1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qemu-common.h" 30 #include "block/block_int.h" 31 #include "qcow2.h" 32 #include "qemu/bswap.h" 33 #include "trace.h" 34 35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size) 36 { 37 BDRVQcow2State *s = bs->opaque; 38 int new_l1_size, i, ret; 39 40 if (exact_size >= s->l1_size) { 41 return 0; 42 } 43 44 new_l1_size = exact_size; 45 46 #ifdef DEBUG_ALLOC2 47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); 48 #endif 49 50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); 51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset + 52 new_l1_size * sizeof(uint64_t), 53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0); 54 if (ret < 0) { 55 goto fail; 56 } 57 58 ret = bdrv_flush(bs->file->bs); 59 if (ret < 0) { 60 goto fail; 61 } 62 63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); 64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { 65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { 66 continue; 67 } 68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, 69 s->cluster_size, QCOW2_DISCARD_ALWAYS); 70 s->l1_table[i] = 0; 71 } 72 return 0; 73 74 fail: 75 /* 76 * If the write in the l1_table failed the image may contain a partially 77 * overwritten l1_table. In this case it would be better to clear the 78 * l1_table in memory to avoid possible image corruption. 79 */ 80 memset(s->l1_table + new_l1_size, 0, 81 (s->l1_size - new_l1_size) * sizeof(uint64_t)); 82 return ret; 83 } 84 85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 86 bool exact_size) 87 { 88 BDRVQcow2State *s = bs->opaque; 89 int new_l1_size2, ret, i; 90 uint64_t *new_l1_table; 91 int64_t old_l1_table_offset, old_l1_size; 92 int64_t new_l1_table_offset, new_l1_size; 93 uint8_t data[12]; 94 95 if (min_size <= s->l1_size) 96 return 0; 97 98 /* Do a sanity check on min_size before trying to calculate new_l1_size 99 * (this prevents overflows during the while loop for the calculation of 100 * new_l1_size) */ 101 if (min_size > INT_MAX / sizeof(uint64_t)) { 102 return -EFBIG; 103 } 104 105 if (exact_size) { 106 new_l1_size = min_size; 107 } else { 108 /* Bump size up to reduce the number of times we have to grow */ 109 new_l1_size = s->l1_size; 110 if (new_l1_size == 0) { 111 new_l1_size = 1; 112 } 113 while (min_size > new_l1_size) { 114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); 115 } 116 } 117 118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { 120 return -EFBIG; 121 } 122 123 #ifdef DEBUG_ALLOC2 124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 125 s->l1_size, new_l1_size); 126 #endif 127 128 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 129 new_l1_table = qemu_try_blockalign(bs->file->bs, 130 ROUND_UP(new_l1_size2, 512)); 131 if (new_l1_table == NULL) { 132 return -ENOMEM; 133 } 134 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512)); 135 136 if (s->l1_size) { 137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 138 } 139 140 /* write new table (align to cluster) */ 141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 143 if (new_l1_table_offset < 0) { 144 qemu_vfree(new_l1_table); 145 return new_l1_table_offset; 146 } 147 148 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 149 if (ret < 0) { 150 goto fail; 151 } 152 153 /* the L1 position has not yet been updated, so these clusters must 154 * indeed be completely free */ 155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 156 new_l1_size2, false); 157 if (ret < 0) { 158 goto fail; 159 } 160 161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 162 for(i = 0; i < s->l1_size; i++) 163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, 165 new_l1_table, new_l1_size2); 166 if (ret < 0) 167 goto fail; 168 for(i = 0; i < s->l1_size; i++) 169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 170 171 /* set new table */ 172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 173 stl_be_p(data, new_l1_size); 174 stq_be_p(data + 4, new_l1_table_offset); 175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 176 data, sizeof(data)); 177 if (ret < 0) { 178 goto fail; 179 } 180 qemu_vfree(s->l1_table); 181 old_l1_table_offset = s->l1_table_offset; 182 s->l1_table_offset = new_l1_table_offset; 183 s->l1_table = new_l1_table; 184 old_l1_size = s->l1_size; 185 s->l1_size = new_l1_size; 186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 187 QCOW2_DISCARD_OTHER); 188 return 0; 189 fail: 190 qemu_vfree(new_l1_table); 191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 192 QCOW2_DISCARD_OTHER); 193 return ret; 194 } 195 196 /* 197 * l2_load 198 * 199 * @bs: The BlockDriverState 200 * @offset: A guest offset, used to calculate what slice of the L2 201 * table to load. 202 * @l2_offset: Offset to the L2 table in the image file. 203 * @l2_slice: Location to store the pointer to the L2 slice. 204 * 205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables 206 * that are loaded by the qcow2 cache). If the slice is in the cache, 207 * the cache is used; otherwise the L2 slice is loaded from the image 208 * file. 209 */ 210 static int l2_load(BlockDriverState *bs, uint64_t offset, 211 uint64_t l2_offset, uint64_t **l2_slice) 212 { 213 BDRVQcow2State *s = bs->opaque; 214 int start_of_slice = sizeof(uint64_t) * 215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset)); 216 217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice, 218 (void **)l2_slice); 219 } 220 221 /* 222 * Writes one sector of the L1 table to the disk (can't update single entries 223 * and we really don't want bdrv_pread to perform a read-modify-write) 224 */ 225 #define L1_ENTRIES_PER_SECTOR (512 / 8) 226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 227 { 228 BDRVQcow2State *s = bs->opaque; 229 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 230 int l1_start_index; 231 int i, ret; 232 233 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 234 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 235 i++) 236 { 237 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 238 } 239 240 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 241 s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false); 242 if (ret < 0) { 243 return ret; 244 } 245 246 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 247 ret = bdrv_pwrite_sync(bs->file, 248 s->l1_table_offset + 8 * l1_start_index, 249 buf, sizeof(buf)); 250 if (ret < 0) { 251 return ret; 252 } 253 254 return 0; 255 } 256 257 /* 258 * l2_allocate 259 * 260 * Allocate a new l2 entry in the file. If l1_index points to an already 261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 262 * table) copy the contents of the old L2 table into the newly allocated one. 263 * Otherwise the new table is initialized with zeros. 264 * 265 */ 266 267 static int l2_allocate(BlockDriverState *bs, int l1_index) 268 { 269 BDRVQcow2State *s = bs->opaque; 270 uint64_t old_l2_offset; 271 uint64_t *l2_slice = NULL; 272 unsigned slice, slice_size2, n_slices; 273 int64_t l2_offset; 274 int ret; 275 276 old_l2_offset = s->l1_table[l1_index]; 277 278 trace_qcow2_l2_allocate(bs, l1_index); 279 280 /* allocate a new l2 entry */ 281 282 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 283 if (l2_offset < 0) { 284 ret = l2_offset; 285 goto fail; 286 } 287 288 /* The offset must fit in the offset field of the L1 table entry */ 289 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset); 290 291 /* If we're allocating the table at offset 0 then something is wrong */ 292 if (l2_offset == 0) { 293 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 294 "allocation of L2 table at offset 0"); 295 ret = -EIO; 296 goto fail; 297 } 298 299 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 300 if (ret < 0) { 301 goto fail; 302 } 303 304 /* allocate a new entry in the l2 cache */ 305 306 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 307 n_slices = s->cluster_size / slice_size2; 308 309 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 310 for (slice = 0; slice < n_slices; slice++) { 311 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, 312 l2_offset + slice * slice_size2, 313 (void **) &l2_slice); 314 if (ret < 0) { 315 goto fail; 316 } 317 318 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 319 /* if there was no old l2 table, clear the new slice */ 320 memset(l2_slice, 0, slice_size2); 321 } else { 322 uint64_t *old_slice; 323 uint64_t old_l2_slice_offset = 324 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2; 325 326 /* if there was an old l2 table, read a slice from the disk */ 327 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 328 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset, 329 (void **) &old_slice); 330 if (ret < 0) { 331 goto fail; 332 } 333 334 memcpy(l2_slice, old_slice, slice_size2); 335 336 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice); 337 } 338 339 /* write the l2 slice to the file */ 340 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 341 342 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 343 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 344 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 345 } 346 347 ret = qcow2_cache_flush(bs, s->l2_table_cache); 348 if (ret < 0) { 349 goto fail; 350 } 351 352 /* update the L1 entry */ 353 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 354 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 355 ret = qcow2_write_l1_entry(bs, l1_index); 356 if (ret < 0) { 357 goto fail; 358 } 359 360 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 361 return 0; 362 363 fail: 364 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 365 if (l2_slice != NULL) { 366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 367 } 368 s->l1_table[l1_index] = old_l2_offset; 369 if (l2_offset > 0) { 370 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 371 QCOW2_DISCARD_ALWAYS); 372 } 373 return ret; 374 } 375 376 /* 377 * Checks how many clusters in a given L2 slice are contiguous in the image 378 * file. As soon as one of the flags in the bitmask stop_flags changes compared 379 * to the first cluster, the search is stopped and the cluster is not counted 380 * as contiguous. (This allows it, for example, to stop at the first compressed 381 * cluster which may require a different handling) 382 */ 383 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters, 384 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags) 385 { 386 int i; 387 QCow2ClusterType first_cluster_type; 388 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 389 uint64_t first_entry = be64_to_cpu(l2_slice[0]); 390 uint64_t offset = first_entry & mask; 391 392 first_cluster_type = qcow2_get_cluster_type(bs, first_entry); 393 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) { 394 return 0; 395 } 396 397 /* must be allocated */ 398 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL || 399 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC); 400 401 for (i = 0; i < nb_clusters; i++) { 402 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask; 403 if (offset + (uint64_t) i * cluster_size != l2_entry) { 404 break; 405 } 406 } 407 408 return i; 409 } 410 411 /* 412 * Checks how many consecutive unallocated clusters in a given L2 413 * slice have the same cluster type. 414 */ 415 static int count_contiguous_clusters_unallocated(BlockDriverState *bs, 416 int nb_clusters, 417 uint64_t *l2_slice, 418 QCow2ClusterType wanted_type) 419 { 420 int i; 421 422 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN || 423 wanted_type == QCOW2_CLUSTER_UNALLOCATED); 424 for (i = 0; i < nb_clusters; i++) { 425 uint64_t entry = be64_to_cpu(l2_slice[i]); 426 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry); 427 428 if (type != wanted_type) { 429 break; 430 } 431 } 432 433 return i; 434 } 435 436 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs, 437 uint64_t src_cluster_offset, 438 unsigned offset_in_cluster, 439 QEMUIOVector *qiov) 440 { 441 int ret; 442 443 if (qiov->size == 0) { 444 return 0; 445 } 446 447 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 448 449 if (!bs->drv) { 450 return -ENOMEDIUM; 451 } 452 453 /* Call .bdrv_co_readv() directly instead of using the public block-layer 454 * interface. This avoids double I/O throttling and request tracking, 455 * which can lead to deadlock when block layer copy-on-read is enabled. 456 */ 457 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, 458 qiov->size, qiov, 0); 459 if (ret < 0) { 460 return ret; 461 } 462 463 return 0; 464 } 465 466 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs, 467 uint64_t src_cluster_offset, 468 uint64_t cluster_offset, 469 unsigned offset_in_cluster, 470 uint8_t *buffer, 471 unsigned bytes) 472 { 473 if (bytes && bs->encrypted) { 474 BDRVQcow2State *s = bs->opaque; 475 int64_t offset = (s->crypt_physical_offset ? 476 (cluster_offset + offset_in_cluster) : 477 (src_cluster_offset + offset_in_cluster)); 478 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); 479 assert((bytes & ~BDRV_SECTOR_MASK) == 0); 480 assert(s->crypto); 481 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) { 482 return false; 483 } 484 } 485 return true; 486 } 487 488 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs, 489 uint64_t cluster_offset, 490 unsigned offset_in_cluster, 491 QEMUIOVector *qiov) 492 { 493 BDRVQcow2State *s = bs->opaque; 494 int ret; 495 496 if (qiov->size == 0) { 497 return 0; 498 } 499 500 ret = qcow2_pre_write_overlap_check(bs, 0, 501 cluster_offset + offset_in_cluster, qiov->size, true); 502 if (ret < 0) { 503 return ret; 504 } 505 506 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 507 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster, 508 qiov->size, qiov, 0); 509 if (ret < 0) { 510 return ret; 511 } 512 513 return 0; 514 } 515 516 517 /* 518 * get_cluster_offset 519 * 520 * For a given offset of the virtual disk, find the cluster type and offset in 521 * the qcow2 file. The offset is stored in *cluster_offset. 522 * 523 * On entry, *bytes is the maximum number of contiguous bytes starting at 524 * offset that we are interested in. 525 * 526 * On exit, *bytes is the number of bytes starting at offset that have the same 527 * cluster type and (if applicable) are stored contiguously in the image file. 528 * Compressed clusters are always returned one by one. 529 * 530 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 531 * cases. 532 */ 533 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 534 unsigned int *bytes, uint64_t *cluster_offset) 535 { 536 BDRVQcow2State *s = bs->opaque; 537 unsigned int l2_index; 538 uint64_t l1_index, l2_offset, *l2_slice; 539 int c; 540 unsigned int offset_in_cluster; 541 uint64_t bytes_available, bytes_needed, nb_clusters; 542 QCow2ClusterType type; 543 int ret; 544 545 offset_in_cluster = offset_into_cluster(s, offset); 546 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 547 548 /* compute how many bytes there are between the start of the cluster 549 * containing offset and the end of the l2 slice that contains 550 * the entry pointing to it */ 551 bytes_available = 552 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset))) 553 << s->cluster_bits; 554 555 if (bytes_needed > bytes_available) { 556 bytes_needed = bytes_available; 557 } 558 559 *cluster_offset = 0; 560 561 /* seek to the l2 offset in the l1 table */ 562 563 l1_index = offset_to_l1_index(s, offset); 564 if (l1_index >= s->l1_size) { 565 type = QCOW2_CLUSTER_UNALLOCATED; 566 goto out; 567 } 568 569 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 570 if (!l2_offset) { 571 type = QCOW2_CLUSTER_UNALLOCATED; 572 goto out; 573 } 574 575 if (offset_into_cluster(s, l2_offset)) { 576 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 577 " unaligned (L1 index: %#" PRIx64 ")", 578 l2_offset, l1_index); 579 return -EIO; 580 } 581 582 /* load the l2 slice in memory */ 583 584 ret = l2_load(bs, offset, l2_offset, &l2_slice); 585 if (ret < 0) { 586 return ret; 587 } 588 589 /* find the cluster offset for the given disk offset */ 590 591 l2_index = offset_to_l2_slice_index(s, offset); 592 *cluster_offset = be64_to_cpu(l2_slice[l2_index]); 593 594 nb_clusters = size_to_clusters(s, bytes_needed); 595 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 596 * integers; the minimum cluster size is 512, so this assertion is always 597 * true */ 598 assert(nb_clusters <= INT_MAX); 599 600 type = qcow2_get_cluster_type(bs, *cluster_offset); 601 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN || 602 type == QCOW2_CLUSTER_ZERO_ALLOC)) { 603 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 604 " in pre-v3 image (L2 offset: %#" PRIx64 605 ", L2 index: %#x)", l2_offset, l2_index); 606 ret = -EIO; 607 goto fail; 608 } 609 switch (type) { 610 case QCOW2_CLUSTER_COMPRESSED: 611 if (has_data_file(bs)) { 612 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster " 613 "entry found in image with external data " 614 "file (L2 offset: %#" PRIx64 ", L2 index: " 615 "%#x)", l2_offset, l2_index); 616 ret = -EIO; 617 goto fail; 618 } 619 /* Compressed clusters can only be processed one by one */ 620 c = 1; 621 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 622 break; 623 case QCOW2_CLUSTER_ZERO_PLAIN: 624 case QCOW2_CLUSTER_UNALLOCATED: 625 /* how many empty clusters ? */ 626 c = count_contiguous_clusters_unallocated(bs, nb_clusters, 627 &l2_slice[l2_index], type); 628 *cluster_offset = 0; 629 break; 630 case QCOW2_CLUSTER_ZERO_ALLOC: 631 case QCOW2_CLUSTER_NORMAL: 632 /* how many allocated clusters ? */ 633 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 634 &l2_slice[l2_index], QCOW_OFLAG_ZERO); 635 *cluster_offset &= L2E_OFFSET_MASK; 636 if (offset_into_cluster(s, *cluster_offset)) { 637 qcow2_signal_corruption(bs, true, -1, -1, 638 "Cluster allocation offset %#" 639 PRIx64 " unaligned (L2 offset: %#" PRIx64 640 ", L2 index: %#x)", *cluster_offset, 641 l2_offset, l2_index); 642 ret = -EIO; 643 goto fail; 644 } 645 if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster) 646 { 647 qcow2_signal_corruption(bs, true, -1, -1, 648 "External data file host cluster offset %#" 649 PRIx64 " does not match guest cluster " 650 "offset: %#" PRIx64 651 ", L2 index: %#x)", *cluster_offset, 652 offset - offset_in_cluster, l2_index); 653 ret = -EIO; 654 goto fail; 655 } 656 break; 657 default: 658 abort(); 659 } 660 661 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 662 663 bytes_available = (int64_t)c * s->cluster_size; 664 665 out: 666 if (bytes_available > bytes_needed) { 667 bytes_available = bytes_needed; 668 } 669 670 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 671 * subtracting offset_in_cluster will therefore definitely yield something 672 * not exceeding UINT_MAX */ 673 assert(bytes_available - offset_in_cluster <= UINT_MAX); 674 *bytes = bytes_available - offset_in_cluster; 675 676 return type; 677 678 fail: 679 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice); 680 return ret; 681 } 682 683 /* 684 * get_cluster_table 685 * 686 * for a given disk offset, load (and allocate if needed) 687 * the appropriate slice of its l2 table. 688 * 689 * the cluster index in the l2 slice is given to the caller. 690 * 691 * Returns 0 on success, -errno in failure case 692 */ 693 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 694 uint64_t **new_l2_slice, 695 int *new_l2_index) 696 { 697 BDRVQcow2State *s = bs->opaque; 698 unsigned int l2_index; 699 uint64_t l1_index, l2_offset; 700 uint64_t *l2_slice = NULL; 701 int ret; 702 703 /* seek to the l2 offset in the l1 table */ 704 705 l1_index = offset_to_l1_index(s, offset); 706 if (l1_index >= s->l1_size) { 707 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 708 if (ret < 0) { 709 return ret; 710 } 711 } 712 713 assert(l1_index < s->l1_size); 714 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 715 if (offset_into_cluster(s, l2_offset)) { 716 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 717 " unaligned (L1 index: %#" PRIx64 ")", 718 l2_offset, l1_index); 719 return -EIO; 720 } 721 722 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) { 723 /* First allocate a new L2 table (and do COW if needed) */ 724 ret = l2_allocate(bs, l1_index); 725 if (ret < 0) { 726 return ret; 727 } 728 729 /* Then decrease the refcount of the old table */ 730 if (l2_offset) { 731 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 732 QCOW2_DISCARD_OTHER); 733 } 734 735 /* Get the offset of the newly-allocated l2 table */ 736 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 737 assert(offset_into_cluster(s, l2_offset) == 0); 738 } 739 740 /* load the l2 slice in memory */ 741 ret = l2_load(bs, offset, l2_offset, &l2_slice); 742 if (ret < 0) { 743 return ret; 744 } 745 746 /* find the cluster offset for the given disk offset */ 747 748 l2_index = offset_to_l2_slice_index(s, offset); 749 750 *new_l2_slice = l2_slice; 751 *new_l2_index = l2_index; 752 753 return 0; 754 } 755 756 /* 757 * alloc_compressed_cluster_offset 758 * 759 * For a given offset on the virtual disk, allocate a new compressed cluster 760 * and put the host offset of the cluster into *host_offset. If a cluster is 761 * already allocated at the offset, return an error. 762 * 763 * Return 0 on success and -errno in error cases 764 */ 765 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 766 uint64_t offset, 767 int compressed_size, 768 uint64_t *host_offset) 769 { 770 BDRVQcow2State *s = bs->opaque; 771 int l2_index, ret; 772 uint64_t *l2_slice; 773 int64_t cluster_offset; 774 int nb_csectors; 775 776 if (has_data_file(bs)) { 777 return 0; 778 } 779 780 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 781 if (ret < 0) { 782 return ret; 783 } 784 785 /* Compression can't overwrite anything. Fail if the cluster was already 786 * allocated. */ 787 cluster_offset = be64_to_cpu(l2_slice[l2_index]); 788 if (cluster_offset & L2E_OFFSET_MASK) { 789 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 790 return -EIO; 791 } 792 793 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 794 if (cluster_offset < 0) { 795 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 796 return cluster_offset; 797 } 798 799 nb_csectors = 800 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE - 801 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE); 802 803 cluster_offset |= QCOW_OFLAG_COMPRESSED | 804 ((uint64_t)nb_csectors << s->csize_shift); 805 806 /* update L2 table */ 807 808 /* compressed clusters never have the copied flag */ 809 810 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 811 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 812 l2_slice[l2_index] = cpu_to_be64(cluster_offset); 813 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 814 815 *host_offset = cluster_offset & s->cluster_offset_mask; 816 return 0; 817 } 818 819 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m) 820 { 821 BDRVQcow2State *s = bs->opaque; 822 Qcow2COWRegion *start = &m->cow_start; 823 Qcow2COWRegion *end = &m->cow_end; 824 unsigned buffer_size; 825 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); 826 bool merge_reads; 827 uint8_t *start_buffer, *end_buffer; 828 QEMUIOVector qiov; 829 int ret; 830 831 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); 832 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); 833 assert(start->offset + start->nb_bytes <= end->offset); 834 assert(!m->data_qiov || m->data_qiov->size == data_bytes); 835 836 if (start->nb_bytes == 0 && end->nb_bytes == 0) { 837 return 0; 838 } 839 840 /* If we have to read both the start and end COW regions and the 841 * middle region is not too large then perform just one read 842 * operation */ 843 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; 844 if (merge_reads) { 845 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; 846 } else { 847 /* If we have to do two reads, add some padding in the middle 848 * if necessary to make sure that the end region is optimally 849 * aligned. */ 850 size_t align = bdrv_opt_mem_align(bs); 851 assert(align > 0 && align <= UINT_MAX); 852 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= 853 UINT_MAX - end->nb_bytes); 854 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; 855 } 856 857 /* Reserve a buffer large enough to store all the data that we're 858 * going to read */ 859 start_buffer = qemu_try_blockalign(bs, buffer_size); 860 if (start_buffer == NULL) { 861 return -ENOMEM; 862 } 863 /* The part of the buffer where the end region is located */ 864 end_buffer = start_buffer + buffer_size - end->nb_bytes; 865 866 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0)); 867 868 qemu_co_mutex_unlock(&s->lock); 869 /* First we read the existing data from both COW regions. We 870 * either read the whole region in one go, or the start and end 871 * regions separately. */ 872 if (merge_reads) { 873 qemu_iovec_add(&qiov, start_buffer, buffer_size); 874 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 875 } else { 876 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 877 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 878 if (ret < 0) { 879 goto fail; 880 } 881 882 qemu_iovec_reset(&qiov); 883 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 884 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); 885 } 886 if (ret < 0) { 887 goto fail; 888 } 889 890 /* Encrypt the data if necessary before writing it */ 891 if (bs->encrypted) { 892 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, 893 start->offset, start_buffer, 894 start->nb_bytes) || 895 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, 896 end->offset, end_buffer, end->nb_bytes)) { 897 ret = -EIO; 898 goto fail; 899 } 900 } 901 902 /* And now we can write everything. If we have the guest data we 903 * can write everything in one single operation */ 904 if (m->data_qiov) { 905 qemu_iovec_reset(&qiov); 906 if (start->nb_bytes) { 907 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 908 } 909 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes); 910 if (end->nb_bytes) { 911 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 912 } 913 /* NOTE: we have a write_aio blkdebug event here followed by 914 * a cow_write one in do_perform_cow_write(), but there's only 915 * one single I/O operation */ 916 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO); 917 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 918 } else { 919 /* If there's no guest data then write both COW regions separately */ 920 qemu_iovec_reset(&qiov); 921 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 922 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 923 if (ret < 0) { 924 goto fail; 925 } 926 927 qemu_iovec_reset(&qiov); 928 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 929 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); 930 } 931 932 fail: 933 qemu_co_mutex_lock(&s->lock); 934 935 /* 936 * Before we update the L2 table to actually point to the new cluster, we 937 * need to be sure that the refcounts have been increased and COW was 938 * handled. 939 */ 940 if (ret == 0) { 941 qcow2_cache_depends_on_flush(s->l2_table_cache); 942 } 943 944 qemu_vfree(start_buffer); 945 qemu_iovec_destroy(&qiov); 946 return ret; 947 } 948 949 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 950 { 951 BDRVQcow2State *s = bs->opaque; 952 int i, j = 0, l2_index, ret; 953 uint64_t *old_cluster, *l2_slice; 954 uint64_t cluster_offset = m->alloc_offset; 955 956 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 957 assert(m->nb_clusters > 0); 958 959 old_cluster = g_try_new(uint64_t, m->nb_clusters); 960 if (old_cluster == NULL) { 961 ret = -ENOMEM; 962 goto err; 963 } 964 965 /* copy content of unmodified sectors */ 966 ret = perform_cow(bs, m); 967 if (ret < 0) { 968 goto err; 969 } 970 971 /* Update L2 table. */ 972 if (s->use_lazy_refcounts) { 973 qcow2_mark_dirty(bs); 974 } 975 if (qcow2_need_accurate_refcounts(s)) { 976 qcow2_cache_set_dependency(bs, s->l2_table_cache, 977 s->refcount_block_cache); 978 } 979 980 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index); 981 if (ret < 0) { 982 goto err; 983 } 984 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 985 986 assert(l2_index + m->nb_clusters <= s->l2_slice_size); 987 for (i = 0; i < m->nb_clusters; i++) { 988 /* if two concurrent writes happen to the same unallocated cluster 989 * each write allocates separate cluster and writes data concurrently. 990 * The first one to complete updates l2 table with pointer to its 991 * cluster the second one has to do RMW (which is done above by 992 * perform_cow()), update l2 table with its cluster pointer and free 993 * old cluster. This is what this loop does */ 994 if (l2_slice[l2_index + i] != 0) { 995 old_cluster[j++] = l2_slice[l2_index + i]; 996 } 997 998 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset + 999 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 1000 } 1001 1002 1003 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1004 1005 /* 1006 * If this was a COW, we need to decrease the refcount of the old cluster. 1007 * 1008 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 1009 * clusters), the next write will reuse them anyway. 1010 */ 1011 if (!m->keep_old_clusters && j != 0) { 1012 for (i = 0; i < j; i++) { 1013 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 1014 QCOW2_DISCARD_NEVER); 1015 } 1016 } 1017 1018 ret = 0; 1019 err: 1020 g_free(old_cluster); 1021 return ret; 1022 } 1023 1024 /** 1025 * Frees the allocated clusters because the request failed and they won't 1026 * actually be linked. 1027 */ 1028 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m) 1029 { 1030 BDRVQcow2State *s = bs->opaque; 1031 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits, 1032 QCOW2_DISCARD_NEVER); 1033 } 1034 1035 /* 1036 * Returns the number of contiguous clusters that can be used for an allocating 1037 * write, but require COW to be performed (this includes yet unallocated space, 1038 * which must copy from the backing file) 1039 */ 1040 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters, 1041 uint64_t *l2_slice, int l2_index) 1042 { 1043 int i; 1044 1045 for (i = 0; i < nb_clusters; i++) { 1046 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]); 1047 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry); 1048 1049 switch(cluster_type) { 1050 case QCOW2_CLUSTER_NORMAL: 1051 if (l2_entry & QCOW_OFLAG_COPIED) { 1052 goto out; 1053 } 1054 break; 1055 case QCOW2_CLUSTER_UNALLOCATED: 1056 case QCOW2_CLUSTER_COMPRESSED: 1057 case QCOW2_CLUSTER_ZERO_PLAIN: 1058 case QCOW2_CLUSTER_ZERO_ALLOC: 1059 break; 1060 default: 1061 abort(); 1062 } 1063 } 1064 1065 out: 1066 assert(i <= nb_clusters); 1067 return i; 1068 } 1069 1070 /* 1071 * Check if there already is an AIO write request in flight which allocates 1072 * the same cluster. In this case we need to wait until the previous 1073 * request has completed and updated the L2 table accordingly. 1074 * 1075 * Returns: 1076 * 0 if there was no dependency. *cur_bytes indicates the number of 1077 * bytes from guest_offset that can be read before the next 1078 * dependency must be processed (or the request is complete) 1079 * 1080 * -EAGAIN if we had to wait for another request, previously gathered 1081 * information on cluster allocation may be invalid now. The caller 1082 * must start over anyway, so consider *cur_bytes undefined. 1083 */ 1084 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 1085 uint64_t *cur_bytes, QCowL2Meta **m) 1086 { 1087 BDRVQcow2State *s = bs->opaque; 1088 QCowL2Meta *old_alloc; 1089 uint64_t bytes = *cur_bytes; 1090 1091 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 1092 1093 uint64_t start = guest_offset; 1094 uint64_t end = start + bytes; 1095 uint64_t old_start = l2meta_cow_start(old_alloc); 1096 uint64_t old_end = l2meta_cow_end(old_alloc); 1097 1098 if (end <= old_start || start >= old_end) { 1099 /* No intersection */ 1100 } else { 1101 if (start < old_start) { 1102 /* Stop at the start of a running allocation */ 1103 bytes = old_start - start; 1104 } else { 1105 bytes = 0; 1106 } 1107 1108 /* Stop if already an l2meta exists. After yielding, it wouldn't 1109 * be valid any more, so we'd have to clean up the old L2Metas 1110 * and deal with requests depending on them before starting to 1111 * gather new ones. Not worth the trouble. */ 1112 if (bytes == 0 && *m) { 1113 *cur_bytes = 0; 1114 return 0; 1115 } 1116 1117 if (bytes == 0) { 1118 /* Wait for the dependency to complete. We need to recheck 1119 * the free/allocated clusters when we continue. */ 1120 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 1121 return -EAGAIN; 1122 } 1123 } 1124 } 1125 1126 /* Make sure that existing clusters and new allocations are only used up to 1127 * the next dependency if we shortened the request above */ 1128 *cur_bytes = bytes; 1129 1130 return 0; 1131 } 1132 1133 /* 1134 * Checks how many already allocated clusters that don't require a copy on 1135 * write there are at the given guest_offset (up to *bytes). If *host_offset is 1136 * not INV_OFFSET, only physically contiguous clusters beginning at this host 1137 * offset are counted. 1138 * 1139 * Note that guest_offset may not be cluster aligned. In this case, the 1140 * returned *host_offset points to exact byte referenced by guest_offset and 1141 * therefore isn't cluster aligned as well. 1142 * 1143 * Returns: 1144 * 0: if no allocated clusters are available at the given offset. 1145 * *bytes is normally unchanged. It is set to 0 if the cluster 1146 * is allocated and doesn't need COW, but doesn't have the right 1147 * physical offset. 1148 * 1149 * 1: if allocated clusters that don't require a COW are available at 1150 * the requested offset. *bytes may have decreased and describes 1151 * the length of the area that can be written to. 1152 * 1153 * -errno: in error cases 1154 */ 1155 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 1156 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1157 { 1158 BDRVQcow2State *s = bs->opaque; 1159 int l2_index; 1160 uint64_t cluster_offset; 1161 uint64_t *l2_slice; 1162 uint64_t nb_clusters; 1163 unsigned int keep_clusters; 1164 int ret; 1165 1166 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 1167 *bytes); 1168 1169 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset) 1170 == offset_into_cluster(s, *host_offset)); 1171 1172 /* 1173 * Calculate the number of clusters to look for. We stop at L2 slice 1174 * boundaries to keep things simple. 1175 */ 1176 nb_clusters = 1177 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1178 1179 l2_index = offset_to_l2_slice_index(s, guest_offset); 1180 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1181 assert(nb_clusters <= INT_MAX); 1182 1183 /* Find L2 entry for the first involved cluster */ 1184 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1185 if (ret < 0) { 1186 return ret; 1187 } 1188 1189 cluster_offset = be64_to_cpu(l2_slice[l2_index]); 1190 1191 /* Check how many clusters are already allocated and don't need COW */ 1192 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL 1193 && (cluster_offset & QCOW_OFLAG_COPIED)) 1194 { 1195 /* If a specific host_offset is required, check it */ 1196 bool offset_matches = 1197 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1198 1199 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1200 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1201 "%#llx unaligned (guest offset: %#" PRIx64 1202 ")", cluster_offset & L2E_OFFSET_MASK, 1203 guest_offset); 1204 ret = -EIO; 1205 goto out; 1206 } 1207 1208 if (*host_offset != INV_OFFSET && !offset_matches) { 1209 *bytes = 0; 1210 ret = 0; 1211 goto out; 1212 } 1213 1214 /* We keep all QCOW_OFLAG_COPIED clusters */ 1215 keep_clusters = 1216 count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 1217 &l2_slice[l2_index], 1218 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1219 assert(keep_clusters <= nb_clusters); 1220 1221 *bytes = MIN(*bytes, 1222 keep_clusters * s->cluster_size 1223 - offset_into_cluster(s, guest_offset)); 1224 1225 ret = 1; 1226 } else { 1227 ret = 0; 1228 } 1229 1230 /* Cleanup */ 1231 out: 1232 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1233 1234 /* Only return a host offset if we actually made progress. Otherwise we 1235 * would make requirements for handle_alloc() that it can't fulfill */ 1236 if (ret > 0) { 1237 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1238 + offset_into_cluster(s, guest_offset); 1239 } 1240 1241 return ret; 1242 } 1243 1244 /* 1245 * Allocates new clusters for the given guest_offset. 1246 * 1247 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1248 * contain the number of clusters that have been allocated and are contiguous 1249 * in the image file. 1250 * 1251 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file 1252 * at which the new clusters must start. *nb_clusters can be 0 on return in 1253 * this case if the cluster at host_offset is already in use. If *host_offset 1254 * is INV_OFFSET, the clusters can be allocated anywhere in the image file. 1255 * 1256 * *host_offset is updated to contain the offset into the image file at which 1257 * the first allocated cluster starts. 1258 * 1259 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1260 * function has been waiting for another request and the allocation must be 1261 * restarted, but the whole request should not be failed. 1262 */ 1263 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1264 uint64_t *host_offset, uint64_t *nb_clusters) 1265 { 1266 BDRVQcow2State *s = bs->opaque; 1267 1268 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1269 *host_offset, *nb_clusters); 1270 1271 if (has_data_file(bs)) { 1272 assert(*host_offset == INV_OFFSET || 1273 *host_offset == start_of_cluster(s, guest_offset)); 1274 *host_offset = start_of_cluster(s, guest_offset); 1275 return 0; 1276 } 1277 1278 /* Allocate new clusters */ 1279 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1280 if (*host_offset == INV_OFFSET) { 1281 int64_t cluster_offset = 1282 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1283 if (cluster_offset < 0) { 1284 return cluster_offset; 1285 } 1286 *host_offset = cluster_offset; 1287 return 0; 1288 } else { 1289 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1290 if (ret < 0) { 1291 return ret; 1292 } 1293 *nb_clusters = ret; 1294 return 0; 1295 } 1296 } 1297 1298 /* 1299 * Allocates new clusters for an area that either is yet unallocated or needs a 1300 * copy on write. If *host_offset is not INV_OFFSET, clusters are only 1301 * allocated if the new allocation can match the specified host offset. 1302 * 1303 * Note that guest_offset may not be cluster aligned. In this case, the 1304 * returned *host_offset points to exact byte referenced by guest_offset and 1305 * therefore isn't cluster aligned as well. 1306 * 1307 * Returns: 1308 * 0: if no clusters could be allocated. *bytes is set to 0, 1309 * *host_offset is left unchanged. 1310 * 1311 * 1: if new clusters were allocated. *bytes may be decreased if the 1312 * new allocation doesn't cover all of the requested area. 1313 * *host_offset is updated to contain the host offset of the first 1314 * newly allocated cluster. 1315 * 1316 * -errno: in error cases 1317 */ 1318 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1319 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1320 { 1321 BDRVQcow2State *s = bs->opaque; 1322 int l2_index; 1323 uint64_t *l2_slice; 1324 uint64_t entry; 1325 uint64_t nb_clusters; 1326 int ret; 1327 bool keep_old_clusters = false; 1328 1329 uint64_t alloc_cluster_offset = INV_OFFSET; 1330 1331 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1332 *bytes); 1333 assert(*bytes > 0); 1334 1335 /* 1336 * Calculate the number of clusters to look for. We stop at L2 slice 1337 * boundaries to keep things simple. 1338 */ 1339 nb_clusters = 1340 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1341 1342 l2_index = offset_to_l2_slice_index(s, guest_offset); 1343 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1344 assert(nb_clusters <= INT_MAX); 1345 1346 /* Find L2 entry for the first involved cluster */ 1347 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1348 if (ret < 0) { 1349 return ret; 1350 } 1351 1352 entry = be64_to_cpu(l2_slice[l2_index]); 1353 1354 /* For the moment, overwrite compressed clusters one by one */ 1355 if (entry & QCOW_OFLAG_COMPRESSED) { 1356 nb_clusters = 1; 1357 } else { 1358 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index); 1359 } 1360 1361 /* This function is only called when there were no non-COW clusters, so if 1362 * we can't find any unallocated or COW clusters either, something is 1363 * wrong with our code. */ 1364 assert(nb_clusters > 0); 1365 1366 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC && 1367 (entry & QCOW_OFLAG_COPIED) && 1368 (*host_offset == INV_OFFSET || 1369 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK))) 1370 { 1371 int preallocated_nb_clusters; 1372 1373 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) { 1374 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero " 1375 "cluster offset %#llx unaligned (guest " 1376 "offset: %#" PRIx64 ")", 1377 entry & L2E_OFFSET_MASK, guest_offset); 1378 ret = -EIO; 1379 goto fail; 1380 } 1381 1382 /* Try to reuse preallocated zero clusters; contiguous normal clusters 1383 * would be fine, too, but count_cow_clusters() above has limited 1384 * nb_clusters already to a range of COW clusters */ 1385 preallocated_nb_clusters = 1386 count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 1387 &l2_slice[l2_index], QCOW_OFLAG_COPIED); 1388 assert(preallocated_nb_clusters > 0); 1389 1390 nb_clusters = preallocated_nb_clusters; 1391 alloc_cluster_offset = entry & L2E_OFFSET_MASK; 1392 1393 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2() 1394 * should not free them. */ 1395 keep_old_clusters = true; 1396 } 1397 1398 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1399 1400 if (alloc_cluster_offset == INV_OFFSET) { 1401 /* Allocate, if necessary at a given offset in the image file */ 1402 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET : 1403 start_of_cluster(s, *host_offset); 1404 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1405 &nb_clusters); 1406 if (ret < 0) { 1407 goto fail; 1408 } 1409 1410 /* Can't extend contiguous allocation */ 1411 if (nb_clusters == 0) { 1412 *bytes = 0; 1413 return 0; 1414 } 1415 1416 assert(alloc_cluster_offset != INV_OFFSET); 1417 } 1418 1419 /* 1420 * Save info needed for meta data update. 1421 * 1422 * requested_bytes: Number of bytes from the start of the first 1423 * newly allocated cluster to the end of the (possibly shortened 1424 * before) write request. 1425 * 1426 * avail_bytes: Number of bytes from the start of the first 1427 * newly allocated to the end of the last newly allocated cluster. 1428 * 1429 * nb_bytes: The number of bytes from the start of the first 1430 * newly allocated cluster to the end of the area that the write 1431 * request actually writes to (excluding COW at the end) 1432 */ 1433 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1434 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); 1435 int nb_bytes = MIN(requested_bytes, avail_bytes); 1436 QCowL2Meta *old_m = *m; 1437 1438 *m = g_malloc0(sizeof(**m)); 1439 1440 **m = (QCowL2Meta) { 1441 .next = old_m, 1442 1443 .alloc_offset = alloc_cluster_offset, 1444 .offset = start_of_cluster(s, guest_offset), 1445 .nb_clusters = nb_clusters, 1446 1447 .keep_old_clusters = keep_old_clusters, 1448 1449 .cow_start = { 1450 .offset = 0, 1451 .nb_bytes = offset_into_cluster(s, guest_offset), 1452 }, 1453 .cow_end = { 1454 .offset = nb_bytes, 1455 .nb_bytes = avail_bytes - nb_bytes, 1456 }, 1457 }; 1458 qemu_co_queue_init(&(*m)->dependent_requests); 1459 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1460 1461 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1462 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1463 assert(*bytes != 0); 1464 1465 return 1; 1466 1467 fail: 1468 if (*m && (*m)->nb_clusters > 0) { 1469 QLIST_REMOVE(*m, next_in_flight); 1470 } 1471 return ret; 1472 } 1473 1474 /* 1475 * alloc_cluster_offset 1476 * 1477 * For a given offset on the virtual disk, find the cluster offset in qcow2 1478 * file. If the offset is not found, allocate a new cluster. 1479 * 1480 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1481 * other fields in m are meaningless. 1482 * 1483 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1484 * contiguous clusters that have been allocated. In this case, the other 1485 * fields of m are valid and contain information about the first allocated 1486 * cluster. 1487 * 1488 * If the request conflicts with another write request in flight, the coroutine 1489 * is queued and will be reentered when the dependency has completed. 1490 * 1491 * Return 0 on success and -errno in error cases 1492 */ 1493 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1494 unsigned int *bytes, uint64_t *host_offset, 1495 QCowL2Meta **m) 1496 { 1497 BDRVQcow2State *s = bs->opaque; 1498 uint64_t start, remaining; 1499 uint64_t cluster_offset; 1500 uint64_t cur_bytes; 1501 int ret; 1502 1503 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1504 1505 again: 1506 start = offset; 1507 remaining = *bytes; 1508 cluster_offset = INV_OFFSET; 1509 *host_offset = INV_OFFSET; 1510 cur_bytes = 0; 1511 *m = NULL; 1512 1513 while (true) { 1514 1515 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) { 1516 *host_offset = start_of_cluster(s, cluster_offset); 1517 } 1518 1519 assert(remaining >= cur_bytes); 1520 1521 start += cur_bytes; 1522 remaining -= cur_bytes; 1523 1524 if (cluster_offset != INV_OFFSET) { 1525 cluster_offset += cur_bytes; 1526 } 1527 1528 if (remaining == 0) { 1529 break; 1530 } 1531 1532 cur_bytes = remaining; 1533 1534 /* 1535 * Now start gathering as many contiguous clusters as possible: 1536 * 1537 * 1. Check for overlaps with in-flight allocations 1538 * 1539 * a) Overlap not in the first cluster -> shorten this request and 1540 * let the caller handle the rest in its next loop iteration. 1541 * 1542 * b) Real overlaps of two requests. Yield and restart the search 1543 * for contiguous clusters (the situation could have changed 1544 * while we were sleeping) 1545 * 1546 * c) TODO: Request starts in the same cluster as the in-flight 1547 * allocation ends. Shorten the COW of the in-fight allocation, 1548 * set cluster_offset to write to the same cluster and set up 1549 * the right synchronisation between the in-flight request and 1550 * the new one. 1551 */ 1552 ret = handle_dependencies(bs, start, &cur_bytes, m); 1553 if (ret == -EAGAIN) { 1554 /* Currently handle_dependencies() doesn't yield if we already had 1555 * an allocation. If it did, we would have to clean up the L2Meta 1556 * structs before starting over. */ 1557 assert(*m == NULL); 1558 goto again; 1559 } else if (ret < 0) { 1560 return ret; 1561 } else if (cur_bytes == 0) { 1562 break; 1563 } else { 1564 /* handle_dependencies() may have decreased cur_bytes (shortened 1565 * the allocations below) so that the next dependency is processed 1566 * correctly during the next loop iteration. */ 1567 } 1568 1569 /* 1570 * 2. Count contiguous COPIED clusters. 1571 */ 1572 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1573 if (ret < 0) { 1574 return ret; 1575 } else if (ret) { 1576 continue; 1577 } else if (cur_bytes == 0) { 1578 break; 1579 } 1580 1581 /* 1582 * 3. If the request still hasn't completed, allocate new clusters, 1583 * considering any cluster_offset of steps 1c or 2. 1584 */ 1585 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1586 if (ret < 0) { 1587 return ret; 1588 } else if (ret) { 1589 continue; 1590 } else { 1591 assert(cur_bytes == 0); 1592 break; 1593 } 1594 } 1595 1596 *bytes -= remaining; 1597 assert(*bytes > 0); 1598 assert(*host_offset != INV_OFFSET); 1599 1600 return 0; 1601 } 1602 1603 /* 1604 * This discards as many clusters of nb_clusters as possible at once (i.e. 1605 * all clusters in the same L2 slice) and returns the number of discarded 1606 * clusters. 1607 */ 1608 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1609 uint64_t nb_clusters, 1610 enum qcow2_discard_type type, bool full_discard) 1611 { 1612 BDRVQcow2State *s = bs->opaque; 1613 uint64_t *l2_slice; 1614 int l2_index; 1615 int ret; 1616 int i; 1617 1618 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1619 if (ret < 0) { 1620 return ret; 1621 } 1622 1623 /* Limit nb_clusters to one L2 slice */ 1624 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1625 assert(nb_clusters <= INT_MAX); 1626 1627 for (i = 0; i < nb_clusters; i++) { 1628 uint64_t old_l2_entry; 1629 1630 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]); 1631 1632 /* 1633 * If full_discard is false, make sure that a discarded area reads back 1634 * as zeroes for v3 images (we cannot do it for v2 without actually 1635 * writing a zero-filled buffer). We can skip the operation if the 1636 * cluster is already marked as zero, or if it's unallocated and we 1637 * don't have a backing file. 1638 * 1639 * TODO We might want to use bdrv_block_status(bs) here, but we're 1640 * holding s->lock, so that doesn't work today. 1641 * 1642 * If full_discard is true, the sector should not read back as zeroes, 1643 * but rather fall through to the backing file. 1644 */ 1645 switch (qcow2_get_cluster_type(bs, old_l2_entry)) { 1646 case QCOW2_CLUSTER_UNALLOCATED: 1647 if (full_discard || !bs->backing) { 1648 continue; 1649 } 1650 break; 1651 1652 case QCOW2_CLUSTER_ZERO_PLAIN: 1653 if (!full_discard) { 1654 continue; 1655 } 1656 break; 1657 1658 case QCOW2_CLUSTER_ZERO_ALLOC: 1659 case QCOW2_CLUSTER_NORMAL: 1660 case QCOW2_CLUSTER_COMPRESSED: 1661 break; 1662 1663 default: 1664 abort(); 1665 } 1666 1667 /* First remove L2 entries */ 1668 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1669 if (!full_discard && s->qcow_version >= 3) { 1670 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1671 } else { 1672 l2_slice[l2_index + i] = cpu_to_be64(0); 1673 } 1674 1675 /* Then decrease the refcount */ 1676 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1677 } 1678 1679 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1680 1681 return nb_clusters; 1682 } 1683 1684 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, 1685 uint64_t bytes, enum qcow2_discard_type type, 1686 bool full_discard) 1687 { 1688 BDRVQcow2State *s = bs->opaque; 1689 uint64_t end_offset = offset + bytes; 1690 uint64_t nb_clusters; 1691 int64_t cleared; 1692 int ret; 1693 1694 /* Caller must pass aligned values, except at image end */ 1695 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1696 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1697 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1698 1699 nb_clusters = size_to_clusters(s, bytes); 1700 1701 s->cache_discards = true; 1702 1703 /* Each L2 slice is handled by its own loop iteration */ 1704 while (nb_clusters > 0) { 1705 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type, 1706 full_discard); 1707 if (cleared < 0) { 1708 ret = cleared; 1709 goto fail; 1710 } 1711 1712 nb_clusters -= cleared; 1713 offset += (cleared * s->cluster_size); 1714 } 1715 1716 ret = 0; 1717 fail: 1718 s->cache_discards = false; 1719 qcow2_process_discards(bs, ret); 1720 1721 return ret; 1722 } 1723 1724 /* 1725 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1726 * all clusters in the same L2 slice) and returns the number of zeroed 1727 * clusters. 1728 */ 1729 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1730 uint64_t nb_clusters, int flags) 1731 { 1732 BDRVQcow2State *s = bs->opaque; 1733 uint64_t *l2_slice; 1734 int l2_index; 1735 int ret; 1736 int i; 1737 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP); 1738 1739 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1740 if (ret < 0) { 1741 return ret; 1742 } 1743 1744 /* Limit nb_clusters to one L2 slice */ 1745 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1746 assert(nb_clusters <= INT_MAX); 1747 1748 for (i = 0; i < nb_clusters; i++) { 1749 uint64_t old_offset; 1750 QCow2ClusterType cluster_type; 1751 1752 old_offset = be64_to_cpu(l2_slice[l2_index + i]); 1753 1754 /* 1755 * Minimize L2 changes if the cluster already reads back as 1756 * zeroes with correct allocation. 1757 */ 1758 cluster_type = qcow2_get_cluster_type(bs, old_offset); 1759 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN || 1760 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) { 1761 continue; 1762 } 1763 1764 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1765 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) { 1766 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1767 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1768 } else { 1769 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1770 } 1771 } 1772 1773 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1774 1775 return nb_clusters; 1776 } 1777 1778 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset, 1779 uint64_t bytes, int flags) 1780 { 1781 BDRVQcow2State *s = bs->opaque; 1782 uint64_t end_offset = offset + bytes; 1783 uint64_t nb_clusters; 1784 int64_t cleared; 1785 int ret; 1786 1787 /* If we have to stay in sync with an external data file, zero out 1788 * s->data_file first. */ 1789 if (data_file_is_raw(bs)) { 1790 assert(has_data_file(bs)); 1791 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags); 1792 if (ret < 0) { 1793 return ret; 1794 } 1795 } 1796 1797 /* Caller must pass aligned values, except at image end */ 1798 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1799 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1800 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1801 1802 /* The zero flag is only supported by version 3 and newer */ 1803 if (s->qcow_version < 3) { 1804 return -ENOTSUP; 1805 } 1806 1807 /* Each L2 slice is handled by its own loop iteration */ 1808 nb_clusters = size_to_clusters(s, bytes); 1809 1810 s->cache_discards = true; 1811 1812 while (nb_clusters > 0) { 1813 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags); 1814 if (cleared < 0) { 1815 ret = cleared; 1816 goto fail; 1817 } 1818 1819 nb_clusters -= cleared; 1820 offset += (cleared * s->cluster_size); 1821 } 1822 1823 ret = 0; 1824 fail: 1825 s->cache_discards = false; 1826 qcow2_process_discards(bs, ret); 1827 1828 return ret; 1829 } 1830 1831 /* 1832 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1833 * non-backed non-pre-allocated zero clusters). 1834 * 1835 * l1_entries and *visited_l1_entries are used to keep track of progress for 1836 * status_cb(). l1_entries contains the total number of L1 entries and 1837 * *visited_l1_entries counts all visited L1 entries. 1838 */ 1839 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1840 int l1_size, int64_t *visited_l1_entries, 1841 int64_t l1_entries, 1842 BlockDriverAmendStatusCB *status_cb, 1843 void *cb_opaque) 1844 { 1845 BDRVQcow2State *s = bs->opaque; 1846 bool is_active_l1 = (l1_table == s->l1_table); 1847 uint64_t *l2_slice = NULL; 1848 unsigned slice, slice_size2, n_slices; 1849 int ret; 1850 int i, j; 1851 1852 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 1853 n_slices = s->cluster_size / slice_size2; 1854 1855 if (!is_active_l1) { 1856 /* inactive L2 tables require a buffer to be stored in when loading 1857 * them from disk */ 1858 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2); 1859 if (l2_slice == NULL) { 1860 return -ENOMEM; 1861 } 1862 } 1863 1864 for (i = 0; i < l1_size; i++) { 1865 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1866 uint64_t l2_refcount; 1867 1868 if (!l2_offset) { 1869 /* unallocated */ 1870 (*visited_l1_entries)++; 1871 if (status_cb) { 1872 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1873 } 1874 continue; 1875 } 1876 1877 if (offset_into_cluster(s, l2_offset)) { 1878 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1879 PRIx64 " unaligned (L1 index: %#x)", 1880 l2_offset, i); 1881 ret = -EIO; 1882 goto fail; 1883 } 1884 1885 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1886 &l2_refcount); 1887 if (ret < 0) { 1888 goto fail; 1889 } 1890 1891 for (slice = 0; slice < n_slices; slice++) { 1892 uint64_t slice_offset = l2_offset + slice * slice_size2; 1893 bool l2_dirty = false; 1894 if (is_active_l1) { 1895 /* get active L2 tables from cache */ 1896 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset, 1897 (void **)&l2_slice); 1898 } else { 1899 /* load inactive L2 tables from disk */ 1900 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2); 1901 } 1902 if (ret < 0) { 1903 goto fail; 1904 } 1905 1906 for (j = 0; j < s->l2_slice_size; j++) { 1907 uint64_t l2_entry = be64_to_cpu(l2_slice[j]); 1908 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1909 QCow2ClusterType cluster_type = 1910 qcow2_get_cluster_type(bs, l2_entry); 1911 1912 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && 1913 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { 1914 continue; 1915 } 1916 1917 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1918 if (!bs->backing) { 1919 /* not backed; therefore we can simply deallocate the 1920 * cluster */ 1921 l2_slice[j] = 0; 1922 l2_dirty = true; 1923 continue; 1924 } 1925 1926 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1927 if (offset < 0) { 1928 ret = offset; 1929 goto fail; 1930 } 1931 1932 if (l2_refcount > 1) { 1933 /* For shared L2 tables, set the refcount accordingly 1934 * (it is already 1 and needs to be l2_refcount) */ 1935 ret = qcow2_update_cluster_refcount( 1936 bs, offset >> s->cluster_bits, 1937 refcount_diff(1, l2_refcount), false, 1938 QCOW2_DISCARD_OTHER); 1939 if (ret < 0) { 1940 qcow2_free_clusters(bs, offset, s->cluster_size, 1941 QCOW2_DISCARD_OTHER); 1942 goto fail; 1943 } 1944 } 1945 } 1946 1947 if (offset_into_cluster(s, offset)) { 1948 int l2_index = slice * s->l2_slice_size + j; 1949 qcow2_signal_corruption( 1950 bs, true, -1, -1, 1951 "Cluster allocation offset " 1952 "%#" PRIx64 " unaligned (L2 offset: %#" 1953 PRIx64 ", L2 index: %#x)", offset, 1954 l2_offset, l2_index); 1955 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1956 qcow2_free_clusters(bs, offset, s->cluster_size, 1957 QCOW2_DISCARD_ALWAYS); 1958 } 1959 ret = -EIO; 1960 goto fail; 1961 } 1962 1963 ret = qcow2_pre_write_overlap_check(bs, 0, offset, 1964 s->cluster_size, true); 1965 if (ret < 0) { 1966 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1967 qcow2_free_clusters(bs, offset, s->cluster_size, 1968 QCOW2_DISCARD_ALWAYS); 1969 } 1970 goto fail; 1971 } 1972 1973 ret = bdrv_pwrite_zeroes(s->data_file, offset, 1974 s->cluster_size, 0); 1975 if (ret < 0) { 1976 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1977 qcow2_free_clusters(bs, offset, s->cluster_size, 1978 QCOW2_DISCARD_ALWAYS); 1979 } 1980 goto fail; 1981 } 1982 1983 if (l2_refcount == 1) { 1984 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1985 } else { 1986 l2_slice[j] = cpu_to_be64(offset); 1987 } 1988 l2_dirty = true; 1989 } 1990 1991 if (is_active_l1) { 1992 if (l2_dirty) { 1993 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1994 qcow2_cache_depends_on_flush(s->l2_table_cache); 1995 } 1996 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1997 } else { 1998 if (l2_dirty) { 1999 ret = qcow2_pre_write_overlap_check( 2000 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, 2001 slice_offset, slice_size2, false); 2002 if (ret < 0) { 2003 goto fail; 2004 } 2005 2006 ret = bdrv_pwrite(bs->file, slice_offset, 2007 l2_slice, slice_size2); 2008 if (ret < 0) { 2009 goto fail; 2010 } 2011 } 2012 } 2013 } 2014 2015 (*visited_l1_entries)++; 2016 if (status_cb) { 2017 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2018 } 2019 } 2020 2021 ret = 0; 2022 2023 fail: 2024 if (l2_slice) { 2025 if (!is_active_l1) { 2026 qemu_vfree(l2_slice); 2027 } else { 2028 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2029 } 2030 } 2031 return ret; 2032 } 2033 2034 /* 2035 * For backed images, expands all zero clusters on the image. For non-backed 2036 * images, deallocates all non-pre-allocated zero clusters (and claims the 2037 * allocation for pre-allocated ones). This is important for downgrading to a 2038 * qcow2 version which doesn't yet support metadata zero clusters. 2039 */ 2040 int qcow2_expand_zero_clusters(BlockDriverState *bs, 2041 BlockDriverAmendStatusCB *status_cb, 2042 void *cb_opaque) 2043 { 2044 BDRVQcow2State *s = bs->opaque; 2045 uint64_t *l1_table = NULL; 2046 int64_t l1_entries = 0, visited_l1_entries = 0; 2047 int ret; 2048 int i, j; 2049 2050 if (status_cb) { 2051 l1_entries = s->l1_size; 2052 for (i = 0; i < s->nb_snapshots; i++) { 2053 l1_entries += s->snapshots[i].l1_size; 2054 } 2055 } 2056 2057 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 2058 &visited_l1_entries, l1_entries, 2059 status_cb, cb_opaque); 2060 if (ret < 0) { 2061 goto fail; 2062 } 2063 2064 /* Inactive L1 tables may point to active L2 tables - therefore it is 2065 * necessary to flush the L2 table cache before trying to access the L2 2066 * tables pointed to by inactive L1 entries (else we might try to expand 2067 * zero clusters that have already been expanded); furthermore, it is also 2068 * necessary to empty the L2 table cache, since it may contain tables which 2069 * are now going to be modified directly on disk, bypassing the cache. 2070 * qcow2_cache_empty() does both for us. */ 2071 ret = qcow2_cache_empty(bs, s->l2_table_cache); 2072 if (ret < 0) { 2073 goto fail; 2074 } 2075 2076 for (i = 0; i < s->nb_snapshots; i++) { 2077 int l1_size2; 2078 uint64_t *new_l1_table; 2079 Error *local_err = NULL; 2080 2081 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset, 2082 s->snapshots[i].l1_size, sizeof(uint64_t), 2083 QCOW_MAX_L1_SIZE, "Snapshot L1 table", 2084 &local_err); 2085 if (ret < 0) { 2086 error_report_err(local_err); 2087 goto fail; 2088 } 2089 2090 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t); 2091 new_l1_table = g_try_realloc(l1_table, l1_size2); 2092 2093 if (!new_l1_table) { 2094 ret = -ENOMEM; 2095 goto fail; 2096 } 2097 2098 l1_table = new_l1_table; 2099 2100 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, 2101 l1_table, l1_size2); 2102 if (ret < 0) { 2103 goto fail; 2104 } 2105 2106 for (j = 0; j < s->snapshots[i].l1_size; j++) { 2107 be64_to_cpus(&l1_table[j]); 2108 } 2109 2110 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 2111 &visited_l1_entries, l1_entries, 2112 status_cb, cb_opaque); 2113 if (ret < 0) { 2114 goto fail; 2115 } 2116 } 2117 2118 ret = 0; 2119 2120 fail: 2121 g_free(l1_table); 2122 return ret; 2123 } 2124