1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size) 33 { 34 BDRVQcowState *s = bs->opaque; 35 int new_l1_size, new_l1_size2, ret, i; 36 uint64_t *new_l1_table; 37 int64_t new_l1_table_offset; 38 uint8_t data[12]; 39 40 if (min_size <= s->l1_size) 41 return 0; 42 43 if (exact_size) { 44 new_l1_size = min_size; 45 } else { 46 /* Bump size up to reduce the number of times we have to grow */ 47 new_l1_size = s->l1_size; 48 if (new_l1_size == 0) { 49 new_l1_size = 1; 50 } 51 while (min_size > new_l1_size) { 52 new_l1_size = (new_l1_size * 3 + 1) / 2; 53 } 54 } 55 56 #ifdef DEBUG_ALLOC2 57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size); 58 #endif 59 60 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 63 64 /* write new table (align to cluster) */ 65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 67 if (new_l1_table_offset < 0) { 68 g_free(new_l1_table); 69 return new_l1_table_offset; 70 } 71 72 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 73 if (ret < 0) { 74 goto fail; 75 } 76 77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 78 for(i = 0; i < s->l1_size; i++) 79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 81 if (ret < 0) 82 goto fail; 83 for(i = 0; i < s->l1_size; i++) 84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 85 86 /* set new table */ 87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 88 cpu_to_be32w((uint32_t*)data, new_l1_size); 89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); 90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 91 if (ret < 0) { 92 goto fail; 93 } 94 g_free(s->l1_table); 95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); 96 s->l1_table_offset = new_l1_table_offset; 97 s->l1_table = new_l1_table; 98 s->l1_size = new_l1_size; 99 return 0; 100 fail: 101 g_free(new_l1_table); 102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2); 103 return ret; 104 } 105 106 /* 107 * l2_load 108 * 109 * Loads a L2 table into memory. If the table is in the cache, the cache 110 * is used; otherwise the L2 table is loaded from the image file. 111 * 112 * Returns a pointer to the L2 table on success, or NULL if the read from 113 * the image file failed. 114 */ 115 116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 117 uint64_t **l2_table) 118 { 119 BDRVQcowState *s = bs->opaque; 120 int ret; 121 122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 123 124 return ret; 125 } 126 127 /* 128 * Writes one sector of the L1 table to the disk (can't update single entries 129 * and we really don't want bdrv_pread to perform a read-modify-write) 130 */ 131 #define L1_ENTRIES_PER_SECTOR (512 / 8) 132 static int write_l1_entry(BlockDriverState *bs, int l1_index) 133 { 134 BDRVQcowState *s = bs->opaque; 135 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 136 int l1_start_index; 137 int i, ret; 138 139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 142 } 143 144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 146 buf, sizeof(buf)); 147 if (ret < 0) { 148 return ret; 149 } 150 151 return 0; 152 } 153 154 /* 155 * l2_allocate 156 * 157 * Allocate a new l2 entry in the file. If l1_index points to an already 158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 159 * table) copy the contents of the old L2 table into the newly allocated one. 160 * Otherwise the new table is initialized with zeros. 161 * 162 */ 163 164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 165 { 166 BDRVQcowState *s = bs->opaque; 167 uint64_t old_l2_offset; 168 uint64_t *l2_table; 169 int64_t l2_offset; 170 int ret; 171 172 old_l2_offset = s->l1_table[l1_index]; 173 174 trace_qcow2_l2_allocate(bs, l1_index); 175 176 /* allocate a new l2 entry */ 177 178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 179 if (l2_offset < 0) { 180 return l2_offset; 181 } 182 183 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 184 if (ret < 0) { 185 goto fail; 186 } 187 188 /* allocate a new entry in the l2 cache */ 189 190 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 192 if (ret < 0) { 193 return ret; 194 } 195 196 l2_table = *table; 197 198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 199 /* if there was no old l2 table, clear the new table */ 200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 201 } else { 202 uint64_t* old_table; 203 204 /* if there was an old l2 table, read it from the disk */ 205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 206 ret = qcow2_cache_get(bs, s->l2_table_cache, 207 old_l2_offset & L1E_OFFSET_MASK, 208 (void**) &old_table); 209 if (ret < 0) { 210 goto fail; 211 } 212 213 memcpy(l2_table, old_table, s->cluster_size); 214 215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 216 if (ret < 0) { 217 goto fail; 218 } 219 } 220 221 /* write the l2 table to the file */ 222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 223 224 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 226 ret = qcow2_cache_flush(bs, s->l2_table_cache); 227 if (ret < 0) { 228 goto fail; 229 } 230 231 /* update the L1 entry */ 232 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 234 ret = write_l1_entry(bs, l1_index); 235 if (ret < 0) { 236 goto fail; 237 } 238 239 *table = l2_table; 240 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 241 return 0; 242 243 fail: 244 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 246 s->l1_table[l1_index] = old_l2_offset; 247 return ret; 248 } 249 250 /* 251 * Checks how many clusters in a given L2 table are contiguous in the image 252 * file. As soon as one of the flags in the bitmask stop_flags changes compared 253 * to the first cluster, the search is stopped and the cluster is not counted 254 * as contiguous. (This allows it, for example, to stop at the first compressed 255 * cluster which may require a different handling) 256 */ 257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags) 259 { 260 int i; 261 uint64_t mask = stop_flags | L2E_OFFSET_MASK; 262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask; 263 264 if (!offset) 265 return 0; 266 267 for (i = start; i < start + nb_clusters; i++) { 268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 269 if (offset + (uint64_t) i * cluster_size != l2_entry) { 270 break; 271 } 272 } 273 274 return (i - start); 275 } 276 277 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 278 { 279 int i; 280 281 for (i = 0; i < nb_clusters; i++) { 282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 283 284 if (type != QCOW2_CLUSTER_UNALLOCATED) { 285 break; 286 } 287 } 288 289 return i; 290 } 291 292 /* The crypt function is compatible with the linux cryptoloop 293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 294 supported */ 295 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 296 uint8_t *out_buf, const uint8_t *in_buf, 297 int nb_sectors, int enc, 298 const AES_KEY *key) 299 { 300 union { 301 uint64_t ll[2]; 302 uint8_t b[16]; 303 } ivec; 304 int i; 305 306 for(i = 0; i < nb_sectors; i++) { 307 ivec.ll[0] = cpu_to_le64(sector_num); 308 ivec.ll[1] = 0; 309 AES_cbc_encrypt(in_buf, out_buf, 512, key, 310 ivec.b, enc); 311 sector_num++; 312 in_buf += 512; 313 out_buf += 512; 314 } 315 } 316 317 static int coroutine_fn copy_sectors(BlockDriverState *bs, 318 uint64_t start_sect, 319 uint64_t cluster_offset, 320 int n_start, int n_end) 321 { 322 BDRVQcowState *s = bs->opaque; 323 QEMUIOVector qiov; 324 struct iovec iov; 325 int n, ret; 326 327 /* 328 * If this is the last cluster and it is only partially used, we must only 329 * copy until the end of the image, or bdrv_check_request will fail for the 330 * bdrv_read/write calls below. 331 */ 332 if (start_sect + n_end > bs->total_sectors) { 333 n_end = bs->total_sectors - start_sect; 334 } 335 336 n = n_end - n_start; 337 if (n <= 0) { 338 return 0; 339 } 340 341 iov.iov_len = n * BDRV_SECTOR_SIZE; 342 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 343 344 qemu_iovec_init_external(&qiov, &iov, 1); 345 346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 347 348 /* Call .bdrv_co_readv() directly instead of using the public block-layer 349 * interface. This avoids double I/O throttling and request tracking, 350 * which can lead to deadlock when block layer copy-on-read is enabled. 351 */ 352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 353 if (ret < 0) { 354 goto out; 355 } 356 357 if (s->crypt_method) { 358 qcow2_encrypt_sectors(s, start_sect + n_start, 359 iov.iov_base, iov.iov_base, n, 1, 360 &s->aes_encrypt_key); 361 } 362 363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 365 if (ret < 0) { 366 goto out; 367 } 368 369 ret = 0; 370 out: 371 qemu_vfree(iov.iov_base); 372 return ret; 373 } 374 375 376 /* 377 * get_cluster_offset 378 * 379 * For a given offset of the disk image, find the cluster offset in 380 * qcow2 file. The offset is stored in *cluster_offset. 381 * 382 * on entry, *num is the number of contiguous sectors we'd like to 383 * access following offset. 384 * 385 * on exit, *num is the number of contiguous sectors we can read. 386 * 387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 388 * cases. 389 */ 390 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 391 int *num, uint64_t *cluster_offset) 392 { 393 BDRVQcowState *s = bs->opaque; 394 unsigned int l1_index, l2_index; 395 uint64_t l2_offset, *l2_table; 396 int l1_bits, c; 397 unsigned int index_in_cluster, nb_clusters; 398 uint64_t nb_available, nb_needed; 399 int ret; 400 401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 402 nb_needed = *num + index_in_cluster; 403 404 l1_bits = s->l2_bits + s->cluster_bits; 405 406 /* compute how many bytes there are between the offset and 407 * the end of the l1 entry 408 */ 409 410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 411 412 /* compute the number of available sectors */ 413 414 nb_available = (nb_available >> 9) + index_in_cluster; 415 416 if (nb_needed > nb_available) { 417 nb_needed = nb_available; 418 } 419 420 *cluster_offset = 0; 421 422 /* seek the the l2 offset in the l1 table */ 423 424 l1_index = offset >> l1_bits; 425 if (l1_index >= s->l1_size) { 426 ret = QCOW2_CLUSTER_UNALLOCATED; 427 goto out; 428 } 429 430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 431 if (!l2_offset) { 432 ret = QCOW2_CLUSTER_UNALLOCATED; 433 goto out; 434 } 435 436 /* load the l2 table in memory */ 437 438 ret = l2_load(bs, l2_offset, &l2_table); 439 if (ret < 0) { 440 return ret; 441 } 442 443 /* find the cluster offset for the given disk offset */ 444 445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 446 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 447 nb_clusters = size_to_clusters(s, nb_needed << 9); 448 449 ret = qcow2_get_cluster_type(*cluster_offset); 450 switch (ret) { 451 case QCOW2_CLUSTER_COMPRESSED: 452 /* Compressed clusters can only be processed one by one */ 453 c = 1; 454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 455 break; 456 case QCOW2_CLUSTER_ZERO: 457 if (s->qcow_version < 3) { 458 return -EIO; 459 } 460 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 461 &l2_table[l2_index], 0, 462 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 463 *cluster_offset = 0; 464 break; 465 case QCOW2_CLUSTER_UNALLOCATED: 466 /* how many empty clusters ? */ 467 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 468 *cluster_offset = 0; 469 break; 470 case QCOW2_CLUSTER_NORMAL: 471 /* how many allocated clusters ? */ 472 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 473 &l2_table[l2_index], 0, 474 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); 475 *cluster_offset &= L2E_OFFSET_MASK; 476 break; 477 default: 478 abort(); 479 } 480 481 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 482 483 nb_available = (c * s->cluster_sectors); 484 485 out: 486 if (nb_available > nb_needed) 487 nb_available = nb_needed; 488 489 *num = nb_available - index_in_cluster; 490 491 return ret; 492 } 493 494 /* 495 * get_cluster_table 496 * 497 * for a given disk offset, load (and allocate if needed) 498 * the l2 table. 499 * 500 * the l2 table offset in the qcow2 file and the cluster index 501 * in the l2 table are given to the caller. 502 * 503 * Returns 0 on success, -errno in failure case 504 */ 505 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 506 uint64_t **new_l2_table, 507 int *new_l2_index) 508 { 509 BDRVQcowState *s = bs->opaque; 510 unsigned int l1_index, l2_index; 511 uint64_t l2_offset; 512 uint64_t *l2_table = NULL; 513 int ret; 514 515 /* seek the the l2 offset in the l1 table */ 516 517 l1_index = offset >> (s->l2_bits + s->cluster_bits); 518 if (l1_index >= s->l1_size) { 519 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 520 if (ret < 0) { 521 return ret; 522 } 523 } 524 525 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 526 527 /* seek the l2 table of the given l2 offset */ 528 529 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 530 /* load the l2 table in memory */ 531 ret = l2_load(bs, l2_offset, &l2_table); 532 if (ret < 0) { 533 return ret; 534 } 535 } else { 536 /* First allocate a new L2 table (and do COW if needed) */ 537 ret = l2_allocate(bs, l1_index, &l2_table); 538 if (ret < 0) { 539 return ret; 540 } 541 542 /* Then decrease the refcount of the old table */ 543 if (l2_offset) { 544 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); 545 } 546 } 547 548 /* find the cluster offset for the given disk offset */ 549 550 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 551 552 *new_l2_table = l2_table; 553 *new_l2_index = l2_index; 554 555 return 0; 556 } 557 558 /* 559 * alloc_compressed_cluster_offset 560 * 561 * For a given offset of the disk image, return cluster offset in 562 * qcow2 file. 563 * 564 * If the offset is not found, allocate a new compressed cluster. 565 * 566 * Return the cluster offset if successful, 567 * Return 0, otherwise. 568 * 569 */ 570 571 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 572 uint64_t offset, 573 int compressed_size) 574 { 575 BDRVQcowState *s = bs->opaque; 576 int l2_index, ret; 577 uint64_t *l2_table; 578 int64_t cluster_offset; 579 int nb_csectors; 580 581 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 582 if (ret < 0) { 583 return 0; 584 } 585 586 /* Compression can't overwrite anything. Fail if the cluster was already 587 * allocated. */ 588 cluster_offset = be64_to_cpu(l2_table[l2_index]); 589 if (cluster_offset & L2E_OFFSET_MASK) { 590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 591 return 0; 592 } 593 594 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 595 if (cluster_offset < 0) { 596 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 597 return 0; 598 } 599 600 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 601 (cluster_offset >> 9); 602 603 cluster_offset |= QCOW_OFLAG_COMPRESSED | 604 ((uint64_t)nb_csectors << s->csize_shift); 605 606 /* update L2 table */ 607 608 /* compressed clusters never have the copied flag */ 609 610 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 611 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 612 l2_table[l2_index] = cpu_to_be64(cluster_offset); 613 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 614 if (ret < 0) { 615 return 0; 616 } 617 618 return cluster_offset; 619 } 620 621 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 622 { 623 BDRVQcowState *s = bs->opaque; 624 int ret; 625 626 if (r->nb_sectors == 0) { 627 return 0; 628 } 629 630 qemu_co_mutex_unlock(&s->lock); 631 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 632 r->offset / BDRV_SECTOR_SIZE, 633 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 634 qemu_co_mutex_lock(&s->lock); 635 636 if (ret < 0) { 637 return ret; 638 } 639 640 /* 641 * Before we update the L2 table to actually point to the new cluster, we 642 * need to be sure that the refcounts have been increased and COW was 643 * handled. 644 */ 645 qcow2_cache_depends_on_flush(s->l2_table_cache); 646 647 return 0; 648 } 649 650 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 651 { 652 BDRVQcowState *s = bs->opaque; 653 int i, j = 0, l2_index, ret; 654 uint64_t *old_cluster, *l2_table; 655 uint64_t cluster_offset = m->alloc_offset; 656 657 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 658 assert(m->nb_clusters > 0); 659 660 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 661 662 /* copy content of unmodified sectors */ 663 ret = perform_cow(bs, m, &m->cow_start); 664 if (ret < 0) { 665 goto err; 666 } 667 668 ret = perform_cow(bs, m, &m->cow_end); 669 if (ret < 0) { 670 goto err; 671 } 672 673 /* Update L2 table. */ 674 if (s->use_lazy_refcounts) { 675 qcow2_mark_dirty(bs); 676 } 677 if (qcow2_need_accurate_refcounts(s)) { 678 qcow2_cache_set_dependency(bs, s->l2_table_cache, 679 s->refcount_block_cache); 680 } 681 682 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 683 if (ret < 0) { 684 goto err; 685 } 686 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 687 688 for (i = 0; i < m->nb_clusters; i++) { 689 /* if two concurrent writes happen to the same unallocated cluster 690 * each write allocates separate cluster and writes data concurrently. 691 * The first one to complete updates l2 table with pointer to its 692 * cluster the second one has to do RMW (which is done above by 693 * copy_sectors()), update l2 table with its cluster pointer and free 694 * old cluster. This is what this loop does */ 695 if(l2_table[l2_index + i] != 0) 696 old_cluster[j++] = l2_table[l2_index + i]; 697 698 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 699 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 700 } 701 702 703 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 704 if (ret < 0) { 705 goto err; 706 } 707 708 /* 709 * If this was a COW, we need to decrease the refcount of the old cluster. 710 * Also flush bs->file to get the right order for L2 and refcount update. 711 */ 712 if (j != 0) { 713 for (i = 0; i < j; i++) { 714 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1); 715 } 716 } 717 718 ret = 0; 719 err: 720 g_free(old_cluster); 721 return ret; 722 } 723 724 /* 725 * Returns the number of contiguous clusters that can be used for an allocating 726 * write, but require COW to be performed (this includes yet unallocated space, 727 * which must copy from the backing file) 728 */ 729 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 730 uint64_t *l2_table, int l2_index) 731 { 732 int i; 733 734 for (i = 0; i < nb_clusters; i++) { 735 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 736 int cluster_type = qcow2_get_cluster_type(l2_entry); 737 738 switch(cluster_type) { 739 case QCOW2_CLUSTER_NORMAL: 740 if (l2_entry & QCOW_OFLAG_COPIED) { 741 goto out; 742 } 743 break; 744 case QCOW2_CLUSTER_UNALLOCATED: 745 case QCOW2_CLUSTER_COMPRESSED: 746 case QCOW2_CLUSTER_ZERO: 747 break; 748 default: 749 abort(); 750 } 751 } 752 753 out: 754 assert(i <= nb_clusters); 755 return i; 756 } 757 758 /* 759 * Check if there already is an AIO write request in flight which allocates 760 * the same cluster. In this case we need to wait until the previous 761 * request has completed and updated the L2 table accordingly. 762 * 763 * Returns: 764 * 0 if there was no dependency. *cur_bytes indicates the number of 765 * bytes from guest_offset that can be read before the next 766 * dependency must be processed (or the request is complete) 767 * 768 * -EAGAIN if we had to wait for another request, previously gathered 769 * information on cluster allocation may be invalid now. The caller 770 * must start over anyway, so consider *cur_bytes undefined. 771 */ 772 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 773 uint64_t *cur_bytes, QCowL2Meta **m) 774 { 775 BDRVQcowState *s = bs->opaque; 776 QCowL2Meta *old_alloc; 777 uint64_t bytes = *cur_bytes; 778 779 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 780 781 uint64_t start = guest_offset; 782 uint64_t end = start + bytes; 783 uint64_t old_start = l2meta_cow_start(old_alloc); 784 uint64_t old_end = l2meta_cow_end(old_alloc); 785 786 if (end <= old_start || start >= old_end) { 787 /* No intersection */ 788 } else { 789 if (start < old_start) { 790 /* Stop at the start of a running allocation */ 791 bytes = old_start - start; 792 } else { 793 bytes = 0; 794 } 795 796 /* Stop if already an l2meta exists. After yielding, it wouldn't 797 * be valid any more, so we'd have to clean up the old L2Metas 798 * and deal with requests depending on them before starting to 799 * gather new ones. Not worth the trouble. */ 800 if (bytes == 0 && *m) { 801 *cur_bytes = 0; 802 return 0; 803 } 804 805 if (bytes == 0) { 806 /* Wait for the dependency to complete. We need to recheck 807 * the free/allocated clusters when we continue. */ 808 qemu_co_mutex_unlock(&s->lock); 809 qemu_co_queue_wait(&old_alloc->dependent_requests); 810 qemu_co_mutex_lock(&s->lock); 811 return -EAGAIN; 812 } 813 } 814 } 815 816 /* Make sure that existing clusters and new allocations are only used up to 817 * the next dependency if we shortened the request above */ 818 *cur_bytes = bytes; 819 820 return 0; 821 } 822 823 /* 824 * Checks how many already allocated clusters that don't require a copy on 825 * write there are at the given guest_offset (up to *bytes). If 826 * *host_offset is not zero, only physically contiguous clusters beginning at 827 * this host offset are counted. 828 * 829 * Note that guest_offset may not be cluster aligned. In this case, the 830 * returned *host_offset points to exact byte referenced by guest_offset and 831 * therefore isn't cluster aligned as well. 832 * 833 * Returns: 834 * 0: if no allocated clusters are available at the given offset. 835 * *bytes is normally unchanged. It is set to 0 if the cluster 836 * is allocated and doesn't need COW, but doesn't have the right 837 * physical offset. 838 * 839 * 1: if allocated clusters that don't require a COW are available at 840 * the requested offset. *bytes may have decreased and describes 841 * the length of the area that can be written to. 842 * 843 * -errno: in error cases 844 */ 845 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 846 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 847 { 848 BDRVQcowState *s = bs->opaque; 849 int l2_index; 850 uint64_t cluster_offset; 851 uint64_t *l2_table; 852 unsigned int nb_clusters; 853 unsigned int keep_clusters; 854 int ret, pret; 855 856 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 857 *bytes); 858 859 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 860 == offset_into_cluster(s, *host_offset)); 861 862 /* 863 * Calculate the number of clusters to look for. We stop at L2 table 864 * boundaries to keep things simple. 865 */ 866 nb_clusters = 867 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 868 869 l2_index = offset_to_l2_index(s, guest_offset); 870 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 871 872 /* Find L2 entry for the first involved cluster */ 873 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 874 if (ret < 0) { 875 return ret; 876 } 877 878 cluster_offset = be64_to_cpu(l2_table[l2_index]); 879 880 /* Check how many clusters are already allocated and don't need COW */ 881 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 882 && (cluster_offset & QCOW_OFLAG_COPIED)) 883 { 884 /* If a specific host_offset is required, check it */ 885 bool offset_matches = 886 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 887 888 if (*host_offset != 0 && !offset_matches) { 889 *bytes = 0; 890 ret = 0; 891 goto out; 892 } 893 894 /* We keep all QCOW_OFLAG_COPIED clusters */ 895 keep_clusters = 896 count_contiguous_clusters(nb_clusters, s->cluster_size, 897 &l2_table[l2_index], 0, 898 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 899 assert(keep_clusters <= nb_clusters); 900 901 *bytes = MIN(*bytes, 902 keep_clusters * s->cluster_size 903 - offset_into_cluster(s, guest_offset)); 904 905 ret = 1; 906 } else { 907 ret = 0; 908 } 909 910 /* Cleanup */ 911 out: 912 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 913 if (pret < 0) { 914 return pret; 915 } 916 917 /* Only return a host offset if we actually made progress. Otherwise we 918 * would make requirements for handle_alloc() that it can't fulfill */ 919 if (ret) { 920 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 921 + offset_into_cluster(s, guest_offset); 922 } 923 924 return ret; 925 } 926 927 /* 928 * Allocates new clusters for the given guest_offset. 929 * 930 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 931 * contain the number of clusters that have been allocated and are contiguous 932 * in the image file. 933 * 934 * If *host_offset is non-zero, it specifies the offset in the image file at 935 * which the new clusters must start. *nb_clusters can be 0 on return in this 936 * case if the cluster at host_offset is already in use. If *host_offset is 937 * zero, the clusters can be allocated anywhere in the image file. 938 * 939 * *host_offset is updated to contain the offset into the image file at which 940 * the first allocated cluster starts. 941 * 942 * Return 0 on success and -errno in error cases. -EAGAIN means that the 943 * function has been waiting for another request and the allocation must be 944 * restarted, but the whole request should not be failed. 945 */ 946 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 947 uint64_t *host_offset, unsigned int *nb_clusters) 948 { 949 BDRVQcowState *s = bs->opaque; 950 951 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 952 *host_offset, *nb_clusters); 953 954 /* Allocate new clusters */ 955 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 956 if (*host_offset == 0) { 957 int64_t cluster_offset = 958 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 959 if (cluster_offset < 0) { 960 return cluster_offset; 961 } 962 *host_offset = cluster_offset; 963 return 0; 964 } else { 965 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 966 if (ret < 0) { 967 return ret; 968 } 969 *nb_clusters = ret; 970 return 0; 971 } 972 } 973 974 /* 975 * Allocates new clusters for an area that either is yet unallocated or needs a 976 * copy on write. If *host_offset is non-zero, clusters are only allocated if 977 * the new allocation can match the specified host offset. 978 * 979 * Note that guest_offset may not be cluster aligned. In this case, the 980 * returned *host_offset points to exact byte referenced by guest_offset and 981 * therefore isn't cluster aligned as well. 982 * 983 * Returns: 984 * 0: if no clusters could be allocated. *bytes is set to 0, 985 * *host_offset is left unchanged. 986 * 987 * 1: if new clusters were allocated. *bytes may be decreased if the 988 * new allocation doesn't cover all of the requested area. 989 * *host_offset is updated to contain the host offset of the first 990 * newly allocated cluster. 991 * 992 * -errno: in error cases 993 */ 994 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 995 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 996 { 997 BDRVQcowState *s = bs->opaque; 998 int l2_index; 999 uint64_t *l2_table; 1000 uint64_t entry; 1001 unsigned int nb_clusters; 1002 int ret; 1003 1004 uint64_t alloc_cluster_offset; 1005 1006 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1007 *bytes); 1008 assert(*bytes > 0); 1009 1010 /* 1011 * Calculate the number of clusters to look for. We stop at L2 table 1012 * boundaries to keep things simple. 1013 */ 1014 nb_clusters = 1015 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1016 1017 l2_index = offset_to_l2_index(s, guest_offset); 1018 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1019 1020 /* Find L2 entry for the first involved cluster */ 1021 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1022 if (ret < 0) { 1023 return ret; 1024 } 1025 1026 entry = be64_to_cpu(l2_table[l2_index]); 1027 1028 /* For the moment, overwrite compressed clusters one by one */ 1029 if (entry & QCOW_OFLAG_COMPRESSED) { 1030 nb_clusters = 1; 1031 } else { 1032 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1033 } 1034 1035 /* This function is only called when there were no non-COW clusters, so if 1036 * we can't find any unallocated or COW clusters either, something is 1037 * wrong with our code. */ 1038 assert(nb_clusters > 0); 1039 1040 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1041 if (ret < 0) { 1042 return ret; 1043 } 1044 1045 /* Allocate, if necessary at a given offset in the image file */ 1046 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1047 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1048 &nb_clusters); 1049 if (ret < 0) { 1050 goto fail; 1051 } 1052 1053 /* Can't extend contiguous allocation */ 1054 if (nb_clusters == 0) { 1055 *bytes = 0; 1056 return 0; 1057 } 1058 1059 /* 1060 * Save info needed for meta data update. 1061 * 1062 * requested_sectors: Number of sectors from the start of the first 1063 * newly allocated cluster to the end of the (possibly shortened 1064 * before) write request. 1065 * 1066 * avail_sectors: Number of sectors from the start of the first 1067 * newly allocated to the end of the last newly allocated cluster. 1068 * 1069 * nb_sectors: The number of sectors from the start of the first 1070 * newly allocated cluster to the end of the area that the write 1071 * request actually writes to (excluding COW at the end) 1072 */ 1073 int requested_sectors = 1074 (*bytes + offset_into_cluster(s, guest_offset)) 1075 >> BDRV_SECTOR_BITS; 1076 int avail_sectors = nb_clusters 1077 << (s->cluster_bits - BDRV_SECTOR_BITS); 1078 int alloc_n_start = offset_into_cluster(s, guest_offset) 1079 >> BDRV_SECTOR_BITS; 1080 int nb_sectors = MIN(requested_sectors, avail_sectors); 1081 QCowL2Meta *old_m = *m; 1082 1083 *m = g_malloc0(sizeof(**m)); 1084 1085 **m = (QCowL2Meta) { 1086 .next = old_m, 1087 1088 .alloc_offset = alloc_cluster_offset, 1089 .offset = start_of_cluster(s, guest_offset), 1090 .nb_clusters = nb_clusters, 1091 .nb_available = nb_sectors, 1092 1093 .cow_start = { 1094 .offset = 0, 1095 .nb_sectors = alloc_n_start, 1096 }, 1097 .cow_end = { 1098 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1099 .nb_sectors = avail_sectors - nb_sectors, 1100 }, 1101 }; 1102 qemu_co_queue_init(&(*m)->dependent_requests); 1103 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1104 1105 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1106 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1107 - offset_into_cluster(s, guest_offset)); 1108 assert(*bytes != 0); 1109 1110 return 1; 1111 1112 fail: 1113 if (*m && (*m)->nb_clusters > 0) { 1114 QLIST_REMOVE(*m, next_in_flight); 1115 } 1116 return ret; 1117 } 1118 1119 /* 1120 * alloc_cluster_offset 1121 * 1122 * For a given offset on the virtual disk, find the cluster offset in qcow2 1123 * file. If the offset is not found, allocate a new cluster. 1124 * 1125 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1126 * other fields in m are meaningless. 1127 * 1128 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1129 * contiguous clusters that have been allocated. In this case, the other 1130 * fields of m are valid and contain information about the first allocated 1131 * cluster. 1132 * 1133 * If the request conflicts with another write request in flight, the coroutine 1134 * is queued and will be reentered when the dependency has completed. 1135 * 1136 * Return 0 on success and -errno in error cases 1137 */ 1138 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1139 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m) 1140 { 1141 BDRVQcowState *s = bs->opaque; 1142 uint64_t start, remaining; 1143 uint64_t cluster_offset; 1144 uint64_t cur_bytes; 1145 int ret; 1146 1147 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, 1148 n_start, n_end); 1149 1150 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset)); 1151 offset = start_of_cluster(s, offset); 1152 1153 again: 1154 start = offset + (n_start << BDRV_SECTOR_BITS); 1155 remaining = (n_end - n_start) << BDRV_SECTOR_BITS; 1156 cluster_offset = 0; 1157 *host_offset = 0; 1158 cur_bytes = 0; 1159 *m = NULL; 1160 1161 while (true) { 1162 1163 if (!*host_offset) { 1164 *host_offset = start_of_cluster(s, cluster_offset); 1165 } 1166 1167 assert(remaining >= cur_bytes); 1168 1169 start += cur_bytes; 1170 remaining -= cur_bytes; 1171 cluster_offset += cur_bytes; 1172 1173 if (remaining == 0) { 1174 break; 1175 } 1176 1177 cur_bytes = remaining; 1178 1179 /* 1180 * Now start gathering as many contiguous clusters as possible: 1181 * 1182 * 1. Check for overlaps with in-flight allocations 1183 * 1184 * a) Overlap not in the first cluster -> shorten this request and 1185 * let the caller handle the rest in its next loop iteration. 1186 * 1187 * b) Real overlaps of two requests. Yield and restart the search 1188 * for contiguous clusters (the situation could have changed 1189 * while we were sleeping) 1190 * 1191 * c) TODO: Request starts in the same cluster as the in-flight 1192 * allocation ends. Shorten the COW of the in-fight allocation, 1193 * set cluster_offset to write to the same cluster and set up 1194 * the right synchronisation between the in-flight request and 1195 * the new one. 1196 */ 1197 ret = handle_dependencies(bs, start, &cur_bytes, m); 1198 if (ret == -EAGAIN) { 1199 /* Currently handle_dependencies() doesn't yield if we already had 1200 * an allocation. If it did, we would have to clean up the L2Meta 1201 * structs before starting over. */ 1202 assert(*m == NULL); 1203 goto again; 1204 } else if (ret < 0) { 1205 return ret; 1206 } else if (cur_bytes == 0) { 1207 break; 1208 } else { 1209 /* handle_dependencies() may have decreased cur_bytes (shortened 1210 * the allocations below) so that the next dependency is processed 1211 * correctly during the next loop iteration. */ 1212 } 1213 1214 /* 1215 * 2. Count contiguous COPIED clusters. 1216 */ 1217 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1218 if (ret < 0) { 1219 return ret; 1220 } else if (ret) { 1221 continue; 1222 } else if (cur_bytes == 0) { 1223 break; 1224 } 1225 1226 /* 1227 * 3. If the request still hasn't completed, allocate new clusters, 1228 * considering any cluster_offset of steps 1c or 2. 1229 */ 1230 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1231 if (ret < 0) { 1232 return ret; 1233 } else if (ret) { 1234 continue; 1235 } else { 1236 assert(cur_bytes == 0); 1237 break; 1238 } 1239 } 1240 1241 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS); 1242 assert(*num > 0); 1243 assert(*host_offset != 0); 1244 1245 return 0; 1246 } 1247 1248 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1249 const uint8_t *buf, int buf_size) 1250 { 1251 z_stream strm1, *strm = &strm1; 1252 int ret, out_len; 1253 1254 memset(strm, 0, sizeof(*strm)); 1255 1256 strm->next_in = (uint8_t *)buf; 1257 strm->avail_in = buf_size; 1258 strm->next_out = out_buf; 1259 strm->avail_out = out_buf_size; 1260 1261 ret = inflateInit2(strm, -12); 1262 if (ret != Z_OK) 1263 return -1; 1264 ret = inflate(strm, Z_FINISH); 1265 out_len = strm->next_out - out_buf; 1266 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1267 out_len != out_buf_size) { 1268 inflateEnd(strm); 1269 return -1; 1270 } 1271 inflateEnd(strm); 1272 return 0; 1273 } 1274 1275 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1276 { 1277 BDRVQcowState *s = bs->opaque; 1278 int ret, csize, nb_csectors, sector_offset; 1279 uint64_t coffset; 1280 1281 coffset = cluster_offset & s->cluster_offset_mask; 1282 if (s->cluster_cache_offset != coffset) { 1283 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1284 sector_offset = coffset & 511; 1285 csize = nb_csectors * 512 - sector_offset; 1286 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1287 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1288 if (ret < 0) { 1289 return ret; 1290 } 1291 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1292 s->cluster_data + sector_offset, csize) < 0) { 1293 return -EIO; 1294 } 1295 s->cluster_cache_offset = coffset; 1296 } 1297 return 0; 1298 } 1299 1300 /* 1301 * This discards as many clusters of nb_clusters as possible at once (i.e. 1302 * all clusters in the same L2 table) and returns the number of discarded 1303 * clusters. 1304 */ 1305 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1306 unsigned int nb_clusters) 1307 { 1308 BDRVQcowState *s = bs->opaque; 1309 uint64_t *l2_table; 1310 int l2_index; 1311 int ret; 1312 int i; 1313 1314 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1315 if (ret < 0) { 1316 return ret; 1317 } 1318 1319 /* Limit nb_clusters to one L2 table */ 1320 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1321 1322 for (i = 0; i < nb_clusters; i++) { 1323 uint64_t old_offset; 1324 1325 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1326 if ((old_offset & L2E_OFFSET_MASK) == 0) { 1327 continue; 1328 } 1329 1330 /* First remove L2 entries */ 1331 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1332 l2_table[l2_index + i] = cpu_to_be64(0); 1333 1334 /* Then decrease the refcount */ 1335 qcow2_free_any_clusters(bs, old_offset, 1); 1336 } 1337 1338 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1339 if (ret < 0) { 1340 return ret; 1341 } 1342 1343 return nb_clusters; 1344 } 1345 1346 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1347 int nb_sectors) 1348 { 1349 BDRVQcowState *s = bs->opaque; 1350 uint64_t end_offset; 1351 unsigned int nb_clusters; 1352 int ret; 1353 1354 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1355 1356 /* Round start up and end down */ 1357 offset = align_offset(offset, s->cluster_size); 1358 end_offset &= ~(s->cluster_size - 1); 1359 1360 if (offset > end_offset) { 1361 return 0; 1362 } 1363 1364 nb_clusters = size_to_clusters(s, end_offset - offset); 1365 1366 /* Each L2 table is handled by its own loop iteration */ 1367 while (nb_clusters > 0) { 1368 ret = discard_single_l2(bs, offset, nb_clusters); 1369 if (ret < 0) { 1370 return ret; 1371 } 1372 1373 nb_clusters -= ret; 1374 offset += (ret * s->cluster_size); 1375 } 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1382 * all clusters in the same L2 table) and returns the number of zeroed 1383 * clusters. 1384 */ 1385 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1386 unsigned int nb_clusters) 1387 { 1388 BDRVQcowState *s = bs->opaque; 1389 uint64_t *l2_table; 1390 int l2_index; 1391 int ret; 1392 int i; 1393 1394 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1395 if (ret < 0) { 1396 return ret; 1397 } 1398 1399 /* Limit nb_clusters to one L2 table */ 1400 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1401 1402 for (i = 0; i < nb_clusters; i++) { 1403 uint64_t old_offset; 1404 1405 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1406 1407 /* Update L2 entries */ 1408 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1409 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1410 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1411 qcow2_free_any_clusters(bs, old_offset, 1); 1412 } else { 1413 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1414 } 1415 } 1416 1417 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1418 if (ret < 0) { 1419 return ret; 1420 } 1421 1422 return nb_clusters; 1423 } 1424 1425 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1426 { 1427 BDRVQcowState *s = bs->opaque; 1428 unsigned int nb_clusters; 1429 int ret; 1430 1431 /* The zero flag is only supported by version 3 and newer */ 1432 if (s->qcow_version < 3) { 1433 return -ENOTSUP; 1434 } 1435 1436 /* Each L2 table is handled by its own loop iteration */ 1437 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1438 1439 while (nb_clusters > 0) { 1440 ret = zero_single_l2(bs, offset, nb_clusters); 1441 if (ret < 0) { 1442 return ret; 1443 } 1444 1445 nb_clusters -= ret; 1446 offset += (ret * s->cluster_size); 1447 } 1448 1449 return 0; 1450 } 1451