old cluster. This is what this loop does */ 741 if(l2_table[l2_index + i] != 0) 742 old_cluster[j++] = l2_table[l2_index + i]; 743 744 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 745 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 746 } 747 748 749 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 750 if (ret < 0) { 751 goto err; 752 } 753 754 /* 755 * If this was a COW, we need to decrease the refcount of the old cluster. 756 * Also flush bs->file to get the right order for L2 and refcount update. 757 * 758 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 759 * clusters), the next write will reuse them anyway. 760 */ 761 if (j != 0) { 762 for (i = 0; i < j; i++) { 763 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 764 QCOW2_DISCARD_NEVER); 765 } 766 } 767 768 ret = 0; 769 err: 770 g_free(old_cluster); 771 return ret; 772 } 773 774 /* 775 * Returns the number of contiguous clusters that can be used for an allocating 776 * write, but require COW to be performed (this includes yet unallocated space, 777 * which must copy from the backing file) 778 */ 779 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 780 uint64_t *l2_table, int l2_index) 781 { 782 int i; 783 784 for (i = 0; i < nb_clusters; i++) { 785 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 786 int cluster_type = qcow2_get_cluster_type(l2_entry); 787 788 switch(cluster_type) { 789 case QCOW2_CLUSTER_NORMAL: 790 if (l2_entry & QCOW_OFLAG_COPIED) { 791 goto out; 792 } 793 break; 794 case QCOW2_CLUSTER_UNALLOCATED: 795 case QCOW2_CLUSTER_COMPRESSED: 796 case QCOW2_CLUSTER_ZERO: 797 break; 798 default: 799 abort(); 800 } 801 } 802 803 out: 804 assert(i <= nb_clusters); 805 return i; 806 } 807 808 /* 809 * Check if there already is an AIO write request in flight which allocates 810 * the same cluster. In this case we need to wait until the previous 811 * request has completed and updated the L2 table accordingly. 812 * 813 * Returns: 814 * 0 if there was no dependency. *cur_bytes indicates the number of 815 * bytes from guest_offset that can be read before the next 816 * dependency must be processed (or the request is complete) 817 * 818 * -EAGAIN if we had to wait for another request, previously gathered 819 * information on cluster allocation may be invalid now. The caller 820 * must start over anyway, so consider *cur_bytes undefined. 821 */ 822 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 823 uint64_t *cur_bytes, QCowL2Meta **m) 824 { 825 BDRVQcowState *s = bs->opaque; 826 QCowL2Meta *old_alloc; 827 uint64_t bytes = *cur_bytes; 828 829 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 830 831 uint64_t start = guest_offset; 832 uint64_t end = start + bytes; 833 uint64_t old_start = l2meta_cow_start(old_alloc); 834 uint64_t old_end = l2meta_cow_end(old_alloc); 835 836 if (end <= old_start || start >= old_end) { 837 /* No intersection */ 838 } else { 839 if (start < old_start) { 840 /* Stop at the start of a running allocation */ 841 bytes = old_start - start; 842 } else { 843 bytes = 0; 844 } 845 846 /* Stop if already an l2meta exists. After yielding, it wouldn't 847 * be valid any more, so we'd have to clean up the old L2Metas 848 * and deal with requests depending on them before starting to 849 * gather new ones. Not worth the trouble. */ 850 if (bytes == 0 && *m) { 851 *cur_bytes = 0; 852 return 0; 853 } 854 855 if (bytes == 0) { 856 /* Wait for the dependency to complete. We need to recheck 857 * the free/allocated clusters when we continue. */ 858 qemu_co_mutex_unlock(&s->lock); 859 qemu_co_queue_wait(&old_alloc->dependent_requests); 860 qemu_co_mutex_lock(&s->lock); 861 return -EAGAIN; 862 } 863 } 864 } 865 866 /* Make sure that existing clusters and new allocations are only used up to 867 * the next dependency if we shortened the request above */ 868 *cur_bytes = bytes; 869 870 return 0; 871 } 872 873 /* 874 * Checks how many already allocated clusters that don't require a copy on 875 * write there are at the given guest_offset (up to *bytes). If 876 * *host_offset is not zero, only physically contiguous clusters beginning at 877 * this host offset are counted. 878 * 879 * Note that guest_offset may not be cluster aligned. In this case, the 880 * returned *host_offset points to exact byte referenced by guest_offset and 881 * therefore isn't cluster aligned as well. 882 * 883 * Returns: 884 * 0: if no allocated clusters are available at the given offset. 885 * *bytes is normally unchanged. It is set to 0 if the cluster 886 * is allocated and doesn't need COW, but doesn't have the right 887 * physical offset. 888 * 889 * 1: if allocated clusters that don't require a COW are available at 890 * the requested offset. *bytes may have decreased and describes 891 * the length of the area that can be written to. 892 * 893 * -errno: in error cases 894 */ 895 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 896 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 897 { 898 BDRVQcowState *s = bs->opaque; 899 int l2_index; 900 uint64_t cluster_offset; 901 uint64_t *l2_table; 902 unsigned int nb_clusters; 903 unsigned int keep_clusters; 904 int ret, pret; 905 906 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 907 *bytes); 908 909 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 910 == offset_into_cluster(s, *host_offset)); 911 912 /* 913 * Calculate the number of clusters to look for. We stop at L2 table 914 * boundaries to keep things simple. 915 */ 916 nb_clusters = 917 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 918 919 l2_index = offset_to_l2_index(s, guest_offset); 920 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 921 922 /* Find L2 entry for the first involved cluster */ 923 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 924 if (ret < 0) { 925 return ret; 926 } 927 928 cluster_offset = be64_to_cpu(l2_table[l2_index]); 929 930 /* Check how many clusters are already allocated and don't need COW */ 931 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 932 && (cluster_offset & QCOW_OFLAG_COPIED)) 933 { 934 /* If a specific host_offset is required, check it */ 935 bool offset_matches = 936 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 937 938 if (*host_offset != 0 && !offset_matches) { 939 *bytes = 0; 940 ret = 0; 941 goto out; 942 } 943 944 /* We keep all QCOW_OFLAG_COPIED clusters */ 945 keep_clusters = 946 count_contiguous_clusters(nb_clusters, s->cluster_size, 947 &l2_table[l2_index], 948 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 949 assert(keep_clusters <= nb_clusters); 950 951 *bytes = MIN(*bytes, 952 keep_clusters * s->cluster_size 953 - offset_into_cluster(s, guest_offset)); 954 955 ret = 1; 956 } else { 957 ret = 0; 958 } 959 960 /* Cleanup */ 961 out: 962 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 963 if (pret < 0) { 964 return pret; 965 } 966 967 /* Only return a host offset if we actually made progress. Otherwise we 968 * would make requirements for handle_alloc() that it can't fulfill */ 969 if (ret) { 970 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 971 + offset_into_cluster(s, guest_offset); 972 } 973 974 return ret; 975 } 976 977 /* 978 * Allocates new clusters for the given guest_offset. 979 * 980 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 981 * contain the number of clusters that have been allocated and are contiguous 982 * in the image file. 983 * 984 * If *host_offset is non-zero, it specifies the offset in the image file at 985 * which the new clusters must start. *nb_clusters can be 0 on return in this 986 * case if the cluster at host_offset is already in use. If *host_offset is 987 * zero, the clusters can be allocated anywhere in the image file. 988 * 989 * *host_offset is updated to contain the offset into the image file at which 990 * the first allocated cluster starts. 991 * 992 * Return 0 on success and -errno in error cases. -EAGAIN means that the 993 * function has been waiting for another request and the allocation must be 994 * restarted, but the whole request should not be failed. 995 */ 996 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 997 uint64_t *host_offset, unsigned int *nb_clusters) 998 { 999 BDRVQcowState *s = bs->opaque; 1000 1001 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1002 *host_offset, *nb_clusters); 1003 1004 /* Allocate new clusters */ 1005 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1006 if (*host_offset == 0) { 1007 int64_t cluster_offset = 1008 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1009 if (cluster_offset < 0) { 1010 return cluster_offset; 1011 } 1012 *host_offset = cluster_offset; 1013 return 0; 1014 } else { 1015 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1016 if (ret < 0) { 1017 return ret; 1018 } 1019 *nb_clusters = ret; 1020 return 0; 1021 } 1022 } 1023 1024 /* 1025 * Allocates new clusters for an area that either is yet unallocated or needs a 1026 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1027 * the new allocation can match the specified host offset. 1028 * 1029 * Note that guest_offset may not be cluster aligned. In this case, the 1030 * returned *host_offset points to exact byte referenced by guest_offset and 1031 * therefore isn't cluster aligned as well. 1032 * 1033 * Returns: 1034 * 0: if no clusters could be allocated. *bytes is set to 0, 1035 * *host_offset is left unchanged. 1036 * 1037 * 1: if new clusters were allocated. *bytes may be decreased if the 1038 * new allocation doesn't cover all of the requested area. 1039 * *host_offset is updated to contain the host offset of the first 1040 * newly allocated cluster. 1041 * 1042 * -errno: in error cases 1043 */ 1044 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1045 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1046 { 1047 BDRVQcowState *s = bs->opaque; 1048 int l2_index; 1049 uint64_t *l2_table; 1050 uint64_t entry; 1051 unsigned int nb_clusters; 1052 int ret; 1053 1054 uint64_t alloc_cluster_offset; 1055 1056 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1057 *bytes); 1058 assert(*bytes > 0); 1059 1060 /* 1061 * Calculate the number of clusters to look for. We stop at L2 table 1062 * boundaries to keep things simple. 1063 */ 1064 nb_clusters = 1065 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1066 1067 l2_index = offset_to_l2_index(s, guest_offset); 1068 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1069 1070 /* Find L2 entry for the first involved cluster */ 1071 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1072 if (ret < 0) { 1073 return ret; 1074 } 1075 1076 entry = be64_to_cpu(l2_table[l2_index]); 1077 1078 /* For the moment, overwrite compressed clusters one by one */ 1079 if (entry & QCOW_OFLAG_COMPRESSED) { 1080 nb_clusters = 1; 1081 } else { 1082 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1083 } 1084 1085 /* This function is only called when there were no non-COW clusters, so if 1086 * we can't find any unallocated or COW clusters either, something is 1087 * wrong with our code. */ 1088 assert(nb_clusters > 0); 1089 1090 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1091 if (ret < 0) { 1092 return ret; 1093 } 1094 1095 /* Allocate, if necessary at a given offset in the image file */ 1096 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1097 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1098 &nb_clusters); 1099 if (ret < 0) { 1100 goto fail; 1101 } 1102 1103 /* Can't extend contiguous allocation */ 1104 if (nb_clusters == 0) { 1105 *bytes = 0; 1106 return 0; 1107 } 1108 1109 /* 1110 * Save info needed for meta data update. 1111 * 1112 * requested_sectors: Number of sectors from the start of the first 1113 * newly allocated cluster to the end of the (possibly shortened 1114 * before) write request. 1115 * 1116 * avail_sectors: Number of sectors from the start of the first 1117 * newly allocated to the end of the last newly allocated cluster. 1118 * 1119 * nb_sectors: The number of sectors from the start of the first 1120 * newly allocated cluster to the end of the area that the write 1121 * request actually writes to (excluding COW at the end) 1122 */ 1123 int requested_sectors = 1124 (*bytes + offset_into_cluster(s, guest_offset)) 1125 >> BDRV_SECTOR_BITS; 1126 int avail_sectors = nb_clusters 1127 << (s->cluster_bits - BDRV_SECTOR_BITS); 1128 int alloc_n_start = offset_into_cluster(s, guest_offset) 1129 >> BDRV_SECTOR_BITS; 1130 int nb_sectors = MIN(requested_sectors, avail_sectors); 1131 QCowL2Meta *old_m = *m; 1132 1133 *m = g_malloc0(sizeof(**m)); 1134 1135 **m = (QCowL2Meta) { 1136 .next = old_m, 1137 1138 .alloc_offset = alloc_cluster_offset, 1139 .offset = start_of_cluster(s, guest_offset), 1140 .nb_clusters = nb_clusters, 1141 .nb_available = nb_sectors, 1142 1143 .cow_start = { 1144 .offset = 0, 1145 .nb_sectors = alloc_n_start, 1146 }, 1147 .cow_end = { 1148 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1149 .nb_sectors = avail_sectors - nb_sectors, 1150 }, 1151 }; 1152 qemu_co_queue_init(&(*m)->dependent_requests); 1153 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1154 1155 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1156 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1157 - offset_into_cluster(s, guest_offset)); 1158 assert(*bytes != 0); 1159 1160 return 1; 1161 1162 fail: 1163 if (*m && (*m)->nb_clusters > 0) { 1164 QLIST_REMOVE(*m, next_in_flight); 1165 } 1166 return ret; 1167 } 1168 1169 /* 1170 * alloc_cluster_offset 1171 * 1172 * For a given offset on the virtual disk, find the cluster offset in qcow2 1173 * file. If the offset is not found, allocate a new cluster. 1174 * 1175 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1176 * other fields in m are meaningless. 1177 * 1178 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1179 * contiguous clusters that have been allocated. In this case, the other 1180 * fields of m are valid and contain information about the first allocated 1181 * cluster. 1182 * 1183 * If the request conflicts with another write request in flight, the coroutine 1184 * is queued and will be reentered when the dependency has completed. 1185 * 1186 * Return 0 on success and -errno in error cases 1187 */ 1188 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1189 int *num, uint64_t *host_offset, QCowL2Meta **m) 1190 { 1191 BDRVQcowState *s = bs->opaque; 1192 uint64_t start, remaining; 1193 uint64_t cluster_offset; 1194 uint64_t cur_bytes; 1195 int ret; 1196 1197 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1198 1199 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1200 1201 again: 1202 start = offset; 1203 remaining = *num << BDRV_SECTOR_BITS; 1204 cluster_offset = 0; 1205 *host_offset = 0; 1206 cur_bytes = 0; 1207 *m = NULL; 1208 1209 while (true) { 1210 1211 if (!*host_offset) { 1212 *host_offset = start_of_cluster(s, cluster_offset); 1213 } 1214 1215 assert(remaining >= cur_bytes); 1216 1217 start += cur_bytes; 1218 remaining -= cur_bytes; 1219 cluster_offset += cur_bytes; 1220 1221 if (remaining == 0) { 1222 break; 1223 } 1224 1225 cur_bytes = remaining; 1226 1227 /* 1228 * Now start gathering as many contiguous clusters as possible: 1229 * 1230 * 1. Check for overlaps with in-flight allocations 1231 * 1232 * a) Overlap not in the first cluster -> shorten this request and 1233 * let the caller handle the rest in its next loop iteration. 1234 * 1235 * b) Real overlaps of two requests. Yield and restart the search 1236 * for contiguous clusters (the situation could have changed 1237 * while we were sleeping) 1238 * 1239 * c) TODO: Request starts in the same cluster as the in-flight 1240 * allocation ends. Shorten the COW of the in-fight allocation, 1241 * set cluster_offset to write to the same cluster and set up 1242 * the right synchronisation between the in-flight request and 1243 * the new one. 1244 */ 1245 ret = handle_dependencies(bs, start, &cur_bytes, m); 1246 if (ret == -EAGAIN) { 1247 /* Currently handle_dependencies() doesn't yield if we already had 1248 * an allocation. If it did, we would have to clean up the L2Meta 1249 * structs before starting over. */ 1250 assert(*m == NULL); 1251 goto again; 1252 } else if (ret < 0) { 1253 return ret; 1254 } else if (cur_bytes == 0) { 1255 break; 1256 } else { 1257 /* handle_dependencies() may have decreased cur_bytes (shortened 1258 * the allocations below) so that the next dependency is processed 1259 * correctly during the next loop iteration. */ 1260 } 1261 1262 /* 1263 * 2. Count contiguous COPIED clusters. 1264 */ 1265 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1266 if (ret < 0) { 1267 return ret; 1268 } else if (ret) { 1269 continue; 1270 } else if (cur_bytes == 0) { 1271 break; 1272 } 1273 1274 /* 1275 * 3. If the request still hasn't completed, allocate new clusters, 1276 * considering any cluster_offset of steps 1c or 2. 1277 */ 1278 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1279 if (ret < 0) { 1280 return ret; 1281 } else if (ret) { 1282 continue; 1283 } else { 1284 assert(cur_bytes == 0); 1285 break; 1286 } 1287 } 1288 1289 *num -= remaining >> BDRV_SECTOR_BITS; 1290 assert(*num > 0); 1291 assert(*host_offset != 0); 1292 1293 return 0; 1294 } 1295 1296 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1297 const uint8_t *buf, int buf_size) 1298 { 1299 z_stream strm1, *strm = &strm1; 1300 int ret, out_len; 1301 1302 memset(strm, 0, sizeof(*strm)); 1303 1304 strm->next_in = (uint8_t *)buf; 1305 strm->avail_in = buf_size; 1306 strm->next_out = out_buf; 1307 strm->avail_out = out_buf_size; 1308 1309 ret = inflateInit2(strm, -12); 1310 if (ret != Z_OK) 1311 return -1; 1312 ret = inflate(strm, Z_FINISH); 1313 out_len = strm->next_out - out_buf; 1314 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1315 out_len != out_buf_size) { 1316 inflateEnd(strm); 1317 return -1; 1318 } 1319 inflateEnd(strm); 1320 return 0; 1321 } 1322 1323 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1324 { 1325 BDRVQcowState *s = bs->opaque; 1326 int ret, csize, nb_csectors, sector_offset; 1327 uint64_t coffset; 1328 1329 coffset = cluster_offset & s->cluster_offset_mask; 1330 if (s->cluster_cache_offset != coffset) { 1331 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1332 sector_offset = coffset & 511; 1333 csize = nb_csectors * 512 - sector_offset; 1334 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1335 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1336 if (ret < 0) { 1337 return ret; 1338 } 1339 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1340 s->cluster_data + sector_offset, csize) < 0) { 1341 return -EIO; 1342 } 1343 s->cluster_cache_offset = coffset; 1344 } 1345 return 0; 1346 } 1347 1348 /* 1349 * This discards as many clusters of nb_clusters as possible at once (i.e. 1350 * all clusters in the same L2 table) and returns the number of discarded 1351 * clusters. 1352 */ 1353 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1354 unsigned int nb_clusters, enum qcow2_discard_type type) 1355 { 1356 BDRVQcowState *s = bs->opaque; 1357 uint64_t *l2_table; 1358 int l2_index; 1359 int ret; 1360 int i; 1361 1362 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1363 if (ret < 0) { 1364 return ret; 1365 } 1366 1367 /* Limit nb_clusters to one L2 table */ 1368 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1369 1370 for (i = 0; i < nb_clusters; i++) { 1371 uint64_t old_l2_entry; 1372 1373 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1374 1375 /* 1376 * Make sure that a discarded area reads back as zeroes for v3 images 1377 * (we cannot do it for v2 without actually writing a zero-filled 1378 * buffer). We can skip the operation if the cluster is already marked 1379 * as zero, or if it's unallocated and we don't have a backing file. 1380 * 1381 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1382 * holding s->lock, so that doesn't work today. 1383 */ 1384 switch (qcow2_get_cluster_type(old_l2_entry)) { 1385 case QCOW2_CLUSTER_UNALLOCATED: 1386 if (!bs->backing_hd) { 1387 continue; 1388 } 1389 break; 1390 1391 case QCOW2_CLUSTER_ZERO: 1392 continue; 1393 1394 case QCOW2_CLUSTER_NORMAL: 1395 case QCOW2_CLUSTER_COMPRESSED: 1396 break; 1397 1398 default: 1399 abort(); 1400 } 1401 1402 /* First remove L2 entries */ 1403 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1404 if (s->qcow_version >= 3) { 1405 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1406 } else { 1407 l2_table[l2_index + i] = cpu_to_be64(0); 1408 } 1409 1410 /* Then decrease the refcount */ 1411 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1412 } 1413 1414 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1415 if (ret < 0) { 1416 return ret; 1417 } 1418 1419 return nb_clusters; 1420 } 1421 1422 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1423 int nb_sectors, enum qcow2_discard_type type) 1424 { 1425 BDRVQcowState *s = bs->opaque; 1426 uint64_t end_offset; 1427 unsigned int nb_clusters; 1428 int ret; 1429 1430 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1431 1432 /* Round start up and end down */ 1433 offset = align_offset(offset, s->cluster_size); 1434 end_offset = start_of_cluster(s, end_offset); 1435 1436 if (offset > end_offset) { 1437 return 0; 1438 } 1439 1440 nb_clusters = size_to_clusters(s, end_offset - offset); 1441 1442 s->cache_discards = true; 1443 1444 /* Each L2 table is handled by its own loop iteration */ 1445 while (nb_clusters > 0) { 1446 ret = discard_single_l2(bs, offset, nb_clusters, type); 1447 if (ret < 0) { 1448 goto fail; 1449 } 1450 1451 nb_clusters -= ret; 1452 offset += (ret * s->cluster_size); 1453 } 1454 1455 ret = 0; 1456 fail: 1457 s->cache_discards = false; 1458 qcow2_process_discards(bs, ret); 1459 1460 return ret; 1461 } 1462 1463 /* 1464 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1465 * all clusters in the same L2 table) and returns the number of zeroed 1466 * clusters. 1467 */ 1468 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1469 unsigned int nb_clusters) 1470 { 1471 BDRVQcowState *s = bs->opaque; 1472 uint64_t *l2_table; 1473 int l2_index; 1474 int ret; 1475 int i; 1476 1477 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1478 if (ret < 0) { 1479 return ret; 1480 } 1481 1482 /* Limit nb_clusters to one L2 table */ 1483 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1484 1485 for (i = 0; i < nb_clusters; i++) { 1486 uint64_t old_offset; 1487 1488 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1489 1490 /* Update L2 entries */ 1491 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1492 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1493 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1494 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1495 } else { 1496 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1497 } 1498 } 1499 1500 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1501 if (ret < 0) { 1502 return ret; 1503 } 1504 1505 return nb_clusters; 1506 } 1507 1508 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1509 { 1510 BDRVQcowState *s = bs->opaque; 1511 unsigned int nb_clusters; 1512 int ret; 1513 1514 /* The zero flag is only supported by version 3 and newer */ 1515 if (s->qcow_version < 3) { 1516 return -ENOTSUP; 1517 } 1518 1519 /* Each L2 table is handled by its own loop iteration */ 1520 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1521 1522 s->cache_discards = true; 1523 1524 while (nb_clusters > 0) { 1525 ret = zero_single_l2(bs, offset, nb_clusters); 1526 if (ret < 0) { 1527 goto fail; 1528 } 1529 1530 nb_clusters -= ret; 1531 offset += (ret * s->cluster_size); 1532 } 1533 1534 ret = 0; 1535 fail: 1536 s->cache_discards = false; 1537 qcow2_process_discards(bs, ret); 1538 1539 return ret; 1540 } 1541 1542 /* 1543 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1544 * non-backed non-pre-allocated zero clusters). 1545 * 1546 * expanded_clusters is a bitmap where every bit corresponds to one cluster in 1547 * the image file; a bit gets set if the corresponding cluster has been used for 1548 * zero expansion (i.e., has been filled with zeroes and is referenced from an 1549 * L2 table). nb_clusters contains the total cluster count of the image file, 1550 * i.e., the number of bits in expanded_clusters. 1551 */ 1552 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1553 int l1_size, uint8_t **expanded_clusters, 1554 uint64_t *nb_clusters) 1555 { 1556 BDRVQcowState *s = bs->opaque; 1557 bool is_active_l1 = (l1_table == s->l1_table); 1558 uint64_t *l2_table = NULL; 1559 int ret; 1560 int i, j; 1561 1562 if (!is_active_l1) { 1563 /* inactive L2 tables require a buffer to be stored in when loading 1564 * them from disk */ 1565 l2_table = qemu_blockalign(bs, s->cluster_size); 1566 } 1567 1568 for (i = 0; i < l1_size; i++) { 1569 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1570 bool l2_dirty = false; 1571 1572 if (!l2_offset) { 1573 /* unallocated */ 1574 continue; 1575 } 1576 1577 if (is_active_l1) { 1578 /* get active L2 tables from cache */ 1579 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1580 (void **)&l2_table); 1581 } else { 1582 /* load inactive L2 tables from disk */ 1583 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1584 (void *)l2_table, s->cluster_sectors); 1585 } 1586 if (ret < 0) { 1587 goto fail; 1588 } 1589 1590 for (j = 0; j < s->l2_size; j++) { 1591 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1592 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index; 1593 int cluster_type = qcow2_get_cluster_type(l2_entry); 1594 bool preallocated = offset != 0; 1595 1596 if (cluster_type == QCOW2_CLUSTER_NORMAL) { 1597 cluster_index = offset >> s->cluster_bits; 1598 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1599 if ((*expanded_clusters)[cluster_index / 8] & 1600 (1 << (cluster_index % 8))) { 1601 /* Probably a shared L2 table; this cluster was a zero 1602 * cluster which has been expanded, its refcount 1603 * therefore most likely requires an update. */ 1604 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1, 1605 QCOW2_DISCARD_NEVER); 1606 if (ret < 0) { 1607 goto fail; 1608 } 1609 /* Since we just increased the refcount, the COPIED flag may 1610 * no longer be set. */ 1611 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED); 1612 l2_dirty = true; 1613 } 1614 continue; 1615 } 1616 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) { 1617 continue; 1618 } 1619 1620 if (!preallocated) { 1621 if (!bs->backing_hd) { 1622 /* not backed; therefore we can simply deallocate the 1623 * cluster */ 1624 l2_table[j] = 0; 1625 l2_dirty = true; 1626 continue; 1627 } 1628 1629 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1630 if (offset < 0) { 1631 ret = offset; 1632 goto fail; 1633 } 1634 } 1635 1636 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1637 if (ret < 0) { 1638 if (!preallocated) { 1639 qcow2_free_clusters(bs, offset, s->cluster_size, 1640 QCOW2_DISCARD_ALWAYS); 1641 } 1642 goto fail; 1643 } 1644 1645 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, 1646 s->cluster_sectors, 0); 1647 if (ret < 0) { 1648 if (!preallocated) { 1649 qcow2_free_clusters(bs, offset, s->cluster_size, 1650 QCOW2_DISCARD_ALWAYS); 1651 } 1652 goto fail; 1653 } 1654 1655 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1656 l2_dirty = true; 1657 1658 cluster_index = offset >> s->cluster_bits; 1659 1660 if (cluster_index >= *nb_clusters) { 1661 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8; 1662 uint64_t new_bitmap_size; 1663 /* The offset may lie beyond the old end of the underlying image 1664 * file for growable files only */ 1665 assert(bs->file->growable); 1666 *nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1667 BDRV_SECTOR_SIZE); 1668 new_bitmap_size = (*nb_clusters + 7) / 8; 1669 *expanded_clusters = g_realloc(*expanded_clusters, 1670 new_bitmap_size); 1671 /* clear the newly allocated space */ 1672 memset(&(*expanded_clusters)[old_bitmap_size], 0, 1673 new_bitmap_size - old_bitmap_size); 1674 } 1675 1676 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1677 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8); 1678 } 1679 1680 if (is_active_l1) { 1681 if (l2_dirty) { 1682 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1683 qcow2_cache_depends_on_flush(s->l2_table_cache); 1684 } 1685 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1686 if (ret < 0) { 1687 l2_table = NULL; 1688 goto fail; 1689 } 1690 } else { 1691 if (l2_dirty) { 1692 ret = qcow2_pre_write_overlap_check(bs, 1693 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1694 s->cluster_size); 1695 if (ret < 0) { 1696 goto fail; 1697 } 1698 1699 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1700 (void *)l2_table, s->cluster_sectors); 1701 if (ret < 0) { 1702 goto fail; 1703 } 1704 } 1705 } 1706 } 1707 1708 ret = 0; 1709 1710 fail: 1711 if (l2_table) { 1712 if (!is_active_l1) { 1713 qemu_vfree(l2_table); 1714 } else { 1715 if (ret < 0) { 1716 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1717 } else { 1718 ret = qcow2_cache_put(bs, s->l2_table_cache, 1719 (void **)&l2_table); 1720 } 1721 } 1722 } 1723 return ret; 1724 } 1725 1726 /* 1727 * For backed images, expands all zero clusters on the image. For non-backed 1728 * images, deallocates all non-pre-allocated zero clusters (and claims the 1729 * allocation for pre-allocated ones). This is important for downgrading to a 1730 * qcow2 version which doesn't yet support metadata zero clusters. 1731 */ 1732 int qcow2_expand_zero_clusters(BlockDriverState *bs) 1733 { 1734 BDRVQcowState *s = bs->opaque; 1735 uint64_t *l1_table = NULL; 1736 uint64_t nb_clusters; 1737 uint8_t *expanded_clusters; 1738 int ret; 1739 int i, j; 1740 1741 nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1742 BDRV_SECTOR_SIZE); 1743 expanded_clusters = g_malloc0((nb_clusters + 7) / 8); 1744 1745 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1746 &expanded_clusters, &nb_clusters); 1747 if (ret < 0) { 1748 goto fail; 1749 } 1750 1751 /* Inactive L1 tables may point to active L2 tables - therefore it is 1752 * necessary to flush the L2 table cache before trying to access the L2 1753 * tables pointed to by inactive L1 entries (else we might try to expand 1754 * zero clusters that have already been expanded); furthermore, it is also 1755 * necessary to empty the L2 table cache, since it may contain tables which 1756 * are now going to be modified directly on disk, bypassing the cache. 1757 * qcow2_cache_empty() does both for us. */ 1758 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1759 if (ret < 0) { 1760 goto fail; 1761 } 1762 1763 for (i = 0; i < s->nb_snapshots; i++) { 1764 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1765 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1766 1767 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1768 1769 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / 1770 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); 1771 if (ret < 0) { 1772 goto fail; 1773 } 1774 1775 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1776 be64_to_cpus(&l1_table[j]); 1777 } 1778 1779 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1780 &expanded_clusters, &nb_clusters); 1781 if (ret < 0) { 1782 goto fail; 1783 } 1784 } 1785 1786 ret = 0; 1787 1788 fail: 1789 g_free(expanded_clusters); 1790 g_free(l1_table); 1791 return ret; 1792 } 1793