1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qcow2.h" 30 #include "qemu/bswap.h" 31 #include "trace.h" 32 33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size) 34 { 35 BDRVQcow2State *s = bs->opaque; 36 int new_l1_size, i, ret; 37 38 if (exact_size >= s->l1_size) { 39 return 0; 40 } 41 42 new_l1_size = exact_size; 43 44 #ifdef DEBUG_ALLOC2 45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); 46 #endif 47 48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); 49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset + 50 new_l1_size * L1E_SIZE, 51 (s->l1_size - new_l1_size) * L1E_SIZE, 0); 52 if (ret < 0) { 53 goto fail; 54 } 55 56 ret = bdrv_flush(bs->file->bs); 57 if (ret < 0) { 58 goto fail; 59 } 60 61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); 62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { 63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { 64 continue; 65 } 66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, 67 s->cluster_size, QCOW2_DISCARD_ALWAYS); 68 s->l1_table[i] = 0; 69 } 70 return 0; 71 72 fail: 73 /* 74 * If the write in the l1_table failed the image may contain a partially 75 * overwritten l1_table. In this case it would be better to clear the 76 * l1_table in memory to avoid possible image corruption. 77 */ 78 memset(s->l1_table + new_l1_size, 0, 79 (s->l1_size - new_l1_size) * L1E_SIZE); 80 return ret; 81 } 82 83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 84 bool exact_size) 85 { 86 BDRVQcow2State *s = bs->opaque; 87 int new_l1_size2, ret, i; 88 uint64_t *new_l1_table; 89 int64_t old_l1_table_offset, old_l1_size; 90 int64_t new_l1_table_offset, new_l1_size; 91 uint8_t data[12]; 92 93 if (min_size <= s->l1_size) 94 return 0; 95 96 /* Do a sanity check on min_size before trying to calculate new_l1_size 97 * (this prevents overflows during the while loop for the calculation of 98 * new_l1_size) */ 99 if (min_size > INT_MAX / L1E_SIZE) { 100 return -EFBIG; 101 } 102 103 if (exact_size) { 104 new_l1_size = min_size; 105 } else { 106 /* Bump size up to reduce the number of times we have to grow */ 107 new_l1_size = s->l1_size; 108 if (new_l1_size == 0) { 109 new_l1_size = 1; 110 } 111 while (min_size > new_l1_size) { 112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); 113 } 114 } 115 116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 117 if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) { 118 return -EFBIG; 119 } 120 121 #ifdef DEBUG_ALLOC2 122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 123 s->l1_size, new_l1_size); 124 #endif 125 126 new_l1_size2 = L1E_SIZE * new_l1_size; 127 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2); 128 if (new_l1_table == NULL) { 129 return -ENOMEM; 130 } 131 memset(new_l1_table, 0, new_l1_size2); 132 133 if (s->l1_size) { 134 memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE); 135 } 136 137 /* write new table (align to cluster) */ 138 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 139 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 140 if (new_l1_table_offset < 0) { 141 qemu_vfree(new_l1_table); 142 return new_l1_table_offset; 143 } 144 145 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 146 if (ret < 0) { 147 goto fail; 148 } 149 150 /* the L1 position has not yet been updated, so these clusters must 151 * indeed be completely free */ 152 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 153 new_l1_size2, false); 154 if (ret < 0) { 155 goto fail; 156 } 157 158 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 159 for(i = 0; i < s->l1_size; i++) 160 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 161 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, 162 new_l1_table, new_l1_size2); 163 if (ret < 0) 164 goto fail; 165 for(i = 0; i < s->l1_size; i++) 166 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 167 168 /* set new table */ 169 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 170 stl_be_p(data, new_l1_size); 171 stq_be_p(data + 4, new_l1_table_offset); 172 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 173 data, sizeof(data)); 174 if (ret < 0) { 175 goto fail; 176 } 177 qemu_vfree(s->l1_table); 178 old_l1_table_offset = s->l1_table_offset; 179 s->l1_table_offset = new_l1_table_offset; 180 s->l1_table = new_l1_table; 181 old_l1_size = s->l1_size; 182 s->l1_size = new_l1_size; 183 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE, 184 QCOW2_DISCARD_OTHER); 185 return 0; 186 fail: 187 qemu_vfree(new_l1_table); 188 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 189 QCOW2_DISCARD_OTHER); 190 return ret; 191 } 192 193 /* 194 * l2_load 195 * 196 * @bs: The BlockDriverState 197 * @offset: A guest offset, used to calculate what slice of the L2 198 * table to load. 199 * @l2_offset: Offset to the L2 table in the image file. 200 * @l2_slice: Location to store the pointer to the L2 slice. 201 * 202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables 203 * that are loaded by the qcow2 cache). If the slice is in the cache, 204 * the cache is used; otherwise the L2 slice is loaded from the image 205 * file. 206 */ 207 static int l2_load(BlockDriverState *bs, uint64_t offset, 208 uint64_t l2_offset, uint64_t **l2_slice) 209 { 210 BDRVQcow2State *s = bs->opaque; 211 int start_of_slice = l2_entry_size(s) * 212 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset)); 213 214 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice, 215 (void **)l2_slice); 216 } 217 218 /* 219 * Writes an L1 entry to disk (note that depending on the alignment 220 * requirements this function may write more that just one entry in 221 * order to prevent bdrv_pwrite from performing a read-modify-write) 222 */ 223 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 224 { 225 BDRVQcow2State *s = bs->opaque; 226 int l1_start_index; 227 int i, ret; 228 int bufsize = MAX(L1E_SIZE, 229 MIN(bs->file->bs->bl.request_alignment, s->cluster_size)); 230 int nentries = bufsize / L1E_SIZE; 231 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries); 232 233 if (buf == NULL) { 234 return -ENOMEM; 235 } 236 237 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries); 238 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) { 239 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 240 } 241 242 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 243 s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false); 244 if (ret < 0) { 245 return ret; 246 } 247 248 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 249 ret = bdrv_pwrite_sync(bs->file, 250 s->l1_table_offset + L1E_SIZE * l1_start_index, 251 buf, bufsize); 252 if (ret < 0) { 253 return ret; 254 } 255 256 return 0; 257 } 258 259 /* 260 * l2_allocate 261 * 262 * Allocate a new l2 entry in the file. If l1_index points to an already 263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 264 * table) copy the contents of the old L2 table into the newly allocated one. 265 * Otherwise the new table is initialized with zeros. 266 * 267 */ 268 269 static int l2_allocate(BlockDriverState *bs, int l1_index) 270 { 271 BDRVQcow2State *s = bs->opaque; 272 uint64_t old_l2_offset; 273 uint64_t *l2_slice = NULL; 274 unsigned slice, slice_size2, n_slices; 275 int64_t l2_offset; 276 int ret; 277 278 old_l2_offset = s->l1_table[l1_index]; 279 280 trace_qcow2_l2_allocate(bs, l1_index); 281 282 /* allocate a new l2 entry */ 283 284 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s)); 285 if (l2_offset < 0) { 286 ret = l2_offset; 287 goto fail; 288 } 289 290 /* The offset must fit in the offset field of the L1 table entry */ 291 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset); 292 293 /* If we're allocating the table at offset 0 then something is wrong */ 294 if (l2_offset == 0) { 295 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 296 "allocation of L2 table at offset 0"); 297 ret = -EIO; 298 goto fail; 299 } 300 301 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 302 if (ret < 0) { 303 goto fail; 304 } 305 306 /* allocate a new entry in the l2 cache */ 307 308 slice_size2 = s->l2_slice_size * l2_entry_size(s); 309 n_slices = s->cluster_size / slice_size2; 310 311 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 312 for (slice = 0; slice < n_slices; slice++) { 313 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, 314 l2_offset + slice * slice_size2, 315 (void **) &l2_slice); 316 if (ret < 0) { 317 goto fail; 318 } 319 320 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 321 /* if there was no old l2 table, clear the new slice */ 322 memset(l2_slice, 0, slice_size2); 323 } else { 324 uint64_t *old_slice; 325 uint64_t old_l2_slice_offset = 326 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2; 327 328 /* if there was an old l2 table, read a slice from the disk */ 329 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 330 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset, 331 (void **) &old_slice); 332 if (ret < 0) { 333 goto fail; 334 } 335 336 memcpy(l2_slice, old_slice, slice_size2); 337 338 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice); 339 } 340 341 /* write the l2 slice to the file */ 342 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 343 344 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 345 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 346 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 347 } 348 349 ret = qcow2_cache_flush(bs, s->l2_table_cache); 350 if (ret < 0) { 351 goto fail; 352 } 353 354 /* update the L1 entry */ 355 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 356 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 357 ret = qcow2_write_l1_entry(bs, l1_index); 358 if (ret < 0) { 359 goto fail; 360 } 361 362 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 363 return 0; 364 365 fail: 366 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 367 if (l2_slice != NULL) { 368 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 369 } 370 s->l1_table[l1_index] = old_l2_offset; 371 if (l2_offset > 0) { 372 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s), 373 QCOW2_DISCARD_ALWAYS); 374 } 375 return ret; 376 } 377 378 /* 379 * For a given L2 entry, count the number of contiguous subclusters of 380 * the same type starting from @sc_from. Compressed clusters are 381 * treated as if they were divided into subclusters of size 382 * s->subcluster_size. 383 * 384 * Return the number of contiguous subclusters and set @type to the 385 * subcluster type. 386 * 387 * If the L2 entry is invalid return -errno and set @type to 388 * QCOW2_SUBCLUSTER_INVALID. 389 */ 390 static int qcow2_get_subcluster_range_type(BlockDriverState *bs, 391 uint64_t l2_entry, 392 uint64_t l2_bitmap, 393 unsigned sc_from, 394 QCow2SubclusterType *type) 395 { 396 BDRVQcow2State *s = bs->opaque; 397 uint32_t val; 398 399 *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from); 400 401 if (*type == QCOW2_SUBCLUSTER_INVALID) { 402 return -EINVAL; 403 } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) { 404 return s->subclusters_per_cluster - sc_from; 405 } 406 407 switch (*type) { 408 case QCOW2_SUBCLUSTER_NORMAL: 409 val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from); 410 return cto32(val) - sc_from; 411 412 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 413 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 414 val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32; 415 return cto32(val) - sc_from; 416 417 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 418 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 419 val = ((l2_bitmap >> 32) | l2_bitmap) 420 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from); 421 return ctz32(val) - sc_from; 422 423 default: 424 g_assert_not_reached(); 425 } 426 } 427 428 /* 429 * Return the number of contiguous subclusters of the exact same type 430 * in a given L2 slice, starting from cluster @l2_index, subcluster 431 * @sc_index. Allocated subclusters are required to be contiguous in 432 * the image file. 433 * At most @nb_clusters are checked (note that this means clusters, 434 * not subclusters). 435 * Compressed clusters are always processed one by one but for the 436 * purpose of this count they are treated as if they were divided into 437 * subclusters of size s->subcluster_size. 438 * On failure return -errno and update @l2_index to point to the 439 * invalid entry. 440 */ 441 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters, 442 unsigned sc_index, uint64_t *l2_slice, 443 unsigned *l2_index) 444 { 445 BDRVQcow2State *s = bs->opaque; 446 int i, count = 0; 447 bool check_offset = false; 448 uint64_t expected_offset = 0; 449 QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type; 450 451 assert(*l2_index + nb_clusters <= s->l2_slice_size); 452 453 for (i = 0; i < nb_clusters; i++) { 454 unsigned first_sc = (i == 0) ? sc_index : 0; 455 uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i); 456 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i); 457 int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap, 458 first_sc, &type); 459 if (ret < 0) { 460 *l2_index += i; /* Point to the invalid entry */ 461 return -EIO; 462 } 463 if (i == 0) { 464 if (type == QCOW2_SUBCLUSTER_COMPRESSED) { 465 /* Compressed clusters are always processed one by one */ 466 return ret; 467 } 468 expected_type = type; 469 expected_offset = l2_entry & L2E_OFFSET_MASK; 470 check_offset = (type == QCOW2_SUBCLUSTER_NORMAL || 471 type == QCOW2_SUBCLUSTER_ZERO_ALLOC || 472 type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC); 473 } else if (type != expected_type) { 474 break; 475 } else if (check_offset) { 476 expected_offset += s->cluster_size; 477 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) { 478 break; 479 } 480 } 481 count += ret; 482 /* Stop if there are type changes before the end of the cluster */ 483 if (first_sc + ret < s->subclusters_per_cluster) { 484 break; 485 } 486 } 487 488 return count; 489 } 490 491 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs, 492 uint64_t src_cluster_offset, 493 unsigned offset_in_cluster, 494 QEMUIOVector *qiov) 495 { 496 int ret; 497 498 if (qiov->size == 0) { 499 return 0; 500 } 501 502 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 503 504 if (!bs->drv) { 505 return -ENOMEDIUM; 506 } 507 508 /* Call .bdrv_co_readv() directly instead of using the public block-layer 509 * interface. This avoids double I/O throttling and request tracking, 510 * which can lead to deadlock when block layer copy-on-read is enabled. 511 */ 512 ret = bs->drv->bdrv_co_preadv_part(bs, 513 src_cluster_offset + offset_in_cluster, 514 qiov->size, qiov, 0, 0); 515 if (ret < 0) { 516 return ret; 517 } 518 519 return 0; 520 } 521 522 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs, 523 uint64_t cluster_offset, 524 unsigned offset_in_cluster, 525 QEMUIOVector *qiov) 526 { 527 BDRVQcow2State *s = bs->opaque; 528 int ret; 529 530 if (qiov->size == 0) { 531 return 0; 532 } 533 534 ret = qcow2_pre_write_overlap_check(bs, 0, 535 cluster_offset + offset_in_cluster, qiov->size, true); 536 if (ret < 0) { 537 return ret; 538 } 539 540 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 541 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster, 542 qiov->size, qiov, 0); 543 if (ret < 0) { 544 return ret; 545 } 546 547 return 0; 548 } 549 550 551 /* 552 * get_host_offset 553 * 554 * For a given offset of the virtual disk find the equivalent host 555 * offset in the qcow2 file and store it in *host_offset. Neither 556 * offset needs to be aligned to a cluster boundary. 557 * 558 * If the cluster is unallocated then *host_offset will be 0. 559 * If the cluster is compressed then *host_offset will contain the l2 entry. 560 * 561 * On entry, *bytes is the maximum number of contiguous bytes starting at 562 * offset that we are interested in. 563 * 564 * On exit, *bytes is the number of bytes starting at offset that have the same 565 * subcluster type and (if applicable) are stored contiguously in the image 566 * file. The subcluster type is stored in *subcluster_type. 567 * Compressed clusters are always processed one by one. 568 * 569 * Returns 0 on success, -errno in error cases. 570 */ 571 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset, 572 unsigned int *bytes, uint64_t *host_offset, 573 QCow2SubclusterType *subcluster_type) 574 { 575 BDRVQcow2State *s = bs->opaque; 576 unsigned int l2_index, sc_index; 577 uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap; 578 int sc; 579 unsigned int offset_in_cluster; 580 uint64_t bytes_available, bytes_needed, nb_clusters; 581 QCow2SubclusterType type; 582 int ret; 583 584 offset_in_cluster = offset_into_cluster(s, offset); 585 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 586 587 /* compute how many bytes there are between the start of the cluster 588 * containing offset and the end of the l2 slice that contains 589 * the entry pointing to it */ 590 bytes_available = 591 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset))) 592 << s->cluster_bits; 593 594 if (bytes_needed > bytes_available) { 595 bytes_needed = bytes_available; 596 } 597 598 *host_offset = 0; 599 600 /* seek to the l2 offset in the l1 table */ 601 602 l1_index = offset_to_l1_index(s, offset); 603 if (l1_index >= s->l1_size) { 604 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN; 605 goto out; 606 } 607 608 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 609 if (!l2_offset) { 610 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN; 611 goto out; 612 } 613 614 if (offset_into_cluster(s, l2_offset)) { 615 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 616 " unaligned (L1 index: %#" PRIx64 ")", 617 l2_offset, l1_index); 618 return -EIO; 619 } 620 621 /* load the l2 slice in memory */ 622 623 ret = l2_load(bs, offset, l2_offset, &l2_slice); 624 if (ret < 0) { 625 return ret; 626 } 627 628 /* find the cluster offset for the given disk offset */ 629 630 l2_index = offset_to_l2_slice_index(s, offset); 631 sc_index = offset_to_sc_index(s, offset); 632 l2_entry = get_l2_entry(s, l2_slice, l2_index); 633 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 634 635 nb_clusters = size_to_clusters(s, bytes_needed); 636 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 637 * integers; the minimum cluster size is 512, so this assertion is always 638 * true */ 639 assert(nb_clusters <= INT_MAX); 640 641 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 642 if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN || 643 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) { 644 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 645 " in pre-v3 image (L2 offset: %#" PRIx64 646 ", L2 index: %#x)", l2_offset, l2_index); 647 ret = -EIO; 648 goto fail; 649 } 650 switch (type) { 651 case QCOW2_SUBCLUSTER_INVALID: 652 break; /* This is handled by count_contiguous_subclusters() below */ 653 case QCOW2_SUBCLUSTER_COMPRESSED: 654 if (has_data_file(bs)) { 655 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster " 656 "entry found in image with external data " 657 "file (L2 offset: %#" PRIx64 ", L2 index: " 658 "%#x)", l2_offset, l2_index); 659 ret = -EIO; 660 goto fail; 661 } 662 *host_offset = l2_entry; 663 break; 664 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 665 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 666 break; 667 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 668 case QCOW2_SUBCLUSTER_NORMAL: 669 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: { 670 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK; 671 *host_offset = host_cluster_offset + offset_in_cluster; 672 if (offset_into_cluster(s, host_cluster_offset)) { 673 qcow2_signal_corruption(bs, true, -1, -1, 674 "Cluster allocation offset %#" 675 PRIx64 " unaligned (L2 offset: %#" PRIx64 676 ", L2 index: %#x)", host_cluster_offset, 677 l2_offset, l2_index); 678 ret = -EIO; 679 goto fail; 680 } 681 if (has_data_file(bs) && *host_offset != offset) { 682 qcow2_signal_corruption(bs, true, -1, -1, 683 "External data file host cluster offset %#" 684 PRIx64 " does not match guest cluster " 685 "offset: %#" PRIx64 686 ", L2 index: %#x)", host_cluster_offset, 687 offset - offset_in_cluster, l2_index); 688 ret = -EIO; 689 goto fail; 690 } 691 break; 692 } 693 default: 694 abort(); 695 } 696 697 sc = count_contiguous_subclusters(bs, nb_clusters, sc_index, 698 l2_slice, &l2_index); 699 if (sc < 0) { 700 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found " 701 " (L2 offset: %#" PRIx64 ", L2 index: %#x)", 702 l2_offset, l2_index); 703 ret = -EIO; 704 goto fail; 705 } 706 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 707 708 bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits; 709 710 out: 711 if (bytes_available > bytes_needed) { 712 bytes_available = bytes_needed; 713 } 714 715 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 716 * subtracting offset_in_cluster will therefore definitely yield something 717 * not exceeding UINT_MAX */ 718 assert(bytes_available - offset_in_cluster <= UINT_MAX); 719 *bytes = bytes_available - offset_in_cluster; 720 721 *subcluster_type = type; 722 723 return 0; 724 725 fail: 726 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice); 727 return ret; 728 } 729 730 /* 731 * get_cluster_table 732 * 733 * for a given disk offset, load (and allocate if needed) 734 * the appropriate slice of its l2 table. 735 * 736 * the cluster index in the l2 slice is given to the caller. 737 * 738 * Returns 0 on success, -errno in failure case 739 */ 740 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 741 uint64_t **new_l2_slice, 742 int *new_l2_index) 743 { 744 BDRVQcow2State *s = bs->opaque; 745 unsigned int l2_index; 746 uint64_t l1_index, l2_offset; 747 uint64_t *l2_slice = NULL; 748 int ret; 749 750 /* seek to the l2 offset in the l1 table */ 751 752 l1_index = offset_to_l1_index(s, offset); 753 if (l1_index >= s->l1_size) { 754 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 755 if (ret < 0) { 756 return ret; 757 } 758 } 759 760 assert(l1_index < s->l1_size); 761 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 762 if (offset_into_cluster(s, l2_offset)) { 763 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 764 " unaligned (L1 index: %#" PRIx64 ")", 765 l2_offset, l1_index); 766 return -EIO; 767 } 768 769 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) { 770 /* First allocate a new L2 table (and do COW if needed) */ 771 ret = l2_allocate(bs, l1_index); 772 if (ret < 0) { 773 return ret; 774 } 775 776 /* Then decrease the refcount of the old table */ 777 if (l2_offset) { 778 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s), 779 QCOW2_DISCARD_OTHER); 780 } 781 782 /* Get the offset of the newly-allocated l2 table */ 783 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 784 assert(offset_into_cluster(s, l2_offset) == 0); 785 } 786 787 /* load the l2 slice in memory */ 788 ret = l2_load(bs, offset, l2_offset, &l2_slice); 789 if (ret < 0) { 790 return ret; 791 } 792 793 /* find the cluster offset for the given disk offset */ 794 795 l2_index = offset_to_l2_slice_index(s, offset); 796 797 *new_l2_slice = l2_slice; 798 *new_l2_index = l2_index; 799 800 return 0; 801 } 802 803 /* 804 * alloc_compressed_cluster_offset 805 * 806 * For a given offset on the virtual disk, allocate a new compressed cluster 807 * and put the host offset of the cluster into *host_offset. If a cluster is 808 * already allocated at the offset, return an error. 809 * 810 * Return 0 on success and -errno in error cases 811 */ 812 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 813 uint64_t offset, 814 int compressed_size, 815 uint64_t *host_offset) 816 { 817 BDRVQcow2State *s = bs->opaque; 818 int l2_index, ret; 819 uint64_t *l2_slice; 820 int64_t cluster_offset; 821 int nb_csectors; 822 823 if (has_data_file(bs)) { 824 return 0; 825 } 826 827 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 828 if (ret < 0) { 829 return ret; 830 } 831 832 /* Compression can't overwrite anything. Fail if the cluster was already 833 * allocated. */ 834 cluster_offset = get_l2_entry(s, l2_slice, l2_index); 835 if (cluster_offset & L2E_OFFSET_MASK) { 836 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 837 return -EIO; 838 } 839 840 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 841 if (cluster_offset < 0) { 842 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 843 return cluster_offset; 844 } 845 846 nb_csectors = 847 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE - 848 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE); 849 850 /* The offset and size must fit in their fields of the L2 table entry */ 851 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset); 852 assert((nb_csectors & s->csize_mask) == nb_csectors); 853 854 cluster_offset |= QCOW_OFLAG_COMPRESSED | 855 ((uint64_t)nb_csectors << s->csize_shift); 856 857 /* update L2 table */ 858 859 /* compressed clusters never have the copied flag */ 860 861 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 862 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 863 set_l2_entry(s, l2_slice, l2_index, cluster_offset); 864 if (has_subclusters(s)) { 865 set_l2_bitmap(s, l2_slice, l2_index, 0); 866 } 867 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 868 869 *host_offset = cluster_offset & s->cluster_offset_mask; 870 return 0; 871 } 872 873 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m) 874 { 875 BDRVQcow2State *s = bs->opaque; 876 Qcow2COWRegion *start = &m->cow_start; 877 Qcow2COWRegion *end = &m->cow_end; 878 unsigned buffer_size; 879 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); 880 bool merge_reads; 881 uint8_t *start_buffer, *end_buffer; 882 QEMUIOVector qiov; 883 int ret; 884 885 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); 886 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); 887 assert(start->offset + start->nb_bytes <= end->offset); 888 889 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) { 890 return 0; 891 } 892 893 /* If we have to read both the start and end COW regions and the 894 * middle region is not too large then perform just one read 895 * operation */ 896 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; 897 if (merge_reads) { 898 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; 899 } else { 900 /* If we have to do two reads, add some padding in the middle 901 * if necessary to make sure that the end region is optimally 902 * aligned. */ 903 size_t align = bdrv_opt_mem_align(bs); 904 assert(align > 0 && align <= UINT_MAX); 905 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= 906 UINT_MAX - end->nb_bytes); 907 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; 908 } 909 910 /* Reserve a buffer large enough to store all the data that we're 911 * going to read */ 912 start_buffer = qemu_try_blockalign(bs, buffer_size); 913 if (start_buffer == NULL) { 914 return -ENOMEM; 915 } 916 /* The part of the buffer where the end region is located */ 917 end_buffer = start_buffer + buffer_size - end->nb_bytes; 918 919 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? 920 qemu_iovec_subvec_niov(m->data_qiov, 921 m->data_qiov_offset, 922 data_bytes) 923 : 0)); 924 925 qemu_co_mutex_unlock(&s->lock); 926 /* First we read the existing data from both COW regions. We 927 * either read the whole region in one go, or the start and end 928 * regions separately. */ 929 if (merge_reads) { 930 qemu_iovec_add(&qiov, start_buffer, buffer_size); 931 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 932 } else { 933 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 934 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 935 if (ret < 0) { 936 goto fail; 937 } 938 939 qemu_iovec_reset(&qiov); 940 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 941 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); 942 } 943 if (ret < 0) { 944 goto fail; 945 } 946 947 /* Encrypt the data if necessary before writing it */ 948 if (bs->encrypted) { 949 ret = qcow2_co_encrypt(bs, 950 m->alloc_offset + start->offset, 951 m->offset + start->offset, 952 start_buffer, start->nb_bytes); 953 if (ret < 0) { 954 goto fail; 955 } 956 957 ret = qcow2_co_encrypt(bs, 958 m->alloc_offset + end->offset, 959 m->offset + end->offset, 960 end_buffer, end->nb_bytes); 961 if (ret < 0) { 962 goto fail; 963 } 964 } 965 966 /* And now we can write everything. If we have the guest data we 967 * can write everything in one single operation */ 968 if (m->data_qiov) { 969 qemu_iovec_reset(&qiov); 970 if (start->nb_bytes) { 971 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 972 } 973 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes); 974 if (end->nb_bytes) { 975 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 976 } 977 /* NOTE: we have a write_aio blkdebug event here followed by 978 * a cow_write one in do_perform_cow_write(), but there's only 979 * one single I/O operation */ 980 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO); 981 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 982 } else { 983 /* If there's no guest data then write both COW regions separately */ 984 qemu_iovec_reset(&qiov); 985 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 986 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 987 if (ret < 0) { 988 goto fail; 989 } 990 991 qemu_iovec_reset(&qiov); 992 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 993 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); 994 } 995 996 fail: 997 qemu_co_mutex_lock(&s->lock); 998 999 /* 1000 * Before we update the L2 table to actually point to the new cluster, we 1001 * need to be sure that the refcounts have been increased and COW was 1002 * handled. 1003 */ 1004 if (ret == 0) { 1005 qcow2_cache_depends_on_flush(s->l2_table_cache); 1006 } 1007 1008 qemu_vfree(start_buffer); 1009 qemu_iovec_destroy(&qiov); 1010 return ret; 1011 } 1012 1013 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 1014 { 1015 BDRVQcow2State *s = bs->opaque; 1016 int i, j = 0, l2_index, ret; 1017 uint64_t *old_cluster, *l2_slice; 1018 uint64_t cluster_offset = m->alloc_offset; 1019 1020 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 1021 assert(m->nb_clusters > 0); 1022 1023 old_cluster = g_try_new(uint64_t, m->nb_clusters); 1024 if (old_cluster == NULL) { 1025 ret = -ENOMEM; 1026 goto err; 1027 } 1028 1029 /* copy content of unmodified sectors */ 1030 ret = perform_cow(bs, m); 1031 if (ret < 0) { 1032 goto err; 1033 } 1034 1035 /* Update L2 table. */ 1036 if (s->use_lazy_refcounts) { 1037 qcow2_mark_dirty(bs); 1038 } 1039 if (qcow2_need_accurate_refcounts(s)) { 1040 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1041 s->refcount_block_cache); 1042 } 1043 1044 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index); 1045 if (ret < 0) { 1046 goto err; 1047 } 1048 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1049 1050 assert(l2_index + m->nb_clusters <= s->l2_slice_size); 1051 assert(m->cow_end.offset + m->cow_end.nb_bytes <= 1052 m->nb_clusters << s->cluster_bits); 1053 for (i = 0; i < m->nb_clusters; i++) { 1054 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits); 1055 /* if two concurrent writes happen to the same unallocated cluster 1056 * each write allocates separate cluster and writes data concurrently. 1057 * The first one to complete updates l2 table with pointer to its 1058 * cluster the second one has to do RMW (which is done above by 1059 * perform_cow()), update l2 table with its cluster pointer and free 1060 * old cluster. This is what this loop does */ 1061 if (get_l2_entry(s, l2_slice, l2_index + i) != 0) { 1062 old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i); 1063 } 1064 1065 /* The offset must fit in the offset field of the L2 table entry */ 1066 assert((offset & L2E_OFFSET_MASK) == offset); 1067 1068 set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED); 1069 1070 /* Update bitmap with the subclusters that were just written */ 1071 if (has_subclusters(s) && !m->prealloc) { 1072 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1073 unsigned written_from = m->cow_start.offset; 1074 unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes; 1075 int first_sc, last_sc; 1076 /* Narrow written_from and written_to down to the current cluster */ 1077 written_from = MAX(written_from, i << s->cluster_bits); 1078 written_to = MIN(written_to, (i + 1) << s->cluster_bits); 1079 assert(written_from < written_to); 1080 first_sc = offset_to_sc_index(s, written_from); 1081 last_sc = offset_to_sc_index(s, written_to - 1); 1082 l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1); 1083 l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1); 1084 set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap); 1085 } 1086 } 1087 1088 1089 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1090 1091 /* 1092 * If this was a COW, we need to decrease the refcount of the old cluster. 1093 * 1094 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 1095 * clusters), the next write will reuse them anyway. 1096 */ 1097 if (!m->keep_old_clusters && j != 0) { 1098 for (i = 0; i < j; i++) { 1099 qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER); 1100 } 1101 } 1102 1103 ret = 0; 1104 err: 1105 g_free(old_cluster); 1106 return ret; 1107 } 1108 1109 /** 1110 * Frees the allocated clusters because the request failed and they won't 1111 * actually be linked. 1112 */ 1113 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m) 1114 { 1115 BDRVQcow2State *s = bs->opaque; 1116 if (!has_data_file(bs) && !m->keep_old_clusters) { 1117 qcow2_free_clusters(bs, m->alloc_offset, 1118 m->nb_clusters << s->cluster_bits, 1119 QCOW2_DISCARD_NEVER); 1120 } 1121 } 1122 1123 /* 1124 * For a given write request, create a new QCowL2Meta structure, add 1125 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write 1126 * request does not need copy-on-write or changes to the L2 metadata 1127 * then this function does nothing. 1128 * 1129 * @host_cluster_offset points to the beginning of the first cluster. 1130 * 1131 * @guest_offset and @bytes indicate the offset and length of the 1132 * request. 1133 * 1134 * @l2_slice contains the L2 entries of all clusters involved in this 1135 * write request. 1136 * 1137 * If @keep_old is true it means that the clusters were already 1138 * allocated and will be overwritten. If false then the clusters are 1139 * new and we have to decrease the reference count of the old ones. 1140 * 1141 * Returns 0 on success, -errno on failure. 1142 */ 1143 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset, 1144 uint64_t guest_offset, unsigned bytes, 1145 uint64_t *l2_slice, QCowL2Meta **m, bool keep_old) 1146 { 1147 BDRVQcow2State *s = bs->opaque; 1148 int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset); 1149 uint64_t l2_entry, l2_bitmap; 1150 unsigned cow_start_from, cow_end_to; 1151 unsigned cow_start_to = offset_into_cluster(s, guest_offset); 1152 unsigned cow_end_from = cow_start_to + bytes; 1153 unsigned nb_clusters = size_to_clusters(s, cow_end_from); 1154 QCowL2Meta *old_m = *m; 1155 QCow2SubclusterType type; 1156 int i; 1157 bool skip_cow = keep_old; 1158 1159 assert(nb_clusters <= s->l2_slice_size - l2_index); 1160 1161 /* Check the type of all affected subclusters */ 1162 for (i = 0; i < nb_clusters; i++) { 1163 l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1164 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1165 if (skip_cow) { 1166 unsigned write_from = MAX(cow_start_to, i << s->cluster_bits); 1167 unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits); 1168 int first_sc = offset_to_sc_index(s, write_from); 1169 int last_sc = offset_to_sc_index(s, write_to - 1); 1170 int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap, 1171 first_sc, &type); 1172 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */ 1173 if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) { 1174 skip_cow = false; 1175 } 1176 } else { 1177 /* If we can't skip the cow we can still look for invalid entries */ 1178 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0); 1179 } 1180 if (type == QCOW2_SUBCLUSTER_INVALID) { 1181 int l1_index = offset_to_l1_index(s, guest_offset); 1182 uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 1183 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster " 1184 "entry found (L2 offset: %#" PRIx64 1185 ", L2 index: %#x)", 1186 l2_offset, l2_index + i); 1187 return -EIO; 1188 } 1189 } 1190 1191 if (skip_cow) { 1192 return 0; 1193 } 1194 1195 /* Get the L2 entry of the first cluster */ 1196 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1197 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 1198 sc_index = offset_to_sc_index(s, guest_offset); 1199 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 1200 1201 if (!keep_old) { 1202 switch (type) { 1203 case QCOW2_SUBCLUSTER_COMPRESSED: 1204 cow_start_from = 0; 1205 break; 1206 case QCOW2_SUBCLUSTER_NORMAL: 1207 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1208 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1209 if (has_subclusters(s)) { 1210 /* Skip all leading zero and unallocated subclusters */ 1211 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC; 1212 cow_start_from = 1213 MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits; 1214 } else { 1215 cow_start_from = 0; 1216 } 1217 break; 1218 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 1219 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 1220 cow_start_from = sc_index << s->subcluster_bits; 1221 break; 1222 default: 1223 g_assert_not_reached(); 1224 } 1225 } else { 1226 switch (type) { 1227 case QCOW2_SUBCLUSTER_NORMAL: 1228 cow_start_from = cow_start_to; 1229 break; 1230 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1231 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1232 cow_start_from = sc_index << s->subcluster_bits; 1233 break; 1234 default: 1235 g_assert_not_reached(); 1236 } 1237 } 1238 1239 /* Get the L2 entry of the last cluster */ 1240 l2_index += nb_clusters - 1; 1241 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1242 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 1243 sc_index = offset_to_sc_index(s, guest_offset + bytes - 1); 1244 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 1245 1246 if (!keep_old) { 1247 switch (type) { 1248 case QCOW2_SUBCLUSTER_COMPRESSED: 1249 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size); 1250 break; 1251 case QCOW2_SUBCLUSTER_NORMAL: 1252 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1253 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1254 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size); 1255 if (has_subclusters(s)) { 1256 /* Skip all trailing zero and unallocated subclusters */ 1257 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC; 1258 cow_end_to -= 1259 MIN(s->subclusters_per_cluster - sc_index - 1, 1260 clz32(alloc_bitmap)) << s->subcluster_bits; 1261 } 1262 break; 1263 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 1264 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 1265 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size); 1266 break; 1267 default: 1268 g_assert_not_reached(); 1269 } 1270 } else { 1271 switch (type) { 1272 case QCOW2_SUBCLUSTER_NORMAL: 1273 cow_end_to = cow_end_from; 1274 break; 1275 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1276 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1277 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size); 1278 break; 1279 default: 1280 g_assert_not_reached(); 1281 } 1282 } 1283 1284 *m = g_malloc0(sizeof(**m)); 1285 **m = (QCowL2Meta) { 1286 .next = old_m, 1287 1288 .alloc_offset = host_cluster_offset, 1289 .offset = start_of_cluster(s, guest_offset), 1290 .nb_clusters = nb_clusters, 1291 1292 .keep_old_clusters = keep_old, 1293 1294 .cow_start = { 1295 .offset = cow_start_from, 1296 .nb_bytes = cow_start_to - cow_start_from, 1297 }, 1298 .cow_end = { 1299 .offset = cow_end_from, 1300 .nb_bytes = cow_end_to - cow_end_from, 1301 }, 1302 }; 1303 1304 qemu_co_queue_init(&(*m)->dependent_requests); 1305 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1306 1307 return 0; 1308 } 1309 1310 /* 1311 * Returns true if writing to the cluster pointed to by @l2_entry 1312 * requires a new allocation (that is, if the cluster is unallocated 1313 * or has refcount > 1 and therefore cannot be written in-place). 1314 */ 1315 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry) 1316 { 1317 switch (qcow2_get_cluster_type(bs, l2_entry)) { 1318 case QCOW2_CLUSTER_NORMAL: 1319 case QCOW2_CLUSTER_ZERO_ALLOC: 1320 if (l2_entry & QCOW_OFLAG_COPIED) { 1321 return false; 1322 } 1323 /* fallthrough */ 1324 case QCOW2_CLUSTER_UNALLOCATED: 1325 case QCOW2_CLUSTER_COMPRESSED: 1326 case QCOW2_CLUSTER_ZERO_PLAIN: 1327 return true; 1328 default: 1329 abort(); 1330 } 1331 } 1332 1333 /* 1334 * Returns the number of contiguous clusters that can be written to 1335 * using one single write request, starting from @l2_index. 1336 * At most @nb_clusters are checked. 1337 * 1338 * If @new_alloc is true this counts clusters that are either 1339 * unallocated, or allocated but with refcount > 1 (so they need to be 1340 * newly allocated and COWed). 1341 * 1342 * If @new_alloc is false this counts clusters that are already 1343 * allocated and can be overwritten in-place (this includes clusters 1344 * of type QCOW2_CLUSTER_ZERO_ALLOC). 1345 */ 1346 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters, 1347 uint64_t *l2_slice, int l2_index, 1348 bool new_alloc) 1349 { 1350 BDRVQcow2State *s = bs->opaque; 1351 uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index); 1352 uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK; 1353 int i; 1354 1355 for (i = 0; i < nb_clusters; i++) { 1356 l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1357 if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) { 1358 break; 1359 } 1360 if (!new_alloc) { 1361 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) { 1362 break; 1363 } 1364 expected_offset += s->cluster_size; 1365 } 1366 } 1367 1368 assert(i <= nb_clusters); 1369 return i; 1370 } 1371 1372 /* 1373 * Check if there already is an AIO write request in flight which allocates 1374 * the same cluster. In this case we need to wait until the previous 1375 * request has completed and updated the L2 table accordingly. 1376 * 1377 * Returns: 1378 * 0 if there was no dependency. *cur_bytes indicates the number of 1379 * bytes from guest_offset that can be read before the next 1380 * dependency must be processed (or the request is complete) 1381 * 1382 * -EAGAIN if we had to wait for another request, previously gathered 1383 * information on cluster allocation may be invalid now. The caller 1384 * must start over anyway, so consider *cur_bytes undefined. 1385 */ 1386 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 1387 uint64_t *cur_bytes, QCowL2Meta **m) 1388 { 1389 BDRVQcow2State *s = bs->opaque; 1390 QCowL2Meta *old_alloc; 1391 uint64_t bytes = *cur_bytes; 1392 1393 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 1394 1395 uint64_t start = guest_offset; 1396 uint64_t end = start + bytes; 1397 uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc)); 1398 uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size); 1399 1400 if (end <= old_start || start >= old_end) { 1401 /* No intersection */ 1402 continue; 1403 } 1404 1405 if (old_alloc->keep_old_clusters && 1406 (end <= l2meta_cow_start(old_alloc) || 1407 start >= l2meta_cow_end(old_alloc))) 1408 { 1409 /* 1410 * Clusters intersect but COW areas don't. And cluster itself is 1411 * already allocated. So, there is no actual conflict. 1412 */ 1413 continue; 1414 } 1415 1416 /* Conflict */ 1417 1418 if (start < old_start) { 1419 /* Stop at the start of a running allocation */ 1420 bytes = old_start - start; 1421 } else { 1422 bytes = 0; 1423 } 1424 1425 /* 1426 * Stop if an l2meta already exists. After yielding, it wouldn't 1427 * be valid any more, so we'd have to clean up the old L2Metas 1428 * and deal with requests depending on them before starting to 1429 * gather new ones. Not worth the trouble. 1430 */ 1431 if (bytes == 0 && *m) { 1432 *cur_bytes = 0; 1433 return 0; 1434 } 1435 1436 if (bytes == 0) { 1437 /* 1438 * Wait for the dependency to complete. We need to recheck 1439 * the free/allocated clusters when we continue. 1440 */ 1441 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 1442 return -EAGAIN; 1443 } 1444 } 1445 1446 /* Make sure that existing clusters and new allocations are only used up to 1447 * the next dependency if we shortened the request above */ 1448 *cur_bytes = bytes; 1449 1450 return 0; 1451 } 1452 1453 /* 1454 * Checks how many already allocated clusters that don't require a new 1455 * allocation there are at the given guest_offset (up to *bytes). 1456 * If *host_offset is not INV_OFFSET, only physically contiguous clusters 1457 * beginning at this host offset are counted. 1458 * 1459 * Note that guest_offset may not be cluster aligned. In this case, the 1460 * returned *host_offset points to exact byte referenced by guest_offset and 1461 * therefore isn't cluster aligned as well. 1462 * 1463 * Returns: 1464 * 0: if no allocated clusters are available at the given offset. 1465 * *bytes is normally unchanged. It is set to 0 if the cluster 1466 * is allocated and can be overwritten in-place but doesn't have 1467 * the right physical offset. 1468 * 1469 * 1: if allocated clusters that can be overwritten in place are 1470 * available at the requested offset. *bytes may have decreased 1471 * and describes the length of the area that can be written to. 1472 * 1473 * -errno: in error cases 1474 */ 1475 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 1476 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1477 { 1478 BDRVQcow2State *s = bs->opaque; 1479 int l2_index; 1480 uint64_t l2_entry, cluster_offset; 1481 uint64_t *l2_slice; 1482 uint64_t nb_clusters; 1483 unsigned int keep_clusters; 1484 int ret; 1485 1486 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 1487 *bytes); 1488 1489 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset) 1490 == offset_into_cluster(s, *host_offset)); 1491 1492 /* 1493 * Calculate the number of clusters to look for. We stop at L2 slice 1494 * boundaries to keep things simple. 1495 */ 1496 nb_clusters = 1497 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1498 1499 l2_index = offset_to_l2_slice_index(s, guest_offset); 1500 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1501 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */ 1502 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits); 1503 1504 /* Find L2 entry for the first involved cluster */ 1505 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1506 if (ret < 0) { 1507 return ret; 1508 } 1509 1510 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1511 cluster_offset = l2_entry & L2E_OFFSET_MASK; 1512 1513 if (!cluster_needs_new_alloc(bs, l2_entry)) { 1514 if (offset_into_cluster(s, cluster_offset)) { 1515 qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset " 1516 "%#" PRIx64 " unaligned (guest offset: %#" 1517 PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ? 1518 "Preallocated zero" : "Data", 1519 cluster_offset, guest_offset); 1520 ret = -EIO; 1521 goto out; 1522 } 1523 1524 /* If a specific host_offset is required, check it */ 1525 if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) { 1526 *bytes = 0; 1527 ret = 0; 1528 goto out; 1529 } 1530 1531 /* We keep all QCOW_OFLAG_COPIED clusters */ 1532 keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice, 1533 l2_index, false); 1534 assert(keep_clusters <= nb_clusters); 1535 1536 *bytes = MIN(*bytes, 1537 keep_clusters * s->cluster_size 1538 - offset_into_cluster(s, guest_offset)); 1539 assert(*bytes != 0); 1540 1541 ret = calculate_l2_meta(bs, cluster_offset, guest_offset, 1542 *bytes, l2_slice, m, true); 1543 if (ret < 0) { 1544 goto out; 1545 } 1546 1547 ret = 1; 1548 } else { 1549 ret = 0; 1550 } 1551 1552 /* Cleanup */ 1553 out: 1554 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1555 1556 /* Only return a host offset if we actually made progress. Otherwise we 1557 * would make requirements for handle_alloc() that it can't fulfill */ 1558 if (ret > 0) { 1559 *host_offset = cluster_offset + offset_into_cluster(s, guest_offset); 1560 } 1561 1562 return ret; 1563 } 1564 1565 /* 1566 * Allocates new clusters for the given guest_offset. 1567 * 1568 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1569 * contain the number of clusters that have been allocated and are contiguous 1570 * in the image file. 1571 * 1572 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file 1573 * at which the new clusters must start. *nb_clusters can be 0 on return in 1574 * this case if the cluster at host_offset is already in use. If *host_offset 1575 * is INV_OFFSET, the clusters can be allocated anywhere in the image file. 1576 * 1577 * *host_offset is updated to contain the offset into the image file at which 1578 * the first allocated cluster starts. 1579 * 1580 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1581 * function has been waiting for another request and the allocation must be 1582 * restarted, but the whole request should not be failed. 1583 */ 1584 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1585 uint64_t *host_offset, uint64_t *nb_clusters) 1586 { 1587 BDRVQcow2State *s = bs->opaque; 1588 1589 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1590 *host_offset, *nb_clusters); 1591 1592 if (has_data_file(bs)) { 1593 assert(*host_offset == INV_OFFSET || 1594 *host_offset == start_of_cluster(s, guest_offset)); 1595 *host_offset = start_of_cluster(s, guest_offset); 1596 return 0; 1597 } 1598 1599 /* Allocate new clusters */ 1600 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1601 if (*host_offset == INV_OFFSET) { 1602 int64_t cluster_offset = 1603 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1604 if (cluster_offset < 0) { 1605 return cluster_offset; 1606 } 1607 *host_offset = cluster_offset; 1608 return 0; 1609 } else { 1610 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1611 if (ret < 0) { 1612 return ret; 1613 } 1614 *nb_clusters = ret; 1615 return 0; 1616 } 1617 } 1618 1619 /* 1620 * Allocates new clusters for an area that is either still unallocated or 1621 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET, 1622 * clusters are only allocated if the new allocation can match the specified 1623 * host offset. 1624 * 1625 * Note that guest_offset may not be cluster aligned. In this case, the 1626 * returned *host_offset points to exact byte referenced by guest_offset and 1627 * therefore isn't cluster aligned as well. 1628 * 1629 * Returns: 1630 * 0: if no clusters could be allocated. *bytes is set to 0, 1631 * *host_offset is left unchanged. 1632 * 1633 * 1: if new clusters were allocated. *bytes may be decreased if the 1634 * new allocation doesn't cover all of the requested area. 1635 * *host_offset is updated to contain the host offset of the first 1636 * newly allocated cluster. 1637 * 1638 * -errno: in error cases 1639 */ 1640 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1641 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1642 { 1643 BDRVQcow2State *s = bs->opaque; 1644 int l2_index; 1645 uint64_t *l2_slice; 1646 uint64_t nb_clusters; 1647 int ret; 1648 1649 uint64_t alloc_cluster_offset; 1650 1651 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1652 *bytes); 1653 assert(*bytes > 0); 1654 1655 /* 1656 * Calculate the number of clusters to look for. We stop at L2 slice 1657 * boundaries to keep things simple. 1658 */ 1659 nb_clusters = 1660 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1661 1662 l2_index = offset_to_l2_slice_index(s, guest_offset); 1663 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1664 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */ 1665 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits); 1666 1667 /* Find L2 entry for the first involved cluster */ 1668 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1669 if (ret < 0) { 1670 return ret; 1671 } 1672 1673 nb_clusters = count_single_write_clusters(bs, nb_clusters, 1674 l2_slice, l2_index, true); 1675 1676 /* This function is only called when there were no non-COW clusters, so if 1677 * we can't find any unallocated or COW clusters either, something is 1678 * wrong with our code. */ 1679 assert(nb_clusters > 0); 1680 1681 /* Allocate at a given offset in the image file */ 1682 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET : 1683 start_of_cluster(s, *host_offset); 1684 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1685 &nb_clusters); 1686 if (ret < 0) { 1687 goto out; 1688 } 1689 1690 /* Can't extend contiguous allocation */ 1691 if (nb_clusters == 0) { 1692 *bytes = 0; 1693 ret = 0; 1694 goto out; 1695 } 1696 1697 assert(alloc_cluster_offset != INV_OFFSET); 1698 1699 /* 1700 * Save info needed for meta data update. 1701 * 1702 * requested_bytes: Number of bytes from the start of the first 1703 * newly allocated cluster to the end of the (possibly shortened 1704 * before) write request. 1705 * 1706 * avail_bytes: Number of bytes from the start of the first 1707 * newly allocated to the end of the last newly allocated cluster. 1708 * 1709 * nb_bytes: The number of bytes from the start of the first 1710 * newly allocated cluster to the end of the area that the write 1711 * request actually writes to (excluding COW at the end) 1712 */ 1713 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1714 int avail_bytes = nb_clusters << s->cluster_bits; 1715 int nb_bytes = MIN(requested_bytes, avail_bytes); 1716 1717 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1718 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1719 assert(*bytes != 0); 1720 1721 ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes, 1722 l2_slice, m, false); 1723 if (ret < 0) { 1724 goto out; 1725 } 1726 1727 ret = 1; 1728 1729 out: 1730 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1731 return ret; 1732 } 1733 1734 /* 1735 * For a given area on the virtual disk defined by @offset and @bytes, 1736 * find the corresponding area on the qcow2 image, allocating new 1737 * clusters (or subclusters) if necessary. The result can span a 1738 * combination of allocated and previously unallocated clusters. 1739 * 1740 * Note that offset may not be cluster aligned. In this case, the returned 1741 * *host_offset points to exact byte referenced by offset and therefore 1742 * isn't cluster aligned as well. 1743 * 1744 * On return, @host_offset is set to the beginning of the requested 1745 * area. This area is guaranteed to be contiguous on the qcow2 file 1746 * but it can be smaller than initially requested. In this case @bytes 1747 * is updated with the actual size. 1748 * 1749 * If any clusters or subclusters were allocated then @m contains a 1750 * list with the information of all the affected regions. Note that 1751 * this can happen regardless of whether this function succeeds or 1752 * not. The caller is responsible for updating the L2 metadata of the 1753 * allocated clusters (on success) or freeing them (on failure), and 1754 * for clearing the contents of @m afterwards in both cases. 1755 * 1756 * If the request conflicts with another write request in flight, the coroutine 1757 * is queued and will be reentered when the dependency has completed. 1758 * 1759 * Return 0 on success and -errno in error cases 1760 */ 1761 int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset, 1762 unsigned int *bytes, uint64_t *host_offset, 1763 QCowL2Meta **m) 1764 { 1765 BDRVQcow2State *s = bs->opaque; 1766 uint64_t start, remaining; 1767 uint64_t cluster_offset; 1768 uint64_t cur_bytes; 1769 int ret; 1770 1771 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1772 1773 again: 1774 start = offset; 1775 remaining = *bytes; 1776 cluster_offset = INV_OFFSET; 1777 *host_offset = INV_OFFSET; 1778 cur_bytes = 0; 1779 *m = NULL; 1780 1781 while (true) { 1782 1783 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) { 1784 *host_offset = cluster_offset; 1785 } 1786 1787 assert(remaining >= cur_bytes); 1788 1789 start += cur_bytes; 1790 remaining -= cur_bytes; 1791 1792 if (cluster_offset != INV_OFFSET) { 1793 cluster_offset += cur_bytes; 1794 } 1795 1796 if (remaining == 0) { 1797 break; 1798 } 1799 1800 cur_bytes = remaining; 1801 1802 /* 1803 * Now start gathering as many contiguous clusters as possible: 1804 * 1805 * 1. Check for overlaps with in-flight allocations 1806 * 1807 * a) Overlap not in the first cluster -> shorten this request and 1808 * let the caller handle the rest in its next loop iteration. 1809 * 1810 * b) Real overlaps of two requests. Yield and restart the search 1811 * for contiguous clusters (the situation could have changed 1812 * while we were sleeping) 1813 * 1814 * c) TODO: Request starts in the same cluster as the in-flight 1815 * allocation ends. Shorten the COW of the in-fight allocation, 1816 * set cluster_offset to write to the same cluster and set up 1817 * the right synchronisation between the in-flight request and 1818 * the new one. 1819 */ 1820 ret = handle_dependencies(bs, start, &cur_bytes, m); 1821 if (ret == -EAGAIN) { 1822 /* Currently handle_dependencies() doesn't yield if we already had 1823 * an allocation. If it did, we would have to clean up the L2Meta 1824 * structs before starting over. */ 1825 assert(*m == NULL); 1826 goto again; 1827 } else if (ret < 0) { 1828 return ret; 1829 } else if (cur_bytes == 0) { 1830 break; 1831 } else { 1832 /* handle_dependencies() may have decreased cur_bytes (shortened 1833 * the allocations below) so that the next dependency is processed 1834 * correctly during the next loop iteration. */ 1835 } 1836 1837 /* 1838 * 2. Count contiguous COPIED clusters. 1839 */ 1840 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1841 if (ret < 0) { 1842 return ret; 1843 } else if (ret) { 1844 continue; 1845 } else if (cur_bytes == 0) { 1846 break; 1847 } 1848 1849 /* 1850 * 3. If the request still hasn't completed, allocate new clusters, 1851 * considering any cluster_offset of steps 1c or 2. 1852 */ 1853 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1854 if (ret < 0) { 1855 return ret; 1856 } else if (ret) { 1857 continue; 1858 } else { 1859 assert(cur_bytes == 0); 1860 break; 1861 } 1862 } 1863 1864 *bytes -= remaining; 1865 assert(*bytes > 0); 1866 assert(*host_offset != INV_OFFSET); 1867 assert(offset_into_cluster(s, *host_offset) == 1868 offset_into_cluster(s, offset)); 1869 1870 return 0; 1871 } 1872 1873 /* 1874 * This discards as many clusters of nb_clusters as possible at once (i.e. 1875 * all clusters in the same L2 slice) and returns the number of discarded 1876 * clusters. 1877 */ 1878 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1879 uint64_t nb_clusters, 1880 enum qcow2_discard_type type, bool full_discard) 1881 { 1882 BDRVQcow2State *s = bs->opaque; 1883 uint64_t *l2_slice; 1884 int l2_index; 1885 int ret; 1886 int i; 1887 1888 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1889 if (ret < 0) { 1890 return ret; 1891 } 1892 1893 /* Limit nb_clusters to one L2 slice */ 1894 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1895 assert(nb_clusters <= INT_MAX); 1896 1897 for (i = 0; i < nb_clusters; i++) { 1898 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1899 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1900 uint64_t new_l2_entry = old_l2_entry; 1901 uint64_t new_l2_bitmap = old_l2_bitmap; 1902 QCow2ClusterType cluster_type = 1903 qcow2_get_cluster_type(bs, old_l2_entry); 1904 1905 /* 1906 * If full_discard is true, the cluster should not read back as zeroes, 1907 * but rather fall through to the backing file. 1908 * 1909 * If full_discard is false, make sure that a discarded area reads back 1910 * as zeroes for v3 images (we cannot do it for v2 without actually 1911 * writing a zero-filled buffer). We can skip the operation if the 1912 * cluster is already marked as zero, or if it's unallocated and we 1913 * don't have a backing file. 1914 * 1915 * TODO We might want to use bdrv_block_status(bs) here, but we're 1916 * holding s->lock, so that doesn't work today. 1917 */ 1918 if (full_discard) { 1919 new_l2_entry = new_l2_bitmap = 0; 1920 } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) { 1921 if (has_subclusters(s)) { 1922 new_l2_entry = 0; 1923 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES; 1924 } else { 1925 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0; 1926 } 1927 } 1928 1929 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) { 1930 continue; 1931 } 1932 1933 /* First remove L2 entries */ 1934 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1935 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry); 1936 if (has_subclusters(s)) { 1937 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap); 1938 } 1939 /* Then decrease the refcount */ 1940 qcow2_free_any_cluster(bs, old_l2_entry, type); 1941 } 1942 1943 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1944 1945 return nb_clusters; 1946 } 1947 1948 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, 1949 uint64_t bytes, enum qcow2_discard_type type, 1950 bool full_discard) 1951 { 1952 BDRVQcow2State *s = bs->opaque; 1953 uint64_t end_offset = offset + bytes; 1954 uint64_t nb_clusters; 1955 int64_t cleared; 1956 int ret; 1957 1958 /* Caller must pass aligned values, except at image end */ 1959 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1960 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1961 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1962 1963 nb_clusters = size_to_clusters(s, bytes); 1964 1965 s->cache_discards = true; 1966 1967 /* Each L2 slice is handled by its own loop iteration */ 1968 while (nb_clusters > 0) { 1969 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type, 1970 full_discard); 1971 if (cleared < 0) { 1972 ret = cleared; 1973 goto fail; 1974 } 1975 1976 nb_clusters -= cleared; 1977 offset += (cleared * s->cluster_size); 1978 } 1979 1980 ret = 0; 1981 fail: 1982 s->cache_discards = false; 1983 qcow2_process_discards(bs, ret); 1984 1985 return ret; 1986 } 1987 1988 /* 1989 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1990 * all clusters in the same L2 slice) and returns the number of zeroed 1991 * clusters. 1992 */ 1993 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1994 uint64_t nb_clusters, int flags) 1995 { 1996 BDRVQcow2State *s = bs->opaque; 1997 uint64_t *l2_slice; 1998 int l2_index; 1999 int ret; 2000 int i; 2001 2002 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 2003 if (ret < 0) { 2004 return ret; 2005 } 2006 2007 /* Limit nb_clusters to one L2 slice */ 2008 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 2009 assert(nb_clusters <= INT_MAX); 2010 2011 for (i = 0; i < nb_clusters; i++) { 2012 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 2013 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 2014 QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry); 2015 bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) || 2016 ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type)); 2017 uint64_t new_l2_entry = unmap ? 0 : old_l2_entry; 2018 uint64_t new_l2_bitmap = old_l2_bitmap; 2019 2020 if (has_subclusters(s)) { 2021 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES; 2022 } else { 2023 new_l2_entry |= QCOW_OFLAG_ZERO; 2024 } 2025 2026 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) { 2027 continue; 2028 } 2029 2030 /* First update L2 entries */ 2031 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2032 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry); 2033 if (has_subclusters(s)) { 2034 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap); 2035 } 2036 2037 /* Then decrease the refcount */ 2038 if (unmap) { 2039 qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST); 2040 } 2041 } 2042 2043 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2044 2045 return nb_clusters; 2046 } 2047 2048 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset, 2049 unsigned nb_subclusters) 2050 { 2051 BDRVQcow2State *s = bs->opaque; 2052 uint64_t *l2_slice; 2053 uint64_t old_l2_bitmap, l2_bitmap; 2054 int l2_index, ret, sc = offset_to_sc_index(s, offset); 2055 2056 /* For full clusters use zero_in_l2_slice() instead */ 2057 assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster); 2058 assert(sc + nb_subclusters <= s->subclusters_per_cluster); 2059 assert(offset_into_subcluster(s, offset) == 0); 2060 2061 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 2062 if (ret < 0) { 2063 return ret; 2064 } 2065 2066 switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) { 2067 case QCOW2_CLUSTER_COMPRESSED: 2068 ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */ 2069 goto out; 2070 case QCOW2_CLUSTER_NORMAL: 2071 case QCOW2_CLUSTER_UNALLOCATED: 2072 break; 2073 default: 2074 g_assert_not_reached(); 2075 } 2076 2077 old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 2078 2079 l2_bitmap |= QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters); 2080 l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters); 2081 2082 if (old_l2_bitmap != l2_bitmap) { 2083 set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap); 2084 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2085 } 2086 2087 ret = 0; 2088 out: 2089 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2090 2091 return ret; 2092 } 2093 2094 int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset, 2095 uint64_t bytes, int flags) 2096 { 2097 BDRVQcow2State *s = bs->opaque; 2098 uint64_t end_offset = offset + bytes; 2099 uint64_t nb_clusters; 2100 unsigned head, tail; 2101 int64_t cleared; 2102 int ret; 2103 2104 /* If we have to stay in sync with an external data file, zero out 2105 * s->data_file first. */ 2106 if (data_file_is_raw(bs)) { 2107 assert(has_data_file(bs)); 2108 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags); 2109 if (ret < 0) { 2110 return ret; 2111 } 2112 } 2113 2114 /* Caller must pass aligned values, except at image end */ 2115 assert(offset_into_subcluster(s, offset) == 0); 2116 assert(offset_into_subcluster(s, end_offset) == 0 || 2117 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS); 2118 2119 /* 2120 * The zero flag is only supported by version 3 and newer. However, if we 2121 * have no backing file, we can resort to discard in version 2. 2122 */ 2123 if (s->qcow_version < 3) { 2124 if (!bs->backing) { 2125 return qcow2_cluster_discard(bs, offset, bytes, 2126 QCOW2_DISCARD_REQUEST, false); 2127 } 2128 return -ENOTSUP; 2129 } 2130 2131 head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset; 2132 offset += head; 2133 2134 tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 : 2135 end_offset - MAX(offset, start_of_cluster(s, end_offset)); 2136 end_offset -= tail; 2137 2138 s->cache_discards = true; 2139 2140 if (head) { 2141 ret = zero_l2_subclusters(bs, offset - head, 2142 size_to_subclusters(s, head)); 2143 if (ret < 0) { 2144 goto fail; 2145 } 2146 } 2147 2148 /* Each L2 slice is handled by its own loop iteration */ 2149 nb_clusters = size_to_clusters(s, end_offset - offset); 2150 2151 while (nb_clusters > 0) { 2152 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags); 2153 if (cleared < 0) { 2154 ret = cleared; 2155 goto fail; 2156 } 2157 2158 nb_clusters -= cleared; 2159 offset += (cleared * s->cluster_size); 2160 } 2161 2162 if (tail) { 2163 ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail)); 2164 if (ret < 0) { 2165 goto fail; 2166 } 2167 } 2168 2169 ret = 0; 2170 fail: 2171 s->cache_discards = false; 2172 qcow2_process_discards(bs, ret); 2173 2174 return ret; 2175 } 2176 2177 /* 2178 * Expands all zero clusters in a specific L1 table (or deallocates them, for 2179 * non-backed non-pre-allocated zero clusters). 2180 * 2181 * l1_entries and *visited_l1_entries are used to keep track of progress for 2182 * status_cb(). l1_entries contains the total number of L1 entries and 2183 * *visited_l1_entries counts all visited L1 entries. 2184 */ 2185 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 2186 int l1_size, int64_t *visited_l1_entries, 2187 int64_t l1_entries, 2188 BlockDriverAmendStatusCB *status_cb, 2189 void *cb_opaque) 2190 { 2191 BDRVQcow2State *s = bs->opaque; 2192 bool is_active_l1 = (l1_table == s->l1_table); 2193 uint64_t *l2_slice = NULL; 2194 unsigned slice, slice_size2, n_slices; 2195 int ret; 2196 int i, j; 2197 2198 /* qcow2_downgrade() is not allowed in images with subclusters */ 2199 assert(!has_subclusters(s)); 2200 2201 slice_size2 = s->l2_slice_size * l2_entry_size(s); 2202 n_slices = s->cluster_size / slice_size2; 2203 2204 if (!is_active_l1) { 2205 /* inactive L2 tables require a buffer to be stored in when loading 2206 * them from disk */ 2207 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2); 2208 if (l2_slice == NULL) { 2209 return -ENOMEM; 2210 } 2211 } 2212 2213 for (i = 0; i < l1_size; i++) { 2214 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 2215 uint64_t l2_refcount; 2216 2217 if (!l2_offset) { 2218 /* unallocated */ 2219 (*visited_l1_entries)++; 2220 if (status_cb) { 2221 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2222 } 2223 continue; 2224 } 2225 2226 if (offset_into_cluster(s, l2_offset)) { 2227 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 2228 PRIx64 " unaligned (L1 index: %#x)", 2229 l2_offset, i); 2230 ret = -EIO; 2231 goto fail; 2232 } 2233 2234 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 2235 &l2_refcount); 2236 if (ret < 0) { 2237 goto fail; 2238 } 2239 2240 for (slice = 0; slice < n_slices; slice++) { 2241 uint64_t slice_offset = l2_offset + slice * slice_size2; 2242 bool l2_dirty = false; 2243 if (is_active_l1) { 2244 /* get active L2 tables from cache */ 2245 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset, 2246 (void **)&l2_slice); 2247 } else { 2248 /* load inactive L2 tables from disk */ 2249 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2); 2250 } 2251 if (ret < 0) { 2252 goto fail; 2253 } 2254 2255 for (j = 0; j < s->l2_slice_size; j++) { 2256 uint64_t l2_entry = get_l2_entry(s, l2_slice, j); 2257 int64_t offset = l2_entry & L2E_OFFSET_MASK; 2258 QCow2ClusterType cluster_type = 2259 qcow2_get_cluster_type(bs, l2_entry); 2260 2261 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && 2262 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { 2263 continue; 2264 } 2265 2266 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2267 if (!bs->backing) { 2268 /* 2269 * not backed; therefore we can simply deallocate the 2270 * cluster. No need to call set_l2_bitmap(), this 2271 * function doesn't support images with subclusters. 2272 */ 2273 set_l2_entry(s, l2_slice, j, 0); 2274 l2_dirty = true; 2275 continue; 2276 } 2277 2278 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2279 if (offset < 0) { 2280 ret = offset; 2281 goto fail; 2282 } 2283 2284 /* The offset must fit in the offset field */ 2285 assert((offset & L2E_OFFSET_MASK) == offset); 2286 2287 if (l2_refcount > 1) { 2288 /* For shared L2 tables, set the refcount accordingly 2289 * (it is already 1 and needs to be l2_refcount) */ 2290 ret = qcow2_update_cluster_refcount( 2291 bs, offset >> s->cluster_bits, 2292 refcount_diff(1, l2_refcount), false, 2293 QCOW2_DISCARD_OTHER); 2294 if (ret < 0) { 2295 qcow2_free_clusters(bs, offset, s->cluster_size, 2296 QCOW2_DISCARD_OTHER); 2297 goto fail; 2298 } 2299 } 2300 } 2301 2302 if (offset_into_cluster(s, offset)) { 2303 int l2_index = slice * s->l2_slice_size + j; 2304 qcow2_signal_corruption( 2305 bs, true, -1, -1, 2306 "Cluster allocation offset " 2307 "%#" PRIx64 " unaligned (L2 offset: %#" 2308 PRIx64 ", L2 index: %#x)", offset, 2309 l2_offset, l2_index); 2310 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2311 qcow2_free_clusters(bs, offset, s->cluster_size, 2312 QCOW2_DISCARD_ALWAYS); 2313 } 2314 ret = -EIO; 2315 goto fail; 2316 } 2317 2318 ret = qcow2_pre_write_overlap_check(bs, 0, offset, 2319 s->cluster_size, true); 2320 if (ret < 0) { 2321 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2322 qcow2_free_clusters(bs, offset, s->cluster_size, 2323 QCOW2_DISCARD_ALWAYS); 2324 } 2325 goto fail; 2326 } 2327 2328 ret = bdrv_pwrite_zeroes(s->data_file, offset, 2329 s->cluster_size, 0); 2330 if (ret < 0) { 2331 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2332 qcow2_free_clusters(bs, offset, s->cluster_size, 2333 QCOW2_DISCARD_ALWAYS); 2334 } 2335 goto fail; 2336 } 2337 2338 if (l2_refcount == 1) { 2339 set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED); 2340 } else { 2341 set_l2_entry(s, l2_slice, j, offset); 2342 } 2343 /* 2344 * No need to call set_l2_bitmap() after set_l2_entry() because 2345 * this function doesn't support images with subclusters. 2346 */ 2347 l2_dirty = true; 2348 } 2349 2350 if (is_active_l1) { 2351 if (l2_dirty) { 2352 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2353 qcow2_cache_depends_on_flush(s->l2_table_cache); 2354 } 2355 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2356 } else { 2357 if (l2_dirty) { 2358 ret = qcow2_pre_write_overlap_check( 2359 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, 2360 slice_offset, slice_size2, false); 2361 if (ret < 0) { 2362 goto fail; 2363 } 2364 2365 ret = bdrv_pwrite(bs->file, slice_offset, 2366 l2_slice, slice_size2); 2367 if (ret < 0) { 2368 goto fail; 2369 } 2370 } 2371 } 2372 } 2373 2374 (*visited_l1_entries)++; 2375 if (status_cb) { 2376 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2377 } 2378 } 2379 2380 ret = 0; 2381 2382 fail: 2383 if (l2_slice) { 2384 if (!is_active_l1) { 2385 qemu_vfree(l2_slice); 2386 } else { 2387 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2388 } 2389 } 2390 return ret; 2391 } 2392 2393 /* 2394 * For backed images, expands all zero clusters on the image. For non-backed 2395 * images, deallocates all non-pre-allocated zero clusters (and claims the 2396 * allocation for pre-allocated ones). This is important for downgrading to a 2397 * qcow2 version which doesn't yet support metadata zero clusters. 2398 */ 2399 int qcow2_expand_zero_clusters(BlockDriverState *bs, 2400 BlockDriverAmendStatusCB *status_cb, 2401 void *cb_opaque) 2402 { 2403 BDRVQcow2State *s = bs->opaque; 2404 uint64_t *l1_table = NULL; 2405 int64_t l1_entries = 0, visited_l1_entries = 0; 2406 int ret; 2407 int i, j; 2408 2409 if (status_cb) { 2410 l1_entries = s->l1_size; 2411 for (i = 0; i < s->nb_snapshots; i++) { 2412 l1_entries += s->snapshots[i].l1_size; 2413 } 2414 } 2415 2416 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 2417 &visited_l1_entries, l1_entries, 2418 status_cb, cb_opaque); 2419 if (ret < 0) { 2420 goto fail; 2421 } 2422 2423 /* Inactive L1 tables may point to active L2 tables - therefore it is 2424 * necessary to flush the L2 table cache before trying to access the L2 2425 * tables pointed to by inactive L1 entries (else we might try to expand 2426 * zero clusters that have already been expanded); furthermore, it is also 2427 * necessary to empty the L2 table cache, since it may contain tables which 2428 * are now going to be modified directly on disk, bypassing the cache. 2429 * qcow2_cache_empty() does both for us. */ 2430 ret = qcow2_cache_empty(bs, s->l2_table_cache); 2431 if (ret < 0) { 2432 goto fail; 2433 } 2434 2435 for (i = 0; i < s->nb_snapshots; i++) { 2436 int l1_size2; 2437 uint64_t *new_l1_table; 2438 Error *local_err = NULL; 2439 2440 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset, 2441 s->snapshots[i].l1_size, L1E_SIZE, 2442 QCOW_MAX_L1_SIZE, "Snapshot L1 table", 2443 &local_err); 2444 if (ret < 0) { 2445 error_report_err(local_err); 2446 goto fail; 2447 } 2448 2449 l1_size2 = s->snapshots[i].l1_size * L1E_SIZE; 2450 new_l1_table = g_try_realloc(l1_table, l1_size2); 2451 2452 if (!new_l1_table) { 2453 ret = -ENOMEM; 2454 goto fail; 2455 } 2456 2457 l1_table = new_l1_table; 2458 2459 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, 2460 l1_table, l1_size2); 2461 if (ret < 0) { 2462 goto fail; 2463 } 2464 2465 for (j = 0; j < s->snapshots[i].l1_size; j++) { 2466 be64_to_cpus(&l1_table[j]); 2467 } 2468 2469 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 2470 &visited_l1_entries, l1_entries, 2471 status_cb, cb_opaque); 2472 if (ret < 0) { 2473 goto fail; 2474 } 2475 } 2476 2477 ret = 0; 2478 2479 fail: 2480 g_free(l1_table); 2481 return ret; 2482 } 2483 2484 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry, 2485 uint64_t *coffset, int *csize) 2486 { 2487 BDRVQcow2State *s = bs->opaque; 2488 int nb_csectors; 2489 2490 assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED); 2491 2492 *coffset = l2_entry & s->cluster_offset_mask; 2493 2494 nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1; 2495 *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE - 2496 (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1)); 2497 } 2498