1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qemu-common.h" 30 #include "block/block_int.h" 31 #include "block/qcow2.h" 32 #include "qemu/bswap.h" 33 #include "trace.h" 34 35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 36 bool exact_size) 37 { 38 BDRVQcow2State *s = bs->opaque; 39 int new_l1_size2, ret, i; 40 uint64_t *new_l1_table; 41 int64_t old_l1_table_offset, old_l1_size; 42 int64_t new_l1_table_offset, new_l1_size; 43 uint8_t data[12]; 44 45 if (min_size <= s->l1_size) 46 return 0; 47 48 /* Do a sanity check on min_size before trying to calculate new_l1_size 49 * (this prevents overflows during the while loop for the calculation of 50 * new_l1_size) */ 51 if (min_size > INT_MAX / sizeof(uint64_t)) { 52 return -EFBIG; 53 } 54 55 if (exact_size) { 56 new_l1_size = min_size; 57 } else { 58 /* Bump size up to reduce the number of times we have to grow */ 59 new_l1_size = s->l1_size; 60 if (new_l1_size == 0) { 61 new_l1_size = 1; 62 } 63 while (min_size > new_l1_size) { 64 new_l1_size = (new_l1_size * 3 + 1) / 2; 65 } 66 } 67 68 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 69 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { 70 return -EFBIG; 71 } 72 73 #ifdef DEBUG_ALLOC2 74 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 75 s->l1_size, new_l1_size); 76 #endif 77 78 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 79 new_l1_table = qemu_try_blockalign(bs->file->bs, 80 align_offset(new_l1_size2, 512)); 81 if (new_l1_table == NULL) { 82 return -ENOMEM; 83 } 84 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 85 86 if (s->l1_size) { 87 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 88 } 89 90 /* write new table (align to cluster) */ 91 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 92 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 93 if (new_l1_table_offset < 0) { 94 qemu_vfree(new_l1_table); 95 return new_l1_table_offset; 96 } 97 98 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 99 if (ret < 0) { 100 goto fail; 101 } 102 103 /* the L1 position has not yet been updated, so these clusters must 104 * indeed be completely free */ 105 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 106 new_l1_size2); 107 if (ret < 0) { 108 goto fail; 109 } 110 111 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 112 for(i = 0; i < s->l1_size; i++) 113 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 114 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, 115 new_l1_table, new_l1_size2); 116 if (ret < 0) 117 goto fail; 118 for(i = 0; i < s->l1_size; i++) 119 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 120 121 /* set new table */ 122 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 123 stl_be_p(data, new_l1_size); 124 stq_be_p(data + 4, new_l1_table_offset); 125 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 126 data, sizeof(data)); 127 if (ret < 0) { 128 goto fail; 129 } 130 qemu_vfree(s->l1_table); 131 old_l1_table_offset = s->l1_table_offset; 132 s->l1_table_offset = new_l1_table_offset; 133 s->l1_table = new_l1_table; 134 old_l1_size = s->l1_size; 135 s->l1_size = new_l1_size; 136 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 137 QCOW2_DISCARD_OTHER); 138 return 0; 139 fail: 140 qemu_vfree(new_l1_table); 141 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 142 QCOW2_DISCARD_OTHER); 143 return ret; 144 } 145 146 /* 147 * l2_load 148 * 149 * Loads a L2 table into memory. If the table is in the cache, the cache 150 * is used; otherwise the L2 table is loaded from the image file. 151 * 152 * Returns a pointer to the L2 table on success, or NULL if the read from 153 * the image file failed. 154 */ 155 156 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 157 uint64_t **l2_table) 158 { 159 BDRVQcow2State *s = bs->opaque; 160 161 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 162 (void **)l2_table); 163 } 164 165 /* 166 * Writes one sector of the L1 table to the disk (can't update single entries 167 * and we really don't want bdrv_pread to perform a read-modify-write) 168 */ 169 #define L1_ENTRIES_PER_SECTOR (512 / 8) 170 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 171 { 172 BDRVQcow2State *s = bs->opaque; 173 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 174 int l1_start_index; 175 int i, ret; 176 177 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 178 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 179 i++) 180 { 181 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 182 } 183 184 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 185 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 186 if (ret < 0) { 187 return ret; 188 } 189 190 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 191 ret = bdrv_pwrite_sync(bs->file, 192 s->l1_table_offset + 8 * l1_start_index, 193 buf, sizeof(buf)); 194 if (ret < 0) { 195 return ret; 196 } 197 198 return 0; 199 } 200 201 /* 202 * l2_allocate 203 * 204 * Allocate a new l2 entry in the file. If l1_index points to an already 205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 206 * table) copy the contents of the old L2 table into the newly allocated one. 207 * Otherwise the new table is initialized with zeros. 208 * 209 */ 210 211 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 212 { 213 BDRVQcow2State *s = bs->opaque; 214 uint64_t old_l2_offset; 215 uint64_t *l2_table = NULL; 216 int64_t l2_offset; 217 int ret; 218 219 old_l2_offset = s->l1_table[l1_index]; 220 221 trace_qcow2_l2_allocate(bs, l1_index); 222 223 /* allocate a new l2 entry */ 224 225 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 226 if (l2_offset < 0) { 227 ret = l2_offset; 228 goto fail; 229 } 230 231 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 232 if (ret < 0) { 233 goto fail; 234 } 235 236 /* allocate a new entry in the l2 cache */ 237 238 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 239 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 240 if (ret < 0) { 241 goto fail; 242 } 243 244 l2_table = *table; 245 246 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 247 /* if there was no old l2 table, clear the new table */ 248 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 249 } else { 250 uint64_t* old_table; 251 252 /* if there was an old l2 table, read it from the disk */ 253 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 254 ret = qcow2_cache_get(bs, s->l2_table_cache, 255 old_l2_offset & L1E_OFFSET_MASK, 256 (void**) &old_table); 257 if (ret < 0) { 258 goto fail; 259 } 260 261 memcpy(l2_table, old_table, s->cluster_size); 262 263 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); 264 } 265 266 /* write the l2 table to the file */ 267 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 268 269 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 270 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 271 ret = qcow2_cache_flush(bs, s->l2_table_cache); 272 if (ret < 0) { 273 goto fail; 274 } 275 276 /* update the L1 entry */ 277 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 278 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 279 ret = qcow2_write_l1_entry(bs, l1_index); 280 if (ret < 0) { 281 goto fail; 282 } 283 284 *table = l2_table; 285 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 286 return 0; 287 288 fail: 289 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 290 if (l2_table != NULL) { 291 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 292 } 293 s->l1_table[l1_index] = old_l2_offset; 294 if (l2_offset > 0) { 295 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 296 QCOW2_DISCARD_ALWAYS); 297 } 298 return ret; 299 } 300 301 /* 302 * Checks how many clusters in a given L2 table are contiguous in the image 303 * file. As soon as one of the flags in the bitmask stop_flags changes compared 304 * to the first cluster, the search is stopped and the cluster is not counted 305 * as contiguous. (This allows it, for example, to stop at the first compressed 306 * cluster which may require a different handling) 307 */ 308 static int count_contiguous_clusters(int nb_clusters, int cluster_size, 309 uint64_t *l2_table, uint64_t stop_flags) 310 { 311 int i; 312 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 313 uint64_t first_entry = be64_to_cpu(l2_table[0]); 314 uint64_t offset = first_entry & mask; 315 316 if (!offset) 317 return 0; 318 319 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); 320 321 for (i = 0; i < nb_clusters; i++) { 322 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 323 if (offset + (uint64_t) i * cluster_size != l2_entry) { 324 break; 325 } 326 } 327 328 return i; 329 } 330 331 static int count_contiguous_clusters_by_type(int nb_clusters, 332 uint64_t *l2_table, 333 int wanted_type) 334 { 335 int i; 336 337 for (i = 0; i < nb_clusters; i++) { 338 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 339 340 if (type != wanted_type) { 341 break; 342 } 343 } 344 345 return i; 346 } 347 348 /* The crypt function is compatible with the linux cryptoloop 349 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 350 supported */ 351 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, 352 uint8_t *out_buf, const uint8_t *in_buf, 353 int nb_sectors, bool enc, 354 Error **errp) 355 { 356 union { 357 uint64_t ll[2]; 358 uint8_t b[16]; 359 } ivec; 360 int i; 361 int ret; 362 363 for(i = 0; i < nb_sectors; i++) { 364 ivec.ll[0] = cpu_to_le64(sector_num); 365 ivec.ll[1] = 0; 366 if (qcrypto_cipher_setiv(s->cipher, 367 ivec.b, G_N_ELEMENTS(ivec.b), 368 errp) < 0) { 369 return -1; 370 } 371 if (enc) { 372 ret = qcrypto_cipher_encrypt(s->cipher, 373 in_buf, 374 out_buf, 375 512, 376 errp); 377 } else { 378 ret = qcrypto_cipher_decrypt(s->cipher, 379 in_buf, 380 out_buf, 381 512, 382 errp); 383 } 384 if (ret < 0) { 385 return -1; 386 } 387 sector_num++; 388 in_buf += 512; 389 out_buf += 512; 390 } 391 return 0; 392 } 393 394 static int coroutine_fn do_perform_cow(BlockDriverState *bs, 395 uint64_t src_cluster_offset, 396 uint64_t cluster_offset, 397 int offset_in_cluster, 398 int bytes) 399 { 400 BDRVQcow2State *s = bs->opaque; 401 QEMUIOVector qiov; 402 struct iovec iov; 403 int ret; 404 405 iov.iov_len = bytes; 406 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 407 if (iov.iov_base == NULL) { 408 return -ENOMEM; 409 } 410 411 qemu_iovec_init_external(&qiov, &iov, 1); 412 413 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 414 415 if (!bs->drv) { 416 ret = -ENOMEDIUM; 417 goto out; 418 } 419 420 /* Call .bdrv_co_readv() directly instead of using the public block-layer 421 * interface. This avoids double I/O throttling and request tracking, 422 * which can lead to deadlock when block layer copy-on-read is enabled. 423 */ 424 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, 425 bytes, &qiov, 0); 426 if (ret < 0) { 427 goto out; 428 } 429 430 if (bs->encrypted) { 431 Error *err = NULL; 432 int64_t sector = (src_cluster_offset + offset_in_cluster) 433 >> BDRV_SECTOR_BITS; 434 assert(s->cipher); 435 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); 436 assert((bytes & ~BDRV_SECTOR_MASK) == 0); 437 if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base, 438 bytes >> BDRV_SECTOR_BITS, true, &err) < 0) { 439 ret = -EIO; 440 error_free(err); 441 goto out; 442 } 443 } 444 445 ret = qcow2_pre_write_overlap_check(bs, 0, 446 cluster_offset + offset_in_cluster, bytes); 447 if (ret < 0) { 448 goto out; 449 } 450 451 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 452 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster, 453 bytes, &qiov, 0); 454 if (ret < 0) { 455 goto out; 456 } 457 458 ret = 0; 459 out: 460 qemu_vfree(iov.iov_base); 461 return ret; 462 } 463 464 465 /* 466 * get_cluster_offset 467 * 468 * For a given offset of the virtual disk, find the cluster type and offset in 469 * the qcow2 file. The offset is stored in *cluster_offset. 470 * 471 * On entry, *bytes is the maximum number of contiguous bytes starting at 472 * offset that we are interested in. 473 * 474 * On exit, *bytes is the number of bytes starting at offset that have the same 475 * cluster type and (if applicable) are stored contiguously in the image file. 476 * Compressed clusters are always returned one by one. 477 * 478 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 479 * cases. 480 */ 481 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 482 unsigned int *bytes, uint64_t *cluster_offset) 483 { 484 BDRVQcow2State *s = bs->opaque; 485 unsigned int l2_index; 486 uint64_t l1_index, l2_offset, *l2_table; 487 int l1_bits, c; 488 unsigned int offset_in_cluster; 489 uint64_t bytes_available, bytes_needed, nb_clusters; 490 int ret; 491 492 offset_in_cluster = offset_into_cluster(s, offset); 493 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 494 495 l1_bits = s->l2_bits + s->cluster_bits; 496 497 /* compute how many bytes there are between the start of the cluster 498 * containing offset and the end of the l1 entry */ 499 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)) 500 + offset_in_cluster; 501 502 if (bytes_needed > bytes_available) { 503 bytes_needed = bytes_available; 504 } 505 506 *cluster_offset = 0; 507 508 /* seek to the l2 offset in the l1 table */ 509 510 l1_index = offset >> l1_bits; 511 if (l1_index >= s->l1_size) { 512 ret = QCOW2_CLUSTER_UNALLOCATED; 513 goto out; 514 } 515 516 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 517 if (!l2_offset) { 518 ret = QCOW2_CLUSTER_UNALLOCATED; 519 goto out; 520 } 521 522 if (offset_into_cluster(s, l2_offset)) { 523 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 524 " unaligned (L1 index: %#" PRIx64 ")", 525 l2_offset, l1_index); 526 return -EIO; 527 } 528 529 /* load the l2 table in memory */ 530 531 ret = l2_load(bs, l2_offset, &l2_table); 532 if (ret < 0) { 533 return ret; 534 } 535 536 /* find the cluster offset for the given disk offset */ 537 538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 539 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 540 541 nb_clusters = size_to_clusters(s, bytes_needed); 542 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 543 * integers; the minimum cluster size is 512, so this assertion is always 544 * true */ 545 assert(nb_clusters <= INT_MAX); 546 547 ret = qcow2_get_cluster_type(*cluster_offset); 548 switch (ret) { 549 case QCOW2_CLUSTER_COMPRESSED: 550 /* Compressed clusters can only be processed one by one */ 551 c = 1; 552 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 553 break; 554 case QCOW2_CLUSTER_ZERO: 555 if (s->qcow_version < 3) { 556 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 557 " in pre-v3 image (L2 offset: %#" PRIx64 558 ", L2 index: %#x)", l2_offset, l2_index); 559 ret = -EIO; 560 goto fail; 561 } 562 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 563 QCOW2_CLUSTER_ZERO); 564 *cluster_offset = 0; 565 break; 566 case QCOW2_CLUSTER_UNALLOCATED: 567 /* how many empty clusters ? */ 568 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 569 QCOW2_CLUSTER_UNALLOCATED); 570 *cluster_offset = 0; 571 break; 572 case QCOW2_CLUSTER_NORMAL: 573 /* how many allocated clusters ? */ 574 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 575 &l2_table[l2_index], QCOW_OFLAG_ZERO); 576 *cluster_offset &= L2E_OFFSET_MASK; 577 if (offset_into_cluster(s, *cluster_offset)) { 578 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" 579 PRIx64 " unaligned (L2 offset: %#" PRIx64 580 ", L2 index: %#x)", *cluster_offset, 581 l2_offset, l2_index); 582 ret = -EIO; 583 goto fail; 584 } 585 break; 586 default: 587 abort(); 588 } 589 590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 591 592 bytes_available = (int64_t)c * s->cluster_size; 593 594 out: 595 if (bytes_available > bytes_needed) { 596 bytes_available = bytes_needed; 597 } 598 599 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 600 * subtracting offset_in_cluster will therefore definitely yield something 601 * not exceeding UINT_MAX */ 602 assert(bytes_available - offset_in_cluster <= UINT_MAX); 603 *bytes = bytes_available - offset_in_cluster; 604 605 return ret; 606 607 fail: 608 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 609 return ret; 610 } 611 612 /* 613 * get_cluster_table 614 * 615 * for a given disk offset, load (and allocate if needed) 616 * the l2 table. 617 * 618 * the l2 table offset in the qcow2 file and the cluster index 619 * in the l2 table are given to the caller. 620 * 621 * Returns 0 on success, -errno in failure case 622 */ 623 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 624 uint64_t **new_l2_table, 625 int *new_l2_index) 626 { 627 BDRVQcow2State *s = bs->opaque; 628 unsigned int l2_index; 629 uint64_t l1_index, l2_offset; 630 uint64_t *l2_table = NULL; 631 int ret; 632 633 /* seek to the l2 offset in the l1 table */ 634 635 l1_index = offset >> (s->l2_bits + s->cluster_bits); 636 if (l1_index >= s->l1_size) { 637 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 638 if (ret < 0) { 639 return ret; 640 } 641 } 642 643 assert(l1_index < s->l1_size); 644 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 645 if (offset_into_cluster(s, l2_offset)) { 646 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 647 " unaligned (L1 index: %#" PRIx64 ")", 648 l2_offset, l1_index); 649 return -EIO; 650 } 651 652 /* seek the l2 table of the given l2 offset */ 653 654 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 655 /* load the l2 table in memory */ 656 ret = l2_load(bs, l2_offset, &l2_table); 657 if (ret < 0) { 658 return ret; 659 } 660 } else { 661 /* First allocate a new L2 table (and do COW if needed) */ 662 ret = l2_allocate(bs, l1_index, &l2_table); 663 if (ret < 0) { 664 return ret; 665 } 666 667 /* Then decrease the refcount of the old table */ 668 if (l2_offset) { 669 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 670 QCOW2_DISCARD_OTHER); 671 } 672 } 673 674 /* find the cluster offset for the given disk offset */ 675 676 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 677 678 *new_l2_table = l2_table; 679 *new_l2_index = l2_index; 680 681 return 0; 682 } 683 684 /* 685 * alloc_compressed_cluster_offset 686 * 687 * For a given offset of the disk image, return cluster offset in 688 * qcow2 file. 689 * 690 * If the offset is not found, allocate a new compressed cluster. 691 * 692 * Return the cluster offset if successful, 693 * Return 0, otherwise. 694 * 695 */ 696 697 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 698 uint64_t offset, 699 int compressed_size) 700 { 701 BDRVQcow2State *s = bs->opaque; 702 int l2_index, ret; 703 uint64_t *l2_table; 704 int64_t cluster_offset; 705 int nb_csectors; 706 707 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 708 if (ret < 0) { 709 return 0; 710 } 711 712 /* Compression can't overwrite anything. Fail if the cluster was already 713 * allocated. */ 714 cluster_offset = be64_to_cpu(l2_table[l2_index]); 715 if (cluster_offset & L2E_OFFSET_MASK) { 716 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 717 return 0; 718 } 719 720 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 721 if (cluster_offset < 0) { 722 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 723 return 0; 724 } 725 726 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 727 (cluster_offset >> 9); 728 729 cluster_offset |= QCOW_OFLAG_COMPRESSED | 730 ((uint64_t)nb_csectors << s->csize_shift); 731 732 /* update L2 table */ 733 734 /* compressed clusters never have the copied flag */ 735 736 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 737 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 738 l2_table[l2_index] = cpu_to_be64(cluster_offset); 739 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 740 741 return cluster_offset; 742 } 743 744 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 745 { 746 BDRVQcow2State *s = bs->opaque; 747 int ret; 748 749 if (r->nb_bytes == 0) { 750 return 0; 751 } 752 753 qemu_co_mutex_unlock(&s->lock); 754 ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes); 755 qemu_co_mutex_lock(&s->lock); 756 757 if (ret < 0) { 758 return ret; 759 } 760 761 /* 762 * Before we update the L2 table to actually point to the new cluster, we 763 * need to be sure that the refcounts have been increased and COW was 764 * handled. 765 */ 766 qcow2_cache_depends_on_flush(s->l2_table_cache); 767 768 return 0; 769 } 770 771 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 772 { 773 BDRVQcow2State *s = bs->opaque; 774 int i, j = 0, l2_index, ret; 775 uint64_t *old_cluster, *l2_table; 776 uint64_t cluster_offset = m->alloc_offset; 777 778 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 779 assert(m->nb_clusters > 0); 780 781 old_cluster = g_try_new(uint64_t, m->nb_clusters); 782 if (old_cluster == NULL) { 783 ret = -ENOMEM; 784 goto err; 785 } 786 787 /* copy content of unmodified sectors */ 788 ret = perform_cow(bs, m, &m->cow_start); 789 if (ret < 0) { 790 goto err; 791 } 792 793 ret = perform_cow(bs, m, &m->cow_end); 794 if (ret < 0) { 795 goto err; 796 } 797 798 /* Update L2 table. */ 799 if (s->use_lazy_refcounts) { 800 qcow2_mark_dirty(bs); 801 } 802 if (qcow2_need_accurate_refcounts(s)) { 803 qcow2_cache_set_dependency(bs, s->l2_table_cache, 804 s->refcount_block_cache); 805 } 806 807 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 808 if (ret < 0) { 809 goto err; 810 } 811 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 812 813 assert(l2_index + m->nb_clusters <= s->l2_size); 814 for (i = 0; i < m->nb_clusters; i++) { 815 /* if two concurrent writes happen to the same unallocated cluster 816 * each write allocates separate cluster and writes data concurrently. 817 * The first one to complete updates l2 table with pointer to its 818 * cluster the second one has to do RMW (which is done above by 819 * perform_cow()), update l2 table with its cluster pointer and free 820 * old cluster. This is what this loop does */ 821 if (l2_table[l2_index + i] != 0) { 822 old_cluster[j++] = l2_table[l2_index + i]; 823 } 824 825 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 826 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 827 } 828 829 830 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 831 832 /* 833 * If this was a COW, we need to decrease the refcount of the old cluster. 834 * 835 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 836 * clusters), the next write will reuse them anyway. 837 */ 838 if (j != 0) { 839 for (i = 0; i < j; i++) { 840 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 841 QCOW2_DISCARD_NEVER); 842 } 843 } 844 845 ret = 0; 846 err: 847 g_free(old_cluster); 848 return ret; 849 } 850 851 /* 852 * Returns the number of contiguous clusters that can be used for an allocating 853 * write, but require COW to be performed (this includes yet unallocated space, 854 * which must copy from the backing file) 855 */ 856 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, 857 uint64_t *l2_table, int l2_index) 858 { 859 int i; 860 861 for (i = 0; i < nb_clusters; i++) { 862 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 863 int cluster_type = qcow2_get_cluster_type(l2_entry); 864 865 switch(cluster_type) { 866 case QCOW2_CLUSTER_NORMAL: 867 if (l2_entry & QCOW_OFLAG_COPIED) { 868 goto out; 869 } 870 break; 871 case QCOW2_CLUSTER_UNALLOCATED: 872 case QCOW2_CLUSTER_COMPRESSED: 873 case QCOW2_CLUSTER_ZERO: 874 break; 875 default: 876 abort(); 877 } 878 } 879 880 out: 881 assert(i <= nb_clusters); 882 return i; 883 } 884 885 /* 886 * Check if there already is an AIO write request in flight which allocates 887 * the same cluster. In this case we need to wait until the previous 888 * request has completed and updated the L2 table accordingly. 889 * 890 * Returns: 891 * 0 if there was no dependency. *cur_bytes indicates the number of 892 * bytes from guest_offset that can be read before the next 893 * dependency must be processed (or the request is complete) 894 * 895 * -EAGAIN if we had to wait for another request, previously gathered 896 * information on cluster allocation may be invalid now. The caller 897 * must start over anyway, so consider *cur_bytes undefined. 898 */ 899 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 900 uint64_t *cur_bytes, QCowL2Meta **m) 901 { 902 BDRVQcow2State *s = bs->opaque; 903 QCowL2Meta *old_alloc; 904 uint64_t bytes = *cur_bytes; 905 906 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 907 908 uint64_t start = guest_offset; 909 uint64_t end = start + bytes; 910 uint64_t old_start = l2meta_cow_start(old_alloc); 911 uint64_t old_end = l2meta_cow_end(old_alloc); 912 913 if (end <= old_start || start >= old_end) { 914 /* No intersection */ 915 } else { 916 if (start < old_start) { 917 /* Stop at the start of a running allocation */ 918 bytes = old_start - start; 919 } else { 920 bytes = 0; 921 } 922 923 /* Stop if already an l2meta exists. After yielding, it wouldn't 924 * be valid any more, so we'd have to clean up the old L2Metas 925 * and deal with requests depending on them before starting to 926 * gather new ones. Not worth the trouble. */ 927 if (bytes == 0 && *m) { 928 *cur_bytes = 0; 929 return 0; 930 } 931 932 if (bytes == 0) { 933 /* Wait for the dependency to complete. We need to recheck 934 * the free/allocated clusters when we continue. */ 935 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 936 return -EAGAIN; 937 } 938 } 939 } 940 941 /* Make sure that existing clusters and new allocations are only used up to 942 * the next dependency if we shortened the request above */ 943 *cur_bytes = bytes; 944 945 return 0; 946 } 947 948 /* 949 * Checks how many already allocated clusters that don't require a copy on 950 * write there are at the given guest_offset (up to *bytes). If 951 * *host_offset is not zero, only physically contiguous clusters beginning at 952 * this host offset are counted. 953 * 954 * Note that guest_offset may not be cluster aligned. In this case, the 955 * returned *host_offset points to exact byte referenced by guest_offset and 956 * therefore isn't cluster aligned as well. 957 * 958 * Returns: 959 * 0: if no allocated clusters are available at the given offset. 960 * *bytes is normally unchanged. It is set to 0 if the cluster 961 * is allocated and doesn't need COW, but doesn't have the right 962 * physical offset. 963 * 964 * 1: if allocated clusters that don't require a COW are available at 965 * the requested offset. *bytes may have decreased and describes 966 * the length of the area that can be written to. 967 * 968 * -errno: in error cases 969 */ 970 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 971 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 972 { 973 BDRVQcow2State *s = bs->opaque; 974 int l2_index; 975 uint64_t cluster_offset; 976 uint64_t *l2_table; 977 uint64_t nb_clusters; 978 unsigned int keep_clusters; 979 int ret; 980 981 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 982 *bytes); 983 984 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 985 == offset_into_cluster(s, *host_offset)); 986 987 /* 988 * Calculate the number of clusters to look for. We stop at L2 table 989 * boundaries to keep things simple. 990 */ 991 nb_clusters = 992 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 993 994 l2_index = offset_to_l2_index(s, guest_offset); 995 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 996 assert(nb_clusters <= INT_MAX); 997 998 /* Find L2 entry for the first involved cluster */ 999 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1000 if (ret < 0) { 1001 return ret; 1002 } 1003 1004 cluster_offset = be64_to_cpu(l2_table[l2_index]); 1005 1006 /* Check how many clusters are already allocated and don't need COW */ 1007 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 1008 && (cluster_offset & QCOW_OFLAG_COPIED)) 1009 { 1010 /* If a specific host_offset is required, check it */ 1011 bool offset_matches = 1012 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1013 1014 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1015 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1016 "%#llx unaligned (guest offset: %#" PRIx64 1017 ")", cluster_offset & L2E_OFFSET_MASK, 1018 guest_offset); 1019 ret = -EIO; 1020 goto out; 1021 } 1022 1023 if (*host_offset != 0 && !offset_matches) { 1024 *bytes = 0; 1025 ret = 0; 1026 goto out; 1027 } 1028 1029 /* We keep all QCOW_OFLAG_COPIED clusters */ 1030 keep_clusters = 1031 count_contiguous_clusters(nb_clusters, s->cluster_size, 1032 &l2_table[l2_index], 1033 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1034 assert(keep_clusters <= nb_clusters); 1035 1036 *bytes = MIN(*bytes, 1037 keep_clusters * s->cluster_size 1038 - offset_into_cluster(s, guest_offset)); 1039 1040 ret = 1; 1041 } else { 1042 ret = 0; 1043 } 1044 1045 /* Cleanup */ 1046 out: 1047 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1048 1049 /* Only return a host offset if we actually made progress. Otherwise we 1050 * would make requirements for handle_alloc() that it can't fulfill */ 1051 if (ret > 0) { 1052 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1053 + offset_into_cluster(s, guest_offset); 1054 } 1055 1056 return ret; 1057 } 1058 1059 /* 1060 * Allocates new clusters for the given guest_offset. 1061 * 1062 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1063 * contain the number of clusters that have been allocated and are contiguous 1064 * in the image file. 1065 * 1066 * If *host_offset is non-zero, it specifies the offset in the image file at 1067 * which the new clusters must start. *nb_clusters can be 0 on return in this 1068 * case if the cluster at host_offset is already in use. If *host_offset is 1069 * zero, the clusters can be allocated anywhere in the image file. 1070 * 1071 * *host_offset is updated to contain the offset into the image file at which 1072 * the first allocated cluster starts. 1073 * 1074 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1075 * function has been waiting for another request and the allocation must be 1076 * restarted, but the whole request should not be failed. 1077 */ 1078 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1079 uint64_t *host_offset, uint64_t *nb_clusters) 1080 { 1081 BDRVQcow2State *s = bs->opaque; 1082 1083 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1084 *host_offset, *nb_clusters); 1085 1086 /* Allocate new clusters */ 1087 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1088 if (*host_offset == 0) { 1089 int64_t cluster_offset = 1090 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1091 if (cluster_offset < 0) { 1092 return cluster_offset; 1093 } 1094 *host_offset = cluster_offset; 1095 return 0; 1096 } else { 1097 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1098 if (ret < 0) { 1099 return ret; 1100 } 1101 *nb_clusters = ret; 1102 return 0; 1103 } 1104 } 1105 1106 /* 1107 * Allocates new clusters for an area that either is yet unallocated or needs a 1108 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1109 * the new allocation can match the specified host offset. 1110 * 1111 * Note that guest_offset may not be cluster aligned. In this case, the 1112 * returned *host_offset points to exact byte referenced by guest_offset and 1113 * therefore isn't cluster aligned as well. 1114 * 1115 * Returns: 1116 * 0: if no clusters could be allocated. *bytes is set to 0, 1117 * *host_offset is left unchanged. 1118 * 1119 * 1: if new clusters were allocated. *bytes may be decreased if the 1120 * new allocation doesn't cover all of the requested area. 1121 * *host_offset is updated to contain the host offset of the first 1122 * newly allocated cluster. 1123 * 1124 * -errno: in error cases 1125 */ 1126 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1127 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1128 { 1129 BDRVQcow2State *s = bs->opaque; 1130 int l2_index; 1131 uint64_t *l2_table; 1132 uint64_t entry; 1133 uint64_t nb_clusters; 1134 int ret; 1135 1136 uint64_t alloc_cluster_offset; 1137 1138 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1139 *bytes); 1140 assert(*bytes > 0); 1141 1142 /* 1143 * Calculate the number of clusters to look for. We stop at L2 table 1144 * boundaries to keep things simple. 1145 */ 1146 nb_clusters = 1147 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1148 1149 l2_index = offset_to_l2_index(s, guest_offset); 1150 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1151 assert(nb_clusters <= INT_MAX); 1152 1153 /* Find L2 entry for the first involved cluster */ 1154 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1155 if (ret < 0) { 1156 return ret; 1157 } 1158 1159 entry = be64_to_cpu(l2_table[l2_index]); 1160 1161 /* For the moment, overwrite compressed clusters one by one */ 1162 if (entry & QCOW_OFLAG_COMPRESSED) { 1163 nb_clusters = 1; 1164 } else { 1165 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1166 } 1167 1168 /* This function is only called when there were no non-COW clusters, so if 1169 * we can't find any unallocated or COW clusters either, something is 1170 * wrong with our code. */ 1171 assert(nb_clusters > 0); 1172 1173 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1174 1175 /* Allocate, if necessary at a given offset in the image file */ 1176 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1177 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1178 &nb_clusters); 1179 if (ret < 0) { 1180 goto fail; 1181 } 1182 1183 /* Can't extend contiguous allocation */ 1184 if (nb_clusters == 0) { 1185 *bytes = 0; 1186 return 0; 1187 } 1188 1189 /* !*host_offset would overwrite the image header and is reserved for "no 1190 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1191 * following overlap check; do that now to avoid having an invalid value in 1192 * *host_offset. */ 1193 if (!alloc_cluster_offset) { 1194 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1195 nb_clusters * s->cluster_size); 1196 assert(ret < 0); 1197 goto fail; 1198 } 1199 1200 /* 1201 * Save info needed for meta data update. 1202 * 1203 * requested_bytes: Number of bytes from the start of the first 1204 * newly allocated cluster to the end of the (possibly shortened 1205 * before) write request. 1206 * 1207 * avail_bytes: Number of bytes from the start of the first 1208 * newly allocated to the end of the last newly allocated cluster. 1209 * 1210 * nb_bytes: The number of bytes from the start of the first 1211 * newly allocated cluster to the end of the area that the write 1212 * request actually writes to (excluding COW at the end) 1213 */ 1214 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1215 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); 1216 int nb_bytes = MIN(requested_bytes, avail_bytes); 1217 QCowL2Meta *old_m = *m; 1218 1219 *m = g_malloc0(sizeof(**m)); 1220 1221 **m = (QCowL2Meta) { 1222 .next = old_m, 1223 1224 .alloc_offset = alloc_cluster_offset, 1225 .offset = start_of_cluster(s, guest_offset), 1226 .nb_clusters = nb_clusters, 1227 1228 .cow_start = { 1229 .offset = 0, 1230 .nb_bytes = offset_into_cluster(s, guest_offset), 1231 }, 1232 .cow_end = { 1233 .offset = nb_bytes, 1234 .nb_bytes = avail_bytes - nb_bytes, 1235 }, 1236 }; 1237 qemu_co_queue_init(&(*m)->dependent_requests); 1238 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1239 1240 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1241 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1242 assert(*bytes != 0); 1243 1244 return 1; 1245 1246 fail: 1247 if (*m && (*m)->nb_clusters > 0) { 1248 QLIST_REMOVE(*m, next_in_flight); 1249 } 1250 return ret; 1251 } 1252 1253 /* 1254 * alloc_cluster_offset 1255 * 1256 * For a given offset on the virtual disk, find the cluster offset in qcow2 1257 * file. If the offset is not found, allocate a new cluster. 1258 * 1259 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1260 * other fields in m are meaningless. 1261 * 1262 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1263 * contiguous clusters that have been allocated. In this case, the other 1264 * fields of m are valid and contain information about the first allocated 1265 * cluster. 1266 * 1267 * If the request conflicts with another write request in flight, the coroutine 1268 * is queued and will be reentered when the dependency has completed. 1269 * 1270 * Return 0 on success and -errno in error cases 1271 */ 1272 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1273 unsigned int *bytes, uint64_t *host_offset, 1274 QCowL2Meta **m) 1275 { 1276 BDRVQcow2State *s = bs->opaque; 1277 uint64_t start, remaining; 1278 uint64_t cluster_offset; 1279 uint64_t cur_bytes; 1280 int ret; 1281 1282 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1283 1284 again: 1285 start = offset; 1286 remaining = *bytes; 1287 cluster_offset = 0; 1288 *host_offset = 0; 1289 cur_bytes = 0; 1290 *m = NULL; 1291 1292 while (true) { 1293 1294 if (!*host_offset) { 1295 *host_offset = start_of_cluster(s, cluster_offset); 1296 } 1297 1298 assert(remaining >= cur_bytes); 1299 1300 start += cur_bytes; 1301 remaining -= cur_bytes; 1302 cluster_offset += cur_bytes; 1303 1304 if (remaining == 0) { 1305 break; 1306 } 1307 1308 cur_bytes = remaining; 1309 1310 /* 1311 * Now start gathering as many contiguous clusters as possible: 1312 * 1313 * 1. Check for overlaps with in-flight allocations 1314 * 1315 * a) Overlap not in the first cluster -> shorten this request and 1316 * let the caller handle the rest in its next loop iteration. 1317 * 1318 * b) Real overlaps of two requests. Yield and restart the search 1319 * for contiguous clusters (the situation could have changed 1320 * while we were sleeping) 1321 * 1322 * c) TODO: Request starts in the same cluster as the in-flight 1323 * allocation ends. Shorten the COW of the in-fight allocation, 1324 * set cluster_offset to write to the same cluster and set up 1325 * the right synchronisation between the in-flight request and 1326 * the new one. 1327 */ 1328 ret = handle_dependencies(bs, start, &cur_bytes, m); 1329 if (ret == -EAGAIN) { 1330 /* Currently handle_dependencies() doesn't yield if we already had 1331 * an allocation. If it did, we would have to clean up the L2Meta 1332 * structs before starting over. */ 1333 assert(*m == NULL); 1334 goto again; 1335 } else if (ret < 0) { 1336 return ret; 1337 } else if (cur_bytes == 0) { 1338 break; 1339 } else { 1340 /* handle_dependencies() may have decreased cur_bytes (shortened 1341 * the allocations below) so that the next dependency is processed 1342 * correctly during the next loop iteration. */ 1343 } 1344 1345 /* 1346 * 2. Count contiguous COPIED clusters. 1347 */ 1348 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1349 if (ret < 0) { 1350 return ret; 1351 } else if (ret) { 1352 continue; 1353 } else if (cur_bytes == 0) { 1354 break; 1355 } 1356 1357 /* 1358 * 3. If the request still hasn't completed, allocate new clusters, 1359 * considering any cluster_offset of steps 1c or 2. 1360 */ 1361 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1362 if (ret < 0) { 1363 return ret; 1364 } else if (ret) { 1365 continue; 1366 } else { 1367 assert(cur_bytes == 0); 1368 break; 1369 } 1370 } 1371 1372 *bytes -= remaining; 1373 assert(*bytes > 0); 1374 assert(*host_offset != 0); 1375 1376 return 0; 1377 } 1378 1379 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1380 const uint8_t *buf, int buf_size) 1381 { 1382 z_stream strm1, *strm = &strm1; 1383 int ret, out_len; 1384 1385 memset(strm, 0, sizeof(*strm)); 1386 1387 strm->next_in = (uint8_t *)buf; 1388 strm->avail_in = buf_size; 1389 strm->next_out = out_buf; 1390 strm->avail_out = out_buf_size; 1391 1392 ret = inflateInit2(strm, -12); 1393 if (ret != Z_OK) 1394 return -1; 1395 ret = inflate(strm, Z_FINISH); 1396 out_len = strm->next_out - out_buf; 1397 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1398 out_len != out_buf_size) { 1399 inflateEnd(strm); 1400 return -1; 1401 } 1402 inflateEnd(strm); 1403 return 0; 1404 } 1405 1406 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1407 { 1408 BDRVQcow2State *s = bs->opaque; 1409 int ret, csize, nb_csectors, sector_offset; 1410 uint64_t coffset; 1411 1412 coffset = cluster_offset & s->cluster_offset_mask; 1413 if (s->cluster_cache_offset != coffset) { 1414 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1415 sector_offset = coffset & 511; 1416 csize = nb_csectors * 512 - sector_offset; 1417 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1418 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, 1419 nb_csectors); 1420 if (ret < 0) { 1421 return ret; 1422 } 1423 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1424 s->cluster_data + sector_offset, csize) < 0) { 1425 return -EIO; 1426 } 1427 s->cluster_cache_offset = coffset; 1428 } 1429 return 0; 1430 } 1431 1432 /* 1433 * This discards as many clusters of nb_clusters as possible at once (i.e. 1434 * all clusters in the same L2 table) and returns the number of discarded 1435 * clusters. 1436 */ 1437 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1438 uint64_t nb_clusters, enum qcow2_discard_type type, 1439 bool full_discard) 1440 { 1441 BDRVQcow2State *s = bs->opaque; 1442 uint64_t *l2_table; 1443 int l2_index; 1444 int ret; 1445 int i; 1446 1447 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1448 if (ret < 0) { 1449 return ret; 1450 } 1451 1452 /* Limit nb_clusters to one L2 table */ 1453 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1454 assert(nb_clusters <= INT_MAX); 1455 1456 for (i = 0; i < nb_clusters; i++) { 1457 uint64_t old_l2_entry; 1458 1459 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1460 1461 /* 1462 * If full_discard is false, make sure that a discarded area reads back 1463 * as zeroes for v3 images (we cannot do it for v2 without actually 1464 * writing a zero-filled buffer). We can skip the operation if the 1465 * cluster is already marked as zero, or if it's unallocated and we 1466 * don't have a backing file. 1467 * 1468 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1469 * holding s->lock, so that doesn't work today. 1470 * 1471 * If full_discard is true, the sector should not read back as zeroes, 1472 * but rather fall through to the backing file. 1473 */ 1474 switch (qcow2_get_cluster_type(old_l2_entry)) { 1475 case QCOW2_CLUSTER_UNALLOCATED: 1476 if (full_discard || !bs->backing) { 1477 continue; 1478 } 1479 break; 1480 1481 case QCOW2_CLUSTER_ZERO: 1482 if (!full_discard) { 1483 continue; 1484 } 1485 break; 1486 1487 case QCOW2_CLUSTER_NORMAL: 1488 case QCOW2_CLUSTER_COMPRESSED: 1489 break; 1490 1491 default: 1492 abort(); 1493 } 1494 1495 /* First remove L2 entries */ 1496 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1497 if (!full_discard && s->qcow_version >= 3) { 1498 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1499 } else { 1500 l2_table[l2_index + i] = cpu_to_be64(0); 1501 } 1502 1503 /* Then decrease the refcount */ 1504 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1505 } 1506 1507 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1508 1509 return nb_clusters; 1510 } 1511 1512 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1513 int nb_sectors, enum qcow2_discard_type type, bool full_discard) 1514 { 1515 BDRVQcow2State *s = bs->opaque; 1516 uint64_t end_offset; 1517 uint64_t nb_clusters; 1518 int ret; 1519 1520 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1521 1522 /* Round start up and end down */ 1523 offset = align_offset(offset, s->cluster_size); 1524 end_offset = start_of_cluster(s, end_offset); 1525 1526 if (offset > end_offset) { 1527 return 0; 1528 } 1529 1530 nb_clusters = size_to_clusters(s, end_offset - offset); 1531 1532 s->cache_discards = true; 1533 1534 /* Each L2 table is handled by its own loop iteration */ 1535 while (nb_clusters > 0) { 1536 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); 1537 if (ret < 0) { 1538 goto fail; 1539 } 1540 1541 nb_clusters -= ret; 1542 offset += (ret * s->cluster_size); 1543 } 1544 1545 ret = 0; 1546 fail: 1547 s->cache_discards = false; 1548 qcow2_process_discards(bs, ret); 1549 1550 return ret; 1551 } 1552 1553 /* 1554 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1555 * all clusters in the same L2 table) and returns the number of zeroed 1556 * clusters. 1557 */ 1558 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1559 uint64_t nb_clusters, int flags) 1560 { 1561 BDRVQcow2State *s = bs->opaque; 1562 uint64_t *l2_table; 1563 int l2_index; 1564 int ret; 1565 int i; 1566 1567 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1568 if (ret < 0) { 1569 return ret; 1570 } 1571 1572 /* Limit nb_clusters to one L2 table */ 1573 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1574 assert(nb_clusters <= INT_MAX); 1575 1576 for (i = 0; i < nb_clusters; i++) { 1577 uint64_t old_offset; 1578 1579 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1580 1581 /* Update L2 entries */ 1582 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1583 if (old_offset & QCOW_OFLAG_COMPRESSED || flags & BDRV_REQ_MAY_UNMAP) { 1584 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1585 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1586 } else { 1587 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1588 } 1589 } 1590 1591 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1592 1593 return nb_clusters; 1594 } 1595 1596 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors, 1597 int flags) 1598 { 1599 BDRVQcow2State *s = bs->opaque; 1600 uint64_t nb_clusters; 1601 int ret; 1602 1603 /* The zero flag is only supported by version 3 and newer */ 1604 if (s->qcow_version < 3) { 1605 return -ENOTSUP; 1606 } 1607 1608 /* Each L2 table is handled by its own loop iteration */ 1609 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1610 1611 s->cache_discards = true; 1612 1613 while (nb_clusters > 0) { 1614 ret = zero_single_l2(bs, offset, nb_clusters, flags); 1615 if (ret < 0) { 1616 goto fail; 1617 } 1618 1619 nb_clusters -= ret; 1620 offset += (ret * s->cluster_size); 1621 } 1622 1623 ret = 0; 1624 fail: 1625 s->cache_discards = false; 1626 qcow2_process_discards(bs, ret); 1627 1628 return ret; 1629 } 1630 1631 /* 1632 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1633 * non-backed non-pre-allocated zero clusters). 1634 * 1635 * l1_entries and *visited_l1_entries are used to keep track of progress for 1636 * status_cb(). l1_entries contains the total number of L1 entries and 1637 * *visited_l1_entries counts all visited L1 entries. 1638 */ 1639 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1640 int l1_size, int64_t *visited_l1_entries, 1641 int64_t l1_entries, 1642 BlockDriverAmendStatusCB *status_cb, 1643 void *cb_opaque) 1644 { 1645 BDRVQcow2State *s = bs->opaque; 1646 bool is_active_l1 = (l1_table == s->l1_table); 1647 uint64_t *l2_table = NULL; 1648 int ret; 1649 int i, j; 1650 1651 if (!is_active_l1) { 1652 /* inactive L2 tables require a buffer to be stored in when loading 1653 * them from disk */ 1654 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); 1655 if (l2_table == NULL) { 1656 return -ENOMEM; 1657 } 1658 } 1659 1660 for (i = 0; i < l1_size; i++) { 1661 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1662 bool l2_dirty = false; 1663 uint64_t l2_refcount; 1664 1665 if (!l2_offset) { 1666 /* unallocated */ 1667 (*visited_l1_entries)++; 1668 if (status_cb) { 1669 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1670 } 1671 continue; 1672 } 1673 1674 if (offset_into_cluster(s, l2_offset)) { 1675 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1676 PRIx64 " unaligned (L1 index: %#x)", 1677 l2_offset, i); 1678 ret = -EIO; 1679 goto fail; 1680 } 1681 1682 if (is_active_l1) { 1683 /* get active L2 tables from cache */ 1684 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1685 (void **)&l2_table); 1686 } else { 1687 /* load inactive L2 tables from disk */ 1688 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1689 (void *)l2_table, s->cluster_sectors); 1690 } 1691 if (ret < 0) { 1692 goto fail; 1693 } 1694 1695 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1696 &l2_refcount); 1697 if (ret < 0) { 1698 goto fail; 1699 } 1700 1701 for (j = 0; j < s->l2_size; j++) { 1702 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1703 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1704 int cluster_type = qcow2_get_cluster_type(l2_entry); 1705 bool preallocated = offset != 0; 1706 1707 if (cluster_type != QCOW2_CLUSTER_ZERO) { 1708 continue; 1709 } 1710 1711 if (!preallocated) { 1712 if (!bs->backing) { 1713 /* not backed; therefore we can simply deallocate the 1714 * cluster */ 1715 l2_table[j] = 0; 1716 l2_dirty = true; 1717 continue; 1718 } 1719 1720 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1721 if (offset < 0) { 1722 ret = offset; 1723 goto fail; 1724 } 1725 1726 if (l2_refcount > 1) { 1727 /* For shared L2 tables, set the refcount accordingly (it is 1728 * already 1 and needs to be l2_refcount) */ 1729 ret = qcow2_update_cluster_refcount(bs, 1730 offset >> s->cluster_bits, 1731 refcount_diff(1, l2_refcount), false, 1732 QCOW2_DISCARD_OTHER); 1733 if (ret < 0) { 1734 qcow2_free_clusters(bs, offset, s->cluster_size, 1735 QCOW2_DISCARD_OTHER); 1736 goto fail; 1737 } 1738 } 1739 } 1740 1741 if (offset_into_cluster(s, offset)) { 1742 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1743 "%#" PRIx64 " unaligned (L2 offset: %#" 1744 PRIx64 ", L2 index: %#x)", offset, 1745 l2_offset, j); 1746 if (!preallocated) { 1747 qcow2_free_clusters(bs, offset, s->cluster_size, 1748 QCOW2_DISCARD_ALWAYS); 1749 } 1750 ret = -EIO; 1751 goto fail; 1752 } 1753 1754 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1755 if (ret < 0) { 1756 if (!preallocated) { 1757 qcow2_free_clusters(bs, offset, s->cluster_size, 1758 QCOW2_DISCARD_ALWAYS); 1759 } 1760 goto fail; 1761 } 1762 1763 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0); 1764 if (ret < 0) { 1765 if (!preallocated) { 1766 qcow2_free_clusters(bs, offset, s->cluster_size, 1767 QCOW2_DISCARD_ALWAYS); 1768 } 1769 goto fail; 1770 } 1771 1772 if (l2_refcount == 1) { 1773 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1774 } else { 1775 l2_table[j] = cpu_to_be64(offset); 1776 } 1777 l2_dirty = true; 1778 } 1779 1780 if (is_active_l1) { 1781 if (l2_dirty) { 1782 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1783 qcow2_cache_depends_on_flush(s->l2_table_cache); 1784 } 1785 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1786 } else { 1787 if (l2_dirty) { 1788 ret = qcow2_pre_write_overlap_check(bs, 1789 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1790 s->cluster_size); 1791 if (ret < 0) { 1792 goto fail; 1793 } 1794 1795 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1796 (void *)l2_table, s->cluster_sectors); 1797 if (ret < 0) { 1798 goto fail; 1799 } 1800 } 1801 } 1802 1803 (*visited_l1_entries)++; 1804 if (status_cb) { 1805 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1806 } 1807 } 1808 1809 ret = 0; 1810 1811 fail: 1812 if (l2_table) { 1813 if (!is_active_l1) { 1814 qemu_vfree(l2_table); 1815 } else { 1816 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1817 } 1818 } 1819 return ret; 1820 } 1821 1822 /* 1823 * For backed images, expands all zero clusters on the image. For non-backed 1824 * images, deallocates all non-pre-allocated zero clusters (and claims the 1825 * allocation for pre-allocated ones). This is important for downgrading to a 1826 * qcow2 version which doesn't yet support metadata zero clusters. 1827 */ 1828 int qcow2_expand_zero_clusters(BlockDriverState *bs, 1829 BlockDriverAmendStatusCB *status_cb, 1830 void *cb_opaque) 1831 { 1832 BDRVQcow2State *s = bs->opaque; 1833 uint64_t *l1_table = NULL; 1834 int64_t l1_entries = 0, visited_l1_entries = 0; 1835 int ret; 1836 int i, j; 1837 1838 if (status_cb) { 1839 l1_entries = s->l1_size; 1840 for (i = 0; i < s->nb_snapshots; i++) { 1841 l1_entries += s->snapshots[i].l1_size; 1842 } 1843 } 1844 1845 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1846 &visited_l1_entries, l1_entries, 1847 status_cb, cb_opaque); 1848 if (ret < 0) { 1849 goto fail; 1850 } 1851 1852 /* Inactive L1 tables may point to active L2 tables - therefore it is 1853 * necessary to flush the L2 table cache before trying to access the L2 1854 * tables pointed to by inactive L1 entries (else we might try to expand 1855 * zero clusters that have already been expanded); furthermore, it is also 1856 * necessary to empty the L2 table cache, since it may contain tables which 1857 * are now going to be modified directly on disk, bypassing the cache. 1858 * qcow2_cache_empty() does both for us. */ 1859 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1860 if (ret < 0) { 1861 goto fail; 1862 } 1863 1864 for (i = 0; i < s->nb_snapshots; i++) { 1865 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size * 1866 sizeof(uint64_t), BDRV_SECTOR_SIZE); 1867 1868 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1869 1870 ret = bdrv_read(bs->file, 1871 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, 1872 (void *)l1_table, l1_sectors); 1873 if (ret < 0) { 1874 goto fail; 1875 } 1876 1877 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1878 be64_to_cpus(&l1_table[j]); 1879 } 1880 1881 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1882 &visited_l1_entries, l1_entries, 1883 status_cb, cb_opaque); 1884 if (ret < 0) { 1885 goto fail; 1886 } 1887 } 1888 1889 ret = 0; 1890 1891 fail: 1892 g_free(l1_table); 1893 return ret; 1894 } 1895