xref: /openbmc/qemu/block/qcow2-cluster.c (revision 2f44bea9)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32 
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size, i, ret;
37 
38     if (exact_size >= s->l1_size) {
39         return 0;
40     }
41 
42     new_l1_size = exact_size;
43 
44 #ifdef DEBUG_ALLOC2
45     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47 
48     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50                                        new_l1_size * L1E_SIZE,
51                              (s->l1_size - new_l1_size) * L1E_SIZE, 0);
52     if (ret < 0) {
53         goto fail;
54     }
55 
56     ret = bdrv_flush(bs->file->bs);
57     if (ret < 0) {
58         goto fail;
59     }
60 
61     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64             continue;
65         }
66         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
68         s->l1_table[i] = 0;
69     }
70     return 0;
71 
72 fail:
73     /*
74      * If the write in the l1_table failed the image may contain a partially
75      * overwritten l1_table. In this case it would be better to clear the
76      * l1_table in memory to avoid possible image corruption.
77      */
78     memset(s->l1_table + new_l1_size, 0,
79            (s->l1_size - new_l1_size) * L1E_SIZE);
80     return ret;
81 }
82 
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84                         bool exact_size)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     int new_l1_size2, ret, i;
88     uint64_t *new_l1_table;
89     int64_t old_l1_table_offset, old_l1_size;
90     int64_t new_l1_table_offset, new_l1_size;
91     uint8_t data[12];
92 
93     if (min_size <= s->l1_size)
94         return 0;
95 
96     /* Do a sanity check on min_size before trying to calculate new_l1_size
97      * (this prevents overflows during the while loop for the calculation of
98      * new_l1_size) */
99     if (min_size > INT_MAX / L1E_SIZE) {
100         return -EFBIG;
101     }
102 
103     if (exact_size) {
104         new_l1_size = min_size;
105     } else {
106         /* Bump size up to reduce the number of times we have to grow */
107         new_l1_size = s->l1_size;
108         if (new_l1_size == 0) {
109             new_l1_size = 1;
110         }
111         while (min_size > new_l1_size) {
112             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113         }
114     }
115 
116     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
118         return -EFBIG;
119     }
120 
121 #ifdef DEBUG_ALLOC2
122     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123             s->l1_size, new_l1_size);
124 #endif
125 
126     new_l1_size2 = L1E_SIZE * new_l1_size;
127     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
128     if (new_l1_table == NULL) {
129         return -ENOMEM;
130     }
131     memset(new_l1_table, 0, new_l1_size2);
132 
133     if (s->l1_size) {
134         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
135     }
136 
137     /* write new table (align to cluster) */
138     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
139     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
140     if (new_l1_table_offset < 0) {
141         qemu_vfree(new_l1_table);
142         return new_l1_table_offset;
143     }
144 
145     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
146     if (ret < 0) {
147         goto fail;
148     }
149 
150     /* the L1 position has not yet been updated, so these clusters must
151      * indeed be completely free */
152     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
153                                         new_l1_size2, false);
154     if (ret < 0) {
155         goto fail;
156     }
157 
158     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
159     for(i = 0; i < s->l1_size; i++)
160         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
161     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
162                            new_l1_table, new_l1_size2);
163     if (ret < 0)
164         goto fail;
165     for(i = 0; i < s->l1_size; i++)
166         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
167 
168     /* set new table */
169     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
170     stl_be_p(data, new_l1_size);
171     stq_be_p(data + 4, new_l1_table_offset);
172     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
173                            data, sizeof(data));
174     if (ret < 0) {
175         goto fail;
176     }
177     qemu_vfree(s->l1_table);
178     old_l1_table_offset = s->l1_table_offset;
179     s->l1_table_offset = new_l1_table_offset;
180     s->l1_table = new_l1_table;
181     old_l1_size = s->l1_size;
182     s->l1_size = new_l1_size;
183     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
184                         QCOW2_DISCARD_OTHER);
185     return 0;
186  fail:
187     qemu_vfree(new_l1_table);
188     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189                         QCOW2_DISCARD_OTHER);
190     return ret;
191 }
192 
193 /*
194  * l2_load
195  *
196  * @bs: The BlockDriverState
197  * @offset: A guest offset, used to calculate what slice of the L2
198  *          table to load.
199  * @l2_offset: Offset to the L2 table in the image file.
200  * @l2_slice: Location to store the pointer to the L2 slice.
201  *
202  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203  * that are loaded by the qcow2 cache). If the slice is in the cache,
204  * the cache is used; otherwise the L2 slice is loaded from the image
205  * file.
206  */
207 static int l2_load(BlockDriverState *bs, uint64_t offset,
208                    uint64_t l2_offset, uint64_t **l2_slice)
209 {
210     BDRVQcow2State *s = bs->opaque;
211     int start_of_slice = l2_entry_size(s) *
212         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
213 
214     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
215                            (void **)l2_slice);
216 }
217 
218 /*
219  * Writes an L1 entry to disk (note that depending on the alignment
220  * requirements this function may write more that just one entry in
221  * order to prevent bdrv_pwrite from performing a read-modify-write)
222  */
223 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
224 {
225     BDRVQcow2State *s = bs->opaque;
226     int l1_start_index;
227     int i, ret;
228     int bufsize = MAX(L1E_SIZE,
229                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230     int nentries = bufsize / L1E_SIZE;
231     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
232 
233     if (buf == NULL) {
234         return -ENOMEM;
235     }
236 
237     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
239         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240     }
241 
242     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
243             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
244     if (ret < 0) {
245         return ret;
246     }
247 
248     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
249     ret = bdrv_pwrite_sync(bs->file,
250                            s->l1_table_offset + L1E_SIZE * l1_start_index,
251                            buf, bufsize);
252     if (ret < 0) {
253         return ret;
254     }
255 
256     return 0;
257 }
258 
259 /*
260  * l2_allocate
261  *
262  * Allocate a new l2 entry in the file. If l1_index points to an already
263  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264  * table) copy the contents of the old L2 table into the newly allocated one.
265  * Otherwise the new table is initialized with zeros.
266  *
267  */
268 
269 static int l2_allocate(BlockDriverState *bs, int l1_index)
270 {
271     BDRVQcow2State *s = bs->opaque;
272     uint64_t old_l2_offset;
273     uint64_t *l2_slice = NULL;
274     unsigned slice, slice_size2, n_slices;
275     int64_t l2_offset;
276     int ret;
277 
278     old_l2_offset = s->l1_table[l1_index];
279 
280     trace_qcow2_l2_allocate(bs, l1_index);
281 
282     /* allocate a new l2 entry */
283 
284     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
285     if (l2_offset < 0) {
286         ret = l2_offset;
287         goto fail;
288     }
289 
290     /* The offset must fit in the offset field of the L1 table entry */
291     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
292 
293     /* If we're allocating the table at offset 0 then something is wrong */
294     if (l2_offset == 0) {
295         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296                                 "allocation of L2 table at offset 0");
297         ret = -EIO;
298         goto fail;
299     }
300 
301     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
302     if (ret < 0) {
303         goto fail;
304     }
305 
306     /* allocate a new entry in the l2 cache */
307 
308     slice_size2 = s->l2_slice_size * l2_entry_size(s);
309     n_slices = s->cluster_size / slice_size2;
310 
311     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
312     for (slice = 0; slice < n_slices; slice++) {
313         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
314                                     l2_offset + slice * slice_size2,
315                                     (void **) &l2_slice);
316         if (ret < 0) {
317             goto fail;
318         }
319 
320         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
321             /* if there was no old l2 table, clear the new slice */
322             memset(l2_slice, 0, slice_size2);
323         } else {
324             uint64_t *old_slice;
325             uint64_t old_l2_slice_offset =
326                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
327 
328             /* if there was an old l2 table, read a slice from the disk */
329             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
330             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331                                   (void **) &old_slice);
332             if (ret < 0) {
333                 goto fail;
334             }
335 
336             memcpy(l2_slice, old_slice, slice_size2);
337 
338             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
339         }
340 
341         /* write the l2 slice to the file */
342         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
343 
344         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
345         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
347     }
348 
349     ret = qcow2_cache_flush(bs, s->l2_table_cache);
350     if (ret < 0) {
351         goto fail;
352     }
353 
354     /* update the L1 entry */
355     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
356     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
357     ret = qcow2_write_l1_entry(bs, l1_index);
358     if (ret < 0) {
359         goto fail;
360     }
361 
362     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
363     return 0;
364 
365 fail:
366     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
367     if (l2_slice != NULL) {
368         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
369     }
370     s->l1_table[l1_index] = old_l2_offset;
371     if (l2_offset > 0) {
372         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
373                             QCOW2_DISCARD_ALWAYS);
374     }
375     return ret;
376 }
377 
378 /*
379  * For a given L2 entry, count the number of contiguous subclusters of
380  * the same type starting from @sc_from. Compressed clusters are
381  * treated as if they were divided into subclusters of size
382  * s->subcluster_size.
383  *
384  * Return the number of contiguous subclusters and set @type to the
385  * subcluster type.
386  *
387  * If the L2 entry is invalid return -errno and set @type to
388  * QCOW2_SUBCLUSTER_INVALID.
389  */
390 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
391                                            uint64_t l2_entry,
392                                            uint64_t l2_bitmap,
393                                            unsigned sc_from,
394                                            QCow2SubclusterType *type)
395 {
396     BDRVQcow2State *s = bs->opaque;
397     uint32_t val;
398 
399     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
400 
401     if (*type == QCOW2_SUBCLUSTER_INVALID) {
402         return -EINVAL;
403     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
404         return s->subclusters_per_cluster - sc_from;
405     }
406 
407     switch (*type) {
408     case QCOW2_SUBCLUSTER_NORMAL:
409         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
410         return cto32(val) - sc_from;
411 
412     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
413     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
414         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
415         return cto32(val) - sc_from;
416 
417     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
418     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
419         val = ((l2_bitmap >> 32) | l2_bitmap)
420             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
421         return ctz32(val) - sc_from;
422 
423     default:
424         g_assert_not_reached();
425     }
426 }
427 
428 /*
429  * Return the number of contiguous subclusters of the exact same type
430  * in a given L2 slice, starting from cluster @l2_index, subcluster
431  * @sc_index. Allocated subclusters are required to be contiguous in
432  * the image file.
433  * At most @nb_clusters are checked (note that this means clusters,
434  * not subclusters).
435  * Compressed clusters are always processed one by one but for the
436  * purpose of this count they are treated as if they were divided into
437  * subclusters of size s->subcluster_size.
438  * On failure return -errno and update @l2_index to point to the
439  * invalid entry.
440  */
441 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
442                                         unsigned sc_index, uint64_t *l2_slice,
443                                         unsigned *l2_index)
444 {
445     BDRVQcow2State *s = bs->opaque;
446     int i, count = 0;
447     bool check_offset = false;
448     uint64_t expected_offset = 0;
449     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
450 
451     assert(*l2_index + nb_clusters <= s->l2_slice_size);
452 
453     for (i = 0; i < nb_clusters; i++) {
454         unsigned first_sc = (i == 0) ? sc_index : 0;
455         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
456         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
457         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
458                                                   first_sc, &type);
459         if (ret < 0) {
460             *l2_index += i; /* Point to the invalid entry */
461             return -EIO;
462         }
463         if (i == 0) {
464             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
465                 /* Compressed clusters are always processed one by one */
466                 return ret;
467             }
468             expected_type = type;
469             expected_offset = l2_entry & L2E_OFFSET_MASK;
470             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
471                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
472                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
473         } else if (type != expected_type) {
474             break;
475         } else if (check_offset) {
476             expected_offset += s->cluster_size;
477             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
478                 break;
479             }
480         }
481         count += ret;
482         /* Stop if there are type changes before the end of the cluster */
483         if (first_sc + ret < s->subclusters_per_cluster) {
484             break;
485         }
486     }
487 
488     return count;
489 }
490 
491 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
492                                             uint64_t src_cluster_offset,
493                                             unsigned offset_in_cluster,
494                                             QEMUIOVector *qiov)
495 {
496     int ret;
497 
498     if (qiov->size == 0) {
499         return 0;
500     }
501 
502     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
503 
504     if (!bs->drv) {
505         return -ENOMEDIUM;
506     }
507 
508     /* Call .bdrv_co_readv() directly instead of using the public block-layer
509      * interface.  This avoids double I/O throttling and request tracking,
510      * which can lead to deadlock when block layer copy-on-read is enabled.
511      */
512     ret = bs->drv->bdrv_co_preadv_part(bs,
513                                        src_cluster_offset + offset_in_cluster,
514                                        qiov->size, qiov, 0, 0);
515     if (ret < 0) {
516         return ret;
517     }
518 
519     return 0;
520 }
521 
522 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
523                                              uint64_t cluster_offset,
524                                              unsigned offset_in_cluster,
525                                              QEMUIOVector *qiov)
526 {
527     BDRVQcow2State *s = bs->opaque;
528     int ret;
529 
530     if (qiov->size == 0) {
531         return 0;
532     }
533 
534     ret = qcow2_pre_write_overlap_check(bs, 0,
535             cluster_offset + offset_in_cluster, qiov->size, true);
536     if (ret < 0) {
537         return ret;
538     }
539 
540     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
541     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
542                           qiov->size, qiov, 0);
543     if (ret < 0) {
544         return ret;
545     }
546 
547     return 0;
548 }
549 
550 
551 /*
552  * get_host_offset
553  *
554  * For a given offset of the virtual disk find the equivalent host
555  * offset in the qcow2 file and store it in *host_offset. Neither
556  * offset needs to be aligned to a cluster boundary.
557  *
558  * If the cluster is unallocated then *host_offset will be 0.
559  * If the cluster is compressed then *host_offset will contain the l2 entry.
560  *
561  * On entry, *bytes is the maximum number of contiguous bytes starting at
562  * offset that we are interested in.
563  *
564  * On exit, *bytes is the number of bytes starting at offset that have the same
565  * subcluster type and (if applicable) are stored contiguously in the image
566  * file. The subcluster type is stored in *subcluster_type.
567  * Compressed clusters are always processed one by one.
568  *
569  * Returns 0 on success, -errno in error cases.
570  */
571 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
572                           unsigned int *bytes, uint64_t *host_offset,
573                           QCow2SubclusterType *subcluster_type)
574 {
575     BDRVQcow2State *s = bs->opaque;
576     unsigned int l2_index, sc_index;
577     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
578     int sc;
579     unsigned int offset_in_cluster;
580     uint64_t bytes_available, bytes_needed, nb_clusters;
581     QCow2SubclusterType type;
582     int ret;
583 
584     offset_in_cluster = offset_into_cluster(s, offset);
585     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
586 
587     /* compute how many bytes there are between the start of the cluster
588      * containing offset and the end of the l2 slice that contains
589      * the entry pointing to it */
590     bytes_available =
591         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
592         << s->cluster_bits;
593 
594     if (bytes_needed > bytes_available) {
595         bytes_needed = bytes_available;
596     }
597 
598     *host_offset = 0;
599 
600     /* seek to the l2 offset in the l1 table */
601 
602     l1_index = offset_to_l1_index(s, offset);
603     if (l1_index >= s->l1_size) {
604         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
605         goto out;
606     }
607 
608     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
609     if (!l2_offset) {
610         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
611         goto out;
612     }
613 
614     if (offset_into_cluster(s, l2_offset)) {
615         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
616                                 " unaligned (L1 index: %#" PRIx64 ")",
617                                 l2_offset, l1_index);
618         return -EIO;
619     }
620 
621     /* load the l2 slice in memory */
622 
623     ret = l2_load(bs, offset, l2_offset, &l2_slice);
624     if (ret < 0) {
625         return ret;
626     }
627 
628     /* find the cluster offset for the given disk offset */
629 
630     l2_index = offset_to_l2_slice_index(s, offset);
631     sc_index = offset_to_sc_index(s, offset);
632     l2_entry = get_l2_entry(s, l2_slice, l2_index);
633     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
634 
635     nb_clusters = size_to_clusters(s, bytes_needed);
636     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
637      * integers; the minimum cluster size is 512, so this assertion is always
638      * true */
639     assert(nb_clusters <= INT_MAX);
640 
641     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
642     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
643                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
644         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
645                                 " in pre-v3 image (L2 offset: %#" PRIx64
646                                 ", L2 index: %#x)", l2_offset, l2_index);
647         ret = -EIO;
648         goto fail;
649     }
650     switch (type) {
651     case QCOW2_SUBCLUSTER_INVALID:
652         break; /* This is handled by count_contiguous_subclusters() below */
653     case QCOW2_SUBCLUSTER_COMPRESSED:
654         if (has_data_file(bs)) {
655             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
656                                     "entry found in image with external data "
657                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
658                                     "%#x)", l2_offset, l2_index);
659             ret = -EIO;
660             goto fail;
661         }
662         *host_offset = l2_entry;
663         break;
664     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
665     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
666         break;
667     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
668     case QCOW2_SUBCLUSTER_NORMAL:
669     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
670         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
671         *host_offset = host_cluster_offset + offset_in_cluster;
672         if (offset_into_cluster(s, host_cluster_offset)) {
673             qcow2_signal_corruption(bs, true, -1, -1,
674                                     "Cluster allocation offset %#"
675                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
676                                     ", L2 index: %#x)", host_cluster_offset,
677                                     l2_offset, l2_index);
678             ret = -EIO;
679             goto fail;
680         }
681         if (has_data_file(bs) && *host_offset != offset) {
682             qcow2_signal_corruption(bs, true, -1, -1,
683                                     "External data file host cluster offset %#"
684                                     PRIx64 " does not match guest cluster "
685                                     "offset: %#" PRIx64
686                                     ", L2 index: %#x)", host_cluster_offset,
687                                     offset - offset_in_cluster, l2_index);
688             ret = -EIO;
689             goto fail;
690         }
691         break;
692     }
693     default:
694         abort();
695     }
696 
697     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
698                                       l2_slice, &l2_index);
699     if (sc < 0) {
700         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
701                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
702                                 l2_offset, l2_index);
703         ret = -EIO;
704         goto fail;
705     }
706     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
707 
708     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
709 
710 out:
711     if (bytes_available > bytes_needed) {
712         bytes_available = bytes_needed;
713     }
714 
715     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
716      * subtracting offset_in_cluster will therefore definitely yield something
717      * not exceeding UINT_MAX */
718     assert(bytes_available - offset_in_cluster <= UINT_MAX);
719     *bytes = bytes_available - offset_in_cluster;
720 
721     *subcluster_type = type;
722 
723     return 0;
724 
725 fail:
726     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
727     return ret;
728 }
729 
730 /*
731  * get_cluster_table
732  *
733  * for a given disk offset, load (and allocate if needed)
734  * the appropriate slice of its l2 table.
735  *
736  * the cluster index in the l2 slice is given to the caller.
737  *
738  * Returns 0 on success, -errno in failure case
739  */
740 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
741                              uint64_t **new_l2_slice,
742                              int *new_l2_index)
743 {
744     BDRVQcow2State *s = bs->opaque;
745     unsigned int l2_index;
746     uint64_t l1_index, l2_offset;
747     uint64_t *l2_slice = NULL;
748     int ret;
749 
750     /* seek to the l2 offset in the l1 table */
751 
752     l1_index = offset_to_l1_index(s, offset);
753     if (l1_index >= s->l1_size) {
754         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
755         if (ret < 0) {
756             return ret;
757         }
758     }
759 
760     assert(l1_index < s->l1_size);
761     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
762     if (offset_into_cluster(s, l2_offset)) {
763         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
764                                 " unaligned (L1 index: %#" PRIx64 ")",
765                                 l2_offset, l1_index);
766         return -EIO;
767     }
768 
769     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
770         /* First allocate a new L2 table (and do COW if needed) */
771         ret = l2_allocate(bs, l1_index);
772         if (ret < 0) {
773             return ret;
774         }
775 
776         /* Then decrease the refcount of the old table */
777         if (l2_offset) {
778             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
779                                 QCOW2_DISCARD_OTHER);
780         }
781 
782         /* Get the offset of the newly-allocated l2 table */
783         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
784         assert(offset_into_cluster(s, l2_offset) == 0);
785     }
786 
787     /* load the l2 slice in memory */
788     ret = l2_load(bs, offset, l2_offset, &l2_slice);
789     if (ret < 0) {
790         return ret;
791     }
792 
793     /* find the cluster offset for the given disk offset */
794 
795     l2_index = offset_to_l2_slice_index(s, offset);
796 
797     *new_l2_slice = l2_slice;
798     *new_l2_index = l2_index;
799 
800     return 0;
801 }
802 
803 /*
804  * alloc_compressed_cluster_offset
805  *
806  * For a given offset on the virtual disk, allocate a new compressed cluster
807  * and put the host offset of the cluster into *host_offset. If a cluster is
808  * already allocated at the offset, return an error.
809  *
810  * Return 0 on success and -errno in error cases
811  */
812 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
813                                           uint64_t offset,
814                                           int compressed_size,
815                                           uint64_t *host_offset)
816 {
817     BDRVQcow2State *s = bs->opaque;
818     int l2_index, ret;
819     uint64_t *l2_slice;
820     int64_t cluster_offset;
821     int nb_csectors;
822 
823     if (has_data_file(bs)) {
824         return 0;
825     }
826 
827     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
828     if (ret < 0) {
829         return ret;
830     }
831 
832     /* Compression can't overwrite anything. Fail if the cluster was already
833      * allocated. */
834     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
835     if (cluster_offset & L2E_OFFSET_MASK) {
836         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
837         return -EIO;
838     }
839 
840     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
841     if (cluster_offset < 0) {
842         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
843         return cluster_offset;
844     }
845 
846     nb_csectors =
847         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
848         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
849 
850     /* The offset and size must fit in their fields of the L2 table entry */
851     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
852     assert((nb_csectors & s->csize_mask) == nb_csectors);
853 
854     cluster_offset |= QCOW_OFLAG_COMPRESSED |
855                       ((uint64_t)nb_csectors << s->csize_shift);
856 
857     /* update L2 table */
858 
859     /* compressed clusters never have the copied flag */
860 
861     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
862     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
863     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
864     if (has_subclusters(s)) {
865         set_l2_bitmap(s, l2_slice, l2_index, 0);
866     }
867     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
868 
869     *host_offset = cluster_offset & s->cluster_offset_mask;
870     return 0;
871 }
872 
873 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
874 {
875     BDRVQcow2State *s = bs->opaque;
876     Qcow2COWRegion *start = &m->cow_start;
877     Qcow2COWRegion *end = &m->cow_end;
878     unsigned buffer_size;
879     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
880     bool merge_reads;
881     uint8_t *start_buffer, *end_buffer;
882     QEMUIOVector qiov;
883     int ret;
884 
885     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
886     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
887     assert(start->offset + start->nb_bytes <= end->offset);
888 
889     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
890         return 0;
891     }
892 
893     /* If we have to read both the start and end COW regions and the
894      * middle region is not too large then perform just one read
895      * operation */
896     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
897     if (merge_reads) {
898         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
899     } else {
900         /* If we have to do two reads, add some padding in the middle
901          * if necessary to make sure that the end region is optimally
902          * aligned. */
903         size_t align = bdrv_opt_mem_align(bs);
904         assert(align > 0 && align <= UINT_MAX);
905         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
906                UINT_MAX - end->nb_bytes);
907         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
908     }
909 
910     /* Reserve a buffer large enough to store all the data that we're
911      * going to read */
912     start_buffer = qemu_try_blockalign(bs, buffer_size);
913     if (start_buffer == NULL) {
914         return -ENOMEM;
915     }
916     /* The part of the buffer where the end region is located */
917     end_buffer = start_buffer + buffer_size - end->nb_bytes;
918 
919     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
920                                 qemu_iovec_subvec_niov(m->data_qiov,
921                                                        m->data_qiov_offset,
922                                                        data_bytes)
923                                 : 0));
924 
925     qemu_co_mutex_unlock(&s->lock);
926     /* First we read the existing data from both COW regions. We
927      * either read the whole region in one go, or the start and end
928      * regions separately. */
929     if (merge_reads) {
930         qemu_iovec_add(&qiov, start_buffer, buffer_size);
931         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
932     } else {
933         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
934         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
935         if (ret < 0) {
936             goto fail;
937         }
938 
939         qemu_iovec_reset(&qiov);
940         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
941         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
942     }
943     if (ret < 0) {
944         goto fail;
945     }
946 
947     /* Encrypt the data if necessary before writing it */
948     if (bs->encrypted) {
949         ret = qcow2_co_encrypt(bs,
950                                m->alloc_offset + start->offset,
951                                m->offset + start->offset,
952                                start_buffer, start->nb_bytes);
953         if (ret < 0) {
954             goto fail;
955         }
956 
957         ret = qcow2_co_encrypt(bs,
958                                m->alloc_offset + end->offset,
959                                m->offset + end->offset,
960                                end_buffer, end->nb_bytes);
961         if (ret < 0) {
962             goto fail;
963         }
964     }
965 
966     /* And now we can write everything. If we have the guest data we
967      * can write everything in one single operation */
968     if (m->data_qiov) {
969         qemu_iovec_reset(&qiov);
970         if (start->nb_bytes) {
971             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
972         }
973         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
974         if (end->nb_bytes) {
975             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
976         }
977         /* NOTE: we have a write_aio blkdebug event here followed by
978          * a cow_write one in do_perform_cow_write(), but there's only
979          * one single I/O operation */
980         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
981         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
982     } else {
983         /* If there's no guest data then write both COW regions separately */
984         qemu_iovec_reset(&qiov);
985         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
986         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
987         if (ret < 0) {
988             goto fail;
989         }
990 
991         qemu_iovec_reset(&qiov);
992         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
993         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
994     }
995 
996 fail:
997     qemu_co_mutex_lock(&s->lock);
998 
999     /*
1000      * Before we update the L2 table to actually point to the new cluster, we
1001      * need to be sure that the refcounts have been increased and COW was
1002      * handled.
1003      */
1004     if (ret == 0) {
1005         qcow2_cache_depends_on_flush(s->l2_table_cache);
1006     }
1007 
1008     qemu_vfree(start_buffer);
1009     qemu_iovec_destroy(&qiov);
1010     return ret;
1011 }
1012 
1013 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1014 {
1015     BDRVQcow2State *s = bs->opaque;
1016     int i, j = 0, l2_index, ret;
1017     uint64_t *old_cluster, *l2_slice;
1018     uint64_t cluster_offset = m->alloc_offset;
1019 
1020     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1021     assert(m->nb_clusters > 0);
1022 
1023     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1024     if (old_cluster == NULL) {
1025         ret = -ENOMEM;
1026         goto err;
1027     }
1028 
1029     /* copy content of unmodified sectors */
1030     ret = perform_cow(bs, m);
1031     if (ret < 0) {
1032         goto err;
1033     }
1034 
1035     /* Update L2 table. */
1036     if (s->use_lazy_refcounts) {
1037         qcow2_mark_dirty(bs);
1038     }
1039     if (qcow2_need_accurate_refcounts(s)) {
1040         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1041                                    s->refcount_block_cache);
1042     }
1043 
1044     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1045     if (ret < 0) {
1046         goto err;
1047     }
1048     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1049 
1050     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1051     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1052            m->nb_clusters << s->cluster_bits);
1053     for (i = 0; i < m->nb_clusters; i++) {
1054         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1055         /* if two concurrent writes happen to the same unallocated cluster
1056          * each write allocates separate cluster and writes data concurrently.
1057          * The first one to complete updates l2 table with pointer to its
1058          * cluster the second one has to do RMW (which is done above by
1059          * perform_cow()), update l2 table with its cluster pointer and free
1060          * old cluster. This is what this loop does */
1061         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1062             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1063         }
1064 
1065         /* The offset must fit in the offset field of the L2 table entry */
1066         assert((offset & L2E_OFFSET_MASK) == offset);
1067 
1068         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1069 
1070         /* Update bitmap with the subclusters that were just written */
1071         if (has_subclusters(s) && !m->prealloc) {
1072             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1073             unsigned written_from = m->cow_start.offset;
1074             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1075             int first_sc, last_sc;
1076             /* Narrow written_from and written_to down to the current cluster */
1077             written_from = MAX(written_from, i << s->cluster_bits);
1078             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1079             assert(written_from < written_to);
1080             first_sc = offset_to_sc_index(s, written_from);
1081             last_sc  = offset_to_sc_index(s, written_to - 1);
1082             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1083             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1084             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1085         }
1086      }
1087 
1088 
1089     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1090 
1091     /*
1092      * If this was a COW, we need to decrease the refcount of the old cluster.
1093      *
1094      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1095      * clusters), the next write will reuse them anyway.
1096      */
1097     if (!m->keep_old_clusters && j != 0) {
1098         for (i = 0; i < j; i++) {
1099             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1100         }
1101     }
1102 
1103     ret = 0;
1104 err:
1105     g_free(old_cluster);
1106     return ret;
1107  }
1108 
1109 /**
1110  * Frees the allocated clusters because the request failed and they won't
1111  * actually be linked.
1112  */
1113 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1114 {
1115     BDRVQcow2State *s = bs->opaque;
1116     if (!has_data_file(bs) && !m->keep_old_clusters) {
1117         qcow2_free_clusters(bs, m->alloc_offset,
1118                             m->nb_clusters << s->cluster_bits,
1119                             QCOW2_DISCARD_NEVER);
1120     }
1121 }
1122 
1123 /*
1124  * For a given write request, create a new QCowL2Meta structure, add
1125  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1126  * request does not need copy-on-write or changes to the L2 metadata
1127  * then this function does nothing.
1128  *
1129  * @host_cluster_offset points to the beginning of the first cluster.
1130  *
1131  * @guest_offset and @bytes indicate the offset and length of the
1132  * request.
1133  *
1134  * @l2_slice contains the L2 entries of all clusters involved in this
1135  * write request.
1136  *
1137  * If @keep_old is true it means that the clusters were already
1138  * allocated and will be overwritten. If false then the clusters are
1139  * new and we have to decrease the reference count of the old ones.
1140  *
1141  * Returns 0 on success, -errno on failure.
1142  */
1143 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1144                              uint64_t guest_offset, unsigned bytes,
1145                              uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1146 {
1147     BDRVQcow2State *s = bs->opaque;
1148     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1149     uint64_t l2_entry, l2_bitmap;
1150     unsigned cow_start_from, cow_end_to;
1151     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1152     unsigned cow_end_from = cow_start_to + bytes;
1153     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1154     QCowL2Meta *old_m = *m;
1155     QCow2SubclusterType type;
1156     int i;
1157     bool skip_cow = keep_old;
1158 
1159     assert(nb_clusters <= s->l2_slice_size - l2_index);
1160 
1161     /* Check the type of all affected subclusters */
1162     for (i = 0; i < nb_clusters; i++) {
1163         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1164         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1165         if (skip_cow) {
1166             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1167             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1168             int first_sc = offset_to_sc_index(s, write_from);
1169             int last_sc = offset_to_sc_index(s, write_to - 1);
1170             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1171                                                       first_sc, &type);
1172             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1173             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1174                 skip_cow = false;
1175             }
1176         } else {
1177             /* If we can't skip the cow we can still look for invalid entries */
1178             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1179         }
1180         if (type == QCOW2_SUBCLUSTER_INVALID) {
1181             int l1_index = offset_to_l1_index(s, guest_offset);
1182             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1183             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1184                                     "entry found (L2 offset: %#" PRIx64
1185                                     ", L2 index: %#x)",
1186                                     l2_offset, l2_index + i);
1187             return -EIO;
1188         }
1189     }
1190 
1191     if (skip_cow) {
1192         return 0;
1193     }
1194 
1195     /* Get the L2 entry of the first cluster */
1196     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1197     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1198     sc_index = offset_to_sc_index(s, guest_offset);
1199     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1200 
1201     if (!keep_old) {
1202         switch (type) {
1203         case QCOW2_SUBCLUSTER_COMPRESSED:
1204             cow_start_from = 0;
1205             break;
1206         case QCOW2_SUBCLUSTER_NORMAL:
1207         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1208         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1209             if (has_subclusters(s)) {
1210                 /* Skip all leading zero and unallocated subclusters */
1211                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1212                 cow_start_from =
1213                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1214             } else {
1215                 cow_start_from = 0;
1216             }
1217             break;
1218         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1219         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1220             cow_start_from = sc_index << s->subcluster_bits;
1221             break;
1222         default:
1223             g_assert_not_reached();
1224         }
1225     } else {
1226         switch (type) {
1227         case QCOW2_SUBCLUSTER_NORMAL:
1228             cow_start_from = cow_start_to;
1229             break;
1230         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1231         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1232             cow_start_from = sc_index << s->subcluster_bits;
1233             break;
1234         default:
1235             g_assert_not_reached();
1236         }
1237     }
1238 
1239     /* Get the L2 entry of the last cluster */
1240     l2_index += nb_clusters - 1;
1241     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1242     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1243     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1244     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1245 
1246     if (!keep_old) {
1247         switch (type) {
1248         case QCOW2_SUBCLUSTER_COMPRESSED:
1249             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1250             break;
1251         case QCOW2_SUBCLUSTER_NORMAL:
1252         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1253         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1254             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1255             if (has_subclusters(s)) {
1256                 /* Skip all trailing zero and unallocated subclusters */
1257                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1258                 cow_end_to -=
1259                     MIN(s->subclusters_per_cluster - sc_index - 1,
1260                         clz32(alloc_bitmap)) << s->subcluster_bits;
1261             }
1262             break;
1263         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1264         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1265             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1266             break;
1267         default:
1268             g_assert_not_reached();
1269         }
1270     } else {
1271         switch (type) {
1272         case QCOW2_SUBCLUSTER_NORMAL:
1273             cow_end_to = cow_end_from;
1274             break;
1275         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1276         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1277             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1278             break;
1279         default:
1280             g_assert_not_reached();
1281         }
1282     }
1283 
1284     *m = g_malloc0(sizeof(**m));
1285     **m = (QCowL2Meta) {
1286         .next           = old_m,
1287 
1288         .alloc_offset   = host_cluster_offset,
1289         .offset         = start_of_cluster(s, guest_offset),
1290         .nb_clusters    = nb_clusters,
1291 
1292         .keep_old_clusters = keep_old,
1293 
1294         .cow_start = {
1295             .offset     = cow_start_from,
1296             .nb_bytes   = cow_start_to - cow_start_from,
1297         },
1298         .cow_end = {
1299             .offset     = cow_end_from,
1300             .nb_bytes   = cow_end_to - cow_end_from,
1301         },
1302     };
1303 
1304     qemu_co_queue_init(&(*m)->dependent_requests);
1305     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1306 
1307     return 0;
1308 }
1309 
1310 /*
1311  * Returns true if writing to the cluster pointed to by @l2_entry
1312  * requires a new allocation (that is, if the cluster is unallocated
1313  * or has refcount > 1 and therefore cannot be written in-place).
1314  */
1315 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1316 {
1317     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1318     case QCOW2_CLUSTER_NORMAL:
1319     case QCOW2_CLUSTER_ZERO_ALLOC:
1320         if (l2_entry & QCOW_OFLAG_COPIED) {
1321             return false;
1322         }
1323         /* fallthrough */
1324     case QCOW2_CLUSTER_UNALLOCATED:
1325     case QCOW2_CLUSTER_COMPRESSED:
1326     case QCOW2_CLUSTER_ZERO_PLAIN:
1327         return true;
1328     default:
1329         abort();
1330     }
1331 }
1332 
1333 /*
1334  * Returns the number of contiguous clusters that can be written to
1335  * using one single write request, starting from @l2_index.
1336  * At most @nb_clusters are checked.
1337  *
1338  * If @new_alloc is true this counts clusters that are either
1339  * unallocated, or allocated but with refcount > 1 (so they need to be
1340  * newly allocated and COWed).
1341  *
1342  * If @new_alloc is false this counts clusters that are already
1343  * allocated and can be overwritten in-place (this includes clusters
1344  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1345  */
1346 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1347                                        uint64_t *l2_slice, int l2_index,
1348                                        bool new_alloc)
1349 {
1350     BDRVQcow2State *s = bs->opaque;
1351     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1352     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1353     int i;
1354 
1355     for (i = 0; i < nb_clusters; i++) {
1356         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1357         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1358             break;
1359         }
1360         if (!new_alloc) {
1361             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1362                 break;
1363             }
1364             expected_offset += s->cluster_size;
1365         }
1366     }
1367 
1368     assert(i <= nb_clusters);
1369     return i;
1370 }
1371 
1372 /*
1373  * Check if there already is an AIO write request in flight which allocates
1374  * the same cluster. In this case we need to wait until the previous
1375  * request has completed and updated the L2 table accordingly.
1376  *
1377  * Returns:
1378  *   0       if there was no dependency. *cur_bytes indicates the number of
1379  *           bytes from guest_offset that can be read before the next
1380  *           dependency must be processed (or the request is complete)
1381  *
1382  *   -EAGAIN if we had to wait for another request, previously gathered
1383  *           information on cluster allocation may be invalid now. The caller
1384  *           must start over anyway, so consider *cur_bytes undefined.
1385  */
1386 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1387     uint64_t *cur_bytes, QCowL2Meta **m)
1388 {
1389     BDRVQcow2State *s = bs->opaque;
1390     QCowL2Meta *old_alloc;
1391     uint64_t bytes = *cur_bytes;
1392 
1393     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1394 
1395         uint64_t start = guest_offset;
1396         uint64_t end = start + bytes;
1397         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1398         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1399 
1400         if (end <= old_start || start >= old_end) {
1401             /* No intersection */
1402             continue;
1403         }
1404 
1405         if (old_alloc->keep_old_clusters &&
1406             (end <= l2meta_cow_start(old_alloc) ||
1407              start >= l2meta_cow_end(old_alloc)))
1408         {
1409             /*
1410              * Clusters intersect but COW areas don't. And cluster itself is
1411              * already allocated. So, there is no actual conflict.
1412              */
1413             continue;
1414         }
1415 
1416         /* Conflict */
1417 
1418         if (start < old_start) {
1419             /* Stop at the start of a running allocation */
1420             bytes = old_start - start;
1421         } else {
1422             bytes = 0;
1423         }
1424 
1425         /*
1426          * Stop if an l2meta already exists. After yielding, it wouldn't
1427          * be valid any more, so we'd have to clean up the old L2Metas
1428          * and deal with requests depending on them before starting to
1429          * gather new ones. Not worth the trouble.
1430          */
1431         if (bytes == 0 && *m) {
1432             *cur_bytes = 0;
1433             return 0;
1434         }
1435 
1436         if (bytes == 0) {
1437             /*
1438              * Wait for the dependency to complete. We need to recheck
1439              * the free/allocated clusters when we continue.
1440              */
1441             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1442             return -EAGAIN;
1443         }
1444     }
1445 
1446     /* Make sure that existing clusters and new allocations are only used up to
1447      * the next dependency if we shortened the request above */
1448     *cur_bytes = bytes;
1449 
1450     return 0;
1451 }
1452 
1453 /*
1454  * Checks how many already allocated clusters that don't require a new
1455  * allocation there are at the given guest_offset (up to *bytes).
1456  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1457  * beginning at this host offset are counted.
1458  *
1459  * Note that guest_offset may not be cluster aligned. In this case, the
1460  * returned *host_offset points to exact byte referenced by guest_offset and
1461  * therefore isn't cluster aligned as well.
1462  *
1463  * Returns:
1464  *   0:     if no allocated clusters are available at the given offset.
1465  *          *bytes is normally unchanged. It is set to 0 if the cluster
1466  *          is allocated and can be overwritten in-place but doesn't have
1467  *          the right physical offset.
1468  *
1469  *   1:     if allocated clusters that can be overwritten in place are
1470  *          available at the requested offset. *bytes may have decreased
1471  *          and describes the length of the area that can be written to.
1472  *
1473  *  -errno: in error cases
1474  */
1475 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1476     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1477 {
1478     BDRVQcow2State *s = bs->opaque;
1479     int l2_index;
1480     uint64_t l2_entry, cluster_offset;
1481     uint64_t *l2_slice;
1482     uint64_t nb_clusters;
1483     unsigned int keep_clusters;
1484     int ret;
1485 
1486     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1487                               *bytes);
1488 
1489     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1490                                       == offset_into_cluster(s, *host_offset));
1491 
1492     /*
1493      * Calculate the number of clusters to look for. We stop at L2 slice
1494      * boundaries to keep things simple.
1495      */
1496     nb_clusters =
1497         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1498 
1499     l2_index = offset_to_l2_slice_index(s, guest_offset);
1500     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1501     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1502     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1503 
1504     /* Find L2 entry for the first involved cluster */
1505     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1506     if (ret < 0) {
1507         return ret;
1508     }
1509 
1510     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1511     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1512 
1513     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1514         if (offset_into_cluster(s, cluster_offset)) {
1515             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1516                                     "%#" PRIx64 " unaligned (guest offset: %#"
1517                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1518                                     "Preallocated zero" : "Data",
1519                                     cluster_offset, guest_offset);
1520             ret = -EIO;
1521             goto out;
1522         }
1523 
1524         /* If a specific host_offset is required, check it */
1525         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1526             *bytes = 0;
1527             ret = 0;
1528             goto out;
1529         }
1530 
1531         /* We keep all QCOW_OFLAG_COPIED clusters */
1532         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1533                                                     l2_index, false);
1534         assert(keep_clusters <= nb_clusters);
1535 
1536         *bytes = MIN(*bytes,
1537                  keep_clusters * s->cluster_size
1538                  - offset_into_cluster(s, guest_offset));
1539         assert(*bytes != 0);
1540 
1541         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1542                                 *bytes, l2_slice, m, true);
1543         if (ret < 0) {
1544             goto out;
1545         }
1546 
1547         ret = 1;
1548     } else {
1549         ret = 0;
1550     }
1551 
1552     /* Cleanup */
1553 out:
1554     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1555 
1556     /* Only return a host offset if we actually made progress. Otherwise we
1557      * would make requirements for handle_alloc() that it can't fulfill */
1558     if (ret > 0) {
1559         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1560     }
1561 
1562     return ret;
1563 }
1564 
1565 /*
1566  * Allocates new clusters for the given guest_offset.
1567  *
1568  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1569  * contain the number of clusters that have been allocated and are contiguous
1570  * in the image file.
1571  *
1572  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1573  * at which the new clusters must start. *nb_clusters can be 0 on return in
1574  * this case if the cluster at host_offset is already in use. If *host_offset
1575  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1576  *
1577  * *host_offset is updated to contain the offset into the image file at which
1578  * the first allocated cluster starts.
1579  *
1580  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1581  * function has been waiting for another request and the allocation must be
1582  * restarted, but the whole request should not be failed.
1583  */
1584 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1585                                    uint64_t *host_offset, uint64_t *nb_clusters)
1586 {
1587     BDRVQcow2State *s = bs->opaque;
1588 
1589     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1590                                          *host_offset, *nb_clusters);
1591 
1592     if (has_data_file(bs)) {
1593         assert(*host_offset == INV_OFFSET ||
1594                *host_offset == start_of_cluster(s, guest_offset));
1595         *host_offset = start_of_cluster(s, guest_offset);
1596         return 0;
1597     }
1598 
1599     /* Allocate new clusters */
1600     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1601     if (*host_offset == INV_OFFSET) {
1602         int64_t cluster_offset =
1603             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1604         if (cluster_offset < 0) {
1605             return cluster_offset;
1606         }
1607         *host_offset = cluster_offset;
1608         return 0;
1609     } else {
1610         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1611         if (ret < 0) {
1612             return ret;
1613         }
1614         *nb_clusters = ret;
1615         return 0;
1616     }
1617 }
1618 
1619 /*
1620  * Allocates new clusters for an area that is either still unallocated or
1621  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1622  * clusters are only allocated if the new allocation can match the specified
1623  * host offset.
1624  *
1625  * Note that guest_offset may not be cluster aligned. In this case, the
1626  * returned *host_offset points to exact byte referenced by guest_offset and
1627  * therefore isn't cluster aligned as well.
1628  *
1629  * Returns:
1630  *   0:     if no clusters could be allocated. *bytes is set to 0,
1631  *          *host_offset is left unchanged.
1632  *
1633  *   1:     if new clusters were allocated. *bytes may be decreased if the
1634  *          new allocation doesn't cover all of the requested area.
1635  *          *host_offset is updated to contain the host offset of the first
1636  *          newly allocated cluster.
1637  *
1638  *  -errno: in error cases
1639  */
1640 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1641     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1642 {
1643     BDRVQcow2State *s = bs->opaque;
1644     int l2_index;
1645     uint64_t *l2_slice;
1646     uint64_t nb_clusters;
1647     int ret;
1648 
1649     uint64_t alloc_cluster_offset;
1650 
1651     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1652                              *bytes);
1653     assert(*bytes > 0);
1654 
1655     /*
1656      * Calculate the number of clusters to look for. We stop at L2 slice
1657      * boundaries to keep things simple.
1658      */
1659     nb_clusters =
1660         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1661 
1662     l2_index = offset_to_l2_slice_index(s, guest_offset);
1663     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1664     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1665     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1666 
1667     /* Find L2 entry for the first involved cluster */
1668     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1669     if (ret < 0) {
1670         return ret;
1671     }
1672 
1673     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1674                                               l2_slice, l2_index, true);
1675 
1676     /* This function is only called when there were no non-COW clusters, so if
1677      * we can't find any unallocated or COW clusters either, something is
1678      * wrong with our code. */
1679     assert(nb_clusters > 0);
1680 
1681     /* Allocate at a given offset in the image file */
1682     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1683         start_of_cluster(s, *host_offset);
1684     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1685                                   &nb_clusters);
1686     if (ret < 0) {
1687         goto out;
1688     }
1689 
1690     /* Can't extend contiguous allocation */
1691     if (nb_clusters == 0) {
1692         *bytes = 0;
1693         ret = 0;
1694         goto out;
1695     }
1696 
1697     assert(alloc_cluster_offset != INV_OFFSET);
1698 
1699     /*
1700      * Save info needed for meta data update.
1701      *
1702      * requested_bytes: Number of bytes from the start of the first
1703      * newly allocated cluster to the end of the (possibly shortened
1704      * before) write request.
1705      *
1706      * avail_bytes: Number of bytes from the start of the first
1707      * newly allocated to the end of the last newly allocated cluster.
1708      *
1709      * nb_bytes: The number of bytes from the start of the first
1710      * newly allocated cluster to the end of the area that the write
1711      * request actually writes to (excluding COW at the end)
1712      */
1713     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1714     int avail_bytes = nb_clusters << s->cluster_bits;
1715     int nb_bytes = MIN(requested_bytes, avail_bytes);
1716 
1717     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1718     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1719     assert(*bytes != 0);
1720 
1721     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1722                             l2_slice, m, false);
1723     if (ret < 0) {
1724         goto out;
1725     }
1726 
1727     ret = 1;
1728 
1729 out:
1730     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1731     return ret;
1732 }
1733 
1734 /*
1735  * For a given area on the virtual disk defined by @offset and @bytes,
1736  * find the corresponding area on the qcow2 image, allocating new
1737  * clusters (or subclusters) if necessary. The result can span a
1738  * combination of allocated and previously unallocated clusters.
1739  *
1740  * Note that offset may not be cluster aligned. In this case, the returned
1741  * *host_offset points to exact byte referenced by offset and therefore
1742  * isn't cluster aligned as well.
1743  *
1744  * On return, @host_offset is set to the beginning of the requested
1745  * area. This area is guaranteed to be contiguous on the qcow2 file
1746  * but it can be smaller than initially requested. In this case @bytes
1747  * is updated with the actual size.
1748  *
1749  * If any clusters or subclusters were allocated then @m contains a
1750  * list with the information of all the affected regions. Note that
1751  * this can happen regardless of whether this function succeeds or
1752  * not. The caller is responsible for updating the L2 metadata of the
1753  * allocated clusters (on success) or freeing them (on failure), and
1754  * for clearing the contents of @m afterwards in both cases.
1755  *
1756  * If the request conflicts with another write request in flight, the coroutine
1757  * is queued and will be reentered when the dependency has completed.
1758  *
1759  * Return 0 on success and -errno in error cases
1760  */
1761 int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1762                             unsigned int *bytes, uint64_t *host_offset,
1763                             QCowL2Meta **m)
1764 {
1765     BDRVQcow2State *s = bs->opaque;
1766     uint64_t start, remaining;
1767     uint64_t cluster_offset;
1768     uint64_t cur_bytes;
1769     int ret;
1770 
1771     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1772 
1773 again:
1774     start = offset;
1775     remaining = *bytes;
1776     cluster_offset = INV_OFFSET;
1777     *host_offset = INV_OFFSET;
1778     cur_bytes = 0;
1779     *m = NULL;
1780 
1781     while (true) {
1782 
1783         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1784             *host_offset = cluster_offset;
1785         }
1786 
1787         assert(remaining >= cur_bytes);
1788 
1789         start           += cur_bytes;
1790         remaining       -= cur_bytes;
1791 
1792         if (cluster_offset != INV_OFFSET) {
1793             cluster_offset += cur_bytes;
1794         }
1795 
1796         if (remaining == 0) {
1797             break;
1798         }
1799 
1800         cur_bytes = remaining;
1801 
1802         /*
1803          * Now start gathering as many contiguous clusters as possible:
1804          *
1805          * 1. Check for overlaps with in-flight allocations
1806          *
1807          *      a) Overlap not in the first cluster -> shorten this request and
1808          *         let the caller handle the rest in its next loop iteration.
1809          *
1810          *      b) Real overlaps of two requests. Yield and restart the search
1811          *         for contiguous clusters (the situation could have changed
1812          *         while we were sleeping)
1813          *
1814          *      c) TODO: Request starts in the same cluster as the in-flight
1815          *         allocation ends. Shorten the COW of the in-fight allocation,
1816          *         set cluster_offset to write to the same cluster and set up
1817          *         the right synchronisation between the in-flight request and
1818          *         the new one.
1819          */
1820         ret = handle_dependencies(bs, start, &cur_bytes, m);
1821         if (ret == -EAGAIN) {
1822             /* Currently handle_dependencies() doesn't yield if we already had
1823              * an allocation. If it did, we would have to clean up the L2Meta
1824              * structs before starting over. */
1825             assert(*m == NULL);
1826             goto again;
1827         } else if (ret < 0) {
1828             return ret;
1829         } else if (cur_bytes == 0) {
1830             break;
1831         } else {
1832             /* handle_dependencies() may have decreased cur_bytes (shortened
1833              * the allocations below) so that the next dependency is processed
1834              * correctly during the next loop iteration. */
1835         }
1836 
1837         /*
1838          * 2. Count contiguous COPIED clusters.
1839          */
1840         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1841         if (ret < 0) {
1842             return ret;
1843         } else if (ret) {
1844             continue;
1845         } else if (cur_bytes == 0) {
1846             break;
1847         }
1848 
1849         /*
1850          * 3. If the request still hasn't completed, allocate new clusters,
1851          *    considering any cluster_offset of steps 1c or 2.
1852          */
1853         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1854         if (ret < 0) {
1855             return ret;
1856         } else if (ret) {
1857             continue;
1858         } else {
1859             assert(cur_bytes == 0);
1860             break;
1861         }
1862     }
1863 
1864     *bytes -= remaining;
1865     assert(*bytes > 0);
1866     assert(*host_offset != INV_OFFSET);
1867     assert(offset_into_cluster(s, *host_offset) ==
1868            offset_into_cluster(s, offset));
1869 
1870     return 0;
1871 }
1872 
1873 /*
1874  * This discards as many clusters of nb_clusters as possible at once (i.e.
1875  * all clusters in the same L2 slice) and returns the number of discarded
1876  * clusters.
1877  */
1878 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1879                                uint64_t nb_clusters,
1880                                enum qcow2_discard_type type, bool full_discard)
1881 {
1882     BDRVQcow2State *s = bs->opaque;
1883     uint64_t *l2_slice;
1884     int l2_index;
1885     int ret;
1886     int i;
1887 
1888     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1889     if (ret < 0) {
1890         return ret;
1891     }
1892 
1893     /* Limit nb_clusters to one L2 slice */
1894     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1895     assert(nb_clusters <= INT_MAX);
1896 
1897     for (i = 0; i < nb_clusters; i++) {
1898         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1899         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1900         uint64_t new_l2_entry = old_l2_entry;
1901         uint64_t new_l2_bitmap = old_l2_bitmap;
1902         QCow2ClusterType cluster_type =
1903             qcow2_get_cluster_type(bs, old_l2_entry);
1904 
1905         /*
1906          * If full_discard is true, the cluster should not read back as zeroes,
1907          * but rather fall through to the backing file.
1908          *
1909          * If full_discard is false, make sure that a discarded area reads back
1910          * as zeroes for v3 images (we cannot do it for v2 without actually
1911          * writing a zero-filled buffer). We can skip the operation if the
1912          * cluster is already marked as zero, or if it's unallocated and we
1913          * don't have a backing file.
1914          *
1915          * TODO We might want to use bdrv_block_status(bs) here, but we're
1916          * holding s->lock, so that doesn't work today.
1917          */
1918         if (full_discard) {
1919             new_l2_entry = new_l2_bitmap = 0;
1920         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1921             if (has_subclusters(s)) {
1922                 new_l2_entry = 0;
1923                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1924             } else {
1925                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1926             }
1927         }
1928 
1929         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1930             continue;
1931         }
1932 
1933         /* First remove L2 entries */
1934         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1935         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1936         if (has_subclusters(s)) {
1937             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1938         }
1939         /* Then decrease the refcount */
1940         qcow2_free_any_cluster(bs, old_l2_entry, type);
1941     }
1942 
1943     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1944 
1945     return nb_clusters;
1946 }
1947 
1948 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1949                           uint64_t bytes, enum qcow2_discard_type type,
1950                           bool full_discard)
1951 {
1952     BDRVQcow2State *s = bs->opaque;
1953     uint64_t end_offset = offset + bytes;
1954     uint64_t nb_clusters;
1955     int64_t cleared;
1956     int ret;
1957 
1958     /* Caller must pass aligned values, except at image end */
1959     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1960     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1961            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1962 
1963     nb_clusters = size_to_clusters(s, bytes);
1964 
1965     s->cache_discards = true;
1966 
1967     /* Each L2 slice is handled by its own loop iteration */
1968     while (nb_clusters > 0) {
1969         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1970                                       full_discard);
1971         if (cleared < 0) {
1972             ret = cleared;
1973             goto fail;
1974         }
1975 
1976         nb_clusters -= cleared;
1977         offset += (cleared * s->cluster_size);
1978     }
1979 
1980     ret = 0;
1981 fail:
1982     s->cache_discards = false;
1983     qcow2_process_discards(bs, ret);
1984 
1985     return ret;
1986 }
1987 
1988 /*
1989  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1990  * all clusters in the same L2 slice) and returns the number of zeroed
1991  * clusters.
1992  */
1993 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1994                             uint64_t nb_clusters, int flags)
1995 {
1996     BDRVQcow2State *s = bs->opaque;
1997     uint64_t *l2_slice;
1998     int l2_index;
1999     int ret;
2000     int i;
2001 
2002     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2003     if (ret < 0) {
2004         return ret;
2005     }
2006 
2007     /* Limit nb_clusters to one L2 slice */
2008     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2009     assert(nb_clusters <= INT_MAX);
2010 
2011     for (i = 0; i < nb_clusters; i++) {
2012         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2013         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2014         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2015         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2016             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2017         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2018         uint64_t new_l2_bitmap = old_l2_bitmap;
2019 
2020         if (has_subclusters(s)) {
2021             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2022         } else {
2023             new_l2_entry |= QCOW_OFLAG_ZERO;
2024         }
2025 
2026         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2027             continue;
2028         }
2029 
2030         /* First update L2 entries */
2031         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2032         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2033         if (has_subclusters(s)) {
2034             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2035         }
2036 
2037         /* Then decrease the refcount */
2038         if (unmap) {
2039             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2040         }
2041     }
2042 
2043     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2044 
2045     return nb_clusters;
2046 }
2047 
2048 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2049                                unsigned nb_subclusters)
2050 {
2051     BDRVQcow2State *s = bs->opaque;
2052     uint64_t *l2_slice;
2053     uint64_t old_l2_bitmap, l2_bitmap;
2054     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2055 
2056     /* For full clusters use zero_in_l2_slice() instead */
2057     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2058     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2059     assert(offset_into_subcluster(s, offset) == 0);
2060 
2061     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2062     if (ret < 0) {
2063         return ret;
2064     }
2065 
2066     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2067     case QCOW2_CLUSTER_COMPRESSED:
2068         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2069         goto out;
2070     case QCOW2_CLUSTER_NORMAL:
2071     case QCOW2_CLUSTER_UNALLOCATED:
2072         break;
2073     default:
2074         g_assert_not_reached();
2075     }
2076 
2077     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2078 
2079     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2080     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2081 
2082     if (old_l2_bitmap != l2_bitmap) {
2083         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2084         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2085     }
2086 
2087     ret = 0;
2088 out:
2089     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2090 
2091     return ret;
2092 }
2093 
2094 int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2095                              uint64_t bytes, int flags)
2096 {
2097     BDRVQcow2State *s = bs->opaque;
2098     uint64_t end_offset = offset + bytes;
2099     uint64_t nb_clusters;
2100     unsigned head, tail;
2101     int64_t cleared;
2102     int ret;
2103 
2104     /* If we have to stay in sync with an external data file, zero out
2105      * s->data_file first. */
2106     if (data_file_is_raw(bs)) {
2107         assert(has_data_file(bs));
2108         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2109         if (ret < 0) {
2110             return ret;
2111         }
2112     }
2113 
2114     /* Caller must pass aligned values, except at image end */
2115     assert(offset_into_subcluster(s, offset) == 0);
2116     assert(offset_into_subcluster(s, end_offset) == 0 ||
2117            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2118 
2119     /*
2120      * The zero flag is only supported by version 3 and newer. However, if we
2121      * have no backing file, we can resort to discard in version 2.
2122      */
2123     if (s->qcow_version < 3) {
2124         if (!bs->backing) {
2125             return qcow2_cluster_discard(bs, offset, bytes,
2126                                          QCOW2_DISCARD_REQUEST, false);
2127         }
2128         return -ENOTSUP;
2129     }
2130 
2131     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2132     offset += head;
2133 
2134     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2135         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2136     end_offset -= tail;
2137 
2138     s->cache_discards = true;
2139 
2140     if (head) {
2141         ret = zero_l2_subclusters(bs, offset - head,
2142                                   size_to_subclusters(s, head));
2143         if (ret < 0) {
2144             goto fail;
2145         }
2146     }
2147 
2148     /* Each L2 slice is handled by its own loop iteration */
2149     nb_clusters = size_to_clusters(s, end_offset - offset);
2150 
2151     while (nb_clusters > 0) {
2152         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2153         if (cleared < 0) {
2154             ret = cleared;
2155             goto fail;
2156         }
2157 
2158         nb_clusters -= cleared;
2159         offset += (cleared * s->cluster_size);
2160     }
2161 
2162     if (tail) {
2163         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2164         if (ret < 0) {
2165             goto fail;
2166         }
2167     }
2168 
2169     ret = 0;
2170 fail:
2171     s->cache_discards = false;
2172     qcow2_process_discards(bs, ret);
2173 
2174     return ret;
2175 }
2176 
2177 /*
2178  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2179  * non-backed non-pre-allocated zero clusters).
2180  *
2181  * l1_entries and *visited_l1_entries are used to keep track of progress for
2182  * status_cb(). l1_entries contains the total number of L1 entries and
2183  * *visited_l1_entries counts all visited L1 entries.
2184  */
2185 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2186                                       int l1_size, int64_t *visited_l1_entries,
2187                                       int64_t l1_entries,
2188                                       BlockDriverAmendStatusCB *status_cb,
2189                                       void *cb_opaque)
2190 {
2191     BDRVQcow2State *s = bs->opaque;
2192     bool is_active_l1 = (l1_table == s->l1_table);
2193     uint64_t *l2_slice = NULL;
2194     unsigned slice, slice_size2, n_slices;
2195     int ret;
2196     int i, j;
2197 
2198     /* qcow2_downgrade() is not allowed in images with subclusters */
2199     assert(!has_subclusters(s));
2200 
2201     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2202     n_slices = s->cluster_size / slice_size2;
2203 
2204     if (!is_active_l1) {
2205         /* inactive L2 tables require a buffer to be stored in when loading
2206          * them from disk */
2207         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2208         if (l2_slice == NULL) {
2209             return -ENOMEM;
2210         }
2211     }
2212 
2213     for (i = 0; i < l1_size; i++) {
2214         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2215         uint64_t l2_refcount;
2216 
2217         if (!l2_offset) {
2218             /* unallocated */
2219             (*visited_l1_entries)++;
2220             if (status_cb) {
2221                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2222             }
2223             continue;
2224         }
2225 
2226         if (offset_into_cluster(s, l2_offset)) {
2227             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2228                                     PRIx64 " unaligned (L1 index: %#x)",
2229                                     l2_offset, i);
2230             ret = -EIO;
2231             goto fail;
2232         }
2233 
2234         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2235                                  &l2_refcount);
2236         if (ret < 0) {
2237             goto fail;
2238         }
2239 
2240         for (slice = 0; slice < n_slices; slice++) {
2241             uint64_t slice_offset = l2_offset + slice * slice_size2;
2242             bool l2_dirty = false;
2243             if (is_active_l1) {
2244                 /* get active L2 tables from cache */
2245                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2246                                       (void **)&l2_slice);
2247             } else {
2248                 /* load inactive L2 tables from disk */
2249                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2250             }
2251             if (ret < 0) {
2252                 goto fail;
2253             }
2254 
2255             for (j = 0; j < s->l2_slice_size; j++) {
2256                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2257                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2258                 QCow2ClusterType cluster_type =
2259                     qcow2_get_cluster_type(bs, l2_entry);
2260 
2261                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2262                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2263                     continue;
2264                 }
2265 
2266                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2267                     if (!bs->backing) {
2268                         /*
2269                          * not backed; therefore we can simply deallocate the
2270                          * cluster. No need to call set_l2_bitmap(), this
2271                          * function doesn't support images with subclusters.
2272                          */
2273                         set_l2_entry(s, l2_slice, j, 0);
2274                         l2_dirty = true;
2275                         continue;
2276                     }
2277 
2278                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2279                     if (offset < 0) {
2280                         ret = offset;
2281                         goto fail;
2282                     }
2283 
2284                     /* The offset must fit in the offset field */
2285                     assert((offset & L2E_OFFSET_MASK) == offset);
2286 
2287                     if (l2_refcount > 1) {
2288                         /* For shared L2 tables, set the refcount accordingly
2289                          * (it is already 1 and needs to be l2_refcount) */
2290                         ret = qcow2_update_cluster_refcount(
2291                             bs, offset >> s->cluster_bits,
2292                             refcount_diff(1, l2_refcount), false,
2293                             QCOW2_DISCARD_OTHER);
2294                         if (ret < 0) {
2295                             qcow2_free_clusters(bs, offset, s->cluster_size,
2296                                                 QCOW2_DISCARD_OTHER);
2297                             goto fail;
2298                         }
2299                     }
2300                 }
2301 
2302                 if (offset_into_cluster(s, offset)) {
2303                     int l2_index = slice * s->l2_slice_size + j;
2304                     qcow2_signal_corruption(
2305                         bs, true, -1, -1,
2306                         "Cluster allocation offset "
2307                         "%#" PRIx64 " unaligned (L2 offset: %#"
2308                         PRIx64 ", L2 index: %#x)", offset,
2309                         l2_offset, l2_index);
2310                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2311                         qcow2_free_clusters(bs, offset, s->cluster_size,
2312                                             QCOW2_DISCARD_ALWAYS);
2313                     }
2314                     ret = -EIO;
2315                     goto fail;
2316                 }
2317 
2318                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2319                                                     s->cluster_size, true);
2320                 if (ret < 0) {
2321                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2322                         qcow2_free_clusters(bs, offset, s->cluster_size,
2323                                             QCOW2_DISCARD_ALWAYS);
2324                     }
2325                     goto fail;
2326                 }
2327 
2328                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2329                                          s->cluster_size, 0);
2330                 if (ret < 0) {
2331                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2332                         qcow2_free_clusters(bs, offset, s->cluster_size,
2333                                             QCOW2_DISCARD_ALWAYS);
2334                     }
2335                     goto fail;
2336                 }
2337 
2338                 if (l2_refcount == 1) {
2339                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2340                 } else {
2341                     set_l2_entry(s, l2_slice, j, offset);
2342                 }
2343                 /*
2344                  * No need to call set_l2_bitmap() after set_l2_entry() because
2345                  * this function doesn't support images with subclusters.
2346                  */
2347                 l2_dirty = true;
2348             }
2349 
2350             if (is_active_l1) {
2351                 if (l2_dirty) {
2352                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2353                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2354                 }
2355                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2356             } else {
2357                 if (l2_dirty) {
2358                     ret = qcow2_pre_write_overlap_check(
2359                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2360                         slice_offset, slice_size2, false);
2361                     if (ret < 0) {
2362                         goto fail;
2363                     }
2364 
2365                     ret = bdrv_pwrite(bs->file, slice_offset,
2366                                       l2_slice, slice_size2);
2367                     if (ret < 0) {
2368                         goto fail;
2369                     }
2370                 }
2371             }
2372         }
2373 
2374         (*visited_l1_entries)++;
2375         if (status_cb) {
2376             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2377         }
2378     }
2379 
2380     ret = 0;
2381 
2382 fail:
2383     if (l2_slice) {
2384         if (!is_active_l1) {
2385             qemu_vfree(l2_slice);
2386         } else {
2387             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2388         }
2389     }
2390     return ret;
2391 }
2392 
2393 /*
2394  * For backed images, expands all zero clusters on the image. For non-backed
2395  * images, deallocates all non-pre-allocated zero clusters (and claims the
2396  * allocation for pre-allocated ones). This is important for downgrading to a
2397  * qcow2 version which doesn't yet support metadata zero clusters.
2398  */
2399 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2400                                BlockDriverAmendStatusCB *status_cb,
2401                                void *cb_opaque)
2402 {
2403     BDRVQcow2State *s = bs->opaque;
2404     uint64_t *l1_table = NULL;
2405     int64_t l1_entries = 0, visited_l1_entries = 0;
2406     int ret;
2407     int i, j;
2408 
2409     if (status_cb) {
2410         l1_entries = s->l1_size;
2411         for (i = 0; i < s->nb_snapshots; i++) {
2412             l1_entries += s->snapshots[i].l1_size;
2413         }
2414     }
2415 
2416     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2417                                      &visited_l1_entries, l1_entries,
2418                                      status_cb, cb_opaque);
2419     if (ret < 0) {
2420         goto fail;
2421     }
2422 
2423     /* Inactive L1 tables may point to active L2 tables - therefore it is
2424      * necessary to flush the L2 table cache before trying to access the L2
2425      * tables pointed to by inactive L1 entries (else we might try to expand
2426      * zero clusters that have already been expanded); furthermore, it is also
2427      * necessary to empty the L2 table cache, since it may contain tables which
2428      * are now going to be modified directly on disk, bypassing the cache.
2429      * qcow2_cache_empty() does both for us. */
2430     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2431     if (ret < 0) {
2432         goto fail;
2433     }
2434 
2435     for (i = 0; i < s->nb_snapshots; i++) {
2436         int l1_size2;
2437         uint64_t *new_l1_table;
2438         Error *local_err = NULL;
2439 
2440         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2441                                    s->snapshots[i].l1_size, L1E_SIZE,
2442                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2443                                    &local_err);
2444         if (ret < 0) {
2445             error_report_err(local_err);
2446             goto fail;
2447         }
2448 
2449         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2450         new_l1_table = g_try_realloc(l1_table, l1_size2);
2451 
2452         if (!new_l1_table) {
2453             ret = -ENOMEM;
2454             goto fail;
2455         }
2456 
2457         l1_table = new_l1_table;
2458 
2459         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2460                          l1_table, l1_size2);
2461         if (ret < 0) {
2462             goto fail;
2463         }
2464 
2465         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2466             be64_to_cpus(&l1_table[j]);
2467         }
2468 
2469         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2470                                          &visited_l1_entries, l1_entries,
2471                                          status_cb, cb_opaque);
2472         if (ret < 0) {
2473             goto fail;
2474         }
2475     }
2476 
2477     ret = 0;
2478 
2479 fail:
2480     g_free(l1_table);
2481     return ret;
2482 }
2483 
2484 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2485                                      uint64_t *coffset, int *csize)
2486 {
2487     BDRVQcow2State *s = bs->opaque;
2488     int nb_csectors;
2489 
2490     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2491 
2492     *coffset = l2_entry & s->cluster_offset_mask;
2493 
2494     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2495     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2496         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2497 }
2498