1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "block/block-io.h" 29 #include "qapi/error.h" 30 #include "qcow2.h" 31 #include "qemu/bswap.h" 32 #include "qemu/memalign.h" 33 #include "trace.h" 34 35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs, 36 uint64_t exact_size) 37 { 38 BDRVQcow2State *s = bs->opaque; 39 int new_l1_size, i, ret; 40 41 if (exact_size >= s->l1_size) { 42 return 0; 43 } 44 45 new_l1_size = exact_size; 46 47 #ifdef DEBUG_ALLOC2 48 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); 49 #endif 50 51 BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); 52 ret = bdrv_co_pwrite_zeroes(bs->file, 53 s->l1_table_offset + new_l1_size * L1E_SIZE, 54 (s->l1_size - new_l1_size) * L1E_SIZE, 0); 55 if (ret < 0) { 56 goto fail; 57 } 58 59 ret = bdrv_co_flush(bs->file->bs); 60 if (ret < 0) { 61 goto fail; 62 } 63 64 BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); 65 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { 66 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { 67 continue; 68 } 69 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, 70 s->cluster_size, QCOW2_DISCARD_ALWAYS); 71 s->l1_table[i] = 0; 72 } 73 return 0; 74 75 fail: 76 /* 77 * If the write in the l1_table failed the image may contain a partially 78 * overwritten l1_table. In this case it would be better to clear the 79 * l1_table in memory to avoid possible image corruption. 80 */ 81 memset(s->l1_table + new_l1_size, 0, 82 (s->l1_size - new_l1_size) * L1E_SIZE); 83 return ret; 84 } 85 86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 87 bool exact_size) 88 { 89 BDRVQcow2State *s = bs->opaque; 90 int new_l1_size2, ret, i; 91 uint64_t *new_l1_table; 92 int64_t old_l1_table_offset, old_l1_size; 93 int64_t new_l1_table_offset, new_l1_size; 94 uint8_t data[12]; 95 96 if (min_size <= s->l1_size) 97 return 0; 98 99 /* Do a sanity check on min_size before trying to calculate new_l1_size 100 * (this prevents overflows during the while loop for the calculation of 101 * new_l1_size) */ 102 if (min_size > INT_MAX / L1E_SIZE) { 103 return -EFBIG; 104 } 105 106 if (exact_size) { 107 new_l1_size = min_size; 108 } else { 109 /* Bump size up to reduce the number of times we have to grow */ 110 new_l1_size = s->l1_size; 111 if (new_l1_size == 0) { 112 new_l1_size = 1; 113 } 114 while (min_size > new_l1_size) { 115 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); 116 } 117 } 118 119 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 120 if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) { 121 return -EFBIG; 122 } 123 124 #ifdef DEBUG_ALLOC2 125 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 126 s->l1_size, new_l1_size); 127 #endif 128 129 new_l1_size2 = L1E_SIZE * new_l1_size; 130 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2); 131 if (new_l1_table == NULL) { 132 return -ENOMEM; 133 } 134 memset(new_l1_table, 0, new_l1_size2); 135 136 if (s->l1_size) { 137 memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE); 138 } 139 140 /* write new table (align to cluster) */ 141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 143 if (new_l1_table_offset < 0) { 144 qemu_vfree(new_l1_table); 145 return new_l1_table_offset; 146 } 147 148 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 149 if (ret < 0) { 150 goto fail; 151 } 152 153 /* the L1 position has not yet been updated, so these clusters must 154 * indeed be completely free */ 155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 156 new_l1_size2, false); 157 if (ret < 0) { 158 goto fail; 159 } 160 161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 162 for(i = 0; i < s->l1_size; i++) 163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2, 165 new_l1_table, 0); 166 if (ret < 0) 167 goto fail; 168 for(i = 0; i < s->l1_size; i++) 169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 170 171 /* set new table */ 172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 173 stl_be_p(data, new_l1_size); 174 stq_be_p(data + 4, new_l1_table_offset); 175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 176 sizeof(data), data, 0); 177 if (ret < 0) { 178 goto fail; 179 } 180 qemu_vfree(s->l1_table); 181 old_l1_table_offset = s->l1_table_offset; 182 s->l1_table_offset = new_l1_table_offset; 183 s->l1_table = new_l1_table; 184 old_l1_size = s->l1_size; 185 s->l1_size = new_l1_size; 186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE, 187 QCOW2_DISCARD_OTHER); 188 return 0; 189 fail: 190 qemu_vfree(new_l1_table); 191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 192 QCOW2_DISCARD_OTHER); 193 return ret; 194 } 195 196 /* 197 * l2_load 198 * 199 * @bs: The BlockDriverState 200 * @offset: A guest offset, used to calculate what slice of the L2 201 * table to load. 202 * @l2_offset: Offset to the L2 table in the image file. 203 * @l2_slice: Location to store the pointer to the L2 slice. 204 * 205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables 206 * that are loaded by the qcow2 cache). If the slice is in the cache, 207 * the cache is used; otherwise the L2 slice is loaded from the image 208 * file. 209 */ 210 static int GRAPH_RDLOCK 211 l2_load(BlockDriverState *bs, uint64_t offset, 212 uint64_t l2_offset, uint64_t **l2_slice) 213 { 214 BDRVQcow2State *s = bs->opaque; 215 int start_of_slice = l2_entry_size(s) * 216 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset)); 217 218 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice, 219 (void **)l2_slice); 220 } 221 222 /* 223 * Writes an L1 entry to disk (note that depending on the alignment 224 * requirements this function may write more that just one entry in 225 * order to prevent bdrv_pwrite from performing a read-modify-write) 226 */ 227 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 228 { 229 BDRVQcow2State *s = bs->opaque; 230 int l1_start_index; 231 int i, ret; 232 int bufsize = MAX(L1E_SIZE, 233 MIN(bs->file->bs->bl.request_alignment, s->cluster_size)); 234 int nentries = bufsize / L1E_SIZE; 235 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries); 236 237 if (buf == NULL) { 238 return -ENOMEM; 239 } 240 241 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries); 242 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) { 243 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 244 } 245 246 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 247 s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false); 248 if (ret < 0) { 249 return ret; 250 } 251 252 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 253 ret = bdrv_pwrite_sync(bs->file, 254 s->l1_table_offset + L1E_SIZE * l1_start_index, 255 bufsize, buf, 0); 256 if (ret < 0) { 257 return ret; 258 } 259 260 return 0; 261 } 262 263 /* 264 * l2_allocate 265 * 266 * Allocate a new l2 entry in the file. If l1_index points to an already 267 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 268 * table) copy the contents of the old L2 table into the newly allocated one. 269 * Otherwise the new table is initialized with zeros. 270 * 271 */ 272 273 static int GRAPH_RDLOCK l2_allocate(BlockDriverState *bs, int l1_index) 274 { 275 BDRVQcow2State *s = bs->opaque; 276 uint64_t old_l2_offset; 277 uint64_t *l2_slice = NULL; 278 unsigned slice, slice_size2, n_slices; 279 int64_t l2_offset; 280 int ret; 281 282 old_l2_offset = s->l1_table[l1_index]; 283 284 trace_qcow2_l2_allocate(bs, l1_index); 285 286 /* allocate a new l2 entry */ 287 288 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s)); 289 if (l2_offset < 0) { 290 ret = l2_offset; 291 goto fail; 292 } 293 294 /* The offset must fit in the offset field of the L1 table entry */ 295 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset); 296 297 /* If we're allocating the table at offset 0 then something is wrong */ 298 if (l2_offset == 0) { 299 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 300 "allocation of L2 table at offset 0"); 301 ret = -EIO; 302 goto fail; 303 } 304 305 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 306 if (ret < 0) { 307 goto fail; 308 } 309 310 /* allocate a new entry in the l2 cache */ 311 312 slice_size2 = s->l2_slice_size * l2_entry_size(s); 313 n_slices = s->cluster_size / slice_size2; 314 315 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 316 for (slice = 0; slice < n_slices; slice++) { 317 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, 318 l2_offset + slice * slice_size2, 319 (void **) &l2_slice); 320 if (ret < 0) { 321 goto fail; 322 } 323 324 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 325 /* if there was no old l2 table, clear the new slice */ 326 memset(l2_slice, 0, slice_size2); 327 } else { 328 uint64_t *old_slice; 329 uint64_t old_l2_slice_offset = 330 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2; 331 332 /* if there was an old l2 table, read a slice from the disk */ 333 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 334 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset, 335 (void **) &old_slice); 336 if (ret < 0) { 337 goto fail; 338 } 339 340 memcpy(l2_slice, old_slice, slice_size2); 341 342 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice); 343 } 344 345 /* write the l2 slice to the file */ 346 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 347 348 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 349 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 350 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 351 } 352 353 ret = qcow2_cache_flush(bs, s->l2_table_cache); 354 if (ret < 0) { 355 goto fail; 356 } 357 358 /* update the L1 entry */ 359 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 360 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 361 ret = qcow2_write_l1_entry(bs, l1_index); 362 if (ret < 0) { 363 goto fail; 364 } 365 366 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 367 return 0; 368 369 fail: 370 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 371 if (l2_slice != NULL) { 372 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 373 } 374 s->l1_table[l1_index] = old_l2_offset; 375 if (l2_offset > 0) { 376 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s), 377 QCOW2_DISCARD_ALWAYS); 378 } 379 return ret; 380 } 381 382 /* 383 * For a given L2 entry, count the number of contiguous subclusters of 384 * the same type starting from @sc_from. Compressed clusters are 385 * treated as if they were divided into subclusters of size 386 * s->subcluster_size. 387 * 388 * Return the number of contiguous subclusters and set @type to the 389 * subcluster type. 390 * 391 * If the L2 entry is invalid return -errno and set @type to 392 * QCOW2_SUBCLUSTER_INVALID. 393 */ 394 static int qcow2_get_subcluster_range_type(BlockDriverState *bs, 395 uint64_t l2_entry, 396 uint64_t l2_bitmap, 397 unsigned sc_from, 398 QCow2SubclusterType *type) 399 { 400 BDRVQcow2State *s = bs->opaque; 401 uint32_t val; 402 403 *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from); 404 405 if (*type == QCOW2_SUBCLUSTER_INVALID) { 406 return -EINVAL; 407 } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) { 408 return s->subclusters_per_cluster - sc_from; 409 } 410 411 switch (*type) { 412 case QCOW2_SUBCLUSTER_NORMAL: 413 val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from); 414 return cto32(val) - sc_from; 415 416 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 417 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 418 val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32; 419 return cto32(val) - sc_from; 420 421 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 422 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 423 val = ((l2_bitmap >> 32) | l2_bitmap) 424 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from); 425 return ctz32(val) - sc_from; 426 427 default: 428 g_assert_not_reached(); 429 } 430 } 431 432 /* 433 * Return the number of contiguous subclusters of the exact same type 434 * in a given L2 slice, starting from cluster @l2_index, subcluster 435 * @sc_index. Allocated subclusters are required to be contiguous in 436 * the image file. 437 * At most @nb_clusters are checked (note that this means clusters, 438 * not subclusters). 439 * Compressed clusters are always processed one by one but for the 440 * purpose of this count they are treated as if they were divided into 441 * subclusters of size s->subcluster_size. 442 * On failure return -errno and update @l2_index to point to the 443 * invalid entry. 444 */ 445 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters, 446 unsigned sc_index, uint64_t *l2_slice, 447 unsigned *l2_index) 448 { 449 BDRVQcow2State *s = bs->opaque; 450 int i, count = 0; 451 bool check_offset = false; 452 uint64_t expected_offset = 0; 453 QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type; 454 455 assert(*l2_index + nb_clusters <= s->l2_slice_size); 456 457 for (i = 0; i < nb_clusters; i++) { 458 unsigned first_sc = (i == 0) ? sc_index : 0; 459 uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i); 460 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i); 461 int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap, 462 first_sc, &type); 463 if (ret < 0) { 464 *l2_index += i; /* Point to the invalid entry */ 465 return -EIO; 466 } 467 if (i == 0) { 468 if (type == QCOW2_SUBCLUSTER_COMPRESSED) { 469 /* Compressed clusters are always processed one by one */ 470 return ret; 471 } 472 expected_type = type; 473 expected_offset = l2_entry & L2E_OFFSET_MASK; 474 check_offset = (type == QCOW2_SUBCLUSTER_NORMAL || 475 type == QCOW2_SUBCLUSTER_ZERO_ALLOC || 476 type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC); 477 } else if (type != expected_type) { 478 break; 479 } else if (check_offset) { 480 expected_offset += s->cluster_size; 481 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) { 482 break; 483 } 484 } 485 count += ret; 486 /* Stop if there are type changes before the end of the cluster */ 487 if (first_sc + ret < s->subclusters_per_cluster) { 488 break; 489 } 490 } 491 492 return count; 493 } 494 495 static int coroutine_fn GRAPH_RDLOCK 496 do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset, 497 unsigned offset_in_cluster, QEMUIOVector *qiov) 498 { 499 int ret; 500 501 if (qiov->size == 0) { 502 return 0; 503 } 504 505 BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_READ); 506 507 if (!bs->drv) { 508 return -ENOMEDIUM; 509 } 510 511 /* 512 * We never deal with requests that don't satisfy 513 * bdrv_check_qiov_request(), and aligning requests to clusters never 514 * breaks this condition. So, do some assertions before calling 515 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments. 516 */ 517 assert(src_cluster_offset <= INT64_MAX); 518 assert(src_cluster_offset + offset_in_cluster <= INT64_MAX); 519 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */ 520 assert((uint64_t)qiov->size <= INT64_MAX); 521 bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size, 522 qiov, 0, &error_abort); 523 /* 524 * Call .bdrv_co_readv() directly instead of using the public block-layer 525 * interface. This avoids double I/O throttling and request tracking, 526 * which can lead to deadlock when block layer copy-on-read is enabled. 527 */ 528 ret = bs->drv->bdrv_co_preadv_part(bs, 529 src_cluster_offset + offset_in_cluster, 530 qiov->size, qiov, 0, 0); 531 if (ret < 0) { 532 return ret; 533 } 534 535 return 0; 536 } 537 538 static int coroutine_fn GRAPH_RDLOCK 539 do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset, 540 unsigned offset_in_cluster, QEMUIOVector *qiov) 541 { 542 BDRVQcow2State *s = bs->opaque; 543 int ret; 544 545 if (qiov->size == 0) { 546 return 0; 547 } 548 549 ret = qcow2_pre_write_overlap_check(bs, 0, 550 cluster_offset + offset_in_cluster, qiov->size, true); 551 if (ret < 0) { 552 return ret; 553 } 554 555 BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_WRITE); 556 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster, 557 qiov->size, qiov, 0); 558 if (ret < 0) { 559 return ret; 560 } 561 562 return 0; 563 } 564 565 566 /* 567 * get_host_offset 568 * 569 * For a given offset of the virtual disk find the equivalent host 570 * offset in the qcow2 file and store it in *host_offset. Neither 571 * offset needs to be aligned to a cluster boundary. 572 * 573 * If the cluster is unallocated then *host_offset will be 0. 574 * If the cluster is compressed then *host_offset will contain the l2 entry. 575 * 576 * On entry, *bytes is the maximum number of contiguous bytes starting at 577 * offset that we are interested in. 578 * 579 * On exit, *bytes is the number of bytes starting at offset that have the same 580 * subcluster type and (if applicable) are stored contiguously in the image 581 * file. The subcluster type is stored in *subcluster_type. 582 * Compressed clusters are always processed one by one. 583 * 584 * Returns 0 on success, -errno in error cases. 585 */ 586 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset, 587 unsigned int *bytes, uint64_t *host_offset, 588 QCow2SubclusterType *subcluster_type) 589 { 590 BDRVQcow2State *s = bs->opaque; 591 unsigned int l2_index, sc_index; 592 uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap; 593 int sc; 594 unsigned int offset_in_cluster; 595 uint64_t bytes_available, bytes_needed, nb_clusters; 596 QCow2SubclusterType type; 597 int ret; 598 599 offset_in_cluster = offset_into_cluster(s, offset); 600 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 601 602 /* compute how many bytes there are between the start of the cluster 603 * containing offset and the end of the l2 slice that contains 604 * the entry pointing to it */ 605 bytes_available = 606 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset))) 607 << s->cluster_bits; 608 609 if (bytes_needed > bytes_available) { 610 bytes_needed = bytes_available; 611 } 612 613 *host_offset = 0; 614 615 /* seek to the l2 offset in the l1 table */ 616 617 l1_index = offset_to_l1_index(s, offset); 618 if (l1_index >= s->l1_size) { 619 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN; 620 goto out; 621 } 622 623 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 624 if (!l2_offset) { 625 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN; 626 goto out; 627 } 628 629 if (offset_into_cluster(s, l2_offset)) { 630 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 631 " unaligned (L1 index: %#" PRIx64 ")", 632 l2_offset, l1_index); 633 return -EIO; 634 } 635 636 /* load the l2 slice in memory */ 637 638 ret = l2_load(bs, offset, l2_offset, &l2_slice); 639 if (ret < 0) { 640 return ret; 641 } 642 643 /* find the cluster offset for the given disk offset */ 644 645 l2_index = offset_to_l2_slice_index(s, offset); 646 sc_index = offset_to_sc_index(s, offset); 647 l2_entry = get_l2_entry(s, l2_slice, l2_index); 648 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 649 650 nb_clusters = size_to_clusters(s, bytes_needed); 651 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 652 * integers; the minimum cluster size is 512, so this assertion is always 653 * true */ 654 assert(nb_clusters <= INT_MAX); 655 656 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 657 if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN || 658 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) { 659 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 660 " in pre-v3 image (L2 offset: %#" PRIx64 661 ", L2 index: %#x)", l2_offset, l2_index); 662 ret = -EIO; 663 goto fail; 664 } 665 switch (type) { 666 case QCOW2_SUBCLUSTER_INVALID: 667 break; /* This is handled by count_contiguous_subclusters() below */ 668 case QCOW2_SUBCLUSTER_COMPRESSED: 669 if (has_data_file(bs)) { 670 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster " 671 "entry found in image with external data " 672 "file (L2 offset: %#" PRIx64 ", L2 index: " 673 "%#x)", l2_offset, l2_index); 674 ret = -EIO; 675 goto fail; 676 } 677 *host_offset = l2_entry; 678 break; 679 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 680 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 681 break; 682 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 683 case QCOW2_SUBCLUSTER_NORMAL: 684 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: { 685 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK; 686 *host_offset = host_cluster_offset + offset_in_cluster; 687 if (offset_into_cluster(s, host_cluster_offset)) { 688 qcow2_signal_corruption(bs, true, -1, -1, 689 "Cluster allocation offset %#" 690 PRIx64 " unaligned (L2 offset: %#" PRIx64 691 ", L2 index: %#x)", host_cluster_offset, 692 l2_offset, l2_index); 693 ret = -EIO; 694 goto fail; 695 } 696 if (has_data_file(bs) && *host_offset != offset) { 697 qcow2_signal_corruption(bs, true, -1, -1, 698 "External data file host cluster offset %#" 699 PRIx64 " does not match guest cluster " 700 "offset: %#" PRIx64 701 ", L2 index: %#x)", host_cluster_offset, 702 offset - offset_in_cluster, l2_index); 703 ret = -EIO; 704 goto fail; 705 } 706 break; 707 } 708 default: 709 abort(); 710 } 711 712 sc = count_contiguous_subclusters(bs, nb_clusters, sc_index, 713 l2_slice, &l2_index); 714 if (sc < 0) { 715 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found " 716 " (L2 offset: %#" PRIx64 ", L2 index: %#x)", 717 l2_offset, l2_index); 718 ret = -EIO; 719 goto fail; 720 } 721 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 722 723 bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits; 724 725 out: 726 if (bytes_available > bytes_needed) { 727 bytes_available = bytes_needed; 728 } 729 730 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 731 * subtracting offset_in_cluster will therefore definitely yield something 732 * not exceeding UINT_MAX */ 733 assert(bytes_available - offset_in_cluster <= UINT_MAX); 734 *bytes = bytes_available - offset_in_cluster; 735 736 *subcluster_type = type; 737 738 return 0; 739 740 fail: 741 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice); 742 return ret; 743 } 744 745 /* 746 * get_cluster_table 747 * 748 * for a given disk offset, load (and allocate if needed) 749 * the appropriate slice of its l2 table. 750 * 751 * the cluster index in the l2 slice is given to the caller. 752 * 753 * Returns 0 on success, -errno in failure case 754 */ 755 static int GRAPH_RDLOCK 756 get_cluster_table(BlockDriverState *bs, uint64_t offset, 757 uint64_t **new_l2_slice, int *new_l2_index) 758 { 759 BDRVQcow2State *s = bs->opaque; 760 unsigned int l2_index; 761 uint64_t l1_index, l2_offset; 762 uint64_t *l2_slice = NULL; 763 int ret; 764 765 /* seek to the l2 offset in the l1 table */ 766 767 l1_index = offset_to_l1_index(s, offset); 768 if (l1_index >= s->l1_size) { 769 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 770 if (ret < 0) { 771 return ret; 772 } 773 } 774 775 assert(l1_index < s->l1_size); 776 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 777 if (offset_into_cluster(s, l2_offset)) { 778 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 779 " unaligned (L1 index: %#" PRIx64 ")", 780 l2_offset, l1_index); 781 return -EIO; 782 } 783 784 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) { 785 /* First allocate a new L2 table (and do COW if needed) */ 786 ret = l2_allocate(bs, l1_index); 787 if (ret < 0) { 788 return ret; 789 } 790 791 /* Then decrease the refcount of the old table */ 792 if (l2_offset) { 793 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s), 794 QCOW2_DISCARD_OTHER); 795 } 796 797 /* Get the offset of the newly-allocated l2 table */ 798 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 799 assert(offset_into_cluster(s, l2_offset) == 0); 800 } 801 802 /* load the l2 slice in memory */ 803 ret = l2_load(bs, offset, l2_offset, &l2_slice); 804 if (ret < 0) { 805 return ret; 806 } 807 808 /* find the cluster offset for the given disk offset */ 809 810 l2_index = offset_to_l2_slice_index(s, offset); 811 812 *new_l2_slice = l2_slice; 813 *new_l2_index = l2_index; 814 815 return 0; 816 } 817 818 /* 819 * alloc_compressed_cluster_offset 820 * 821 * For a given offset on the virtual disk, allocate a new compressed cluster 822 * and put the host offset of the cluster into *host_offset. If a cluster is 823 * already allocated at the offset, return an error. 824 * 825 * Return 0 on success and -errno in error cases 826 */ 827 int coroutine_fn GRAPH_RDLOCK 828 qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, uint64_t offset, 829 int compressed_size, uint64_t *host_offset) 830 { 831 BDRVQcow2State *s = bs->opaque; 832 int l2_index, ret; 833 uint64_t *l2_slice; 834 int64_t cluster_offset; 835 int nb_csectors; 836 837 if (has_data_file(bs)) { 838 return 0; 839 } 840 841 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 842 if (ret < 0) { 843 return ret; 844 } 845 846 /* Compression can't overwrite anything. Fail if the cluster was already 847 * allocated. */ 848 cluster_offset = get_l2_entry(s, l2_slice, l2_index); 849 if (cluster_offset & L2E_OFFSET_MASK) { 850 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 851 return -EIO; 852 } 853 854 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 855 if (cluster_offset < 0) { 856 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 857 return cluster_offset; 858 } 859 860 nb_csectors = 861 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE - 862 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE); 863 864 /* The offset and size must fit in their fields of the L2 table entry */ 865 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset); 866 assert((nb_csectors & s->csize_mask) == nb_csectors); 867 868 cluster_offset |= QCOW_OFLAG_COMPRESSED | 869 ((uint64_t)nb_csectors << s->csize_shift); 870 871 /* update L2 table */ 872 873 /* compressed clusters never have the copied flag */ 874 875 BLKDBG_CO_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 876 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 877 set_l2_entry(s, l2_slice, l2_index, cluster_offset); 878 if (has_subclusters(s)) { 879 set_l2_bitmap(s, l2_slice, l2_index, 0); 880 } 881 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 882 883 *host_offset = cluster_offset & s->cluster_offset_mask; 884 return 0; 885 } 886 887 static int coroutine_fn GRAPH_RDLOCK 888 perform_cow(BlockDriverState *bs, QCowL2Meta *m) 889 { 890 BDRVQcow2State *s = bs->opaque; 891 Qcow2COWRegion *start = &m->cow_start; 892 Qcow2COWRegion *end = &m->cow_end; 893 unsigned buffer_size; 894 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); 895 bool merge_reads; 896 uint8_t *start_buffer, *end_buffer; 897 QEMUIOVector qiov; 898 int ret; 899 900 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); 901 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); 902 assert(start->offset + start->nb_bytes <= end->offset); 903 904 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) { 905 return 0; 906 } 907 908 /* If we have to read both the start and end COW regions and the 909 * middle region is not too large then perform just one read 910 * operation */ 911 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; 912 if (merge_reads) { 913 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; 914 } else { 915 /* If we have to do two reads, add some padding in the middle 916 * if necessary to make sure that the end region is optimally 917 * aligned. */ 918 size_t align = bdrv_opt_mem_align(bs); 919 assert(align > 0 && align <= UINT_MAX); 920 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= 921 UINT_MAX - end->nb_bytes); 922 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; 923 } 924 925 /* Reserve a buffer large enough to store all the data that we're 926 * going to read */ 927 start_buffer = qemu_try_blockalign(bs, buffer_size); 928 if (start_buffer == NULL) { 929 return -ENOMEM; 930 } 931 /* The part of the buffer where the end region is located */ 932 end_buffer = start_buffer + buffer_size - end->nb_bytes; 933 934 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? 935 qemu_iovec_subvec_niov(m->data_qiov, 936 m->data_qiov_offset, 937 data_bytes) 938 : 0)); 939 940 qemu_co_mutex_unlock(&s->lock); 941 /* First we read the existing data from both COW regions. We 942 * either read the whole region in one go, or the start and end 943 * regions separately. */ 944 if (merge_reads) { 945 qemu_iovec_add(&qiov, start_buffer, buffer_size); 946 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 947 } else { 948 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 949 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 950 if (ret < 0) { 951 goto fail; 952 } 953 954 qemu_iovec_reset(&qiov); 955 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 956 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); 957 } 958 if (ret < 0) { 959 goto fail; 960 } 961 962 /* Encrypt the data if necessary before writing it */ 963 if (bs->encrypted) { 964 ret = qcow2_co_encrypt(bs, 965 m->alloc_offset + start->offset, 966 m->offset + start->offset, 967 start_buffer, start->nb_bytes); 968 if (ret < 0) { 969 goto fail; 970 } 971 972 ret = qcow2_co_encrypt(bs, 973 m->alloc_offset + end->offset, 974 m->offset + end->offset, 975 end_buffer, end->nb_bytes); 976 if (ret < 0) { 977 goto fail; 978 } 979 } 980 981 /* And now we can write everything. If we have the guest data we 982 * can write everything in one single operation */ 983 if (m->data_qiov) { 984 qemu_iovec_reset(&qiov); 985 if (start->nb_bytes) { 986 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 987 } 988 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes); 989 if (end->nb_bytes) { 990 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 991 } 992 /* NOTE: we have a write_aio blkdebug event here followed by 993 * a cow_write one in do_perform_cow_write(), but there's only 994 * one single I/O operation */ 995 BLKDBG_CO_EVENT(bs->file, BLKDBG_WRITE_AIO); 996 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 997 } else { 998 /* If there's no guest data then write both COW regions separately */ 999 qemu_iovec_reset(&qiov); 1000 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 1001 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 1002 if (ret < 0) { 1003 goto fail; 1004 } 1005 1006 qemu_iovec_reset(&qiov); 1007 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 1008 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); 1009 } 1010 1011 fail: 1012 qemu_co_mutex_lock(&s->lock); 1013 1014 /* 1015 * Before we update the L2 table to actually point to the new cluster, we 1016 * need to be sure that the refcounts have been increased and COW was 1017 * handled. 1018 */ 1019 if (ret == 0) { 1020 qcow2_cache_depends_on_flush(s->l2_table_cache); 1021 } 1022 1023 qemu_vfree(start_buffer); 1024 qemu_iovec_destroy(&qiov); 1025 return ret; 1026 } 1027 1028 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs, 1029 QCowL2Meta *m) 1030 { 1031 BDRVQcow2State *s = bs->opaque; 1032 int i, j = 0, l2_index, ret; 1033 uint64_t *old_cluster, *l2_slice; 1034 uint64_t cluster_offset = m->alloc_offset; 1035 1036 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 1037 assert(m->nb_clusters > 0); 1038 1039 old_cluster = g_try_new(uint64_t, m->nb_clusters); 1040 if (old_cluster == NULL) { 1041 ret = -ENOMEM; 1042 goto err; 1043 } 1044 1045 /* copy content of unmodified sectors */ 1046 ret = perform_cow(bs, m); 1047 if (ret < 0) { 1048 goto err; 1049 } 1050 1051 /* Update L2 table. */ 1052 if (s->use_lazy_refcounts) { 1053 qcow2_mark_dirty(bs); 1054 } 1055 if (qcow2_need_accurate_refcounts(s)) { 1056 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1057 s->refcount_block_cache); 1058 } 1059 1060 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index); 1061 if (ret < 0) { 1062 goto err; 1063 } 1064 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1065 1066 assert(l2_index + m->nb_clusters <= s->l2_slice_size); 1067 assert(m->cow_end.offset + m->cow_end.nb_bytes <= 1068 m->nb_clusters << s->cluster_bits); 1069 for (i = 0; i < m->nb_clusters; i++) { 1070 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits); 1071 /* if two concurrent writes happen to the same unallocated cluster 1072 * each write allocates separate cluster and writes data concurrently. 1073 * The first one to complete updates l2 table with pointer to its 1074 * cluster the second one has to do RMW (which is done above by 1075 * perform_cow()), update l2 table with its cluster pointer and free 1076 * old cluster. This is what this loop does */ 1077 if (get_l2_entry(s, l2_slice, l2_index + i) != 0) { 1078 old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i); 1079 } 1080 1081 /* The offset must fit in the offset field of the L2 table entry */ 1082 assert((offset & L2E_OFFSET_MASK) == offset); 1083 1084 set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED); 1085 1086 /* Update bitmap with the subclusters that were just written */ 1087 if (has_subclusters(s) && !m->prealloc) { 1088 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1089 unsigned written_from = m->cow_start.offset; 1090 unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes; 1091 int first_sc, last_sc; 1092 /* Narrow written_from and written_to down to the current cluster */ 1093 written_from = MAX(written_from, i << s->cluster_bits); 1094 written_to = MIN(written_to, (i + 1) << s->cluster_bits); 1095 assert(written_from < written_to); 1096 first_sc = offset_to_sc_index(s, written_from); 1097 last_sc = offset_to_sc_index(s, written_to - 1); 1098 l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1); 1099 l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1); 1100 set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap); 1101 } 1102 } 1103 1104 1105 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1106 1107 /* 1108 * If this was a COW, we need to decrease the refcount of the old cluster. 1109 * 1110 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 1111 * clusters), the next write will reuse them anyway. 1112 */ 1113 if (!m->keep_old_clusters && j != 0) { 1114 for (i = 0; i < j; i++) { 1115 qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER); 1116 } 1117 } 1118 1119 ret = 0; 1120 err: 1121 g_free(old_cluster); 1122 return ret; 1123 } 1124 1125 /** 1126 * Frees the allocated clusters because the request failed and they won't 1127 * actually be linked. 1128 */ 1129 void coroutine_fn qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m) 1130 { 1131 BDRVQcow2State *s = bs->opaque; 1132 if (!has_data_file(bs) && !m->keep_old_clusters) { 1133 qcow2_free_clusters(bs, m->alloc_offset, 1134 m->nb_clusters << s->cluster_bits, 1135 QCOW2_DISCARD_NEVER); 1136 } 1137 } 1138 1139 /* 1140 * For a given write request, create a new QCowL2Meta structure, add 1141 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write 1142 * request does not need copy-on-write or changes to the L2 metadata 1143 * then this function does nothing. 1144 * 1145 * @host_cluster_offset points to the beginning of the first cluster. 1146 * 1147 * @guest_offset and @bytes indicate the offset and length of the 1148 * request. 1149 * 1150 * @l2_slice contains the L2 entries of all clusters involved in this 1151 * write request. 1152 * 1153 * If @keep_old is true it means that the clusters were already 1154 * allocated and will be overwritten. If false then the clusters are 1155 * new and we have to decrease the reference count of the old ones. 1156 * 1157 * Returns 0 on success, -errno on failure. 1158 */ 1159 static int coroutine_fn GRAPH_RDLOCK 1160 calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset, 1161 uint64_t guest_offset, unsigned bytes, uint64_t *l2_slice, 1162 QCowL2Meta **m, bool keep_old) 1163 { 1164 BDRVQcow2State *s = bs->opaque; 1165 int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset); 1166 uint64_t l2_entry, l2_bitmap; 1167 unsigned cow_start_from, cow_end_to; 1168 unsigned cow_start_to = offset_into_cluster(s, guest_offset); 1169 unsigned cow_end_from = cow_start_to + bytes; 1170 unsigned nb_clusters = size_to_clusters(s, cow_end_from); 1171 QCowL2Meta *old_m = *m; 1172 QCow2SubclusterType type; 1173 int i; 1174 bool skip_cow = keep_old; 1175 1176 assert(nb_clusters <= s->l2_slice_size - l2_index); 1177 1178 /* Check the type of all affected subclusters */ 1179 for (i = 0; i < nb_clusters; i++) { 1180 l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1181 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1182 if (skip_cow) { 1183 unsigned write_from = MAX(cow_start_to, i << s->cluster_bits); 1184 unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits); 1185 int first_sc = offset_to_sc_index(s, write_from); 1186 int last_sc = offset_to_sc_index(s, write_to - 1); 1187 int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap, 1188 first_sc, &type); 1189 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */ 1190 if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) { 1191 skip_cow = false; 1192 } 1193 } else { 1194 /* If we can't skip the cow we can still look for invalid entries */ 1195 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0); 1196 } 1197 if (type == QCOW2_SUBCLUSTER_INVALID) { 1198 int l1_index = offset_to_l1_index(s, guest_offset); 1199 uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 1200 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster " 1201 "entry found (L2 offset: %#" PRIx64 1202 ", L2 index: %#x)", 1203 l2_offset, l2_index + i); 1204 return -EIO; 1205 } 1206 } 1207 1208 if (skip_cow) { 1209 return 0; 1210 } 1211 1212 /* Get the L2 entry of the first cluster */ 1213 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1214 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 1215 sc_index = offset_to_sc_index(s, guest_offset); 1216 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 1217 1218 if (!keep_old) { 1219 switch (type) { 1220 case QCOW2_SUBCLUSTER_COMPRESSED: 1221 cow_start_from = 0; 1222 break; 1223 case QCOW2_SUBCLUSTER_NORMAL: 1224 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1225 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1226 if (has_subclusters(s)) { 1227 /* Skip all leading zero and unallocated subclusters */ 1228 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC; 1229 cow_start_from = 1230 MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits; 1231 } else { 1232 cow_start_from = 0; 1233 } 1234 break; 1235 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 1236 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 1237 cow_start_from = sc_index << s->subcluster_bits; 1238 break; 1239 default: 1240 g_assert_not_reached(); 1241 } 1242 } else { 1243 switch (type) { 1244 case QCOW2_SUBCLUSTER_NORMAL: 1245 cow_start_from = cow_start_to; 1246 break; 1247 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1248 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1249 cow_start_from = sc_index << s->subcluster_bits; 1250 break; 1251 default: 1252 g_assert_not_reached(); 1253 } 1254 } 1255 1256 /* Get the L2 entry of the last cluster */ 1257 l2_index += nb_clusters - 1; 1258 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1259 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 1260 sc_index = offset_to_sc_index(s, guest_offset + bytes - 1); 1261 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index); 1262 1263 if (!keep_old) { 1264 switch (type) { 1265 case QCOW2_SUBCLUSTER_COMPRESSED: 1266 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size); 1267 break; 1268 case QCOW2_SUBCLUSTER_NORMAL: 1269 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1270 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1271 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size); 1272 if (has_subclusters(s)) { 1273 /* Skip all trailing zero and unallocated subclusters */ 1274 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC; 1275 cow_end_to -= 1276 MIN(s->subclusters_per_cluster - sc_index - 1, 1277 clz32(alloc_bitmap)) << s->subcluster_bits; 1278 } 1279 break; 1280 case QCOW2_SUBCLUSTER_ZERO_PLAIN: 1281 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN: 1282 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size); 1283 break; 1284 default: 1285 g_assert_not_reached(); 1286 } 1287 } else { 1288 switch (type) { 1289 case QCOW2_SUBCLUSTER_NORMAL: 1290 cow_end_to = cow_end_from; 1291 break; 1292 case QCOW2_SUBCLUSTER_ZERO_ALLOC: 1293 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: 1294 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size); 1295 break; 1296 default: 1297 g_assert_not_reached(); 1298 } 1299 } 1300 1301 *m = g_malloc0(sizeof(**m)); 1302 **m = (QCowL2Meta) { 1303 .next = old_m, 1304 1305 .alloc_offset = host_cluster_offset, 1306 .offset = start_of_cluster(s, guest_offset), 1307 .nb_clusters = nb_clusters, 1308 1309 .keep_old_clusters = keep_old, 1310 1311 .cow_start = { 1312 .offset = cow_start_from, 1313 .nb_bytes = cow_start_to - cow_start_from, 1314 }, 1315 .cow_end = { 1316 .offset = cow_end_from, 1317 .nb_bytes = cow_end_to - cow_end_from, 1318 }, 1319 }; 1320 1321 qemu_co_queue_init(&(*m)->dependent_requests); 1322 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1323 1324 return 0; 1325 } 1326 1327 /* 1328 * Returns true if writing to the cluster pointed to by @l2_entry 1329 * requires a new allocation (that is, if the cluster is unallocated 1330 * or has refcount > 1 and therefore cannot be written in-place). 1331 */ 1332 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry) 1333 { 1334 switch (qcow2_get_cluster_type(bs, l2_entry)) { 1335 case QCOW2_CLUSTER_NORMAL: 1336 case QCOW2_CLUSTER_ZERO_ALLOC: 1337 if (l2_entry & QCOW_OFLAG_COPIED) { 1338 return false; 1339 } 1340 /* fallthrough */ 1341 case QCOW2_CLUSTER_UNALLOCATED: 1342 case QCOW2_CLUSTER_COMPRESSED: 1343 case QCOW2_CLUSTER_ZERO_PLAIN: 1344 return true; 1345 default: 1346 abort(); 1347 } 1348 } 1349 1350 /* 1351 * Returns the number of contiguous clusters that can be written to 1352 * using one single write request, starting from @l2_index. 1353 * At most @nb_clusters are checked. 1354 * 1355 * If @new_alloc is true this counts clusters that are either 1356 * unallocated, or allocated but with refcount > 1 (so they need to be 1357 * newly allocated and COWed). 1358 * 1359 * If @new_alloc is false this counts clusters that are already 1360 * allocated and can be overwritten in-place (this includes clusters 1361 * of type QCOW2_CLUSTER_ZERO_ALLOC). 1362 */ 1363 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters, 1364 uint64_t *l2_slice, int l2_index, 1365 bool new_alloc) 1366 { 1367 BDRVQcow2State *s = bs->opaque; 1368 uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index); 1369 uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK; 1370 int i; 1371 1372 for (i = 0; i < nb_clusters; i++) { 1373 l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1374 if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) { 1375 break; 1376 } 1377 if (!new_alloc) { 1378 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) { 1379 break; 1380 } 1381 expected_offset += s->cluster_size; 1382 } 1383 } 1384 1385 assert(i <= nb_clusters); 1386 return i; 1387 } 1388 1389 /* 1390 * Check if there already is an AIO write request in flight which allocates 1391 * the same cluster. In this case we need to wait until the previous 1392 * request has completed and updated the L2 table accordingly. 1393 * 1394 * Returns: 1395 * 0 if there was no dependency. *cur_bytes indicates the number of 1396 * bytes from guest_offset that can be read before the next 1397 * dependency must be processed (or the request is complete) 1398 * 1399 * -EAGAIN if we had to wait for another request, previously gathered 1400 * information on cluster allocation may be invalid now. The caller 1401 * must start over anyway, so consider *cur_bytes undefined. 1402 */ 1403 static int coroutine_fn handle_dependencies(BlockDriverState *bs, 1404 uint64_t guest_offset, 1405 uint64_t *cur_bytes, QCowL2Meta **m) 1406 { 1407 BDRVQcow2State *s = bs->opaque; 1408 QCowL2Meta *old_alloc; 1409 uint64_t bytes = *cur_bytes; 1410 1411 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 1412 1413 uint64_t start = guest_offset; 1414 uint64_t end = start + bytes; 1415 uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc)); 1416 uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size); 1417 1418 if (end <= old_start || start >= old_end) { 1419 /* No intersection */ 1420 continue; 1421 } 1422 1423 if (old_alloc->keep_old_clusters && 1424 (end <= l2meta_cow_start(old_alloc) || 1425 start >= l2meta_cow_end(old_alloc))) 1426 { 1427 /* 1428 * Clusters intersect but COW areas don't. And cluster itself is 1429 * already allocated. So, there is no actual conflict. 1430 */ 1431 continue; 1432 } 1433 1434 /* Conflict */ 1435 1436 if (start < old_start) { 1437 /* Stop at the start of a running allocation */ 1438 bytes = old_start - start; 1439 } else { 1440 bytes = 0; 1441 } 1442 1443 /* 1444 * Stop if an l2meta already exists. After yielding, it wouldn't 1445 * be valid any more, so we'd have to clean up the old L2Metas 1446 * and deal with requests depending on them before starting to 1447 * gather new ones. Not worth the trouble. 1448 */ 1449 if (bytes == 0 && *m) { 1450 *cur_bytes = 0; 1451 return 0; 1452 } 1453 1454 if (bytes == 0) { 1455 /* 1456 * Wait for the dependency to complete. We need to recheck 1457 * the free/allocated clusters when we continue. 1458 */ 1459 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 1460 return -EAGAIN; 1461 } 1462 } 1463 1464 /* Make sure that existing clusters and new allocations are only used up to 1465 * the next dependency if we shortened the request above */ 1466 *cur_bytes = bytes; 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * Checks how many already allocated clusters that don't require a new 1473 * allocation there are at the given guest_offset (up to *bytes). 1474 * If *host_offset is not INV_OFFSET, only physically contiguous clusters 1475 * beginning at this host offset are counted. 1476 * 1477 * Note that guest_offset may not be cluster aligned. In this case, the 1478 * returned *host_offset points to exact byte referenced by guest_offset and 1479 * therefore isn't cluster aligned as well. 1480 * 1481 * Returns: 1482 * 0: if no allocated clusters are available at the given offset. 1483 * *bytes is normally unchanged. It is set to 0 if the cluster 1484 * is allocated and can be overwritten in-place but doesn't have 1485 * the right physical offset. 1486 * 1487 * 1: if allocated clusters that can be overwritten in place are 1488 * available at the requested offset. *bytes may have decreased 1489 * and describes the length of the area that can be written to. 1490 * 1491 * -errno: in error cases 1492 */ 1493 static int coroutine_fn GRAPH_RDLOCK 1494 handle_copied(BlockDriverState *bs, uint64_t guest_offset, 1495 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1496 { 1497 BDRVQcow2State *s = bs->opaque; 1498 int l2_index; 1499 uint64_t l2_entry, cluster_offset; 1500 uint64_t *l2_slice; 1501 uint64_t nb_clusters; 1502 unsigned int keep_clusters; 1503 int ret; 1504 1505 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 1506 *bytes); 1507 1508 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset) 1509 == offset_into_cluster(s, *host_offset)); 1510 1511 /* 1512 * Calculate the number of clusters to look for. We stop at L2 slice 1513 * boundaries to keep things simple. 1514 */ 1515 nb_clusters = 1516 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1517 1518 l2_index = offset_to_l2_slice_index(s, guest_offset); 1519 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1520 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */ 1521 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits); 1522 1523 /* Find L2 entry for the first involved cluster */ 1524 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1525 if (ret < 0) { 1526 return ret; 1527 } 1528 1529 l2_entry = get_l2_entry(s, l2_slice, l2_index); 1530 cluster_offset = l2_entry & L2E_OFFSET_MASK; 1531 1532 if (!cluster_needs_new_alloc(bs, l2_entry)) { 1533 if (offset_into_cluster(s, cluster_offset)) { 1534 qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset " 1535 "%#" PRIx64 " unaligned (guest offset: %#" 1536 PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ? 1537 "Preallocated zero" : "Data", 1538 cluster_offset, guest_offset); 1539 ret = -EIO; 1540 goto out; 1541 } 1542 1543 /* If a specific host_offset is required, check it */ 1544 if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) { 1545 *bytes = 0; 1546 ret = 0; 1547 goto out; 1548 } 1549 1550 /* We keep all QCOW_OFLAG_COPIED clusters */ 1551 keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice, 1552 l2_index, false); 1553 assert(keep_clusters <= nb_clusters); 1554 1555 *bytes = MIN(*bytes, 1556 keep_clusters * s->cluster_size 1557 - offset_into_cluster(s, guest_offset)); 1558 assert(*bytes != 0); 1559 1560 ret = calculate_l2_meta(bs, cluster_offset, guest_offset, 1561 *bytes, l2_slice, m, true); 1562 if (ret < 0) { 1563 goto out; 1564 } 1565 1566 ret = 1; 1567 } else { 1568 ret = 0; 1569 } 1570 1571 /* Cleanup */ 1572 out: 1573 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1574 1575 /* Only return a host offset if we actually made progress. Otherwise we 1576 * would make requirements for handle_alloc() that it can't fulfill */ 1577 if (ret > 0) { 1578 *host_offset = cluster_offset + offset_into_cluster(s, guest_offset); 1579 } 1580 1581 return ret; 1582 } 1583 1584 /* 1585 * Allocates new clusters for the given guest_offset. 1586 * 1587 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1588 * contain the number of clusters that have been allocated and are contiguous 1589 * in the image file. 1590 * 1591 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file 1592 * at which the new clusters must start. *nb_clusters can be 0 on return in 1593 * this case if the cluster at host_offset is already in use. If *host_offset 1594 * is INV_OFFSET, the clusters can be allocated anywhere in the image file. 1595 * 1596 * *host_offset is updated to contain the offset into the image file at which 1597 * the first allocated cluster starts. 1598 * 1599 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1600 * function has been waiting for another request and the allocation must be 1601 * restarted, but the whole request should not be failed. 1602 */ 1603 static int coroutine_fn GRAPH_RDLOCK 1604 do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1605 uint64_t *host_offset, uint64_t *nb_clusters) 1606 { 1607 BDRVQcow2State *s = bs->opaque; 1608 1609 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1610 *host_offset, *nb_clusters); 1611 1612 if (has_data_file(bs)) { 1613 assert(*host_offset == INV_OFFSET || 1614 *host_offset == start_of_cluster(s, guest_offset)); 1615 *host_offset = start_of_cluster(s, guest_offset); 1616 return 0; 1617 } 1618 1619 /* Allocate new clusters */ 1620 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1621 if (*host_offset == INV_OFFSET) { 1622 int64_t cluster_offset = 1623 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1624 if (cluster_offset < 0) { 1625 return cluster_offset; 1626 } 1627 *host_offset = cluster_offset; 1628 return 0; 1629 } else { 1630 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1631 if (ret < 0) { 1632 return ret; 1633 } 1634 *nb_clusters = ret; 1635 return 0; 1636 } 1637 } 1638 1639 /* 1640 * Allocates new clusters for an area that is either still unallocated or 1641 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET, 1642 * clusters are only allocated if the new allocation can match the specified 1643 * host offset. 1644 * 1645 * Note that guest_offset may not be cluster aligned. In this case, the 1646 * returned *host_offset points to exact byte referenced by guest_offset and 1647 * therefore isn't cluster aligned as well. 1648 * 1649 * Returns: 1650 * 0: if no clusters could be allocated. *bytes is set to 0, 1651 * *host_offset is left unchanged. 1652 * 1653 * 1: if new clusters were allocated. *bytes may be decreased if the 1654 * new allocation doesn't cover all of the requested area. 1655 * *host_offset is updated to contain the host offset of the first 1656 * newly allocated cluster. 1657 * 1658 * -errno: in error cases 1659 */ 1660 static int coroutine_fn GRAPH_RDLOCK 1661 handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1662 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1663 { 1664 BDRVQcow2State *s = bs->opaque; 1665 int l2_index; 1666 uint64_t *l2_slice; 1667 uint64_t nb_clusters; 1668 int ret; 1669 1670 uint64_t alloc_cluster_offset; 1671 1672 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1673 *bytes); 1674 assert(*bytes > 0); 1675 1676 /* 1677 * Calculate the number of clusters to look for. We stop at L2 slice 1678 * boundaries to keep things simple. 1679 */ 1680 nb_clusters = 1681 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1682 1683 l2_index = offset_to_l2_slice_index(s, guest_offset); 1684 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1685 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */ 1686 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits); 1687 1688 /* Find L2 entry for the first involved cluster */ 1689 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1690 if (ret < 0) { 1691 return ret; 1692 } 1693 1694 nb_clusters = count_single_write_clusters(bs, nb_clusters, 1695 l2_slice, l2_index, true); 1696 1697 /* This function is only called when there were no non-COW clusters, so if 1698 * we can't find any unallocated or COW clusters either, something is 1699 * wrong with our code. */ 1700 assert(nb_clusters > 0); 1701 1702 /* Allocate at a given offset in the image file */ 1703 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET : 1704 start_of_cluster(s, *host_offset); 1705 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1706 &nb_clusters); 1707 if (ret < 0) { 1708 goto out; 1709 } 1710 1711 /* Can't extend contiguous allocation */ 1712 if (nb_clusters == 0) { 1713 *bytes = 0; 1714 ret = 0; 1715 goto out; 1716 } 1717 1718 assert(alloc_cluster_offset != INV_OFFSET); 1719 1720 /* 1721 * Save info needed for meta data update. 1722 * 1723 * requested_bytes: Number of bytes from the start of the first 1724 * newly allocated cluster to the end of the (possibly shortened 1725 * before) write request. 1726 * 1727 * avail_bytes: Number of bytes from the start of the first 1728 * newly allocated to the end of the last newly allocated cluster. 1729 * 1730 * nb_bytes: The number of bytes from the start of the first 1731 * newly allocated cluster to the end of the area that the write 1732 * request actually writes to (excluding COW at the end) 1733 */ 1734 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1735 int avail_bytes = nb_clusters << s->cluster_bits; 1736 int nb_bytes = MIN(requested_bytes, avail_bytes); 1737 1738 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1739 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1740 assert(*bytes != 0); 1741 1742 ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes, 1743 l2_slice, m, false); 1744 if (ret < 0) { 1745 goto out; 1746 } 1747 1748 ret = 1; 1749 1750 out: 1751 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1752 return ret; 1753 } 1754 1755 /* 1756 * For a given area on the virtual disk defined by @offset and @bytes, 1757 * find the corresponding area on the qcow2 image, allocating new 1758 * clusters (or subclusters) if necessary. The result can span a 1759 * combination of allocated and previously unallocated clusters. 1760 * 1761 * Note that offset may not be cluster aligned. In this case, the returned 1762 * *host_offset points to exact byte referenced by offset and therefore 1763 * isn't cluster aligned as well. 1764 * 1765 * On return, @host_offset is set to the beginning of the requested 1766 * area. This area is guaranteed to be contiguous on the qcow2 file 1767 * but it can be smaller than initially requested. In this case @bytes 1768 * is updated with the actual size. 1769 * 1770 * If any clusters or subclusters were allocated then @m contains a 1771 * list with the information of all the affected regions. Note that 1772 * this can happen regardless of whether this function succeeds or 1773 * not. The caller is responsible for updating the L2 metadata of the 1774 * allocated clusters (on success) or freeing them (on failure), and 1775 * for clearing the contents of @m afterwards in both cases. 1776 * 1777 * If the request conflicts with another write request in flight, the coroutine 1778 * is queued and will be reentered when the dependency has completed. 1779 * 1780 * Return 0 on success and -errno in error cases 1781 */ 1782 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset, 1783 unsigned int *bytes, 1784 uint64_t *host_offset, 1785 QCowL2Meta **m) 1786 { 1787 BDRVQcow2State *s = bs->opaque; 1788 uint64_t start, remaining; 1789 uint64_t cluster_offset; 1790 uint64_t cur_bytes; 1791 int ret; 1792 1793 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1794 1795 again: 1796 start = offset; 1797 remaining = *bytes; 1798 cluster_offset = INV_OFFSET; 1799 *host_offset = INV_OFFSET; 1800 cur_bytes = 0; 1801 *m = NULL; 1802 1803 while (true) { 1804 1805 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) { 1806 *host_offset = cluster_offset; 1807 } 1808 1809 assert(remaining >= cur_bytes); 1810 1811 start += cur_bytes; 1812 remaining -= cur_bytes; 1813 1814 if (cluster_offset != INV_OFFSET) { 1815 cluster_offset += cur_bytes; 1816 } 1817 1818 if (remaining == 0) { 1819 break; 1820 } 1821 1822 cur_bytes = remaining; 1823 1824 /* 1825 * Now start gathering as many contiguous clusters as possible: 1826 * 1827 * 1. Check for overlaps with in-flight allocations 1828 * 1829 * a) Overlap not in the first cluster -> shorten this request and 1830 * let the caller handle the rest in its next loop iteration. 1831 * 1832 * b) Real overlaps of two requests. Yield and restart the search 1833 * for contiguous clusters (the situation could have changed 1834 * while we were sleeping) 1835 * 1836 * c) TODO: Request starts in the same cluster as the in-flight 1837 * allocation ends. Shorten the COW of the in-fight allocation, 1838 * set cluster_offset to write to the same cluster and set up 1839 * the right synchronisation between the in-flight request and 1840 * the new one. 1841 */ 1842 ret = handle_dependencies(bs, start, &cur_bytes, m); 1843 if (ret == -EAGAIN) { 1844 /* Currently handle_dependencies() doesn't yield if we already had 1845 * an allocation. If it did, we would have to clean up the L2Meta 1846 * structs before starting over. */ 1847 assert(*m == NULL); 1848 goto again; 1849 } else if (ret < 0) { 1850 return ret; 1851 } else if (cur_bytes == 0) { 1852 break; 1853 } else { 1854 /* handle_dependencies() may have decreased cur_bytes (shortened 1855 * the allocations below) so that the next dependency is processed 1856 * correctly during the next loop iteration. */ 1857 } 1858 1859 /* 1860 * 2. Count contiguous COPIED clusters. 1861 */ 1862 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1863 if (ret < 0) { 1864 return ret; 1865 } else if (ret) { 1866 continue; 1867 } else if (cur_bytes == 0) { 1868 break; 1869 } 1870 1871 /* 1872 * 3. If the request still hasn't completed, allocate new clusters, 1873 * considering any cluster_offset of steps 1c or 2. 1874 */ 1875 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1876 if (ret < 0) { 1877 return ret; 1878 } else if (ret) { 1879 continue; 1880 } else { 1881 assert(cur_bytes == 0); 1882 break; 1883 } 1884 } 1885 1886 *bytes -= remaining; 1887 assert(*bytes > 0); 1888 assert(*host_offset != INV_OFFSET); 1889 assert(offset_into_cluster(s, *host_offset) == 1890 offset_into_cluster(s, offset)); 1891 1892 return 0; 1893 } 1894 1895 /* 1896 * This discards as many clusters of nb_clusters as possible at once (i.e. 1897 * all clusters in the same L2 slice) and returns the number of discarded 1898 * clusters. 1899 */ 1900 static int GRAPH_RDLOCK 1901 discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, uint64_t nb_clusters, 1902 enum qcow2_discard_type type, bool full_discard) 1903 { 1904 BDRVQcow2State *s = bs->opaque; 1905 uint64_t *l2_slice; 1906 int l2_index; 1907 int ret; 1908 int i; 1909 1910 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1911 if (ret < 0) { 1912 return ret; 1913 } 1914 1915 /* Limit nb_clusters to one L2 slice */ 1916 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1917 assert(nb_clusters <= INT_MAX); 1918 1919 for (i = 0; i < nb_clusters; i++) { 1920 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 1921 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 1922 uint64_t new_l2_entry = old_l2_entry; 1923 uint64_t new_l2_bitmap = old_l2_bitmap; 1924 QCow2ClusterType cluster_type = 1925 qcow2_get_cluster_type(bs, old_l2_entry); 1926 bool keep_reference = (cluster_type != QCOW2_CLUSTER_COMPRESSED) && 1927 !full_discard && 1928 (s->discard_no_unref && 1929 type == QCOW2_DISCARD_REQUEST); 1930 1931 /* 1932 * If full_discard is true, the cluster should not read back as zeroes, 1933 * but rather fall through to the backing file. 1934 * 1935 * If full_discard is false, make sure that a discarded area reads back 1936 * as zeroes for v3 images (we cannot do it for v2 without actually 1937 * writing a zero-filled buffer). We can skip the operation if the 1938 * cluster is already marked as zero, or if it's unallocated and we 1939 * don't have a backing file. 1940 * 1941 * TODO We might want to use bdrv_block_status(bs) here, but we're 1942 * holding s->lock, so that doesn't work today. 1943 */ 1944 if (full_discard) { 1945 new_l2_entry = new_l2_bitmap = 0; 1946 } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) { 1947 if (has_subclusters(s)) { 1948 if (keep_reference) { 1949 new_l2_entry = old_l2_entry; 1950 } else { 1951 new_l2_entry = 0; 1952 } 1953 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES; 1954 } else { 1955 if (s->qcow_version >= 3) { 1956 if (keep_reference) { 1957 new_l2_entry |= QCOW_OFLAG_ZERO; 1958 } else { 1959 new_l2_entry = QCOW_OFLAG_ZERO; 1960 } 1961 } else { 1962 new_l2_entry = 0; 1963 } 1964 } 1965 } 1966 1967 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) { 1968 continue; 1969 } 1970 1971 /* First remove L2 entries */ 1972 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1973 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry); 1974 if (has_subclusters(s)) { 1975 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap); 1976 } 1977 if (!keep_reference) { 1978 /* Then decrease the refcount */ 1979 qcow2_free_any_cluster(bs, old_l2_entry, type); 1980 } else if (s->discard_passthrough[type] && 1981 (cluster_type == QCOW2_CLUSTER_NORMAL || 1982 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC)) { 1983 /* If we keep the reference, pass on the discard still */ 1984 bdrv_pdiscard(s->data_file, old_l2_entry & L2E_OFFSET_MASK, 1985 s->cluster_size); 1986 } 1987 } 1988 1989 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1990 1991 return nb_clusters; 1992 } 1993 1994 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, 1995 uint64_t bytes, enum qcow2_discard_type type, 1996 bool full_discard) 1997 { 1998 BDRVQcow2State *s = bs->opaque; 1999 uint64_t end_offset = offset + bytes; 2000 uint64_t nb_clusters; 2001 int64_t cleared; 2002 int ret; 2003 2004 /* Caller must pass aligned values, except at image end */ 2005 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 2006 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 2007 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 2008 2009 nb_clusters = size_to_clusters(s, bytes); 2010 2011 s->cache_discards = true; 2012 2013 /* Each L2 slice is handled by its own loop iteration */ 2014 while (nb_clusters > 0) { 2015 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type, 2016 full_discard); 2017 if (cleared < 0) { 2018 ret = cleared; 2019 goto fail; 2020 } 2021 2022 nb_clusters -= cleared; 2023 offset += (cleared * s->cluster_size); 2024 } 2025 2026 ret = 0; 2027 fail: 2028 s->cache_discards = false; 2029 qcow2_process_discards(bs, ret); 2030 2031 return ret; 2032 } 2033 2034 /* 2035 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 2036 * all clusters in the same L2 slice) and returns the number of zeroed 2037 * clusters. 2038 */ 2039 static int coroutine_fn GRAPH_RDLOCK 2040 zero_in_l2_slice(BlockDriverState *bs, uint64_t offset, 2041 uint64_t nb_clusters, int flags) 2042 { 2043 BDRVQcow2State *s = bs->opaque; 2044 uint64_t *l2_slice; 2045 int l2_index; 2046 int ret; 2047 int i; 2048 2049 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 2050 if (ret < 0) { 2051 return ret; 2052 } 2053 2054 /* Limit nb_clusters to one L2 slice */ 2055 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 2056 assert(nb_clusters <= INT_MAX); 2057 2058 for (i = 0; i < nb_clusters; i++) { 2059 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i); 2060 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i); 2061 QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry); 2062 bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) || 2063 ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type)); 2064 uint64_t new_l2_entry = unmap ? 0 : old_l2_entry; 2065 uint64_t new_l2_bitmap = old_l2_bitmap; 2066 2067 if (has_subclusters(s)) { 2068 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES; 2069 } else { 2070 new_l2_entry |= QCOW_OFLAG_ZERO; 2071 } 2072 2073 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) { 2074 continue; 2075 } 2076 2077 /* First update L2 entries */ 2078 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2079 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry); 2080 if (has_subclusters(s)) { 2081 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap); 2082 } 2083 2084 /* Then decrease the refcount */ 2085 if (unmap) { 2086 qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST); 2087 } 2088 } 2089 2090 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2091 2092 return nb_clusters; 2093 } 2094 2095 static int coroutine_fn GRAPH_RDLOCK 2096 zero_l2_subclusters(BlockDriverState *bs, uint64_t offset, 2097 unsigned nb_subclusters) 2098 { 2099 BDRVQcow2State *s = bs->opaque; 2100 uint64_t *l2_slice; 2101 uint64_t old_l2_bitmap, l2_bitmap; 2102 int l2_index, ret, sc = offset_to_sc_index(s, offset); 2103 2104 /* For full clusters use zero_in_l2_slice() instead */ 2105 assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster); 2106 assert(sc + nb_subclusters <= s->subclusters_per_cluster); 2107 assert(offset_into_subcluster(s, offset) == 0); 2108 2109 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 2110 if (ret < 0) { 2111 return ret; 2112 } 2113 2114 switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) { 2115 case QCOW2_CLUSTER_COMPRESSED: 2116 ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */ 2117 goto out; 2118 case QCOW2_CLUSTER_NORMAL: 2119 case QCOW2_CLUSTER_UNALLOCATED: 2120 break; 2121 default: 2122 g_assert_not_reached(); 2123 } 2124 2125 old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index); 2126 2127 l2_bitmap |= QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters); 2128 l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters); 2129 2130 if (old_l2_bitmap != l2_bitmap) { 2131 set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap); 2132 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2133 } 2134 2135 ret = 0; 2136 out: 2137 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2138 2139 return ret; 2140 } 2141 2142 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset, 2143 uint64_t bytes, int flags) 2144 { 2145 BDRVQcow2State *s = bs->opaque; 2146 uint64_t end_offset = offset + bytes; 2147 uint64_t nb_clusters; 2148 unsigned head, tail; 2149 int64_t cleared; 2150 int ret; 2151 2152 /* If we have to stay in sync with an external data file, zero out 2153 * s->data_file first. */ 2154 if (data_file_is_raw(bs)) { 2155 assert(has_data_file(bs)); 2156 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags); 2157 if (ret < 0) { 2158 return ret; 2159 } 2160 } 2161 2162 /* Caller must pass aligned values, except at image end */ 2163 assert(offset_into_subcluster(s, offset) == 0); 2164 assert(offset_into_subcluster(s, end_offset) == 0 || 2165 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS); 2166 2167 /* 2168 * The zero flag is only supported by version 3 and newer. However, if we 2169 * have no backing file, we can resort to discard in version 2. 2170 */ 2171 if (s->qcow_version < 3) { 2172 if (!bs->backing) { 2173 return qcow2_cluster_discard(bs, offset, bytes, 2174 QCOW2_DISCARD_REQUEST, false); 2175 } 2176 return -ENOTSUP; 2177 } 2178 2179 head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset; 2180 offset += head; 2181 2182 tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 : 2183 end_offset - MAX(offset, start_of_cluster(s, end_offset)); 2184 end_offset -= tail; 2185 2186 s->cache_discards = true; 2187 2188 if (head) { 2189 ret = zero_l2_subclusters(bs, offset - head, 2190 size_to_subclusters(s, head)); 2191 if (ret < 0) { 2192 goto fail; 2193 } 2194 } 2195 2196 /* Each L2 slice is handled by its own loop iteration */ 2197 nb_clusters = size_to_clusters(s, end_offset - offset); 2198 2199 while (nb_clusters > 0) { 2200 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags); 2201 if (cleared < 0) { 2202 ret = cleared; 2203 goto fail; 2204 } 2205 2206 nb_clusters -= cleared; 2207 offset += (cleared * s->cluster_size); 2208 } 2209 2210 if (tail) { 2211 ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail)); 2212 if (ret < 0) { 2213 goto fail; 2214 } 2215 } 2216 2217 ret = 0; 2218 fail: 2219 s->cache_discards = false; 2220 qcow2_process_discards(bs, ret); 2221 2222 return ret; 2223 } 2224 2225 /* 2226 * Expands all zero clusters in a specific L1 table (or deallocates them, for 2227 * non-backed non-pre-allocated zero clusters). 2228 * 2229 * l1_entries and *visited_l1_entries are used to keep track of progress for 2230 * status_cb(). l1_entries contains the total number of L1 entries and 2231 * *visited_l1_entries counts all visited L1 entries. 2232 */ 2233 static int GRAPH_RDLOCK 2234 expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 2235 int l1_size, int64_t *visited_l1_entries, 2236 int64_t l1_entries, 2237 BlockDriverAmendStatusCB *status_cb, 2238 void *cb_opaque) 2239 { 2240 BDRVQcow2State *s = bs->opaque; 2241 bool is_active_l1 = (l1_table == s->l1_table); 2242 uint64_t *l2_slice = NULL; 2243 unsigned slice, slice_size2, n_slices; 2244 int ret; 2245 int i, j; 2246 2247 /* qcow2_downgrade() is not allowed in images with subclusters */ 2248 assert(!has_subclusters(s)); 2249 2250 slice_size2 = s->l2_slice_size * l2_entry_size(s); 2251 n_slices = s->cluster_size / slice_size2; 2252 2253 if (!is_active_l1) { 2254 /* inactive L2 tables require a buffer to be stored in when loading 2255 * them from disk */ 2256 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2); 2257 if (l2_slice == NULL) { 2258 return -ENOMEM; 2259 } 2260 } 2261 2262 for (i = 0; i < l1_size; i++) { 2263 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 2264 uint64_t l2_refcount; 2265 2266 if (!l2_offset) { 2267 /* unallocated */ 2268 (*visited_l1_entries)++; 2269 if (status_cb) { 2270 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2271 } 2272 continue; 2273 } 2274 2275 if (offset_into_cluster(s, l2_offset)) { 2276 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 2277 PRIx64 " unaligned (L1 index: %#x)", 2278 l2_offset, i); 2279 ret = -EIO; 2280 goto fail; 2281 } 2282 2283 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 2284 &l2_refcount); 2285 if (ret < 0) { 2286 goto fail; 2287 } 2288 2289 for (slice = 0; slice < n_slices; slice++) { 2290 uint64_t slice_offset = l2_offset + slice * slice_size2; 2291 bool l2_dirty = false; 2292 if (is_active_l1) { 2293 /* get active L2 tables from cache */ 2294 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset, 2295 (void **)&l2_slice); 2296 } else { 2297 /* load inactive L2 tables from disk */ 2298 ret = bdrv_pread(bs->file, slice_offset, slice_size2, 2299 l2_slice, 0); 2300 } 2301 if (ret < 0) { 2302 goto fail; 2303 } 2304 2305 for (j = 0; j < s->l2_slice_size; j++) { 2306 uint64_t l2_entry = get_l2_entry(s, l2_slice, j); 2307 int64_t offset = l2_entry & L2E_OFFSET_MASK; 2308 QCow2ClusterType cluster_type = 2309 qcow2_get_cluster_type(bs, l2_entry); 2310 2311 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && 2312 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { 2313 continue; 2314 } 2315 2316 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2317 if (!bs->backing) { 2318 /* 2319 * not backed; therefore we can simply deallocate the 2320 * cluster. No need to call set_l2_bitmap(), this 2321 * function doesn't support images with subclusters. 2322 */ 2323 set_l2_entry(s, l2_slice, j, 0); 2324 l2_dirty = true; 2325 continue; 2326 } 2327 2328 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2329 if (offset < 0) { 2330 ret = offset; 2331 goto fail; 2332 } 2333 2334 /* The offset must fit in the offset field */ 2335 assert((offset & L2E_OFFSET_MASK) == offset); 2336 2337 if (l2_refcount > 1) { 2338 /* For shared L2 tables, set the refcount accordingly 2339 * (it is already 1 and needs to be l2_refcount) */ 2340 ret = qcow2_update_cluster_refcount( 2341 bs, offset >> s->cluster_bits, 2342 refcount_diff(1, l2_refcount), false, 2343 QCOW2_DISCARD_OTHER); 2344 if (ret < 0) { 2345 qcow2_free_clusters(bs, offset, s->cluster_size, 2346 QCOW2_DISCARD_OTHER); 2347 goto fail; 2348 } 2349 } 2350 } 2351 2352 if (offset_into_cluster(s, offset)) { 2353 int l2_index = slice * s->l2_slice_size + j; 2354 qcow2_signal_corruption( 2355 bs, true, -1, -1, 2356 "Cluster allocation offset " 2357 "%#" PRIx64 " unaligned (L2 offset: %#" 2358 PRIx64 ", L2 index: %#x)", offset, 2359 l2_offset, l2_index); 2360 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2361 qcow2_free_clusters(bs, offset, s->cluster_size, 2362 QCOW2_DISCARD_ALWAYS); 2363 } 2364 ret = -EIO; 2365 goto fail; 2366 } 2367 2368 ret = qcow2_pre_write_overlap_check(bs, 0, offset, 2369 s->cluster_size, true); 2370 if (ret < 0) { 2371 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2372 qcow2_free_clusters(bs, offset, s->cluster_size, 2373 QCOW2_DISCARD_ALWAYS); 2374 } 2375 goto fail; 2376 } 2377 2378 ret = bdrv_pwrite_zeroes(s->data_file, offset, 2379 s->cluster_size, 0); 2380 if (ret < 0) { 2381 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 2382 qcow2_free_clusters(bs, offset, s->cluster_size, 2383 QCOW2_DISCARD_ALWAYS); 2384 } 2385 goto fail; 2386 } 2387 2388 if (l2_refcount == 1) { 2389 set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED); 2390 } else { 2391 set_l2_entry(s, l2_slice, j, offset); 2392 } 2393 /* 2394 * No need to call set_l2_bitmap() after set_l2_entry() because 2395 * this function doesn't support images with subclusters. 2396 */ 2397 l2_dirty = true; 2398 } 2399 2400 if (is_active_l1) { 2401 if (l2_dirty) { 2402 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 2403 qcow2_cache_depends_on_flush(s->l2_table_cache); 2404 } 2405 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2406 } else { 2407 if (l2_dirty) { 2408 ret = qcow2_pre_write_overlap_check( 2409 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, 2410 slice_offset, slice_size2, false); 2411 if (ret < 0) { 2412 goto fail; 2413 } 2414 2415 ret = bdrv_pwrite(bs->file, slice_offset, slice_size2, 2416 l2_slice, 0); 2417 if (ret < 0) { 2418 goto fail; 2419 } 2420 } 2421 } 2422 } 2423 2424 (*visited_l1_entries)++; 2425 if (status_cb) { 2426 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2427 } 2428 } 2429 2430 ret = 0; 2431 2432 fail: 2433 if (l2_slice) { 2434 if (!is_active_l1) { 2435 qemu_vfree(l2_slice); 2436 } else { 2437 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2438 } 2439 } 2440 return ret; 2441 } 2442 2443 /* 2444 * For backed images, expands all zero clusters on the image. For non-backed 2445 * images, deallocates all non-pre-allocated zero clusters (and claims the 2446 * allocation for pre-allocated ones). This is important for downgrading to a 2447 * qcow2 version which doesn't yet support metadata zero clusters. 2448 */ 2449 int qcow2_expand_zero_clusters(BlockDriverState *bs, 2450 BlockDriverAmendStatusCB *status_cb, 2451 void *cb_opaque) 2452 { 2453 BDRVQcow2State *s = bs->opaque; 2454 uint64_t *l1_table = NULL; 2455 int64_t l1_entries = 0, visited_l1_entries = 0; 2456 int ret; 2457 int i, j; 2458 2459 if (status_cb) { 2460 l1_entries = s->l1_size; 2461 for (i = 0; i < s->nb_snapshots; i++) { 2462 l1_entries += s->snapshots[i].l1_size; 2463 } 2464 } 2465 2466 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 2467 &visited_l1_entries, l1_entries, 2468 status_cb, cb_opaque); 2469 if (ret < 0) { 2470 goto fail; 2471 } 2472 2473 /* Inactive L1 tables may point to active L2 tables - therefore it is 2474 * necessary to flush the L2 table cache before trying to access the L2 2475 * tables pointed to by inactive L1 entries (else we might try to expand 2476 * zero clusters that have already been expanded); furthermore, it is also 2477 * necessary to empty the L2 table cache, since it may contain tables which 2478 * are now going to be modified directly on disk, bypassing the cache. 2479 * qcow2_cache_empty() does both for us. */ 2480 ret = qcow2_cache_empty(bs, s->l2_table_cache); 2481 if (ret < 0) { 2482 goto fail; 2483 } 2484 2485 for (i = 0; i < s->nb_snapshots; i++) { 2486 int l1_size2; 2487 uint64_t *new_l1_table; 2488 Error *local_err = NULL; 2489 2490 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset, 2491 s->snapshots[i].l1_size, L1E_SIZE, 2492 QCOW_MAX_L1_SIZE, "Snapshot L1 table", 2493 &local_err); 2494 if (ret < 0) { 2495 error_report_err(local_err); 2496 goto fail; 2497 } 2498 2499 l1_size2 = s->snapshots[i].l1_size * L1E_SIZE; 2500 new_l1_table = g_try_realloc(l1_table, l1_size2); 2501 2502 if (!new_l1_table) { 2503 ret = -ENOMEM; 2504 goto fail; 2505 } 2506 2507 l1_table = new_l1_table; 2508 2509 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2, 2510 l1_table, 0); 2511 if (ret < 0) { 2512 goto fail; 2513 } 2514 2515 for (j = 0; j < s->snapshots[i].l1_size; j++) { 2516 be64_to_cpus(&l1_table[j]); 2517 } 2518 2519 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 2520 &visited_l1_entries, l1_entries, 2521 status_cb, cb_opaque); 2522 if (ret < 0) { 2523 goto fail; 2524 } 2525 } 2526 2527 ret = 0; 2528 2529 fail: 2530 g_free(l1_table); 2531 return ret; 2532 } 2533 2534 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry, 2535 uint64_t *coffset, int *csize) 2536 { 2537 BDRVQcow2State *s = bs->opaque; 2538 int nb_csectors; 2539 2540 assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED); 2541 2542 *coffset = l2_entry & s->cluster_offset_mask; 2543 2544 nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1; 2545 *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE - 2546 (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1)); 2547 } 2548