1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size) 33 { 34 BDRVQcowState *s = bs->opaque; 35 int new_l1_size, new_l1_size2, ret, i; 36 uint64_t *new_l1_table; 37 int64_t new_l1_table_offset; 38 uint8_t data[12]; 39 40 if (min_size <= s->l1_size) 41 return 0; 42 43 if (exact_size) { 44 new_l1_size = min_size; 45 } else { 46 /* Bump size up to reduce the number of times we have to grow */ 47 new_l1_size = s->l1_size; 48 if (new_l1_size == 0) { 49 new_l1_size = 1; 50 } 51 while (min_size > new_l1_size) { 52 new_l1_size = (new_l1_size * 3 + 1) / 2; 53 } 54 } 55 56 #ifdef DEBUG_ALLOC2 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size); 58 #endif 59 60 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 63 64 /* write new table (align to cluster) */ 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 67 if (new_l1_table_offset < 0) { 68 g_free(new_l1_table); 69 return new_l1_table_offset; 70 } 71 72 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 73 if (ret < 0) { 74 goto fail; 75 } 76 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 78 for(i = 0; i < s->l1_size; i++) 79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 81 if (ret < 0) 82 goto fail; 83 for(i = 0; i < s->l1_size; i++) 84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 85 86 /* set new table */ 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 88 cpu_to_be32w((uint32_t*)data, new_l1_size); 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); 90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 91 if (ret < 0) { 92 goto fail; 93 } 94 g_free(s->l1_table); 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); 96 s->l1_table_offset = new_l1_table_offset; 97 s->l1_table = new_l1_table; 98 s->l1_size = new_l1_size; 99 return 0; 100 fail: 101 g_free(new_l1_table); 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2); 103 return ret; 104 } 105 106 /* 107 * l2_load 108 * 109 * Loads a L2 table into memory. If the table is in the cache, the cache 110 * is used; otherwise the L2 table is loaded from the image file. 111 * 112 * Returns a pointer to the L2 table on success, or NULL if the read from 113 * the image file failed. 114 */ 115 116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 117 uint64_t **l2_table) 118 { 119 BDRVQcowState *s = bs->opaque; 120 int ret; 121 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 123 124 return ret; 125 } 126 127 /* 128 * Writes one sector of the L1 table to the disk (can't update single entries 129 * and we really don't want bdrv_pread to perform a read-modify-write) 130 */ 131 #define L1_ENTRIES_PER_SECTOR (512 / 8) 132 static int write_l1_entry(BlockDriverState *bs, int l1_index) 133 { 134 BDRVQcowState *s = bs->opaque; 135 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 136 int l1_start_index; 137 int i, ret; 138 139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 142 } 143 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 146 buf, sizeof(buf)); 147 if (ret < 0) { 148 return ret; 149 } 150 151 return 0; 152 } 153 154 /* 155 * l2_allocate 156 * 157 * Allocate a new l2 entry in the file. If l1_index points to an already 158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 159 * table) copy the contents of the old L2 table into the newly allocated one. 160 * Otherwise the new table is initialized with zeros. 161 * 162 */ 163 164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 165 { 166 BDRVQcowState *s = bs->opaque; 167 uint64_t old_l2_offset; 168 uint64_t *l2_table; 169 int64_t l2_offset; 170 int ret; 171 172 old_l2_offset = s->l1_table[l1_index]; 173 174 trace_qcow2_l2_allocate(bs, l1_index); 175 176 /* allocate a new l2 entry */ 177 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 179 if (l2_offset < 0) { 180 return l2_offset; 181 } 182 183 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 184 if (ret < 0) { 185 goto fail; 186 } 187 188 /* allocate a new entry in the l2 cache */ 189 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 192 if (ret < 0) { 193 return ret; 194 } 195 196 l2_table = *table; 197 198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 199 /* if there was no old l2 table, clear the new table */ 200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 201 } else { 202 uint64_t* old_table; 203 204 /* if there was an old l2 table, read it from the disk */ 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 206 ret = qcow2_cache_get(bs, s->l2_table_cache, 207 old_l2_offset & L1E_OFFSET_MASK, 208 (void**) &old_table); 209 if (ret < 0) { 210 goto fail; 211 } 212 213 memcpy(l2_table, old_table, s->cluster_size); 214 215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 216 if (ret < 0) { 217 goto fail; 218 } 219 } 220 221 /* write the l2 table to the file */ 222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 223 224 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 226 ret = qcow2_cache_flush(bs, s->l2_table_cache); 227 if (ret < 0) { 228 goto fail; 229 } 230 231 /* update the L1 entry */ 232 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 234 ret = write_l1_entry(bs, l1_index); 235 if (ret < 0) { 236 goto fail; 237 } 238 239 *table = l2_table; 240 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 241 return 0; 242 243 fail: 244 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 246 s->l1_table[l1_index] = old_l2_offset; 247 return ret; 248 } 249 250 /* 251 * Checks how many clusters in a given L2 table are contiguous in the image 252 * file. As soon as one of the flags in the bitmask stop_flags changes compared 253 * to the first cluster, the search is stopped and the cluster is not counted 254 * as contiguous. (This allows it, for example, to stop at the first compressed 255 * cluster which may require a different handling) 256 */ 257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags) 259 { 260 int i; 261 uint64_t mask = stop_flags | L2E_OFFSET_MASK; 262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask; 263 264 if (!offset) 265 return 0; 266 267 for (i = start; i < start + nb_clusters; i++) { 268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 269 if (offset + (uint64_t) i * cluster_size != l2_entry) { 270 break; 271 } 272 } 273 274 return (i - start); 275 } 276 277 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 278 { 279 int i; 280 281 for (i = 0; i < nb_clusters; i++) { 282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 283 284 if (type != QCOW2_CLUSTER_UNALLOCATED) { 285 break; 286 } 287 } 288 289 return i; 290 } 291 292 /* The crypt function is compatible with the linux cryptoloop 293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 294 supported */ 295 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 296 uint8_t *out_buf, const uint8_t *in_buf, 297 int nb_sectors, int enc, 298 const AES_KEY *key) 299 { 300 union { 301 uint64_t ll[2]; 302 uint8_t b[16]; 303 } ivec; 304 int i; 305 306 for(i = 0; i < nb_sectors; i++) { 307 ivec.ll[0] = cpu_to_le64(sector_num); 308 ivec.ll[1] = 0; 309 AES_cbc_encrypt(in_buf, out_buf, 512, key, 310 ivec.b, enc); 311 sector_num++; 312 in_buf += 512; 313 out_buf += 512; 314 } 315 } 316 317 static int coroutine_fn copy_sectors(BlockDriverState *bs, 318 uint64_t start_sect, 319 uint64_t cluster_offset, 320 int n_start, int n_end) 321 { 322 BDRVQcowState *s = bs->opaque; 323 QEMUIOVector qiov; 324 struct iovec iov; 325 int n, ret; 326 327 /* 328 * If this is the last cluster and it is only partially used, we must only 329 * copy until the end of the image, or bdrv_check_request will fail for the 330 * bdrv_read/write calls below. 331 */ 332 if (start_sect + n_end > bs->total_sectors) { 333 n_end = bs->total_sectors - start_sect; 334 } 335 336 n = n_end - n_start; 337 if (n <= 0) { 338 return 0; 339 } 340 341 iov.iov_len = n * BDRV_SECTOR_SIZE; 342 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 343 344 qemu_iovec_init_external(&qiov, &iov, 1); 345 346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 347 348 /* Call .bdrv_co_readv() directly instead of using the public block-layer 349 * interface. This avoids double I/O throttling and request tracking, 350 * which can lead to deadlock when block layer copy-on-read is enabled. 351 */ 352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 353 if (ret < 0) { 354 goto out; 355 } 356 357 if (s->crypt_method) { 358 qcow2_encrypt_sectors(s, start_sect + n_start, 359 iov.iov_base, iov.iov_base, n, 1, 360 &s->aes_encrypt_key); 361 } 362 363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 365 if (ret < 0) { 366 goto out; 367 } 368 369 ret = 0; 370 out: 371 qemu_vfree(iov.iov_base); 372 return ret; 373 } 374 375 376 /* 377 * get_cluster_offset 378 * 379 * For a given offset of the disk image, find the cluster offset in 380 * qcow2 file. The offset is stored in *cluster_offset. 381 * 382 * on entry, *num is the number of contiguous sectors we'd like to 383 * access following offset. 384 * 385 * on exit, *num is the number of contiguous sectors we can read. 386 * 387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 388 * cases. 389 */ 390 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 391 int *num, uint64_t *cluster_offset) 392 { 393 BDRVQcowState *s = bs->opaque; 394 unsigned int l1_index, l2_index; 395 uint64_t l2_offset, *l2_table; 396 int l1_bits, c; 397 unsigned int index_in_cluster, nb_clusters; 398 uint64_t nb_available, nb_needed; 399 int ret; 400 401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 402 nb_needed = *num + index_in_cluster; 403 404 l1_bits = s->l2_bits + s->cluster_bits; 405 406 /* compute how many bytes there are between the offset and 407 * the end of the l1 entry 408 */ 409 410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 411 412 /* compute the number of available sectors */ 413 414 nb_available = (nb_available >> 9) + index_in_cluster; 415 416 if (nb_needed > nb_available) { 417 nb_needed = nb_available; 418 } 419 420 *cluster_offset = 0; 421 422 /* seek the the l2 offset in the l1 table */ 423 424 l1_index = offset >> l1_bits; 425 if (l1_index >= s->l1_size) { 426 ret = QCOW2_CLUSTER_UNALLOCATED; 427 goto out; 428 } 429 430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 431 if (!l2_offset) { 432 ret = QCOW2_CLUSTER_UNALLOCATED; 433 goto out; 434 } 435 436 /* load the l2 table in memory */ 437 438 ret = l2_load(bs, l2_offset, &l2_table); 439 if (ret < 0) { 440 return ret; 441 } 442 443 /* find the cluster offset for the given disk offset */ 444 445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 446 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 447 nb_clusters = size_to_clusters(s, nb_needed << 9); 448 449 ret = qcow2_get_cluster_type(*cluster_offset); 450 switch (ret) { 451 case QCOW2_CLUSTER_COMPRESSED: 452 /* Compressed clusters can only be processed one by one */ 453 c = 1; 454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 455 break; 456 case QCOW2_CLUSTER_ZERO: 457 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 458 &l2_table[l2_index], 0, 459 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 460 *cluster_offset = 0; 461 break; 462 case QCOW2_CLUSTER_UNALLOCATED: 463 /* how many empty clusters ? */ 464 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 465 *cluster_offset = 0; 466 break; 467 case QCOW2_CLUSTER_NORMAL: 468 /* how many allocated clusters ? */ 469 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 470 &l2_table[l2_index], 0, 471 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 472 *cluster_offset &= L2E_OFFSET_MASK; 473 break; 474 default: 475 abort(); 476 } 477 478 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 479 480 nb_available = (c * s->cluster_sectors); 481 482 out: 483 if (nb_available > nb_needed) 484 nb_available = nb_needed; 485 486 *num = nb_available - index_in_cluster; 487 488 return ret; 489 } 490 491 /* 492 * get_cluster_table 493 * 494 * for a given disk offset, load (and allocate if needed) 495 * the l2 table. 496 * 497 * the l2 table offset in the qcow2 file and the cluster index 498 * in the l2 table are given to the caller. 499 * 500 * Returns 0 on success, -errno in failure case 501 */ 502 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 503 uint64_t **new_l2_table, 504 int *new_l2_index) 505 { 506 BDRVQcowState *s = bs->opaque; 507 unsigned int l1_index, l2_index; 508 uint64_t l2_offset; 509 uint64_t *l2_table = NULL; 510 int ret; 511 512 /* seek the the l2 offset in the l1 table */ 513 514 l1_index = offset >> (s->l2_bits + s->cluster_bits); 515 if (l1_index >= s->l1_size) { 516 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 517 if (ret < 0) { 518 return ret; 519 } 520 } 521 522 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 523 524 /* seek the l2 table of the given l2 offset */ 525 526 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 527 /* load the l2 table in memory */ 528 ret = l2_load(bs, l2_offset, &l2_table); 529 if (ret < 0) { 530 return ret; 531 } 532 } else { 533 /* First allocate a new L2 table (and do COW if needed) */ 534 ret = l2_allocate(bs, l1_index, &l2_table); 535 if (ret < 0) { 536 return ret; 537 } 538 539 /* Then decrease the refcount of the old table */ 540 if (l2_offset) { 541 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); 542 } 543 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 544 } 545 546 /* find the cluster offset for the given disk offset */ 547 548 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 549 550 *new_l2_table = l2_table; 551 *new_l2_index = l2_index; 552 553 return 0; 554 } 555 556 /* 557 * alloc_compressed_cluster_offset 558 * 559 * For a given offset of the disk image, return cluster offset in 560 * qcow2 file. 561 * 562 * If the offset is not found, allocate a new compressed cluster. 563 * 564 * Return the cluster offset if successful, 565 * Return 0, otherwise. 566 * 567 */ 568 569 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 570 uint64_t offset, 571 int compressed_size) 572 { 573 BDRVQcowState *s = bs->opaque; 574 int l2_index, ret; 575 uint64_t *l2_table; 576 int64_t cluster_offset; 577 int nb_csectors; 578 579 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 580 if (ret < 0) { 581 return 0; 582 } 583 584 /* Compression can't overwrite anything. Fail if the cluster was already 585 * allocated. */ 586 cluster_offset = be64_to_cpu(l2_table[l2_index]); 587 if (cluster_offset & L2E_OFFSET_MASK) { 588 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 589 return 0; 590 } 591 592 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 593 if (cluster_offset < 0) { 594 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 595 return 0; 596 } 597 598 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 599 (cluster_offset >> 9); 600 601 cluster_offset |= QCOW_OFLAG_COMPRESSED | 602 ((uint64_t)nb_csectors << s->csize_shift); 603 604 /* update L2 table */ 605 606 /* compressed clusters never have the copied flag */ 607 608 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 609 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 610 l2_table[l2_index] = cpu_to_be64(cluster_offset); 611 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 612 if (ret < 0) { 613 return 0; 614 } 615 616 return cluster_offset; 617 } 618 619 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 620 { 621 BDRVQcowState *s = bs->opaque; 622 int i, j = 0, l2_index, ret; 623 uint64_t *old_cluster, start_sect, *l2_table; 624 uint64_t cluster_offset = m->alloc_offset; 625 bool cow = false; 626 627 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 628 629 if (m->nb_clusters == 0) 630 return 0; 631 632 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 633 634 /* copy content of unmodified sectors */ 635 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9; 636 if (m->n_start) { 637 cow = true; 638 qemu_co_mutex_unlock(&s->lock); 639 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start); 640 qemu_co_mutex_lock(&s->lock); 641 if (ret < 0) 642 goto err; 643 } 644 645 if (m->nb_available & (s->cluster_sectors - 1)) { 646 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1); 647 cow = true; 648 qemu_co_mutex_unlock(&s->lock); 649 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9), 650 m->nb_available - end, s->cluster_sectors); 651 qemu_co_mutex_lock(&s->lock); 652 if (ret < 0) 653 goto err; 654 } 655 656 /* 657 * Update L2 table. 658 * 659 * Before we update the L2 table to actually point to the new cluster, we 660 * need to be sure that the refcounts have been increased and COW was 661 * handled. 662 */ 663 if (cow) { 664 qcow2_cache_depends_on_flush(s->l2_table_cache); 665 } 666 667 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 668 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 669 if (ret < 0) { 670 goto err; 671 } 672 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 673 674 for (i = 0; i < m->nb_clusters; i++) { 675 /* if two concurrent writes happen to the same unallocated cluster 676 * each write allocates separate cluster and writes data concurrently. 677 * The first one to complete updates l2 table with pointer to its 678 * cluster the second one has to do RMW (which is done above by 679 * copy_sectors()), update l2 table with its cluster pointer and free 680 * old cluster. This is what this loop does */ 681 if(l2_table[l2_index + i] != 0) 682 old_cluster[j++] = l2_table[l2_index + i]; 683 684 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 685 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 686 } 687 688 689 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 690 if (ret < 0) { 691 goto err; 692 } 693 694 /* 695 * If this was a COW, we need to decrease the refcount of the old cluster. 696 * Also flush bs->file to get the right order for L2 and refcount update. 697 */ 698 if (j != 0) { 699 for (i = 0; i < j; i++) { 700 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1); 701 } 702 } 703 704 ret = 0; 705 err: 706 g_free(old_cluster); 707 return ret; 708 } 709 710 /* 711 * Returns the number of contiguous clusters that can be used for an allocating 712 * write, but require COW to be performed (this includes yet unallocated space, 713 * which must copy from the backing file) 714 */ 715 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 716 uint64_t *l2_table, int l2_index) 717 { 718 int i; 719 720 for (i = 0; i < nb_clusters; i++) { 721 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 722 int cluster_type = qcow2_get_cluster_type(l2_entry); 723 724 switch(cluster_type) { 725 case QCOW2_CLUSTER_NORMAL: 726 if (l2_entry & QCOW_OFLAG_COPIED) { 727 goto out; 728 } 729 break; 730 case QCOW2_CLUSTER_UNALLOCATED: 731 case QCOW2_CLUSTER_COMPRESSED: 732 case QCOW2_CLUSTER_ZERO: 733 break; 734 default: 735 abort(); 736 } 737 } 738 739 out: 740 assert(i <= nb_clusters); 741 return i; 742 } 743 744 /* 745 * Allocates new clusters for the given guest_offset. 746 * 747 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 748 * contain the number of clusters that have been allocated and are contiguous 749 * in the image file. 750 * 751 * If *host_offset is non-zero, it specifies the offset in the image file at 752 * which the new clusters must start. *nb_clusters can be 0 on return in this 753 * case if the cluster at host_offset is already in use. If *host_offset is 754 * zero, the clusters can be allocated anywhere in the image file. 755 * 756 * *host_offset is updated to contain the offset into the image file at which 757 * the first allocated cluster starts. 758 * 759 * Return 0 on success and -errno in error cases. -EAGAIN means that the 760 * function has been waiting for another request and the allocation must be 761 * restarted, but the whole request should not be failed. 762 */ 763 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 764 uint64_t *host_offset, unsigned int *nb_clusters) 765 { 766 BDRVQcowState *s = bs->opaque; 767 QCowL2Meta *old_alloc; 768 769 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 770 *host_offset, *nb_clusters); 771 772 /* 773 * Check if there already is an AIO write request in flight which allocates 774 * the same cluster. In this case we need to wait until the previous 775 * request has completed and updated the L2 table accordingly. 776 */ 777 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 778 779 uint64_t start = guest_offset >> s->cluster_bits; 780 uint64_t end = start + *nb_clusters; 781 uint64_t old_start = old_alloc->offset >> s->cluster_bits; 782 uint64_t old_end = old_start + old_alloc->nb_clusters; 783 784 if (end < old_start || start > old_end) { 785 /* No intersection */ 786 } else { 787 if (start < old_start) { 788 /* Stop at the start of a running allocation */ 789 *nb_clusters = old_start - start; 790 } else { 791 *nb_clusters = 0; 792 } 793 794 if (*nb_clusters == 0) { 795 /* Wait for the dependency to complete. We need to recheck 796 * the free/allocated clusters when we continue. */ 797 qemu_co_mutex_unlock(&s->lock); 798 qemu_co_queue_wait(&old_alloc->dependent_requests); 799 qemu_co_mutex_lock(&s->lock); 800 return -EAGAIN; 801 } 802 } 803 } 804 805 if (!*nb_clusters) { 806 abort(); 807 } 808 809 /* Allocate new clusters */ 810 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 811 if (*host_offset == 0) { 812 int64_t cluster_offset = 813 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 814 if (cluster_offset < 0) { 815 return cluster_offset; 816 } 817 *host_offset = cluster_offset; 818 return 0; 819 } else { 820 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 821 if (ret < 0) { 822 return ret; 823 } 824 *nb_clusters = ret; 825 return 0; 826 } 827 } 828 829 /* 830 * alloc_cluster_offset 831 * 832 * For a given offset on the virtual disk, find the cluster offset in qcow2 833 * file. If the offset is not found, allocate a new cluster. 834 * 835 * If the cluster was already allocated, m->nb_clusters is set to 0 and 836 * other fields in m are meaningless. 837 * 838 * If the cluster is newly allocated, m->nb_clusters is set to the number of 839 * contiguous clusters that have been allocated. In this case, the other 840 * fields of m are valid and contain information about the first allocated 841 * cluster. 842 * 843 * If the request conflicts with another write request in flight, the coroutine 844 * is queued and will be reentered when the dependency has completed. 845 * 846 * Return 0 on success and -errno in error cases 847 */ 848 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 849 int n_start, int n_end, int *num, QCowL2Meta *m) 850 { 851 BDRVQcowState *s = bs->opaque; 852 int l2_index, ret, sectors; 853 uint64_t *l2_table; 854 unsigned int nb_clusters, keep_clusters; 855 uint64_t cluster_offset; 856 857 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, 858 n_start, n_end); 859 860 /* Find L2 entry for the first involved cluster */ 861 again: 862 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 863 if (ret < 0) { 864 return ret; 865 } 866 867 /* 868 * Calculate the number of clusters to look for. We stop at L2 table 869 * boundaries to keep things simple. 870 */ 871 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS), 872 s->l2_size - l2_index); 873 874 cluster_offset = be64_to_cpu(l2_table[l2_index]); 875 876 /* 877 * Check how many clusters are already allocated and don't need COW, and how 878 * many need a new allocation. 879 */ 880 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 881 && (cluster_offset & QCOW_OFLAG_COPIED)) 882 { 883 /* We keep all QCOW_OFLAG_COPIED clusters */ 884 keep_clusters = 885 count_contiguous_clusters(nb_clusters, s->cluster_size, 886 &l2_table[l2_index], 0, 887 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 888 assert(keep_clusters <= nb_clusters); 889 nb_clusters -= keep_clusters; 890 } else { 891 keep_clusters = 0; 892 cluster_offset = 0; 893 } 894 895 if (nb_clusters > 0) { 896 /* For the moment, overwrite compressed clusters one by one */ 897 uint64_t entry = be64_to_cpu(l2_table[l2_index + keep_clusters]); 898 if (entry & QCOW_OFLAG_COMPRESSED) { 899 nb_clusters = 1; 900 } else { 901 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, 902 l2_index + keep_clusters); 903 } 904 } 905 906 cluster_offset &= L2E_OFFSET_MASK; 907 908 /* 909 * The L2 table isn't used any more after this. As long as the cache works 910 * synchronously, it's important to release it before calling 911 * do_alloc_cluster_offset, which may yield if we need to wait for another 912 * request to complete. If we still had the reference, we could use up the 913 * whole cache with sleeping requests. 914 */ 915 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 916 if (ret < 0) { 917 return ret; 918 } 919 920 /* If there is something left to allocate, do that now */ 921 *m = (QCowL2Meta) { 922 .cluster_offset = cluster_offset, 923 .nb_clusters = 0, 924 }; 925 qemu_co_queue_init(&m->dependent_requests); 926 927 if (nb_clusters > 0) { 928 uint64_t alloc_offset; 929 uint64_t alloc_cluster_offset; 930 uint64_t keep_bytes = keep_clusters * s->cluster_size; 931 932 /* Calculate start and size of allocation */ 933 alloc_offset = offset + keep_bytes; 934 935 if (keep_clusters == 0) { 936 alloc_cluster_offset = 0; 937 } else { 938 alloc_cluster_offset = cluster_offset + keep_bytes; 939 } 940 941 /* Allocate, if necessary at a given offset in the image file */ 942 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset, 943 &nb_clusters); 944 if (ret == -EAGAIN) { 945 goto again; 946 } else if (ret < 0) { 947 goto fail; 948 } 949 950 /* save info needed for meta data update */ 951 if (nb_clusters > 0) { 952 int requested_sectors = n_end - keep_clusters * s->cluster_sectors; 953 int avail_sectors = (keep_clusters + nb_clusters) 954 << (s->cluster_bits - BDRV_SECTOR_BITS); 955 956 *m = (QCowL2Meta) { 957 .cluster_offset = keep_clusters == 0 ? 958 alloc_cluster_offset : cluster_offset, 959 .alloc_offset = alloc_cluster_offset, 960 .offset = alloc_offset, 961 .n_start = keep_clusters == 0 ? n_start : 0, 962 .nb_clusters = nb_clusters, 963 .nb_available = MIN(requested_sectors, avail_sectors), 964 }; 965 qemu_co_queue_init(&m->dependent_requests); 966 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight); 967 } 968 } 969 970 /* Some cleanup work */ 971 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9); 972 if (sectors > n_end) { 973 sectors = n_end; 974 } 975 976 assert(sectors > n_start); 977 *num = sectors - n_start; 978 979 return 0; 980 981 fail: 982 if (m->nb_clusters > 0) { 983 QLIST_REMOVE(m, next_in_flight); 984 } 985 return ret; 986 } 987 988 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 989 const uint8_t *buf, int buf_size) 990 { 991 z_stream strm1, *strm = &strm1; 992 int ret, out_len; 993 994 memset(strm, 0, sizeof(*strm)); 995 996 strm->next_in = (uint8_t *)buf; 997 strm->avail_in = buf_size; 998 strm->next_out = out_buf; 999 strm->avail_out = out_buf_size; 1000 1001 ret = inflateInit2(strm, -12); 1002 if (ret != Z_OK) 1003 return -1; 1004 ret = inflate(strm, Z_FINISH); 1005 out_len = strm->next_out - out_buf; 1006 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1007 out_len != out_buf_size) { 1008 inflateEnd(strm); 1009 return -1; 1010 } 1011 inflateEnd(strm); 1012 return 0; 1013 } 1014 1015 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1016 { 1017 BDRVQcowState *s = bs->opaque; 1018 int ret, csize, nb_csectors, sector_offset; 1019 uint64_t coffset; 1020 1021 coffset = cluster_offset & s->cluster_offset_mask; 1022 if (s->cluster_cache_offset != coffset) { 1023 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1024 sector_offset = coffset & 511; 1025 csize = nb_csectors * 512 - sector_offset; 1026 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1027 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1028 if (ret < 0) { 1029 return ret; 1030 } 1031 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1032 s->cluster_data + sector_offset, csize) < 0) { 1033 return -EIO; 1034 } 1035 s->cluster_cache_offset = coffset; 1036 } 1037 return 0; 1038 } 1039 1040 /* 1041 * This discards as many clusters of nb_clusters as possible at once (i.e. 1042 * all clusters in the same L2 table) and returns the number of discarded 1043 * clusters. 1044 */ 1045 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1046 unsigned int nb_clusters) 1047 { 1048 BDRVQcowState *s = bs->opaque; 1049 uint64_t *l2_table; 1050 int l2_index; 1051 int ret; 1052 int i; 1053 1054 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1055 if (ret < 0) { 1056 return ret; 1057 } 1058 1059 /* Limit nb_clusters to one L2 table */ 1060 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1061 1062 for (i = 0; i < nb_clusters; i++) { 1063 uint64_t old_offset; 1064 1065 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1066 if ((old_offset & L2E_OFFSET_MASK) == 0) { 1067 continue; 1068 } 1069 1070 /* First remove L2 entries */ 1071 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1072 l2_table[l2_index + i] = cpu_to_be64(0); 1073 1074 /* Then decrease the refcount */ 1075 qcow2_free_any_clusters(bs, old_offset, 1); 1076 } 1077 1078 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1079 if (ret < 0) { 1080 return ret; 1081 } 1082 1083 return nb_clusters; 1084 } 1085 1086 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1087 int nb_sectors) 1088 { 1089 BDRVQcowState *s = bs->opaque; 1090 uint64_t end_offset; 1091 unsigned int nb_clusters; 1092 int ret; 1093 1094 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1095 1096 /* Round start up and end down */ 1097 offset = align_offset(offset, s->cluster_size); 1098 end_offset &= ~(s->cluster_size - 1); 1099 1100 if (offset > end_offset) { 1101 return 0; 1102 } 1103 1104 nb_clusters = size_to_clusters(s, end_offset - offset); 1105 1106 /* Each L2 table is handled by its own loop iteration */ 1107 while (nb_clusters > 0) { 1108 ret = discard_single_l2(bs, offset, nb_clusters); 1109 if (ret < 0) { 1110 return ret; 1111 } 1112 1113 nb_clusters -= ret; 1114 offset += (ret * s->cluster_size); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1122 * all clusters in the same L2 table) and returns the number of zeroed 1123 * clusters. 1124 */ 1125 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1126 unsigned int nb_clusters) 1127 { 1128 BDRVQcowState *s = bs->opaque; 1129 uint64_t *l2_table; 1130 int l2_index; 1131 int ret; 1132 int i; 1133 1134 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1135 if (ret < 0) { 1136 return ret; 1137 } 1138 1139 /* Limit nb_clusters to one L2 table */ 1140 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1141 1142 for (i = 0; i < nb_clusters; i++) { 1143 uint64_t old_offset; 1144 1145 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1146 1147 /* Update L2 entries */ 1148 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1149 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1150 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1151 qcow2_free_any_clusters(bs, old_offset, 1); 1152 } else { 1153 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1154 } 1155 } 1156 1157 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1158 if (ret < 0) { 1159 return ret; 1160 } 1161 1162 return nb_clusters; 1163 } 1164 1165 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1166 { 1167 BDRVQcowState *s = bs->opaque; 1168 unsigned int nb_clusters; 1169 int ret; 1170 1171 /* The zero flag is only supported by version 3 and newer */ 1172 if (s->qcow_version < 3) { 1173 return -ENOTSUP; 1174 } 1175 1176 /* Each L2 table is handled by its own loop iteration */ 1177 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1178 1179 while (nb_clusters > 0) { 1180 ret = zero_single_l2(bs, offset, nb_clusters); 1181 if (ret < 0) { 1182 return ret; 1183 } 1184 1185 nb_clusters -= ret; 1186 offset += (ret * s->cluster_size); 1187 } 1188 1189 return 0; 1190 } 1191