1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qcow2.h" 30 #include "qemu/bswap.h" 31 #include "trace.h" 32 33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size) 34 { 35 BDRVQcow2State *s = bs->opaque; 36 int new_l1_size, i, ret; 37 38 if (exact_size >= s->l1_size) { 39 return 0; 40 } 41 42 new_l1_size = exact_size; 43 44 #ifdef DEBUG_ALLOC2 45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); 46 #endif 47 48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); 49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset + 50 new_l1_size * sizeof(uint64_t), 51 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0); 52 if (ret < 0) { 53 goto fail; 54 } 55 56 ret = bdrv_flush(bs->file->bs); 57 if (ret < 0) { 58 goto fail; 59 } 60 61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); 62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { 63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { 64 continue; 65 } 66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, 67 s->cluster_size, QCOW2_DISCARD_ALWAYS); 68 s->l1_table[i] = 0; 69 } 70 return 0; 71 72 fail: 73 /* 74 * If the write in the l1_table failed the image may contain a partially 75 * overwritten l1_table. In this case it would be better to clear the 76 * l1_table in memory to avoid possible image corruption. 77 */ 78 memset(s->l1_table + new_l1_size, 0, 79 (s->l1_size - new_l1_size) * sizeof(uint64_t)); 80 return ret; 81 } 82 83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 84 bool exact_size) 85 { 86 BDRVQcow2State *s = bs->opaque; 87 int new_l1_size2, ret, i; 88 uint64_t *new_l1_table; 89 int64_t old_l1_table_offset, old_l1_size; 90 int64_t new_l1_table_offset, new_l1_size; 91 uint8_t data[12]; 92 93 if (min_size <= s->l1_size) 94 return 0; 95 96 /* Do a sanity check on min_size before trying to calculate new_l1_size 97 * (this prevents overflows during the while loop for the calculation of 98 * new_l1_size) */ 99 if (min_size > INT_MAX / sizeof(uint64_t)) { 100 return -EFBIG; 101 } 102 103 if (exact_size) { 104 new_l1_size = min_size; 105 } else { 106 /* Bump size up to reduce the number of times we have to grow */ 107 new_l1_size = s->l1_size; 108 if (new_l1_size == 0) { 109 new_l1_size = 1; 110 } 111 while (min_size > new_l1_size) { 112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); 113 } 114 } 115 116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 117 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { 118 return -EFBIG; 119 } 120 121 #ifdef DEBUG_ALLOC2 122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 123 s->l1_size, new_l1_size); 124 #endif 125 126 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 127 new_l1_table = qemu_try_blockalign(bs->file->bs, 128 ROUND_UP(new_l1_size2, 512)); 129 if (new_l1_table == NULL) { 130 return -ENOMEM; 131 } 132 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512)); 133 134 if (s->l1_size) { 135 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 136 } 137 138 /* write new table (align to cluster) */ 139 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 140 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 141 if (new_l1_table_offset < 0) { 142 qemu_vfree(new_l1_table); 143 return new_l1_table_offset; 144 } 145 146 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 147 if (ret < 0) { 148 goto fail; 149 } 150 151 /* the L1 position has not yet been updated, so these clusters must 152 * indeed be completely free */ 153 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 154 new_l1_size2, false); 155 if (ret < 0) { 156 goto fail; 157 } 158 159 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 160 for(i = 0; i < s->l1_size; i++) 161 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 162 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, 163 new_l1_table, new_l1_size2); 164 if (ret < 0) 165 goto fail; 166 for(i = 0; i < s->l1_size; i++) 167 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 168 169 /* set new table */ 170 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 171 stl_be_p(data, new_l1_size); 172 stq_be_p(data + 4, new_l1_table_offset); 173 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 174 data, sizeof(data)); 175 if (ret < 0) { 176 goto fail; 177 } 178 qemu_vfree(s->l1_table); 179 old_l1_table_offset = s->l1_table_offset; 180 s->l1_table_offset = new_l1_table_offset; 181 s->l1_table = new_l1_table; 182 old_l1_size = s->l1_size; 183 s->l1_size = new_l1_size; 184 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 185 QCOW2_DISCARD_OTHER); 186 return 0; 187 fail: 188 qemu_vfree(new_l1_table); 189 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 190 QCOW2_DISCARD_OTHER); 191 return ret; 192 } 193 194 /* 195 * l2_load 196 * 197 * @bs: The BlockDriverState 198 * @offset: A guest offset, used to calculate what slice of the L2 199 * table to load. 200 * @l2_offset: Offset to the L2 table in the image file. 201 * @l2_slice: Location to store the pointer to the L2 slice. 202 * 203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables 204 * that are loaded by the qcow2 cache). If the slice is in the cache, 205 * the cache is used; otherwise the L2 slice is loaded from the image 206 * file. 207 */ 208 static int l2_load(BlockDriverState *bs, uint64_t offset, 209 uint64_t l2_offset, uint64_t **l2_slice) 210 { 211 BDRVQcow2State *s = bs->opaque; 212 int start_of_slice = sizeof(uint64_t) * 213 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset)); 214 215 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice, 216 (void **)l2_slice); 217 } 218 219 /* 220 * Writes one sector of the L1 table to the disk (can't update single entries 221 * and we really don't want bdrv_pread to perform a read-modify-write) 222 */ 223 #define L1_ENTRIES_PER_SECTOR (512 / 8) 224 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 225 { 226 BDRVQcow2State *s = bs->opaque; 227 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 228 int l1_start_index; 229 int i, ret; 230 231 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 232 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 233 i++) 234 { 235 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 236 } 237 238 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 239 s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false); 240 if (ret < 0) { 241 return ret; 242 } 243 244 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 245 ret = bdrv_pwrite_sync(bs->file, 246 s->l1_table_offset + 8 * l1_start_index, 247 buf, sizeof(buf)); 248 if (ret < 0) { 249 return ret; 250 } 251 252 return 0; 253 } 254 255 /* 256 * l2_allocate 257 * 258 * Allocate a new l2 entry in the file. If l1_index points to an already 259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 260 * table) copy the contents of the old L2 table into the newly allocated one. 261 * Otherwise the new table is initialized with zeros. 262 * 263 */ 264 265 static int l2_allocate(BlockDriverState *bs, int l1_index) 266 { 267 BDRVQcow2State *s = bs->opaque; 268 uint64_t old_l2_offset; 269 uint64_t *l2_slice = NULL; 270 unsigned slice, slice_size2, n_slices; 271 int64_t l2_offset; 272 int ret; 273 274 old_l2_offset = s->l1_table[l1_index]; 275 276 trace_qcow2_l2_allocate(bs, l1_index); 277 278 /* allocate a new l2 entry */ 279 280 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 281 if (l2_offset < 0) { 282 ret = l2_offset; 283 goto fail; 284 } 285 286 /* The offset must fit in the offset field of the L1 table entry */ 287 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset); 288 289 /* If we're allocating the table at offset 0 then something is wrong */ 290 if (l2_offset == 0) { 291 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 292 "allocation of L2 table at offset 0"); 293 ret = -EIO; 294 goto fail; 295 } 296 297 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 298 if (ret < 0) { 299 goto fail; 300 } 301 302 /* allocate a new entry in the l2 cache */ 303 304 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 305 n_slices = s->cluster_size / slice_size2; 306 307 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 308 for (slice = 0; slice < n_slices; slice++) { 309 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, 310 l2_offset + slice * slice_size2, 311 (void **) &l2_slice); 312 if (ret < 0) { 313 goto fail; 314 } 315 316 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 317 /* if there was no old l2 table, clear the new slice */ 318 memset(l2_slice, 0, slice_size2); 319 } else { 320 uint64_t *old_slice; 321 uint64_t old_l2_slice_offset = 322 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2; 323 324 /* if there was an old l2 table, read a slice from the disk */ 325 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 326 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset, 327 (void **) &old_slice); 328 if (ret < 0) { 329 goto fail; 330 } 331 332 memcpy(l2_slice, old_slice, slice_size2); 333 334 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice); 335 } 336 337 /* write the l2 slice to the file */ 338 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 339 340 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 341 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 342 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 343 } 344 345 ret = qcow2_cache_flush(bs, s->l2_table_cache); 346 if (ret < 0) { 347 goto fail; 348 } 349 350 /* update the L1 entry */ 351 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 352 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 353 ret = qcow2_write_l1_entry(bs, l1_index); 354 if (ret < 0) { 355 goto fail; 356 } 357 358 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 359 return 0; 360 361 fail: 362 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 363 if (l2_slice != NULL) { 364 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 365 } 366 s->l1_table[l1_index] = old_l2_offset; 367 if (l2_offset > 0) { 368 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 369 QCOW2_DISCARD_ALWAYS); 370 } 371 return ret; 372 } 373 374 /* 375 * Checks how many clusters in a given L2 slice are contiguous in the image 376 * file. As soon as one of the flags in the bitmask stop_flags changes compared 377 * to the first cluster, the search is stopped and the cluster is not counted 378 * as contiguous. (This allows it, for example, to stop at the first compressed 379 * cluster which may require a different handling) 380 */ 381 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters, 382 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags) 383 { 384 int i; 385 QCow2ClusterType first_cluster_type; 386 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 387 uint64_t first_entry = be64_to_cpu(l2_slice[0]); 388 uint64_t offset = first_entry & mask; 389 390 first_cluster_type = qcow2_get_cluster_type(bs, first_entry); 391 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) { 392 return 0; 393 } 394 395 /* must be allocated */ 396 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL || 397 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC); 398 399 for (i = 0; i < nb_clusters; i++) { 400 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask; 401 if (offset + (uint64_t) i * cluster_size != l2_entry) { 402 break; 403 } 404 } 405 406 return i; 407 } 408 409 /* 410 * Checks how many consecutive unallocated clusters in a given L2 411 * slice have the same cluster type. 412 */ 413 static int count_contiguous_clusters_unallocated(BlockDriverState *bs, 414 int nb_clusters, 415 uint64_t *l2_slice, 416 QCow2ClusterType wanted_type) 417 { 418 int i; 419 420 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN || 421 wanted_type == QCOW2_CLUSTER_UNALLOCATED); 422 for (i = 0; i < nb_clusters; i++) { 423 uint64_t entry = be64_to_cpu(l2_slice[i]); 424 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry); 425 426 if (type != wanted_type) { 427 break; 428 } 429 } 430 431 return i; 432 } 433 434 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs, 435 uint64_t src_cluster_offset, 436 unsigned offset_in_cluster, 437 QEMUIOVector *qiov) 438 { 439 int ret; 440 441 if (qiov->size == 0) { 442 return 0; 443 } 444 445 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 446 447 if (!bs->drv) { 448 return -ENOMEDIUM; 449 } 450 451 /* Call .bdrv_co_readv() directly instead of using the public block-layer 452 * interface. This avoids double I/O throttling and request tracking, 453 * which can lead to deadlock when block layer copy-on-read is enabled. 454 */ 455 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, 456 qiov->size, qiov, 0); 457 if (ret < 0) { 458 return ret; 459 } 460 461 return 0; 462 } 463 464 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs, 465 uint64_t src_cluster_offset, 466 uint64_t cluster_offset, 467 unsigned offset_in_cluster, 468 uint8_t *buffer, 469 unsigned bytes) 470 { 471 if (bytes && bs->encrypted) { 472 BDRVQcow2State *s = bs->opaque; 473 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); 474 assert((bytes & ~BDRV_SECTOR_MASK) == 0); 475 assert(s->crypto); 476 if (qcow2_co_encrypt(bs, cluster_offset, 477 src_cluster_offset + offset_in_cluster, 478 buffer, bytes) < 0) { 479 return false; 480 } 481 } 482 return true; 483 } 484 485 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs, 486 uint64_t cluster_offset, 487 unsigned offset_in_cluster, 488 QEMUIOVector *qiov) 489 { 490 BDRVQcow2State *s = bs->opaque; 491 int ret; 492 493 if (qiov->size == 0) { 494 return 0; 495 } 496 497 ret = qcow2_pre_write_overlap_check(bs, 0, 498 cluster_offset + offset_in_cluster, qiov->size, true); 499 if (ret < 0) { 500 return ret; 501 } 502 503 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 504 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster, 505 qiov->size, qiov, 0); 506 if (ret < 0) { 507 return ret; 508 } 509 510 return 0; 511 } 512 513 514 /* 515 * get_cluster_offset 516 * 517 * For a given offset of the virtual disk, find the cluster type and offset in 518 * the qcow2 file. The offset is stored in *cluster_offset. 519 * 520 * On entry, *bytes is the maximum number of contiguous bytes starting at 521 * offset that we are interested in. 522 * 523 * On exit, *bytes is the number of bytes starting at offset that have the same 524 * cluster type and (if applicable) are stored contiguously in the image file. 525 * Compressed clusters are always returned one by one. 526 * 527 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 528 * cases. 529 */ 530 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 531 unsigned int *bytes, uint64_t *cluster_offset) 532 { 533 BDRVQcow2State *s = bs->opaque; 534 unsigned int l2_index; 535 uint64_t l1_index, l2_offset, *l2_slice; 536 int c; 537 unsigned int offset_in_cluster; 538 uint64_t bytes_available, bytes_needed, nb_clusters; 539 QCow2ClusterType type; 540 int ret; 541 542 offset_in_cluster = offset_into_cluster(s, offset); 543 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 544 545 /* compute how many bytes there are between the start of the cluster 546 * containing offset and the end of the l2 slice that contains 547 * the entry pointing to it */ 548 bytes_available = 549 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset))) 550 << s->cluster_bits; 551 552 if (bytes_needed > bytes_available) { 553 bytes_needed = bytes_available; 554 } 555 556 *cluster_offset = 0; 557 558 /* seek to the l2 offset in the l1 table */ 559 560 l1_index = offset_to_l1_index(s, offset); 561 if (l1_index >= s->l1_size) { 562 type = QCOW2_CLUSTER_UNALLOCATED; 563 goto out; 564 } 565 566 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 567 if (!l2_offset) { 568 type = QCOW2_CLUSTER_UNALLOCATED; 569 goto out; 570 } 571 572 if (offset_into_cluster(s, l2_offset)) { 573 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 574 " unaligned (L1 index: %#" PRIx64 ")", 575 l2_offset, l1_index); 576 return -EIO; 577 } 578 579 /* load the l2 slice in memory */ 580 581 ret = l2_load(bs, offset, l2_offset, &l2_slice); 582 if (ret < 0) { 583 return ret; 584 } 585 586 /* find the cluster offset for the given disk offset */ 587 588 l2_index = offset_to_l2_slice_index(s, offset); 589 *cluster_offset = be64_to_cpu(l2_slice[l2_index]); 590 591 nb_clusters = size_to_clusters(s, bytes_needed); 592 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 593 * integers; the minimum cluster size is 512, so this assertion is always 594 * true */ 595 assert(nb_clusters <= INT_MAX); 596 597 type = qcow2_get_cluster_type(bs, *cluster_offset); 598 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN || 599 type == QCOW2_CLUSTER_ZERO_ALLOC)) { 600 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 601 " in pre-v3 image (L2 offset: %#" PRIx64 602 ", L2 index: %#x)", l2_offset, l2_index); 603 ret = -EIO; 604 goto fail; 605 } 606 switch (type) { 607 case QCOW2_CLUSTER_COMPRESSED: 608 if (has_data_file(bs)) { 609 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster " 610 "entry found in image with external data " 611 "file (L2 offset: %#" PRIx64 ", L2 index: " 612 "%#x)", l2_offset, l2_index); 613 ret = -EIO; 614 goto fail; 615 } 616 /* Compressed clusters can only be processed one by one */ 617 c = 1; 618 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 619 break; 620 case QCOW2_CLUSTER_ZERO_PLAIN: 621 case QCOW2_CLUSTER_UNALLOCATED: 622 /* how many empty clusters ? */ 623 c = count_contiguous_clusters_unallocated(bs, nb_clusters, 624 &l2_slice[l2_index], type); 625 *cluster_offset = 0; 626 break; 627 case QCOW2_CLUSTER_ZERO_ALLOC: 628 case QCOW2_CLUSTER_NORMAL: 629 /* how many allocated clusters ? */ 630 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 631 &l2_slice[l2_index], QCOW_OFLAG_ZERO); 632 *cluster_offset &= L2E_OFFSET_MASK; 633 if (offset_into_cluster(s, *cluster_offset)) { 634 qcow2_signal_corruption(bs, true, -1, -1, 635 "Cluster allocation offset %#" 636 PRIx64 " unaligned (L2 offset: %#" PRIx64 637 ", L2 index: %#x)", *cluster_offset, 638 l2_offset, l2_index); 639 ret = -EIO; 640 goto fail; 641 } 642 if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster) 643 { 644 qcow2_signal_corruption(bs, true, -1, -1, 645 "External data file host cluster offset %#" 646 PRIx64 " does not match guest cluster " 647 "offset: %#" PRIx64 648 ", L2 index: %#x)", *cluster_offset, 649 offset - offset_in_cluster, l2_index); 650 ret = -EIO; 651 goto fail; 652 } 653 break; 654 default: 655 abort(); 656 } 657 658 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 659 660 bytes_available = (int64_t)c * s->cluster_size; 661 662 out: 663 if (bytes_available > bytes_needed) { 664 bytes_available = bytes_needed; 665 } 666 667 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 668 * subtracting offset_in_cluster will therefore definitely yield something 669 * not exceeding UINT_MAX */ 670 assert(bytes_available - offset_in_cluster <= UINT_MAX); 671 *bytes = bytes_available - offset_in_cluster; 672 673 return type; 674 675 fail: 676 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice); 677 return ret; 678 } 679 680 /* 681 * get_cluster_table 682 * 683 * for a given disk offset, load (and allocate if needed) 684 * the appropriate slice of its l2 table. 685 * 686 * the cluster index in the l2 slice is given to the caller. 687 * 688 * Returns 0 on success, -errno in failure case 689 */ 690 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 691 uint64_t **new_l2_slice, 692 int *new_l2_index) 693 { 694 BDRVQcow2State *s = bs->opaque; 695 unsigned int l2_index; 696 uint64_t l1_index, l2_offset; 697 uint64_t *l2_slice = NULL; 698 int ret; 699 700 /* seek to the l2 offset in the l1 table */ 701 702 l1_index = offset_to_l1_index(s, offset); 703 if (l1_index >= s->l1_size) { 704 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 705 if (ret < 0) { 706 return ret; 707 } 708 } 709 710 assert(l1_index < s->l1_size); 711 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 712 if (offset_into_cluster(s, l2_offset)) { 713 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 714 " unaligned (L1 index: %#" PRIx64 ")", 715 l2_offset, l1_index); 716 return -EIO; 717 } 718 719 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) { 720 /* First allocate a new L2 table (and do COW if needed) */ 721 ret = l2_allocate(bs, l1_index); 722 if (ret < 0) { 723 return ret; 724 } 725 726 /* Then decrease the refcount of the old table */ 727 if (l2_offset) { 728 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 729 QCOW2_DISCARD_OTHER); 730 } 731 732 /* Get the offset of the newly-allocated l2 table */ 733 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 734 assert(offset_into_cluster(s, l2_offset) == 0); 735 } 736 737 /* load the l2 slice in memory */ 738 ret = l2_load(bs, offset, l2_offset, &l2_slice); 739 if (ret < 0) { 740 return ret; 741 } 742 743 /* find the cluster offset for the given disk offset */ 744 745 l2_index = offset_to_l2_slice_index(s, offset); 746 747 *new_l2_slice = l2_slice; 748 *new_l2_index = l2_index; 749 750 return 0; 751 } 752 753 /* 754 * alloc_compressed_cluster_offset 755 * 756 * For a given offset on the virtual disk, allocate a new compressed cluster 757 * and put the host offset of the cluster into *host_offset. If a cluster is 758 * already allocated at the offset, return an error. 759 * 760 * Return 0 on success and -errno in error cases 761 */ 762 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 763 uint64_t offset, 764 int compressed_size, 765 uint64_t *host_offset) 766 { 767 BDRVQcow2State *s = bs->opaque; 768 int l2_index, ret; 769 uint64_t *l2_slice; 770 int64_t cluster_offset; 771 int nb_csectors; 772 773 if (has_data_file(bs)) { 774 return 0; 775 } 776 777 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 778 if (ret < 0) { 779 return ret; 780 } 781 782 /* Compression can't overwrite anything. Fail if the cluster was already 783 * allocated. */ 784 cluster_offset = be64_to_cpu(l2_slice[l2_index]); 785 if (cluster_offset & L2E_OFFSET_MASK) { 786 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 787 return -EIO; 788 } 789 790 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 791 if (cluster_offset < 0) { 792 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 793 return cluster_offset; 794 } 795 796 nb_csectors = 797 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE - 798 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE); 799 800 cluster_offset |= QCOW_OFLAG_COMPRESSED | 801 ((uint64_t)nb_csectors << s->csize_shift); 802 803 /* update L2 table */ 804 805 /* compressed clusters never have the copied flag */ 806 807 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 808 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 809 l2_slice[l2_index] = cpu_to_be64(cluster_offset); 810 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 811 812 *host_offset = cluster_offset & s->cluster_offset_mask; 813 return 0; 814 } 815 816 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m) 817 { 818 BDRVQcow2State *s = bs->opaque; 819 Qcow2COWRegion *start = &m->cow_start; 820 Qcow2COWRegion *end = &m->cow_end; 821 unsigned buffer_size; 822 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); 823 bool merge_reads; 824 uint8_t *start_buffer, *end_buffer; 825 QEMUIOVector qiov; 826 int ret; 827 828 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); 829 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); 830 assert(start->offset + start->nb_bytes <= end->offset); 831 assert(!m->data_qiov || m->data_qiov->size == data_bytes); 832 833 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) { 834 return 0; 835 } 836 837 /* If we have to read both the start and end COW regions and the 838 * middle region is not too large then perform just one read 839 * operation */ 840 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; 841 if (merge_reads) { 842 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; 843 } else { 844 /* If we have to do two reads, add some padding in the middle 845 * if necessary to make sure that the end region is optimally 846 * aligned. */ 847 size_t align = bdrv_opt_mem_align(bs); 848 assert(align > 0 && align <= UINT_MAX); 849 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= 850 UINT_MAX - end->nb_bytes); 851 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; 852 } 853 854 /* Reserve a buffer large enough to store all the data that we're 855 * going to read */ 856 start_buffer = qemu_try_blockalign(bs, buffer_size); 857 if (start_buffer == NULL) { 858 return -ENOMEM; 859 } 860 /* The part of the buffer where the end region is located */ 861 end_buffer = start_buffer + buffer_size - end->nb_bytes; 862 863 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0)); 864 865 qemu_co_mutex_unlock(&s->lock); 866 /* First we read the existing data from both COW regions. We 867 * either read the whole region in one go, or the start and end 868 * regions separately. */ 869 if (merge_reads) { 870 qemu_iovec_add(&qiov, start_buffer, buffer_size); 871 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 872 } else { 873 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 874 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 875 if (ret < 0) { 876 goto fail; 877 } 878 879 qemu_iovec_reset(&qiov); 880 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 881 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); 882 } 883 if (ret < 0) { 884 goto fail; 885 } 886 887 /* Encrypt the data if necessary before writing it */ 888 if (bs->encrypted) { 889 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, 890 start->offset, start_buffer, 891 start->nb_bytes) || 892 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, 893 end->offset, end_buffer, end->nb_bytes)) { 894 ret = -EIO; 895 goto fail; 896 } 897 } 898 899 /* And now we can write everything. If we have the guest data we 900 * can write everything in one single operation */ 901 if (m->data_qiov) { 902 qemu_iovec_reset(&qiov); 903 if (start->nb_bytes) { 904 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 905 } 906 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes); 907 if (end->nb_bytes) { 908 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 909 } 910 /* NOTE: we have a write_aio blkdebug event here followed by 911 * a cow_write one in do_perform_cow_write(), but there's only 912 * one single I/O operation */ 913 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO); 914 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 915 } else { 916 /* If there's no guest data then write both COW regions separately */ 917 qemu_iovec_reset(&qiov); 918 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 919 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 920 if (ret < 0) { 921 goto fail; 922 } 923 924 qemu_iovec_reset(&qiov); 925 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 926 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); 927 } 928 929 fail: 930 qemu_co_mutex_lock(&s->lock); 931 932 /* 933 * Before we update the L2 table to actually point to the new cluster, we 934 * need to be sure that the refcounts have been increased and COW was 935 * handled. 936 */ 937 if (ret == 0) { 938 qcow2_cache_depends_on_flush(s->l2_table_cache); 939 } 940 941 qemu_vfree(start_buffer); 942 qemu_iovec_destroy(&qiov); 943 return ret; 944 } 945 946 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 947 { 948 BDRVQcow2State *s = bs->opaque; 949 int i, j = 0, l2_index, ret; 950 uint64_t *old_cluster, *l2_slice; 951 uint64_t cluster_offset = m->alloc_offset; 952 953 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 954 assert(m->nb_clusters > 0); 955 956 old_cluster = g_try_new(uint64_t, m->nb_clusters); 957 if (old_cluster == NULL) { 958 ret = -ENOMEM; 959 goto err; 960 } 961 962 /* copy content of unmodified sectors */ 963 ret = perform_cow(bs, m); 964 if (ret < 0) { 965 goto err; 966 } 967 968 /* Update L2 table. */ 969 if (s->use_lazy_refcounts) { 970 qcow2_mark_dirty(bs); 971 } 972 if (qcow2_need_accurate_refcounts(s)) { 973 qcow2_cache_set_dependency(bs, s->l2_table_cache, 974 s->refcount_block_cache); 975 } 976 977 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index); 978 if (ret < 0) { 979 goto err; 980 } 981 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 982 983 assert(l2_index + m->nb_clusters <= s->l2_slice_size); 984 for (i = 0; i < m->nb_clusters; i++) { 985 /* if two concurrent writes happen to the same unallocated cluster 986 * each write allocates separate cluster and writes data concurrently. 987 * The first one to complete updates l2 table with pointer to its 988 * cluster the second one has to do RMW (which is done above by 989 * perform_cow()), update l2 table with its cluster pointer and free 990 * old cluster. This is what this loop does */ 991 if (l2_slice[l2_index + i] != 0) { 992 old_cluster[j++] = l2_slice[l2_index + i]; 993 } 994 995 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset + 996 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 997 } 998 999 1000 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1001 1002 /* 1003 * If this was a COW, we need to decrease the refcount of the old cluster. 1004 * 1005 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 1006 * clusters), the next write will reuse them anyway. 1007 */ 1008 if (!m->keep_old_clusters && j != 0) { 1009 for (i = 0; i < j; i++) { 1010 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 1011 QCOW2_DISCARD_NEVER); 1012 } 1013 } 1014 1015 ret = 0; 1016 err: 1017 g_free(old_cluster); 1018 return ret; 1019 } 1020 1021 /** 1022 * Frees the allocated clusters because the request failed and they won't 1023 * actually be linked. 1024 */ 1025 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m) 1026 { 1027 BDRVQcow2State *s = bs->opaque; 1028 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits, 1029 QCOW2_DISCARD_NEVER); 1030 } 1031 1032 /* 1033 * Returns the number of contiguous clusters that can be used for an allocating 1034 * write, but require COW to be performed (this includes yet unallocated space, 1035 * which must copy from the backing file) 1036 */ 1037 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters, 1038 uint64_t *l2_slice, int l2_index) 1039 { 1040 int i; 1041 1042 for (i = 0; i < nb_clusters; i++) { 1043 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]); 1044 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry); 1045 1046 switch(cluster_type) { 1047 case QCOW2_CLUSTER_NORMAL: 1048 if (l2_entry & QCOW_OFLAG_COPIED) { 1049 goto out; 1050 } 1051 break; 1052 case QCOW2_CLUSTER_UNALLOCATED: 1053 case QCOW2_CLUSTER_COMPRESSED: 1054 case QCOW2_CLUSTER_ZERO_PLAIN: 1055 case QCOW2_CLUSTER_ZERO_ALLOC: 1056 break; 1057 default: 1058 abort(); 1059 } 1060 } 1061 1062 out: 1063 assert(i <= nb_clusters); 1064 return i; 1065 } 1066 1067 /* 1068 * Check if there already is an AIO write request in flight which allocates 1069 * the same cluster. In this case we need to wait until the previous 1070 * request has completed and updated the L2 table accordingly. 1071 * 1072 * Returns: 1073 * 0 if there was no dependency. *cur_bytes indicates the number of 1074 * bytes from guest_offset that can be read before the next 1075 * dependency must be processed (or the request is complete) 1076 * 1077 * -EAGAIN if we had to wait for another request, previously gathered 1078 * information on cluster allocation may be invalid now. The caller 1079 * must start over anyway, so consider *cur_bytes undefined. 1080 */ 1081 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 1082 uint64_t *cur_bytes, QCowL2Meta **m) 1083 { 1084 BDRVQcow2State *s = bs->opaque; 1085 QCowL2Meta *old_alloc; 1086 uint64_t bytes = *cur_bytes; 1087 1088 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 1089 1090 uint64_t start = guest_offset; 1091 uint64_t end = start + bytes; 1092 uint64_t old_start = l2meta_cow_start(old_alloc); 1093 uint64_t old_end = l2meta_cow_end(old_alloc); 1094 1095 if (end <= old_start || start >= old_end) { 1096 /* No intersection */ 1097 } else { 1098 if (start < old_start) { 1099 /* Stop at the start of a running allocation */ 1100 bytes = old_start - start; 1101 } else { 1102 bytes = 0; 1103 } 1104 1105 /* Stop if already an l2meta exists. After yielding, it wouldn't 1106 * be valid any more, so we'd have to clean up the old L2Metas 1107 * and deal with requests depending on them before starting to 1108 * gather new ones. Not worth the trouble. */ 1109 if (bytes == 0 && *m) { 1110 *cur_bytes = 0; 1111 return 0; 1112 } 1113 1114 if (bytes == 0) { 1115 /* Wait for the dependency to complete. We need to recheck 1116 * the free/allocated clusters when we continue. */ 1117 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 1118 return -EAGAIN; 1119 } 1120 } 1121 } 1122 1123 /* Make sure that existing clusters and new allocations are only used up to 1124 * the next dependency if we shortened the request above */ 1125 *cur_bytes = bytes; 1126 1127 return 0; 1128 } 1129 1130 /* 1131 * Checks how many already allocated clusters that don't require a copy on 1132 * write there are at the given guest_offset (up to *bytes). If *host_offset is 1133 * not INV_OFFSET, only physically contiguous clusters beginning at this host 1134 * offset are counted. 1135 * 1136 * Note that guest_offset may not be cluster aligned. In this case, the 1137 * returned *host_offset points to exact byte referenced by guest_offset and 1138 * therefore isn't cluster aligned as well. 1139 * 1140 * Returns: 1141 * 0: if no allocated clusters are available at the given offset. 1142 * *bytes is normally unchanged. It is set to 0 if the cluster 1143 * is allocated and doesn't need COW, but doesn't have the right 1144 * physical offset. 1145 * 1146 * 1: if allocated clusters that don't require a COW are available at 1147 * the requested offset. *bytes may have decreased and describes 1148 * the length of the area that can be written to. 1149 * 1150 * -errno: in error cases 1151 */ 1152 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 1153 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1154 { 1155 BDRVQcow2State *s = bs->opaque; 1156 int l2_index; 1157 uint64_t cluster_offset; 1158 uint64_t *l2_slice; 1159 uint64_t nb_clusters; 1160 unsigned int keep_clusters; 1161 int ret; 1162 1163 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 1164 *bytes); 1165 1166 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset) 1167 == offset_into_cluster(s, *host_offset)); 1168 1169 /* 1170 * Calculate the number of clusters to look for. We stop at L2 slice 1171 * boundaries to keep things simple. 1172 */ 1173 nb_clusters = 1174 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1175 1176 l2_index = offset_to_l2_slice_index(s, guest_offset); 1177 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1178 assert(nb_clusters <= INT_MAX); 1179 1180 /* Find L2 entry for the first involved cluster */ 1181 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1182 if (ret < 0) { 1183 return ret; 1184 } 1185 1186 cluster_offset = be64_to_cpu(l2_slice[l2_index]); 1187 1188 /* Check how many clusters are already allocated and don't need COW */ 1189 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL 1190 && (cluster_offset & QCOW_OFLAG_COPIED)) 1191 { 1192 /* If a specific host_offset is required, check it */ 1193 bool offset_matches = 1194 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1195 1196 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1197 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1198 "%#llx unaligned (guest offset: %#" PRIx64 1199 ")", cluster_offset & L2E_OFFSET_MASK, 1200 guest_offset); 1201 ret = -EIO; 1202 goto out; 1203 } 1204 1205 if (*host_offset != INV_OFFSET && !offset_matches) { 1206 *bytes = 0; 1207 ret = 0; 1208 goto out; 1209 } 1210 1211 /* We keep all QCOW_OFLAG_COPIED clusters */ 1212 keep_clusters = 1213 count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 1214 &l2_slice[l2_index], 1215 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1216 assert(keep_clusters <= nb_clusters); 1217 1218 *bytes = MIN(*bytes, 1219 keep_clusters * s->cluster_size 1220 - offset_into_cluster(s, guest_offset)); 1221 1222 ret = 1; 1223 } else { 1224 ret = 0; 1225 } 1226 1227 /* Cleanup */ 1228 out: 1229 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1230 1231 /* Only return a host offset if we actually made progress. Otherwise we 1232 * would make requirements for handle_alloc() that it can't fulfill */ 1233 if (ret > 0) { 1234 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1235 + offset_into_cluster(s, guest_offset); 1236 } 1237 1238 return ret; 1239 } 1240 1241 /* 1242 * Allocates new clusters for the given guest_offset. 1243 * 1244 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1245 * contain the number of clusters that have been allocated and are contiguous 1246 * in the image file. 1247 * 1248 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file 1249 * at which the new clusters must start. *nb_clusters can be 0 on return in 1250 * this case if the cluster at host_offset is already in use. If *host_offset 1251 * is INV_OFFSET, the clusters can be allocated anywhere in the image file. 1252 * 1253 * *host_offset is updated to contain the offset into the image file at which 1254 * the first allocated cluster starts. 1255 * 1256 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1257 * function has been waiting for another request and the allocation must be 1258 * restarted, but the whole request should not be failed. 1259 */ 1260 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1261 uint64_t *host_offset, uint64_t *nb_clusters) 1262 { 1263 BDRVQcow2State *s = bs->opaque; 1264 1265 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1266 *host_offset, *nb_clusters); 1267 1268 if (has_data_file(bs)) { 1269 assert(*host_offset == INV_OFFSET || 1270 *host_offset == start_of_cluster(s, guest_offset)); 1271 *host_offset = start_of_cluster(s, guest_offset); 1272 return 0; 1273 } 1274 1275 /* Allocate new clusters */ 1276 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1277 if (*host_offset == INV_OFFSET) { 1278 int64_t cluster_offset = 1279 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1280 if (cluster_offset < 0) { 1281 return cluster_offset; 1282 } 1283 *host_offset = cluster_offset; 1284 return 0; 1285 } else { 1286 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1287 if (ret < 0) { 1288 return ret; 1289 } 1290 *nb_clusters = ret; 1291 return 0; 1292 } 1293 } 1294 1295 /* 1296 * Allocates new clusters for an area that either is yet unallocated or needs a 1297 * copy on write. If *host_offset is not INV_OFFSET, clusters are only 1298 * allocated if the new allocation can match the specified host offset. 1299 * 1300 * Note that guest_offset may not be cluster aligned. In this case, the 1301 * returned *host_offset points to exact byte referenced by guest_offset and 1302 * therefore isn't cluster aligned as well. 1303 * 1304 * Returns: 1305 * 0: if no clusters could be allocated. *bytes is set to 0, 1306 * *host_offset is left unchanged. 1307 * 1308 * 1: if new clusters were allocated. *bytes may be decreased if the 1309 * new allocation doesn't cover all of the requested area. 1310 * *host_offset is updated to contain the host offset of the first 1311 * newly allocated cluster. 1312 * 1313 * -errno: in error cases 1314 */ 1315 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1316 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1317 { 1318 BDRVQcow2State *s = bs->opaque; 1319 int l2_index; 1320 uint64_t *l2_slice; 1321 uint64_t entry; 1322 uint64_t nb_clusters; 1323 int ret; 1324 bool keep_old_clusters = false; 1325 1326 uint64_t alloc_cluster_offset = INV_OFFSET; 1327 1328 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1329 *bytes); 1330 assert(*bytes > 0); 1331 1332 /* 1333 * Calculate the number of clusters to look for. We stop at L2 slice 1334 * boundaries to keep things simple. 1335 */ 1336 nb_clusters = 1337 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1338 1339 l2_index = offset_to_l2_slice_index(s, guest_offset); 1340 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1341 assert(nb_clusters <= INT_MAX); 1342 1343 /* Find L2 entry for the first involved cluster */ 1344 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1345 if (ret < 0) { 1346 return ret; 1347 } 1348 1349 entry = be64_to_cpu(l2_slice[l2_index]); 1350 1351 /* For the moment, overwrite compressed clusters one by one */ 1352 if (entry & QCOW_OFLAG_COMPRESSED) { 1353 nb_clusters = 1; 1354 } else { 1355 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index); 1356 } 1357 1358 /* This function is only called when there were no non-COW clusters, so if 1359 * we can't find any unallocated or COW clusters either, something is 1360 * wrong with our code. */ 1361 assert(nb_clusters > 0); 1362 1363 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC && 1364 (entry & QCOW_OFLAG_COPIED) && 1365 (*host_offset == INV_OFFSET || 1366 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK))) 1367 { 1368 int preallocated_nb_clusters; 1369 1370 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) { 1371 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero " 1372 "cluster offset %#llx unaligned (guest " 1373 "offset: %#" PRIx64 ")", 1374 entry & L2E_OFFSET_MASK, guest_offset); 1375 ret = -EIO; 1376 goto fail; 1377 } 1378 1379 /* Try to reuse preallocated zero clusters; contiguous normal clusters 1380 * would be fine, too, but count_cow_clusters() above has limited 1381 * nb_clusters already to a range of COW clusters */ 1382 preallocated_nb_clusters = 1383 count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 1384 &l2_slice[l2_index], QCOW_OFLAG_COPIED); 1385 assert(preallocated_nb_clusters > 0); 1386 1387 nb_clusters = preallocated_nb_clusters; 1388 alloc_cluster_offset = entry & L2E_OFFSET_MASK; 1389 1390 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2() 1391 * should not free them. */ 1392 keep_old_clusters = true; 1393 } 1394 1395 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1396 1397 if (alloc_cluster_offset == INV_OFFSET) { 1398 /* Allocate, if necessary at a given offset in the image file */ 1399 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET : 1400 start_of_cluster(s, *host_offset); 1401 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1402 &nb_clusters); 1403 if (ret < 0) { 1404 goto fail; 1405 } 1406 1407 /* Can't extend contiguous allocation */ 1408 if (nb_clusters == 0) { 1409 *bytes = 0; 1410 return 0; 1411 } 1412 1413 assert(alloc_cluster_offset != INV_OFFSET); 1414 } 1415 1416 /* 1417 * Save info needed for meta data update. 1418 * 1419 * requested_bytes: Number of bytes from the start of the first 1420 * newly allocated cluster to the end of the (possibly shortened 1421 * before) write request. 1422 * 1423 * avail_bytes: Number of bytes from the start of the first 1424 * newly allocated to the end of the last newly allocated cluster. 1425 * 1426 * nb_bytes: The number of bytes from the start of the first 1427 * newly allocated cluster to the end of the area that the write 1428 * request actually writes to (excluding COW at the end) 1429 */ 1430 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1431 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); 1432 int nb_bytes = MIN(requested_bytes, avail_bytes); 1433 QCowL2Meta *old_m = *m; 1434 1435 *m = g_malloc0(sizeof(**m)); 1436 1437 **m = (QCowL2Meta) { 1438 .next = old_m, 1439 1440 .alloc_offset = alloc_cluster_offset, 1441 .offset = start_of_cluster(s, guest_offset), 1442 .nb_clusters = nb_clusters, 1443 1444 .keep_old_clusters = keep_old_clusters, 1445 1446 .cow_start = { 1447 .offset = 0, 1448 .nb_bytes = offset_into_cluster(s, guest_offset), 1449 }, 1450 .cow_end = { 1451 .offset = nb_bytes, 1452 .nb_bytes = avail_bytes - nb_bytes, 1453 }, 1454 }; 1455 qemu_co_queue_init(&(*m)->dependent_requests); 1456 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1457 1458 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1459 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1460 assert(*bytes != 0); 1461 1462 return 1; 1463 1464 fail: 1465 if (*m && (*m)->nb_clusters > 0) { 1466 QLIST_REMOVE(*m, next_in_flight); 1467 } 1468 return ret; 1469 } 1470 1471 /* 1472 * alloc_cluster_offset 1473 * 1474 * For a given offset on the virtual disk, find the cluster offset in qcow2 1475 * file. If the offset is not found, allocate a new cluster. 1476 * 1477 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1478 * other fields in m are meaningless. 1479 * 1480 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1481 * contiguous clusters that have been allocated. In this case, the other 1482 * fields of m are valid and contain information about the first allocated 1483 * cluster. 1484 * 1485 * If the request conflicts with another write request in flight, the coroutine 1486 * is queued and will be reentered when the dependency has completed. 1487 * 1488 * Return 0 on success and -errno in error cases 1489 */ 1490 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1491 unsigned int *bytes, uint64_t *host_offset, 1492 QCowL2Meta **m) 1493 { 1494 BDRVQcow2State *s = bs->opaque; 1495 uint64_t start, remaining; 1496 uint64_t cluster_offset; 1497 uint64_t cur_bytes; 1498 int ret; 1499 1500 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1501 1502 again: 1503 start = offset; 1504 remaining = *bytes; 1505 cluster_offset = INV_OFFSET; 1506 *host_offset = INV_OFFSET; 1507 cur_bytes = 0; 1508 *m = NULL; 1509 1510 while (true) { 1511 1512 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) { 1513 *host_offset = start_of_cluster(s, cluster_offset); 1514 } 1515 1516 assert(remaining >= cur_bytes); 1517 1518 start += cur_bytes; 1519 remaining -= cur_bytes; 1520 1521 if (cluster_offset != INV_OFFSET) { 1522 cluster_offset += cur_bytes; 1523 } 1524 1525 if (remaining == 0) { 1526 break; 1527 } 1528 1529 cur_bytes = remaining; 1530 1531 /* 1532 * Now start gathering as many contiguous clusters as possible: 1533 * 1534 * 1. Check for overlaps with in-flight allocations 1535 * 1536 * a) Overlap not in the first cluster -> shorten this request and 1537 * let the caller handle the rest in its next loop iteration. 1538 * 1539 * b) Real overlaps of two requests. Yield and restart the search 1540 * for contiguous clusters (the situation could have changed 1541 * while we were sleeping) 1542 * 1543 * c) TODO: Request starts in the same cluster as the in-flight 1544 * allocation ends. Shorten the COW of the in-fight allocation, 1545 * set cluster_offset to write to the same cluster and set up 1546 * the right synchronisation between the in-flight request and 1547 * the new one. 1548 */ 1549 ret = handle_dependencies(bs, start, &cur_bytes, m); 1550 if (ret == -EAGAIN) { 1551 /* Currently handle_dependencies() doesn't yield if we already had 1552 * an allocation. If it did, we would have to clean up the L2Meta 1553 * structs before starting over. */ 1554 assert(*m == NULL); 1555 goto again; 1556 } else if (ret < 0) { 1557 return ret; 1558 } else if (cur_bytes == 0) { 1559 break; 1560 } else { 1561 /* handle_dependencies() may have decreased cur_bytes (shortened 1562 * the allocations below) so that the next dependency is processed 1563 * correctly during the next loop iteration. */ 1564 } 1565 1566 /* 1567 * 2. Count contiguous COPIED clusters. 1568 */ 1569 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1570 if (ret < 0) { 1571 return ret; 1572 } else if (ret) { 1573 continue; 1574 } else if (cur_bytes == 0) { 1575 break; 1576 } 1577 1578 /* 1579 * 3. If the request still hasn't completed, allocate new clusters, 1580 * considering any cluster_offset of steps 1c or 2. 1581 */ 1582 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1583 if (ret < 0) { 1584 return ret; 1585 } else if (ret) { 1586 continue; 1587 } else { 1588 assert(cur_bytes == 0); 1589 break; 1590 } 1591 } 1592 1593 *bytes -= remaining; 1594 assert(*bytes > 0); 1595 assert(*host_offset != INV_OFFSET); 1596 1597 return 0; 1598 } 1599 1600 /* 1601 * This discards as many clusters of nb_clusters as possible at once (i.e. 1602 * all clusters in the same L2 slice) and returns the number of discarded 1603 * clusters. 1604 */ 1605 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1606 uint64_t nb_clusters, 1607 enum qcow2_discard_type type, bool full_discard) 1608 { 1609 BDRVQcow2State *s = bs->opaque; 1610 uint64_t *l2_slice; 1611 int l2_index; 1612 int ret; 1613 int i; 1614 1615 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1616 if (ret < 0) { 1617 return ret; 1618 } 1619 1620 /* Limit nb_clusters to one L2 slice */ 1621 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1622 assert(nb_clusters <= INT_MAX); 1623 1624 for (i = 0; i < nb_clusters; i++) { 1625 uint64_t old_l2_entry; 1626 1627 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]); 1628 1629 /* 1630 * If full_discard is false, make sure that a discarded area reads back 1631 * as zeroes for v3 images (we cannot do it for v2 without actually 1632 * writing a zero-filled buffer). We can skip the operation if the 1633 * cluster is already marked as zero, or if it's unallocated and we 1634 * don't have a backing file. 1635 * 1636 * TODO We might want to use bdrv_block_status(bs) here, but we're 1637 * holding s->lock, so that doesn't work today. 1638 * 1639 * If full_discard is true, the sector should not read back as zeroes, 1640 * but rather fall through to the backing file. 1641 */ 1642 switch (qcow2_get_cluster_type(bs, old_l2_entry)) { 1643 case QCOW2_CLUSTER_UNALLOCATED: 1644 if (full_discard || !bs->backing) { 1645 continue; 1646 } 1647 break; 1648 1649 case QCOW2_CLUSTER_ZERO_PLAIN: 1650 if (!full_discard) { 1651 continue; 1652 } 1653 break; 1654 1655 case QCOW2_CLUSTER_ZERO_ALLOC: 1656 case QCOW2_CLUSTER_NORMAL: 1657 case QCOW2_CLUSTER_COMPRESSED: 1658 break; 1659 1660 default: 1661 abort(); 1662 } 1663 1664 /* First remove L2 entries */ 1665 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1666 if (!full_discard && s->qcow_version >= 3) { 1667 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1668 } else { 1669 l2_slice[l2_index + i] = cpu_to_be64(0); 1670 } 1671 1672 /* Then decrease the refcount */ 1673 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1674 } 1675 1676 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1677 1678 return nb_clusters; 1679 } 1680 1681 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, 1682 uint64_t bytes, enum qcow2_discard_type type, 1683 bool full_discard) 1684 { 1685 BDRVQcow2State *s = bs->opaque; 1686 uint64_t end_offset = offset + bytes; 1687 uint64_t nb_clusters; 1688 int64_t cleared; 1689 int ret; 1690 1691 /* Caller must pass aligned values, except at image end */ 1692 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1693 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1694 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1695 1696 nb_clusters = size_to_clusters(s, bytes); 1697 1698 s->cache_discards = true; 1699 1700 /* Each L2 slice is handled by its own loop iteration */ 1701 while (nb_clusters > 0) { 1702 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type, 1703 full_discard); 1704 if (cleared < 0) { 1705 ret = cleared; 1706 goto fail; 1707 } 1708 1709 nb_clusters -= cleared; 1710 offset += (cleared * s->cluster_size); 1711 } 1712 1713 ret = 0; 1714 fail: 1715 s->cache_discards = false; 1716 qcow2_process_discards(bs, ret); 1717 1718 return ret; 1719 } 1720 1721 /* 1722 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1723 * all clusters in the same L2 slice) and returns the number of zeroed 1724 * clusters. 1725 */ 1726 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1727 uint64_t nb_clusters, int flags) 1728 { 1729 BDRVQcow2State *s = bs->opaque; 1730 uint64_t *l2_slice; 1731 int l2_index; 1732 int ret; 1733 int i; 1734 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP); 1735 1736 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1737 if (ret < 0) { 1738 return ret; 1739 } 1740 1741 /* Limit nb_clusters to one L2 slice */ 1742 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1743 assert(nb_clusters <= INT_MAX); 1744 1745 for (i = 0; i < nb_clusters; i++) { 1746 uint64_t old_offset; 1747 QCow2ClusterType cluster_type; 1748 1749 old_offset = be64_to_cpu(l2_slice[l2_index + i]); 1750 1751 /* 1752 * Minimize L2 changes if the cluster already reads back as 1753 * zeroes with correct allocation. 1754 */ 1755 cluster_type = qcow2_get_cluster_type(bs, old_offset); 1756 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN || 1757 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) { 1758 continue; 1759 } 1760 1761 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1762 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) { 1763 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1764 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1765 } else { 1766 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1767 } 1768 } 1769 1770 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1771 1772 return nb_clusters; 1773 } 1774 1775 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset, 1776 uint64_t bytes, int flags) 1777 { 1778 BDRVQcow2State *s = bs->opaque; 1779 uint64_t end_offset = offset + bytes; 1780 uint64_t nb_clusters; 1781 int64_t cleared; 1782 int ret; 1783 1784 /* If we have to stay in sync with an external data file, zero out 1785 * s->data_file first. */ 1786 if (data_file_is_raw(bs)) { 1787 assert(has_data_file(bs)); 1788 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags); 1789 if (ret < 0) { 1790 return ret; 1791 } 1792 } 1793 1794 /* Caller must pass aligned values, except at image end */ 1795 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1796 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1797 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1798 1799 /* The zero flag is only supported by version 3 and newer */ 1800 if (s->qcow_version < 3) { 1801 return -ENOTSUP; 1802 } 1803 1804 /* Each L2 slice is handled by its own loop iteration */ 1805 nb_clusters = size_to_clusters(s, bytes); 1806 1807 s->cache_discards = true; 1808 1809 while (nb_clusters > 0) { 1810 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags); 1811 if (cleared < 0) { 1812 ret = cleared; 1813 goto fail; 1814 } 1815 1816 nb_clusters -= cleared; 1817 offset += (cleared * s->cluster_size); 1818 } 1819 1820 ret = 0; 1821 fail: 1822 s->cache_discards = false; 1823 qcow2_process_discards(bs, ret); 1824 1825 return ret; 1826 } 1827 1828 /* 1829 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1830 * non-backed non-pre-allocated zero clusters). 1831 * 1832 * l1_entries and *visited_l1_entries are used to keep track of progress for 1833 * status_cb(). l1_entries contains the total number of L1 entries and 1834 * *visited_l1_entries counts all visited L1 entries. 1835 */ 1836 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1837 int l1_size, int64_t *visited_l1_entries, 1838 int64_t l1_entries, 1839 BlockDriverAmendStatusCB *status_cb, 1840 void *cb_opaque) 1841 { 1842 BDRVQcow2State *s = bs->opaque; 1843 bool is_active_l1 = (l1_table == s->l1_table); 1844 uint64_t *l2_slice = NULL; 1845 unsigned slice, slice_size2, n_slices; 1846 int ret; 1847 int i, j; 1848 1849 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 1850 n_slices = s->cluster_size / slice_size2; 1851 1852 if (!is_active_l1) { 1853 /* inactive L2 tables require a buffer to be stored in when loading 1854 * them from disk */ 1855 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2); 1856 if (l2_slice == NULL) { 1857 return -ENOMEM; 1858 } 1859 } 1860 1861 for (i = 0; i < l1_size; i++) { 1862 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1863 uint64_t l2_refcount; 1864 1865 if (!l2_offset) { 1866 /* unallocated */ 1867 (*visited_l1_entries)++; 1868 if (status_cb) { 1869 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1870 } 1871 continue; 1872 } 1873 1874 if (offset_into_cluster(s, l2_offset)) { 1875 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1876 PRIx64 " unaligned (L1 index: %#x)", 1877 l2_offset, i); 1878 ret = -EIO; 1879 goto fail; 1880 } 1881 1882 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1883 &l2_refcount); 1884 if (ret < 0) { 1885 goto fail; 1886 } 1887 1888 for (slice = 0; slice < n_slices; slice++) { 1889 uint64_t slice_offset = l2_offset + slice * slice_size2; 1890 bool l2_dirty = false; 1891 if (is_active_l1) { 1892 /* get active L2 tables from cache */ 1893 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset, 1894 (void **)&l2_slice); 1895 } else { 1896 /* load inactive L2 tables from disk */ 1897 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2); 1898 } 1899 if (ret < 0) { 1900 goto fail; 1901 } 1902 1903 for (j = 0; j < s->l2_slice_size; j++) { 1904 uint64_t l2_entry = be64_to_cpu(l2_slice[j]); 1905 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1906 QCow2ClusterType cluster_type = 1907 qcow2_get_cluster_type(bs, l2_entry); 1908 1909 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && 1910 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { 1911 continue; 1912 } 1913 1914 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1915 if (!bs->backing) { 1916 /* not backed; therefore we can simply deallocate the 1917 * cluster */ 1918 l2_slice[j] = 0; 1919 l2_dirty = true; 1920 continue; 1921 } 1922 1923 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1924 if (offset < 0) { 1925 ret = offset; 1926 goto fail; 1927 } 1928 1929 if (l2_refcount > 1) { 1930 /* For shared L2 tables, set the refcount accordingly 1931 * (it is already 1 and needs to be l2_refcount) */ 1932 ret = qcow2_update_cluster_refcount( 1933 bs, offset >> s->cluster_bits, 1934 refcount_diff(1, l2_refcount), false, 1935 QCOW2_DISCARD_OTHER); 1936 if (ret < 0) { 1937 qcow2_free_clusters(bs, offset, s->cluster_size, 1938 QCOW2_DISCARD_OTHER); 1939 goto fail; 1940 } 1941 } 1942 } 1943 1944 if (offset_into_cluster(s, offset)) { 1945 int l2_index = slice * s->l2_slice_size + j; 1946 qcow2_signal_corruption( 1947 bs, true, -1, -1, 1948 "Cluster allocation offset " 1949 "%#" PRIx64 " unaligned (L2 offset: %#" 1950 PRIx64 ", L2 index: %#x)", offset, 1951 l2_offset, l2_index); 1952 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1953 qcow2_free_clusters(bs, offset, s->cluster_size, 1954 QCOW2_DISCARD_ALWAYS); 1955 } 1956 ret = -EIO; 1957 goto fail; 1958 } 1959 1960 ret = qcow2_pre_write_overlap_check(bs, 0, offset, 1961 s->cluster_size, true); 1962 if (ret < 0) { 1963 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1964 qcow2_free_clusters(bs, offset, s->cluster_size, 1965 QCOW2_DISCARD_ALWAYS); 1966 } 1967 goto fail; 1968 } 1969 1970 ret = bdrv_pwrite_zeroes(s->data_file, offset, 1971 s->cluster_size, 0); 1972 if (ret < 0) { 1973 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1974 qcow2_free_clusters(bs, offset, s->cluster_size, 1975 QCOW2_DISCARD_ALWAYS); 1976 } 1977 goto fail; 1978 } 1979 1980 if (l2_refcount == 1) { 1981 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1982 } else { 1983 l2_slice[j] = cpu_to_be64(offset); 1984 } 1985 l2_dirty = true; 1986 } 1987 1988 if (is_active_l1) { 1989 if (l2_dirty) { 1990 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1991 qcow2_cache_depends_on_flush(s->l2_table_cache); 1992 } 1993 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1994 } else { 1995 if (l2_dirty) { 1996 ret = qcow2_pre_write_overlap_check( 1997 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, 1998 slice_offset, slice_size2, false); 1999 if (ret < 0) { 2000 goto fail; 2001 } 2002 2003 ret = bdrv_pwrite(bs->file, slice_offset, 2004 l2_slice, slice_size2); 2005 if (ret < 0) { 2006 goto fail; 2007 } 2008 } 2009 } 2010 } 2011 2012 (*visited_l1_entries)++; 2013 if (status_cb) { 2014 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2015 } 2016 } 2017 2018 ret = 0; 2019 2020 fail: 2021 if (l2_slice) { 2022 if (!is_active_l1) { 2023 qemu_vfree(l2_slice); 2024 } else { 2025 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2026 } 2027 } 2028 return ret; 2029 } 2030 2031 /* 2032 * For backed images, expands all zero clusters on the image. For non-backed 2033 * images, deallocates all non-pre-allocated zero clusters (and claims the 2034 * allocation for pre-allocated ones). This is important for downgrading to a 2035 * qcow2 version which doesn't yet support metadata zero clusters. 2036 */ 2037 int qcow2_expand_zero_clusters(BlockDriverState *bs, 2038 BlockDriverAmendStatusCB *status_cb, 2039 void *cb_opaque) 2040 { 2041 BDRVQcow2State *s = bs->opaque; 2042 uint64_t *l1_table = NULL; 2043 int64_t l1_entries = 0, visited_l1_entries = 0; 2044 int ret; 2045 int i, j; 2046 2047 if (status_cb) { 2048 l1_entries = s->l1_size; 2049 for (i = 0; i < s->nb_snapshots; i++) { 2050 l1_entries += s->snapshots[i].l1_size; 2051 } 2052 } 2053 2054 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 2055 &visited_l1_entries, l1_entries, 2056 status_cb, cb_opaque); 2057 if (ret < 0) { 2058 goto fail; 2059 } 2060 2061 /* Inactive L1 tables may point to active L2 tables - therefore it is 2062 * necessary to flush the L2 table cache before trying to access the L2 2063 * tables pointed to by inactive L1 entries (else we might try to expand 2064 * zero clusters that have already been expanded); furthermore, it is also 2065 * necessary to empty the L2 table cache, since it may contain tables which 2066 * are now going to be modified directly on disk, bypassing the cache. 2067 * qcow2_cache_empty() does both for us. */ 2068 ret = qcow2_cache_empty(bs, s->l2_table_cache); 2069 if (ret < 0) { 2070 goto fail; 2071 } 2072 2073 for (i = 0; i < s->nb_snapshots; i++) { 2074 int l1_size2; 2075 uint64_t *new_l1_table; 2076 Error *local_err = NULL; 2077 2078 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset, 2079 s->snapshots[i].l1_size, sizeof(uint64_t), 2080 QCOW_MAX_L1_SIZE, "Snapshot L1 table", 2081 &local_err); 2082 if (ret < 0) { 2083 error_report_err(local_err); 2084 goto fail; 2085 } 2086 2087 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t); 2088 new_l1_table = g_try_realloc(l1_table, l1_size2); 2089 2090 if (!new_l1_table) { 2091 ret = -ENOMEM; 2092 goto fail; 2093 } 2094 2095 l1_table = new_l1_table; 2096 2097 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, 2098 l1_table, l1_size2); 2099 if (ret < 0) { 2100 goto fail; 2101 } 2102 2103 for (j = 0; j < s->snapshots[i].l1_size; j++) { 2104 be64_to_cpus(&l1_table[j]); 2105 } 2106 2107 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 2108 &visited_l1_entries, l1_entries, 2109 status_cb, cb_opaque); 2110 if (ret < 0) { 2111 goto fail; 2112 } 2113 } 2114 2115 ret = 0; 2116 2117 fail: 2118 g_free(l1_table); 2119 return ret; 2120 } 2121