xref: /openbmc/qemu/block/qcow2-cluster.c (revision 1529ae1b)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
32 {
33     BDRVQcowState *s = bs->opaque;
34     int new_l1_size, new_l1_size2, ret, i;
35     uint64_t *new_l1_table;
36     int64_t new_l1_table_offset;
37     uint8_t data[12];
38 
39     if (min_size <= s->l1_size)
40         return 0;
41 
42     if (exact_size) {
43         new_l1_size = min_size;
44     } else {
45         /* Bump size up to reduce the number of times we have to grow */
46         new_l1_size = s->l1_size;
47         if (new_l1_size == 0) {
48             new_l1_size = 1;
49         }
50         while (min_size > new_l1_size) {
51             new_l1_size = (new_l1_size * 3 + 1) / 2;
52         }
53     }
54 
55 #ifdef DEBUG_ALLOC2
56     fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
57 #endif
58 
59     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
60     new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
61     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
62 
63     /* write new table (align to cluster) */
64     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
65     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
66     if (new_l1_table_offset < 0) {
67         g_free(new_l1_table);
68         return new_l1_table_offset;
69     }
70 
71     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
72     if (ret < 0) {
73         goto fail;
74     }
75 
76     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
77     for(i = 0; i < s->l1_size; i++)
78         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
79     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
80     if (ret < 0)
81         goto fail;
82     for(i = 0; i < s->l1_size; i++)
83         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
84 
85     /* set new table */
86     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
87     cpu_to_be32w((uint32_t*)data, new_l1_size);
88     cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
89     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
90     if (ret < 0) {
91         goto fail;
92     }
93     g_free(s->l1_table);
94     qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
95     s->l1_table_offset = new_l1_table_offset;
96     s->l1_table = new_l1_table;
97     s->l1_size = new_l1_size;
98     return 0;
99  fail:
100     g_free(new_l1_table);
101     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
102     return ret;
103 }
104 
105 /*
106  * l2_load
107  *
108  * Loads a L2 table into memory. If the table is in the cache, the cache
109  * is used; otherwise the L2 table is loaded from the image file.
110  *
111  * Returns a pointer to the L2 table on success, or NULL if the read from
112  * the image file failed.
113  */
114 
115 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
116     uint64_t **l2_table)
117 {
118     BDRVQcowState *s = bs->opaque;
119     int ret;
120 
121     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
122 
123     return ret;
124 }
125 
126 /*
127  * Writes one sector of the L1 table to the disk (can't update single entries
128  * and we really don't want bdrv_pread to perform a read-modify-write)
129  */
130 #define L1_ENTRIES_PER_SECTOR (512 / 8)
131 static int write_l1_entry(BlockDriverState *bs, int l1_index)
132 {
133     BDRVQcowState *s = bs->opaque;
134     uint64_t buf[L1_ENTRIES_PER_SECTOR];
135     int l1_start_index;
136     int i, ret;
137 
138     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
139     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
140         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
141     }
142 
143     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
144     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
145         buf, sizeof(buf));
146     if (ret < 0) {
147         return ret;
148     }
149 
150     return 0;
151 }
152 
153 /*
154  * l2_allocate
155  *
156  * Allocate a new l2 entry in the file. If l1_index points to an already
157  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
158  * table) copy the contents of the old L2 table into the newly allocated one.
159  * Otherwise the new table is initialized with zeros.
160  *
161  */
162 
163 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
164 {
165     BDRVQcowState *s = bs->opaque;
166     uint64_t old_l2_offset;
167     uint64_t *l2_table;
168     int64_t l2_offset;
169     int ret;
170 
171     old_l2_offset = s->l1_table[l1_index];
172 
173     /* allocate a new l2 entry */
174 
175     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
176     if (l2_offset < 0) {
177         return l2_offset;
178     }
179 
180     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
181     if (ret < 0) {
182         goto fail;
183     }
184 
185     /* allocate a new entry in the l2 cache */
186 
187     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
188     if (ret < 0) {
189         return ret;
190     }
191 
192     l2_table = *table;
193 
194     if (old_l2_offset == 0) {
195         /* if there was no old l2 table, clear the new table */
196         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
197     } else {
198         uint64_t* old_table;
199 
200         /* if there was an old l2 table, read it from the disk */
201         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
202         ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
203             (void**) &old_table);
204         if (ret < 0) {
205             goto fail;
206         }
207 
208         memcpy(l2_table, old_table, s->cluster_size);
209 
210         ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
211         if (ret < 0) {
212             goto fail;
213         }
214     }
215 
216     /* write the l2 table to the file */
217     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
218 
219     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
220     ret = qcow2_cache_flush(bs, s->l2_table_cache);
221     if (ret < 0) {
222         goto fail;
223     }
224 
225     /* update the L1 entry */
226     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
227     ret = write_l1_entry(bs, l1_index);
228     if (ret < 0) {
229         goto fail;
230     }
231 
232     *table = l2_table;
233     return 0;
234 
235 fail:
236     qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
237     s->l1_table[l1_index] = old_l2_offset;
238     return ret;
239 }
240 
241 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
242         uint64_t *l2_table, uint64_t start, uint64_t mask)
243 {
244     int i;
245     uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
246 
247     if (!offset)
248         return 0;
249 
250     for (i = start; i < start + nb_clusters; i++)
251         if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
252             break;
253 
254 	return (i - start);
255 }
256 
257 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
258 {
259     int i = 0;
260 
261     while(nb_clusters-- && l2_table[i] == 0)
262         i++;
263 
264     return i;
265 }
266 
267 /* The crypt function is compatible with the linux cryptoloop
268    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
269    supported */
270 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
271                            uint8_t *out_buf, const uint8_t *in_buf,
272                            int nb_sectors, int enc,
273                            const AES_KEY *key)
274 {
275     union {
276         uint64_t ll[2];
277         uint8_t b[16];
278     } ivec;
279     int i;
280 
281     for(i = 0; i < nb_sectors; i++) {
282         ivec.ll[0] = cpu_to_le64(sector_num);
283         ivec.ll[1] = 0;
284         AES_cbc_encrypt(in_buf, out_buf, 512, key,
285                         ivec.b, enc);
286         sector_num++;
287         in_buf += 512;
288         out_buf += 512;
289     }
290 }
291 
292 static int coroutine_fn copy_sectors(BlockDriverState *bs,
293                                      uint64_t start_sect,
294                                      uint64_t cluster_offset,
295                                      int n_start, int n_end)
296 {
297     BDRVQcowState *s = bs->opaque;
298     QEMUIOVector qiov;
299     struct iovec iov;
300     int n, ret;
301 
302     /*
303      * If this is the last cluster and it is only partially used, we must only
304      * copy until the end of the image, or bdrv_check_request will fail for the
305      * bdrv_read/write calls below.
306      */
307     if (start_sect + n_end > bs->total_sectors) {
308         n_end = bs->total_sectors - start_sect;
309     }
310 
311     n = n_end - n_start;
312     if (n <= 0) {
313         return 0;
314     }
315 
316     iov.iov_len = n * BDRV_SECTOR_SIZE;
317     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
318 
319     qemu_iovec_init_external(&qiov, &iov, 1);
320 
321     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
322 
323     /* Call .bdrv_co_readv() directly instead of using the public block-layer
324      * interface.  This avoids double I/O throttling and request tracking,
325      * which can lead to deadlock when block layer copy-on-read is enabled.
326      */
327     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
328     if (ret < 0) {
329         goto out;
330     }
331 
332     if (s->crypt_method) {
333         qcow2_encrypt_sectors(s, start_sect + n_start,
334                         iov.iov_base, iov.iov_base, n, 1,
335                         &s->aes_encrypt_key);
336     }
337 
338     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
339     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
340     if (ret < 0) {
341         goto out;
342     }
343 
344     ret = 0;
345 out:
346     qemu_vfree(iov.iov_base);
347     return ret;
348 }
349 
350 
351 /*
352  * get_cluster_offset
353  *
354  * For a given offset of the disk image, find the cluster offset in
355  * qcow2 file. The offset is stored in *cluster_offset.
356  *
357  * on entry, *num is the number of contiguous sectors we'd like to
358  * access following offset.
359  *
360  * on exit, *num is the number of contiguous sectors we can read.
361  *
362  * Return 0, if the offset is found
363  * Return -errno, otherwise.
364  *
365  */
366 
367 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
368     int *num, uint64_t *cluster_offset)
369 {
370     BDRVQcowState *s = bs->opaque;
371     unsigned int l1_index, l2_index;
372     uint64_t l2_offset, *l2_table;
373     int l1_bits, c;
374     unsigned int index_in_cluster, nb_clusters;
375     uint64_t nb_available, nb_needed;
376     int ret;
377 
378     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
379     nb_needed = *num + index_in_cluster;
380 
381     l1_bits = s->l2_bits + s->cluster_bits;
382 
383     /* compute how many bytes there are between the offset and
384      * the end of the l1 entry
385      */
386 
387     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
388 
389     /* compute the number of available sectors */
390 
391     nb_available = (nb_available >> 9) + index_in_cluster;
392 
393     if (nb_needed > nb_available) {
394         nb_needed = nb_available;
395     }
396 
397     *cluster_offset = 0;
398 
399     /* seek the the l2 offset in the l1 table */
400 
401     l1_index = offset >> l1_bits;
402     if (l1_index >= s->l1_size)
403         goto out;
404 
405     l2_offset = s->l1_table[l1_index];
406 
407     /* seek the l2 table of the given l2 offset */
408 
409     if (!l2_offset)
410         goto out;
411 
412     /* load the l2 table in memory */
413 
414     l2_offset &= ~QCOW_OFLAG_COPIED;
415     ret = l2_load(bs, l2_offset, &l2_table);
416     if (ret < 0) {
417         return ret;
418     }
419 
420     /* find the cluster offset for the given disk offset */
421 
422     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
423     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
424     nb_clusters = size_to_clusters(s, nb_needed << 9);
425 
426     if (!*cluster_offset) {
427         /* how many empty clusters ? */
428         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
429     } else {
430         /* how many allocated clusters ? */
431         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
432                 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
433     }
434 
435     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
436 
437    nb_available = (c * s->cluster_sectors);
438 out:
439     if (nb_available > nb_needed)
440         nb_available = nb_needed;
441 
442     *num = nb_available - index_in_cluster;
443 
444     *cluster_offset &=~QCOW_OFLAG_COPIED;
445     return 0;
446 }
447 
448 /*
449  * get_cluster_table
450  *
451  * for a given disk offset, load (and allocate if needed)
452  * the l2 table.
453  *
454  * the l2 table offset in the qcow2 file and the cluster index
455  * in the l2 table are given to the caller.
456  *
457  * Returns 0 on success, -errno in failure case
458  */
459 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
460                              uint64_t **new_l2_table,
461                              uint64_t *new_l2_offset,
462                              int *new_l2_index)
463 {
464     BDRVQcowState *s = bs->opaque;
465     unsigned int l1_index, l2_index;
466     uint64_t l2_offset;
467     uint64_t *l2_table = NULL;
468     int ret;
469 
470     /* seek the the l2 offset in the l1 table */
471 
472     l1_index = offset >> (s->l2_bits + s->cluster_bits);
473     if (l1_index >= s->l1_size) {
474         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
475         if (ret < 0) {
476             return ret;
477         }
478     }
479     l2_offset = s->l1_table[l1_index];
480 
481     /* seek the l2 table of the given l2 offset */
482 
483     if (l2_offset & QCOW_OFLAG_COPIED) {
484         /* load the l2 table in memory */
485         l2_offset &= ~QCOW_OFLAG_COPIED;
486         ret = l2_load(bs, l2_offset, &l2_table);
487         if (ret < 0) {
488             return ret;
489         }
490     } else {
491         /* First allocate a new L2 table (and do COW if needed) */
492         ret = l2_allocate(bs, l1_index, &l2_table);
493         if (ret < 0) {
494             return ret;
495         }
496 
497         /* Then decrease the refcount of the old table */
498         if (l2_offset) {
499             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
500         }
501         l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
502     }
503 
504     /* find the cluster offset for the given disk offset */
505 
506     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
507 
508     *new_l2_table = l2_table;
509     *new_l2_offset = l2_offset;
510     *new_l2_index = l2_index;
511 
512     return 0;
513 }
514 
515 /*
516  * alloc_compressed_cluster_offset
517  *
518  * For a given offset of the disk image, return cluster offset in
519  * qcow2 file.
520  *
521  * If the offset is not found, allocate a new compressed cluster.
522  *
523  * Return the cluster offset if successful,
524  * Return 0, otherwise.
525  *
526  */
527 
528 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
529                                                uint64_t offset,
530                                                int compressed_size)
531 {
532     BDRVQcowState *s = bs->opaque;
533     int l2_index, ret;
534     uint64_t l2_offset, *l2_table;
535     int64_t cluster_offset;
536     int nb_csectors;
537 
538     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
539     if (ret < 0) {
540         return 0;
541     }
542 
543     cluster_offset = be64_to_cpu(l2_table[l2_index]);
544     if (cluster_offset & QCOW_OFLAG_COPIED) {
545         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
546         return 0;
547     }
548 
549     if (cluster_offset)
550         qcow2_free_any_clusters(bs, cluster_offset, 1);
551 
552     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
553     if (cluster_offset < 0) {
554         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
555         return 0;
556     }
557 
558     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
559                   (cluster_offset >> 9);
560 
561     cluster_offset |= QCOW_OFLAG_COMPRESSED |
562                       ((uint64_t)nb_csectors << s->csize_shift);
563 
564     /* update L2 table */
565 
566     /* compressed clusters never have the copied flag */
567 
568     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
569     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
570     l2_table[l2_index] = cpu_to_be64(cluster_offset);
571     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
572     if (ret < 0) {
573         return 0;
574     }
575 
576     return cluster_offset;
577 }
578 
579 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
580 {
581     BDRVQcowState *s = bs->opaque;
582     int i, j = 0, l2_index, ret;
583     uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
584     uint64_t cluster_offset = m->cluster_offset;
585     bool cow = false;
586 
587     if (m->nb_clusters == 0)
588         return 0;
589 
590     old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
591 
592     /* copy content of unmodified sectors */
593     start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
594     if (m->n_start) {
595         cow = true;
596         qemu_co_mutex_unlock(&s->lock);
597         ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
598         qemu_co_mutex_lock(&s->lock);
599         if (ret < 0)
600             goto err;
601     }
602 
603     if (m->nb_available & (s->cluster_sectors - 1)) {
604         uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
605         cow = true;
606         qemu_co_mutex_unlock(&s->lock);
607         ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
608                 m->nb_available - end, s->cluster_sectors);
609         qemu_co_mutex_lock(&s->lock);
610         if (ret < 0)
611             goto err;
612     }
613 
614     /*
615      * Update L2 table.
616      *
617      * Before we update the L2 table to actually point to the new cluster, we
618      * need to be sure that the refcounts have been increased and COW was
619      * handled.
620      */
621     if (cow) {
622         qcow2_cache_depends_on_flush(s->l2_table_cache);
623     }
624 
625     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
626     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
627     if (ret < 0) {
628         goto err;
629     }
630     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
631 
632     for (i = 0; i < m->nb_clusters; i++) {
633         /* if two concurrent writes happen to the same unallocated cluster
634 	 * each write allocates separate cluster and writes data concurrently.
635 	 * The first one to complete updates l2 table with pointer to its
636 	 * cluster the second one has to do RMW (which is done above by
637 	 * copy_sectors()), update l2 table with its cluster pointer and free
638 	 * old cluster. This is what this loop does */
639         if(l2_table[l2_index + i] != 0)
640             old_cluster[j++] = l2_table[l2_index + i];
641 
642         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
643                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
644      }
645 
646 
647     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
648     if (ret < 0) {
649         goto err;
650     }
651 
652     /*
653      * If this was a COW, we need to decrease the refcount of the old cluster.
654      * Also flush bs->file to get the right order for L2 and refcount update.
655      */
656     if (j != 0) {
657         for (i = 0; i < j; i++) {
658             qcow2_free_any_clusters(bs,
659                 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
660         }
661     }
662 
663     ret = 0;
664 err:
665     g_free(old_cluster);
666     return ret;
667  }
668 
669 /*
670  * alloc_cluster_offset
671  *
672  * For a given offset of the disk image, return cluster offset in qcow2 file.
673  * If the offset is not found, allocate a new cluster.
674  *
675  * If the cluster was already allocated, m->nb_clusters is set to 0,
676  * other fields in m are meaningless.
677  *
678  * If the cluster is newly allocated, m->nb_clusters is set to the number of
679  * contiguous clusters that have been allocated. In this case, the other
680  * fields of m are valid and contain information about the first allocated
681  * cluster.
682  *
683  * If the request conflicts with another write request in flight, the coroutine
684  * is queued and will be reentered when the dependency has completed.
685  *
686  * Return 0 on success and -errno in error cases
687  */
688 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
689     int n_start, int n_end, int *num, QCowL2Meta *m)
690 {
691     BDRVQcowState *s = bs->opaque;
692     int l2_index, ret;
693     uint64_t l2_offset, *l2_table;
694     int64_t cluster_offset;
695     unsigned int nb_clusters, i = 0;
696     QCowL2Meta *old_alloc;
697 
698     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
699     if (ret < 0) {
700         return ret;
701     }
702 
703 again:
704     nb_clusters = size_to_clusters(s, n_end << 9);
705 
706     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
707 
708     cluster_offset = be64_to_cpu(l2_table[l2_index]);
709 
710     /* We keep all QCOW_OFLAG_COPIED clusters */
711 
712     if (cluster_offset & QCOW_OFLAG_COPIED) {
713         nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
714                 &l2_table[l2_index], 0, 0);
715 
716         cluster_offset &= ~QCOW_OFLAG_COPIED;
717         m->nb_clusters = 0;
718 
719         goto out;
720     }
721 
722     /* for the moment, multiple compressed clusters are not managed */
723 
724     if (cluster_offset & QCOW_OFLAG_COMPRESSED)
725         nb_clusters = 1;
726 
727     /* how many available clusters ? */
728 
729     while (i < nb_clusters) {
730         i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
731                 &l2_table[l2_index], i, 0);
732         if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
733             break;
734         }
735 
736         i += count_contiguous_free_clusters(nb_clusters - i,
737                 &l2_table[l2_index + i]);
738         if (i >= nb_clusters) {
739             break;
740         }
741 
742         cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
743 
744         if ((cluster_offset & QCOW_OFLAG_COPIED) ||
745                 (cluster_offset & QCOW_OFLAG_COMPRESSED))
746             break;
747     }
748     assert(i <= nb_clusters);
749     nb_clusters = i;
750 
751     /*
752      * Check if there already is an AIO write request in flight which allocates
753      * the same cluster. In this case we need to wait until the previous
754      * request has completed and updated the L2 table accordingly.
755      */
756     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
757 
758         uint64_t start = offset >> s->cluster_bits;
759         uint64_t end = start + nb_clusters;
760         uint64_t old_start = old_alloc->offset >> s->cluster_bits;
761         uint64_t old_end = old_start + old_alloc->nb_clusters;
762 
763         if (end < old_start || start > old_end) {
764             /* No intersection */
765         } else {
766             if (start < old_start) {
767                 /* Stop at the start of a running allocation */
768                 nb_clusters = old_start - start;
769             } else {
770                 nb_clusters = 0;
771             }
772 
773             if (nb_clusters == 0) {
774                 /* Wait for the dependency to complete. We need to recheck
775                  * the free/allocated clusters when we continue. */
776                 qemu_co_mutex_unlock(&s->lock);
777                 qemu_co_queue_wait(&old_alloc->dependent_requests);
778                 qemu_co_mutex_lock(&s->lock);
779                 goto again;
780             }
781         }
782     }
783 
784     if (!nb_clusters) {
785         abort();
786     }
787 
788     /* save info needed for meta data update */
789     m->offset = offset;
790     m->n_start = n_start;
791     m->nb_clusters = nb_clusters;
792 
793     QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
794 
795     /* allocate a new cluster */
796 
797     cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
798     if (cluster_offset < 0) {
799         ret = cluster_offset;
800         goto fail;
801     }
802 
803 out:
804     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
805     if (ret < 0) {
806         goto fail_put;
807     }
808 
809     m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
810     m->cluster_offset = cluster_offset;
811 
812     *num = m->nb_available - n_start;
813 
814     return 0;
815 
816 fail:
817     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
818 fail_put:
819     QLIST_REMOVE(m, next_in_flight);
820     return ret;
821 }
822 
823 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
824                              const uint8_t *buf, int buf_size)
825 {
826     z_stream strm1, *strm = &strm1;
827     int ret, out_len;
828 
829     memset(strm, 0, sizeof(*strm));
830 
831     strm->next_in = (uint8_t *)buf;
832     strm->avail_in = buf_size;
833     strm->next_out = out_buf;
834     strm->avail_out = out_buf_size;
835 
836     ret = inflateInit2(strm, -12);
837     if (ret != Z_OK)
838         return -1;
839     ret = inflate(strm, Z_FINISH);
840     out_len = strm->next_out - out_buf;
841     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
842         out_len != out_buf_size) {
843         inflateEnd(strm);
844         return -1;
845     }
846     inflateEnd(strm);
847     return 0;
848 }
849 
850 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
851 {
852     BDRVQcowState *s = bs->opaque;
853     int ret, csize, nb_csectors, sector_offset;
854     uint64_t coffset;
855 
856     coffset = cluster_offset & s->cluster_offset_mask;
857     if (s->cluster_cache_offset != coffset) {
858         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
859         sector_offset = coffset & 511;
860         csize = nb_csectors * 512 - sector_offset;
861         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
862         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
863         if (ret < 0) {
864             return ret;
865         }
866         if (decompress_buffer(s->cluster_cache, s->cluster_size,
867                               s->cluster_data + sector_offset, csize) < 0) {
868             return -EIO;
869         }
870         s->cluster_cache_offset = coffset;
871     }
872     return 0;
873 }
874 
875 /*
876  * This discards as many clusters of nb_clusters as possible at once (i.e.
877  * all clusters in the same L2 table) and returns the number of discarded
878  * clusters.
879  */
880 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
881     unsigned int nb_clusters)
882 {
883     BDRVQcowState *s = bs->opaque;
884     uint64_t l2_offset, *l2_table;
885     int l2_index;
886     int ret;
887     int i;
888 
889     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
890     if (ret < 0) {
891         return ret;
892     }
893 
894     /* Limit nb_clusters to one L2 table */
895     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
896 
897     for (i = 0; i < nb_clusters; i++) {
898         uint64_t old_offset;
899 
900         old_offset = be64_to_cpu(l2_table[l2_index + i]);
901         old_offset &= ~QCOW_OFLAG_COPIED;
902 
903         if (old_offset == 0) {
904             continue;
905         }
906 
907         /* First remove L2 entries */
908         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
909         l2_table[l2_index + i] = cpu_to_be64(0);
910 
911         /* Then decrease the refcount */
912         qcow2_free_any_clusters(bs, old_offset, 1);
913     }
914 
915     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
916     if (ret < 0) {
917         return ret;
918     }
919 
920     return nb_clusters;
921 }
922 
923 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
924     int nb_sectors)
925 {
926     BDRVQcowState *s = bs->opaque;
927     uint64_t end_offset;
928     unsigned int nb_clusters;
929     int ret;
930 
931     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
932 
933     /* Round start up and end down */
934     offset = align_offset(offset, s->cluster_size);
935     end_offset &= ~(s->cluster_size - 1);
936 
937     if (offset > end_offset) {
938         return 0;
939     }
940 
941     nb_clusters = size_to_clusters(s, end_offset - offset);
942 
943     /* Each L2 table is handled by its own loop iteration */
944     while (nb_clusters > 0) {
945         ret = discard_single_l2(bs, offset, nb_clusters);
946         if (ret < 0) {
947             return ret;
948         }
949 
950         nb_clusters -= ret;
951         offset += (ret * s->cluster_size);
952     }
953 
954     return 0;
955 }
956