xref: /openbmc/qemu/block/qcow2-cluster.c (revision 0b2ff2ce)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33                         bool exact_size)
34 {
35     BDRVQcowState *s = bs->opaque;
36     int new_l1_size2, ret, i;
37     uint64_t *new_l1_table;
38     int64_t old_l1_table_offset, old_l1_size;
39     int64_t new_l1_table_offset, new_l1_size;
40     uint8_t data[12];
41 
42     if (min_size <= s->l1_size)
43         return 0;
44 
45     /* Do a sanity check on min_size before trying to calculate new_l1_size
46      * (this prevents overflows during the while loop for the calculation of
47      * new_l1_size) */
48     if (min_size > INT_MAX / sizeof(uint64_t)) {
49         return -EFBIG;
50     }
51 
52     if (exact_size) {
53         new_l1_size = min_size;
54     } else {
55         /* Bump size up to reduce the number of times we have to grow */
56         new_l1_size = s->l1_size;
57         if (new_l1_size == 0) {
58             new_l1_size = 1;
59         }
60         while (min_size > new_l1_size) {
61             new_l1_size = (new_l1_size * 3 + 1) / 2;
62         }
63     }
64 
65     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66         return -EFBIG;
67     }
68 
69 #ifdef DEBUG_ALLOC2
70     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71             s->l1_size, new_l1_size);
72 #endif
73 
74     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75     new_l1_table = qemu_try_blockalign(bs->file,
76                                        align_offset(new_l1_size2, 512));
77     if (new_l1_table == NULL) {
78         return -ENOMEM;
79     }
80     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
81 
82     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
83 
84     /* write new table (align to cluster) */
85     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87     if (new_l1_table_offset < 0) {
88         qemu_vfree(new_l1_table);
89         return new_l1_table_offset;
90     }
91 
92     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93     if (ret < 0) {
94         goto fail;
95     }
96 
97     /* the L1 position has not yet been updated, so these clusters must
98      * indeed be completely free */
99     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100                                         new_l1_size2);
101     if (ret < 0) {
102         goto fail;
103     }
104 
105     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106     for(i = 0; i < s->l1_size; i++)
107         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
109     if (ret < 0)
110         goto fail;
111     for(i = 0; i < s->l1_size; i++)
112         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
113 
114     /* set new table */
115     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
116     cpu_to_be32w((uint32_t*)data, new_l1_size);
117     stq_be_p(data + 4, new_l1_table_offset);
118     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
119     if (ret < 0) {
120         goto fail;
121     }
122     qemu_vfree(s->l1_table);
123     old_l1_table_offset = s->l1_table_offset;
124     s->l1_table_offset = new_l1_table_offset;
125     s->l1_table = new_l1_table;
126     old_l1_size = s->l1_size;
127     s->l1_size = new_l1_size;
128     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
129                         QCOW2_DISCARD_OTHER);
130     return 0;
131  fail:
132     qemu_vfree(new_l1_table);
133     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
134                         QCOW2_DISCARD_OTHER);
135     return ret;
136 }
137 
138 /*
139  * l2_load
140  *
141  * Loads a L2 table into memory. If the table is in the cache, the cache
142  * is used; otherwise the L2 table is loaded from the image file.
143  *
144  * Returns a pointer to the L2 table on success, or NULL if the read from
145  * the image file failed.
146  */
147 
148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
149     uint64_t **l2_table)
150 {
151     BDRVQcowState *s = bs->opaque;
152     int ret;
153 
154     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
155 
156     return ret;
157 }
158 
159 /*
160  * Writes one sector of the L1 table to the disk (can't update single entries
161  * and we really don't want bdrv_pread to perform a read-modify-write)
162  */
163 #define L1_ENTRIES_PER_SECTOR (512 / 8)
164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
165 {
166     BDRVQcowState *s = bs->opaque;
167     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
168     int l1_start_index;
169     int i, ret;
170 
171     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
172     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
173          i++)
174     {
175         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
176     }
177 
178     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
179             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
180     if (ret < 0) {
181         return ret;
182     }
183 
184     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
185     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
186         buf, sizeof(buf));
187     if (ret < 0) {
188         return ret;
189     }
190 
191     return 0;
192 }
193 
194 /*
195  * l2_allocate
196  *
197  * Allocate a new l2 entry in the file. If l1_index points to an already
198  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
199  * table) copy the contents of the old L2 table into the newly allocated one.
200  * Otherwise the new table is initialized with zeros.
201  *
202  */
203 
204 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
205 {
206     BDRVQcowState *s = bs->opaque;
207     uint64_t old_l2_offset;
208     uint64_t *l2_table = NULL;
209     int64_t l2_offset;
210     int ret;
211 
212     old_l2_offset = s->l1_table[l1_index];
213 
214     trace_qcow2_l2_allocate(bs, l1_index);
215 
216     /* allocate a new l2 entry */
217 
218     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
219     if (l2_offset < 0) {
220         ret = l2_offset;
221         goto fail;
222     }
223 
224     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
225     if (ret < 0) {
226         goto fail;
227     }
228 
229     /* allocate a new entry in the l2 cache */
230 
231     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
232     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
233     if (ret < 0) {
234         goto fail;
235     }
236 
237     l2_table = *table;
238 
239     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
240         /* if there was no old l2 table, clear the new table */
241         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
242     } else {
243         uint64_t* old_table;
244 
245         /* if there was an old l2 table, read it from the disk */
246         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
247         ret = qcow2_cache_get(bs, s->l2_table_cache,
248             old_l2_offset & L1E_OFFSET_MASK,
249             (void**) &old_table);
250         if (ret < 0) {
251             goto fail;
252         }
253 
254         memcpy(l2_table, old_table, s->cluster_size);
255 
256         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
257     }
258 
259     /* write the l2 table to the file */
260     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
261 
262     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
263     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
264     ret = qcow2_cache_flush(bs, s->l2_table_cache);
265     if (ret < 0) {
266         goto fail;
267     }
268 
269     /* update the L1 entry */
270     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
271     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
272     ret = qcow2_write_l1_entry(bs, l1_index);
273     if (ret < 0) {
274         goto fail;
275     }
276 
277     *table = l2_table;
278     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
279     return 0;
280 
281 fail:
282     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
283     if (l2_table != NULL) {
284         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
285     }
286     s->l1_table[l1_index] = old_l2_offset;
287     if (l2_offset > 0) {
288         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
289                             QCOW2_DISCARD_ALWAYS);
290     }
291     return ret;
292 }
293 
294 /*
295  * Checks how many clusters in a given L2 table are contiguous in the image
296  * file. As soon as one of the flags in the bitmask stop_flags changes compared
297  * to the first cluster, the search is stopped and the cluster is not counted
298  * as contiguous. (This allows it, for example, to stop at the first compressed
299  * cluster which may require a different handling)
300  */
301 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
302         uint64_t *l2_table, uint64_t stop_flags)
303 {
304     int i;
305     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
306     uint64_t first_entry = be64_to_cpu(l2_table[0]);
307     uint64_t offset = first_entry & mask;
308 
309     if (!offset)
310         return 0;
311 
312     assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
313 
314     for (i = 0; i < nb_clusters; i++) {
315         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
316         if (offset + (uint64_t) i * cluster_size != l2_entry) {
317             break;
318         }
319     }
320 
321 	return i;
322 }
323 
324 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
325 {
326     int i;
327 
328     for (i = 0; i < nb_clusters; i++) {
329         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
330 
331         if (type != QCOW2_CLUSTER_UNALLOCATED) {
332             break;
333         }
334     }
335 
336     return i;
337 }
338 
339 /* The crypt function is compatible with the linux cryptoloop
340    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
341    supported */
342 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
343                            uint8_t *out_buf, const uint8_t *in_buf,
344                            int nb_sectors, int enc,
345                            const AES_KEY *key)
346 {
347     union {
348         uint64_t ll[2];
349         uint8_t b[16];
350     } ivec;
351     int i;
352 
353     for(i = 0; i < nb_sectors; i++) {
354         ivec.ll[0] = cpu_to_le64(sector_num);
355         ivec.ll[1] = 0;
356         AES_cbc_encrypt(in_buf, out_buf, 512, key,
357                         ivec.b, enc);
358         sector_num++;
359         in_buf += 512;
360         out_buf += 512;
361     }
362 }
363 
364 static int coroutine_fn copy_sectors(BlockDriverState *bs,
365                                      uint64_t start_sect,
366                                      uint64_t cluster_offset,
367                                      int n_start, int n_end)
368 {
369     BDRVQcowState *s = bs->opaque;
370     QEMUIOVector qiov;
371     struct iovec iov;
372     int n, ret;
373 
374     n = n_end - n_start;
375     if (n <= 0) {
376         return 0;
377     }
378 
379     iov.iov_len = n * BDRV_SECTOR_SIZE;
380     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
381     if (iov.iov_base == NULL) {
382         return -ENOMEM;
383     }
384 
385     qemu_iovec_init_external(&qiov, &iov, 1);
386 
387     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
388 
389     if (!bs->drv) {
390         ret = -ENOMEDIUM;
391         goto out;
392     }
393 
394     /* Call .bdrv_co_readv() directly instead of using the public block-layer
395      * interface.  This avoids double I/O throttling and request tracking,
396      * which can lead to deadlock when block layer copy-on-read is enabled.
397      */
398     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
399     if (ret < 0) {
400         goto out;
401     }
402 
403     if (bs->encrypted) {
404         assert(s->crypt_method);
405         qcow2_encrypt_sectors(s, start_sect + n_start,
406                         iov.iov_base, iov.iov_base, n, 1,
407                         &s->aes_encrypt_key);
408     }
409 
410     ret = qcow2_pre_write_overlap_check(bs, 0,
411             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
412     if (ret < 0) {
413         goto out;
414     }
415 
416     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
417     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
418     if (ret < 0) {
419         goto out;
420     }
421 
422     ret = 0;
423 out:
424     qemu_vfree(iov.iov_base);
425     return ret;
426 }
427 
428 
429 /*
430  * get_cluster_offset
431  *
432  * For a given offset of the disk image, find the cluster offset in
433  * qcow2 file. The offset is stored in *cluster_offset.
434  *
435  * on entry, *num is the number of contiguous sectors we'd like to
436  * access following offset.
437  *
438  * on exit, *num is the number of contiguous sectors we can read.
439  *
440  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
441  * cases.
442  */
443 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
444     int *num, uint64_t *cluster_offset)
445 {
446     BDRVQcowState *s = bs->opaque;
447     unsigned int l2_index;
448     uint64_t l1_index, l2_offset, *l2_table;
449     int l1_bits, c;
450     unsigned int index_in_cluster, nb_clusters;
451     uint64_t nb_available, nb_needed;
452     int ret;
453 
454     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
455     nb_needed = *num + index_in_cluster;
456 
457     l1_bits = s->l2_bits + s->cluster_bits;
458 
459     /* compute how many bytes there are between the offset and
460      * the end of the l1 entry
461      */
462 
463     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
464 
465     /* compute the number of available sectors */
466 
467     nb_available = (nb_available >> 9) + index_in_cluster;
468 
469     if (nb_needed > nb_available) {
470         nb_needed = nb_available;
471     }
472 
473     *cluster_offset = 0;
474 
475     /* seek the the l2 offset in the l1 table */
476 
477     l1_index = offset >> l1_bits;
478     if (l1_index >= s->l1_size) {
479         ret = QCOW2_CLUSTER_UNALLOCATED;
480         goto out;
481     }
482 
483     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
484     if (!l2_offset) {
485         ret = QCOW2_CLUSTER_UNALLOCATED;
486         goto out;
487     }
488 
489     if (offset_into_cluster(s, l2_offset)) {
490         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
491                                 " unaligned (L1 index: %#" PRIx64 ")",
492                                 l2_offset, l1_index);
493         return -EIO;
494     }
495 
496     /* load the l2 table in memory */
497 
498     ret = l2_load(bs, l2_offset, &l2_table);
499     if (ret < 0) {
500         return ret;
501     }
502 
503     /* find the cluster offset for the given disk offset */
504 
505     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
506     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
507     nb_clusters = size_to_clusters(s, nb_needed << 9);
508 
509     ret = qcow2_get_cluster_type(*cluster_offset);
510     switch (ret) {
511     case QCOW2_CLUSTER_COMPRESSED:
512         /* Compressed clusters can only be processed one by one */
513         c = 1;
514         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
515         break;
516     case QCOW2_CLUSTER_ZERO:
517         if (s->qcow_version < 3) {
518             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
519                                     " in pre-v3 image (L2 offset: %#" PRIx64
520                                     ", L2 index: %#x)", l2_offset, l2_index);
521             ret = -EIO;
522             goto fail;
523         }
524         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
525                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
526         *cluster_offset = 0;
527         break;
528     case QCOW2_CLUSTER_UNALLOCATED:
529         /* how many empty clusters ? */
530         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
531         *cluster_offset = 0;
532         break;
533     case QCOW2_CLUSTER_NORMAL:
534         /* how many allocated clusters ? */
535         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
536                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
537         *cluster_offset &= L2E_OFFSET_MASK;
538         if (offset_into_cluster(s, *cluster_offset)) {
539             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
540                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
541                                     ", L2 index: %#x)", *cluster_offset,
542                                     l2_offset, l2_index);
543             ret = -EIO;
544             goto fail;
545         }
546         break;
547     default:
548         abort();
549     }
550 
551     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
552 
553     nb_available = (c * s->cluster_sectors);
554 
555 out:
556     if (nb_available > nb_needed)
557         nb_available = nb_needed;
558 
559     *num = nb_available - index_in_cluster;
560 
561     return ret;
562 
563 fail:
564     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
565     return ret;
566 }
567 
568 /*
569  * get_cluster_table
570  *
571  * for a given disk offset, load (and allocate if needed)
572  * the l2 table.
573  *
574  * the l2 table offset in the qcow2 file and the cluster index
575  * in the l2 table are given to the caller.
576  *
577  * Returns 0 on success, -errno in failure case
578  */
579 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
580                              uint64_t **new_l2_table,
581                              int *new_l2_index)
582 {
583     BDRVQcowState *s = bs->opaque;
584     unsigned int l2_index;
585     uint64_t l1_index, l2_offset;
586     uint64_t *l2_table = NULL;
587     int ret;
588 
589     /* seek the the l2 offset in the l1 table */
590 
591     l1_index = offset >> (s->l2_bits + s->cluster_bits);
592     if (l1_index >= s->l1_size) {
593         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
594         if (ret < 0) {
595             return ret;
596         }
597     }
598 
599     assert(l1_index < s->l1_size);
600     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
601     if (offset_into_cluster(s, l2_offset)) {
602         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
603                                 " unaligned (L1 index: %#" PRIx64 ")",
604                                 l2_offset, l1_index);
605         return -EIO;
606     }
607 
608     /* seek the l2 table of the given l2 offset */
609 
610     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
611         /* load the l2 table in memory */
612         ret = l2_load(bs, l2_offset, &l2_table);
613         if (ret < 0) {
614             return ret;
615         }
616     } else {
617         /* First allocate a new L2 table (and do COW if needed) */
618         ret = l2_allocate(bs, l1_index, &l2_table);
619         if (ret < 0) {
620             return ret;
621         }
622 
623         /* Then decrease the refcount of the old table */
624         if (l2_offset) {
625             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
626                                 QCOW2_DISCARD_OTHER);
627         }
628     }
629 
630     /* find the cluster offset for the given disk offset */
631 
632     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
633 
634     *new_l2_table = l2_table;
635     *new_l2_index = l2_index;
636 
637     return 0;
638 }
639 
640 /*
641  * alloc_compressed_cluster_offset
642  *
643  * For a given offset of the disk image, return cluster offset in
644  * qcow2 file.
645  *
646  * If the offset is not found, allocate a new compressed cluster.
647  *
648  * Return the cluster offset if successful,
649  * Return 0, otherwise.
650  *
651  */
652 
653 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
654                                                uint64_t offset,
655                                                int compressed_size)
656 {
657     BDRVQcowState *s = bs->opaque;
658     int l2_index, ret;
659     uint64_t *l2_table;
660     int64_t cluster_offset;
661     int nb_csectors;
662 
663     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
664     if (ret < 0) {
665         return 0;
666     }
667 
668     /* Compression can't overwrite anything. Fail if the cluster was already
669      * allocated. */
670     cluster_offset = be64_to_cpu(l2_table[l2_index]);
671     if (cluster_offset & L2E_OFFSET_MASK) {
672         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
673         return 0;
674     }
675 
676     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
677     if (cluster_offset < 0) {
678         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
679         return 0;
680     }
681 
682     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
683                   (cluster_offset >> 9);
684 
685     cluster_offset |= QCOW_OFLAG_COMPRESSED |
686                       ((uint64_t)nb_csectors << s->csize_shift);
687 
688     /* update L2 table */
689 
690     /* compressed clusters never have the copied flag */
691 
692     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
693     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
694     l2_table[l2_index] = cpu_to_be64(cluster_offset);
695     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
696 
697     return cluster_offset;
698 }
699 
700 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
701 {
702     BDRVQcowState *s = bs->opaque;
703     int ret;
704 
705     if (r->nb_sectors == 0) {
706         return 0;
707     }
708 
709     qemu_co_mutex_unlock(&s->lock);
710     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
711                        r->offset / BDRV_SECTOR_SIZE,
712                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
713     qemu_co_mutex_lock(&s->lock);
714 
715     if (ret < 0) {
716         return ret;
717     }
718 
719     /*
720      * Before we update the L2 table to actually point to the new cluster, we
721      * need to be sure that the refcounts have been increased and COW was
722      * handled.
723      */
724     qcow2_cache_depends_on_flush(s->l2_table_cache);
725 
726     return 0;
727 }
728 
729 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
730 {
731     BDRVQcowState *s = bs->opaque;
732     int i, j = 0, l2_index, ret;
733     uint64_t *old_cluster, *l2_table;
734     uint64_t cluster_offset = m->alloc_offset;
735 
736     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
737     assert(m->nb_clusters > 0);
738 
739     old_cluster = g_try_new(uint64_t, m->nb_clusters);
740     if (old_cluster == NULL) {
741         ret = -ENOMEM;
742         goto err;
743     }
744 
745     /* copy content of unmodified sectors */
746     ret = perform_cow(bs, m, &m->cow_start);
747     if (ret < 0) {
748         goto err;
749     }
750 
751     ret = perform_cow(bs, m, &m->cow_end);
752     if (ret < 0) {
753         goto err;
754     }
755 
756     /* Update L2 table. */
757     if (s->use_lazy_refcounts) {
758         qcow2_mark_dirty(bs);
759     }
760     if (qcow2_need_accurate_refcounts(s)) {
761         qcow2_cache_set_dependency(bs, s->l2_table_cache,
762                                    s->refcount_block_cache);
763     }
764 
765     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
766     if (ret < 0) {
767         goto err;
768     }
769     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
770 
771     assert(l2_index + m->nb_clusters <= s->l2_size);
772     for (i = 0; i < m->nb_clusters; i++) {
773         /* if two concurrent writes happen to the same unallocated cluster
774 	 * each write allocates separate cluster and writes data concurrently.
775 	 * The first one to complete updates l2 table with pointer to its
776 	 * cluster the second one has to do RMW (which is done above by
777 	 * copy_sectors()), update l2 table with its cluster pointer and free
778 	 * old cluster. This is what this loop does */
779         if(l2_table[l2_index + i] != 0)
780             old_cluster[j++] = l2_table[l2_index + i];
781 
782         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
783                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
784      }
785 
786 
787     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
788 
789     /*
790      * If this was a COW, we need to decrease the refcount of the old cluster.
791      * Also flush bs->file to get the right order for L2 and refcount update.
792      *
793      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
794      * clusters), the next write will reuse them anyway.
795      */
796     if (j != 0) {
797         for (i = 0; i < j; i++) {
798             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
799                                     QCOW2_DISCARD_NEVER);
800         }
801     }
802 
803     ret = 0;
804 err:
805     g_free(old_cluster);
806     return ret;
807  }
808 
809 /*
810  * Returns the number of contiguous clusters that can be used for an allocating
811  * write, but require COW to be performed (this includes yet unallocated space,
812  * which must copy from the backing file)
813  */
814 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
815     uint64_t *l2_table, int l2_index)
816 {
817     int i;
818 
819     for (i = 0; i < nb_clusters; i++) {
820         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
821         int cluster_type = qcow2_get_cluster_type(l2_entry);
822 
823         switch(cluster_type) {
824         case QCOW2_CLUSTER_NORMAL:
825             if (l2_entry & QCOW_OFLAG_COPIED) {
826                 goto out;
827             }
828             break;
829         case QCOW2_CLUSTER_UNALLOCATED:
830         case QCOW2_CLUSTER_COMPRESSED:
831         case QCOW2_CLUSTER_ZERO:
832             break;
833         default:
834             abort();
835         }
836     }
837 
838 out:
839     assert(i <= nb_clusters);
840     return i;
841 }
842 
843 /*
844  * Check if there already is an AIO write request in flight which allocates
845  * the same cluster. In this case we need to wait until the previous
846  * request has completed and updated the L2 table accordingly.
847  *
848  * Returns:
849  *   0       if there was no dependency. *cur_bytes indicates the number of
850  *           bytes from guest_offset that can be read before the next
851  *           dependency must be processed (or the request is complete)
852  *
853  *   -EAGAIN if we had to wait for another request, previously gathered
854  *           information on cluster allocation may be invalid now. The caller
855  *           must start over anyway, so consider *cur_bytes undefined.
856  */
857 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
858     uint64_t *cur_bytes, QCowL2Meta **m)
859 {
860     BDRVQcowState *s = bs->opaque;
861     QCowL2Meta *old_alloc;
862     uint64_t bytes = *cur_bytes;
863 
864     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
865 
866         uint64_t start = guest_offset;
867         uint64_t end = start + bytes;
868         uint64_t old_start = l2meta_cow_start(old_alloc);
869         uint64_t old_end = l2meta_cow_end(old_alloc);
870 
871         if (end <= old_start || start >= old_end) {
872             /* No intersection */
873         } else {
874             if (start < old_start) {
875                 /* Stop at the start of a running allocation */
876                 bytes = old_start - start;
877             } else {
878                 bytes = 0;
879             }
880 
881             /* Stop if already an l2meta exists. After yielding, it wouldn't
882              * be valid any more, so we'd have to clean up the old L2Metas
883              * and deal with requests depending on them before starting to
884              * gather new ones. Not worth the trouble. */
885             if (bytes == 0 && *m) {
886                 *cur_bytes = 0;
887                 return 0;
888             }
889 
890             if (bytes == 0) {
891                 /* Wait for the dependency to complete. We need to recheck
892                  * the free/allocated clusters when we continue. */
893                 qemu_co_mutex_unlock(&s->lock);
894                 qemu_co_queue_wait(&old_alloc->dependent_requests);
895                 qemu_co_mutex_lock(&s->lock);
896                 return -EAGAIN;
897             }
898         }
899     }
900 
901     /* Make sure that existing clusters and new allocations are only used up to
902      * the next dependency if we shortened the request above */
903     *cur_bytes = bytes;
904 
905     return 0;
906 }
907 
908 /*
909  * Checks how many already allocated clusters that don't require a copy on
910  * write there are at the given guest_offset (up to *bytes). If
911  * *host_offset is not zero, only physically contiguous clusters beginning at
912  * this host offset are counted.
913  *
914  * Note that guest_offset may not be cluster aligned. In this case, the
915  * returned *host_offset points to exact byte referenced by guest_offset and
916  * therefore isn't cluster aligned as well.
917  *
918  * Returns:
919  *   0:     if no allocated clusters are available at the given offset.
920  *          *bytes is normally unchanged. It is set to 0 if the cluster
921  *          is allocated and doesn't need COW, but doesn't have the right
922  *          physical offset.
923  *
924  *   1:     if allocated clusters that don't require a COW are available at
925  *          the requested offset. *bytes may have decreased and describes
926  *          the length of the area that can be written to.
927  *
928  *  -errno: in error cases
929  */
930 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
931     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
932 {
933     BDRVQcowState *s = bs->opaque;
934     int l2_index;
935     uint64_t cluster_offset;
936     uint64_t *l2_table;
937     unsigned int nb_clusters;
938     unsigned int keep_clusters;
939     int ret;
940 
941     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
942                               *bytes);
943 
944     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
945                                 == offset_into_cluster(s, *host_offset));
946 
947     /*
948      * Calculate the number of clusters to look for. We stop at L2 table
949      * boundaries to keep things simple.
950      */
951     nb_clusters =
952         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
953 
954     l2_index = offset_to_l2_index(s, guest_offset);
955     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
956 
957     /* Find L2 entry for the first involved cluster */
958     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
959     if (ret < 0) {
960         return ret;
961     }
962 
963     cluster_offset = be64_to_cpu(l2_table[l2_index]);
964 
965     /* Check how many clusters are already allocated and don't need COW */
966     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
967         && (cluster_offset & QCOW_OFLAG_COPIED))
968     {
969         /* If a specific host_offset is required, check it */
970         bool offset_matches =
971             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
972 
973         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
974             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
975                                     "%#llx unaligned (guest offset: %#" PRIx64
976                                     ")", cluster_offset & L2E_OFFSET_MASK,
977                                     guest_offset);
978             ret = -EIO;
979             goto out;
980         }
981 
982         if (*host_offset != 0 && !offset_matches) {
983             *bytes = 0;
984             ret = 0;
985             goto out;
986         }
987 
988         /* We keep all QCOW_OFLAG_COPIED clusters */
989         keep_clusters =
990             count_contiguous_clusters(nb_clusters, s->cluster_size,
991                                       &l2_table[l2_index],
992                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
993         assert(keep_clusters <= nb_clusters);
994 
995         *bytes = MIN(*bytes,
996                  keep_clusters * s->cluster_size
997                  - offset_into_cluster(s, guest_offset));
998 
999         ret = 1;
1000     } else {
1001         ret = 0;
1002     }
1003 
1004     /* Cleanup */
1005 out:
1006     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1007 
1008     /* Only return a host offset if we actually made progress. Otherwise we
1009      * would make requirements for handle_alloc() that it can't fulfill */
1010     if (ret > 0) {
1011         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1012                      + offset_into_cluster(s, guest_offset);
1013     }
1014 
1015     return ret;
1016 }
1017 
1018 /*
1019  * Allocates new clusters for the given guest_offset.
1020  *
1021  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1022  * contain the number of clusters that have been allocated and are contiguous
1023  * in the image file.
1024  *
1025  * If *host_offset is non-zero, it specifies the offset in the image file at
1026  * which the new clusters must start. *nb_clusters can be 0 on return in this
1027  * case if the cluster at host_offset is already in use. If *host_offset is
1028  * zero, the clusters can be allocated anywhere in the image file.
1029  *
1030  * *host_offset is updated to contain the offset into the image file at which
1031  * the first allocated cluster starts.
1032  *
1033  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1034  * function has been waiting for another request and the allocation must be
1035  * restarted, but the whole request should not be failed.
1036  */
1037 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1038     uint64_t *host_offset, unsigned int *nb_clusters)
1039 {
1040     BDRVQcowState *s = bs->opaque;
1041 
1042     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1043                                          *host_offset, *nb_clusters);
1044 
1045     /* Allocate new clusters */
1046     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1047     if (*host_offset == 0) {
1048         int64_t cluster_offset =
1049             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1050         if (cluster_offset < 0) {
1051             return cluster_offset;
1052         }
1053         *host_offset = cluster_offset;
1054         return 0;
1055     } else {
1056         int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1057         if (ret < 0) {
1058             return ret;
1059         }
1060         *nb_clusters = ret;
1061         return 0;
1062     }
1063 }
1064 
1065 /*
1066  * Allocates new clusters for an area that either is yet unallocated or needs a
1067  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1068  * the new allocation can match the specified host offset.
1069  *
1070  * Note that guest_offset may not be cluster aligned. In this case, the
1071  * returned *host_offset points to exact byte referenced by guest_offset and
1072  * therefore isn't cluster aligned as well.
1073  *
1074  * Returns:
1075  *   0:     if no clusters could be allocated. *bytes is set to 0,
1076  *          *host_offset is left unchanged.
1077  *
1078  *   1:     if new clusters were allocated. *bytes may be decreased if the
1079  *          new allocation doesn't cover all of the requested area.
1080  *          *host_offset is updated to contain the host offset of the first
1081  *          newly allocated cluster.
1082  *
1083  *  -errno: in error cases
1084  */
1085 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1086     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1087 {
1088     BDRVQcowState *s = bs->opaque;
1089     int l2_index;
1090     uint64_t *l2_table;
1091     uint64_t entry;
1092     unsigned int nb_clusters;
1093     int ret;
1094 
1095     uint64_t alloc_cluster_offset;
1096 
1097     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1098                              *bytes);
1099     assert(*bytes > 0);
1100 
1101     /*
1102      * Calculate the number of clusters to look for. We stop at L2 table
1103      * boundaries to keep things simple.
1104      */
1105     nb_clusters =
1106         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1107 
1108     l2_index = offset_to_l2_index(s, guest_offset);
1109     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1110 
1111     /* Find L2 entry for the first involved cluster */
1112     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1113     if (ret < 0) {
1114         return ret;
1115     }
1116 
1117     entry = be64_to_cpu(l2_table[l2_index]);
1118 
1119     /* For the moment, overwrite compressed clusters one by one */
1120     if (entry & QCOW_OFLAG_COMPRESSED) {
1121         nb_clusters = 1;
1122     } else {
1123         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1124     }
1125 
1126     /* This function is only called when there were no non-COW clusters, so if
1127      * we can't find any unallocated or COW clusters either, something is
1128      * wrong with our code. */
1129     assert(nb_clusters > 0);
1130 
1131     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1132 
1133     /* Allocate, if necessary at a given offset in the image file */
1134     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1135     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1136                                   &nb_clusters);
1137     if (ret < 0) {
1138         goto fail;
1139     }
1140 
1141     /* Can't extend contiguous allocation */
1142     if (nb_clusters == 0) {
1143         *bytes = 0;
1144         return 0;
1145     }
1146 
1147     /* !*host_offset would overwrite the image header and is reserved for "no
1148      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1149      * following overlap check; do that now to avoid having an invalid value in
1150      * *host_offset. */
1151     if (!alloc_cluster_offset) {
1152         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1153                                             nb_clusters * s->cluster_size);
1154         assert(ret < 0);
1155         goto fail;
1156     }
1157 
1158     /*
1159      * Save info needed for meta data update.
1160      *
1161      * requested_sectors: Number of sectors from the start of the first
1162      * newly allocated cluster to the end of the (possibly shortened
1163      * before) write request.
1164      *
1165      * avail_sectors: Number of sectors from the start of the first
1166      * newly allocated to the end of the last newly allocated cluster.
1167      *
1168      * nb_sectors: The number of sectors from the start of the first
1169      * newly allocated cluster to the end of the area that the write
1170      * request actually writes to (excluding COW at the end)
1171      */
1172     int requested_sectors =
1173         (*bytes + offset_into_cluster(s, guest_offset))
1174         >> BDRV_SECTOR_BITS;
1175     int avail_sectors = nb_clusters
1176                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1177     int alloc_n_start = offset_into_cluster(s, guest_offset)
1178                         >> BDRV_SECTOR_BITS;
1179     int nb_sectors = MIN(requested_sectors, avail_sectors);
1180     QCowL2Meta *old_m = *m;
1181 
1182     *m = g_malloc0(sizeof(**m));
1183 
1184     **m = (QCowL2Meta) {
1185         .next           = old_m,
1186 
1187         .alloc_offset   = alloc_cluster_offset,
1188         .offset         = start_of_cluster(s, guest_offset),
1189         .nb_clusters    = nb_clusters,
1190         .nb_available   = nb_sectors,
1191 
1192         .cow_start = {
1193             .offset     = 0,
1194             .nb_sectors = alloc_n_start,
1195         },
1196         .cow_end = {
1197             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1198             .nb_sectors = avail_sectors - nb_sectors,
1199         },
1200     };
1201     qemu_co_queue_init(&(*m)->dependent_requests);
1202     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1203 
1204     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1205     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1206                          - offset_into_cluster(s, guest_offset));
1207     assert(*bytes != 0);
1208 
1209     return 1;
1210 
1211 fail:
1212     if (*m && (*m)->nb_clusters > 0) {
1213         QLIST_REMOVE(*m, next_in_flight);
1214     }
1215     return ret;
1216 }
1217 
1218 /*
1219  * alloc_cluster_offset
1220  *
1221  * For a given offset on the virtual disk, find the cluster offset in qcow2
1222  * file. If the offset is not found, allocate a new cluster.
1223  *
1224  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1225  * other fields in m are meaningless.
1226  *
1227  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1228  * contiguous clusters that have been allocated. In this case, the other
1229  * fields of m are valid and contain information about the first allocated
1230  * cluster.
1231  *
1232  * If the request conflicts with another write request in flight, the coroutine
1233  * is queued and will be reentered when the dependency has completed.
1234  *
1235  * Return 0 on success and -errno in error cases
1236  */
1237 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1238     int *num, uint64_t *host_offset, QCowL2Meta **m)
1239 {
1240     BDRVQcowState *s = bs->opaque;
1241     uint64_t start, remaining;
1242     uint64_t cluster_offset;
1243     uint64_t cur_bytes;
1244     int ret;
1245 
1246     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1247 
1248     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1249 
1250 again:
1251     start = offset;
1252     remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1253     cluster_offset = 0;
1254     *host_offset = 0;
1255     cur_bytes = 0;
1256     *m = NULL;
1257 
1258     while (true) {
1259 
1260         if (!*host_offset) {
1261             *host_offset = start_of_cluster(s, cluster_offset);
1262         }
1263 
1264         assert(remaining >= cur_bytes);
1265 
1266         start           += cur_bytes;
1267         remaining       -= cur_bytes;
1268         cluster_offset  += cur_bytes;
1269 
1270         if (remaining == 0) {
1271             break;
1272         }
1273 
1274         cur_bytes = remaining;
1275 
1276         /*
1277          * Now start gathering as many contiguous clusters as possible:
1278          *
1279          * 1. Check for overlaps with in-flight allocations
1280          *
1281          *      a) Overlap not in the first cluster -> shorten this request and
1282          *         let the caller handle the rest in its next loop iteration.
1283          *
1284          *      b) Real overlaps of two requests. Yield and restart the search
1285          *         for contiguous clusters (the situation could have changed
1286          *         while we were sleeping)
1287          *
1288          *      c) TODO: Request starts in the same cluster as the in-flight
1289          *         allocation ends. Shorten the COW of the in-fight allocation,
1290          *         set cluster_offset to write to the same cluster and set up
1291          *         the right synchronisation between the in-flight request and
1292          *         the new one.
1293          */
1294         ret = handle_dependencies(bs, start, &cur_bytes, m);
1295         if (ret == -EAGAIN) {
1296             /* Currently handle_dependencies() doesn't yield if we already had
1297              * an allocation. If it did, we would have to clean up the L2Meta
1298              * structs before starting over. */
1299             assert(*m == NULL);
1300             goto again;
1301         } else if (ret < 0) {
1302             return ret;
1303         } else if (cur_bytes == 0) {
1304             break;
1305         } else {
1306             /* handle_dependencies() may have decreased cur_bytes (shortened
1307              * the allocations below) so that the next dependency is processed
1308              * correctly during the next loop iteration. */
1309         }
1310 
1311         /*
1312          * 2. Count contiguous COPIED clusters.
1313          */
1314         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1315         if (ret < 0) {
1316             return ret;
1317         } else if (ret) {
1318             continue;
1319         } else if (cur_bytes == 0) {
1320             break;
1321         }
1322 
1323         /*
1324          * 3. If the request still hasn't completed, allocate new clusters,
1325          *    considering any cluster_offset of steps 1c or 2.
1326          */
1327         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1328         if (ret < 0) {
1329             return ret;
1330         } else if (ret) {
1331             continue;
1332         } else {
1333             assert(cur_bytes == 0);
1334             break;
1335         }
1336     }
1337 
1338     *num -= remaining >> BDRV_SECTOR_BITS;
1339     assert(*num > 0);
1340     assert(*host_offset != 0);
1341 
1342     return 0;
1343 }
1344 
1345 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1346                              const uint8_t *buf, int buf_size)
1347 {
1348     z_stream strm1, *strm = &strm1;
1349     int ret, out_len;
1350 
1351     memset(strm, 0, sizeof(*strm));
1352 
1353     strm->next_in = (uint8_t *)buf;
1354     strm->avail_in = buf_size;
1355     strm->next_out = out_buf;
1356     strm->avail_out = out_buf_size;
1357 
1358     ret = inflateInit2(strm, -12);
1359     if (ret != Z_OK)
1360         return -1;
1361     ret = inflate(strm, Z_FINISH);
1362     out_len = strm->next_out - out_buf;
1363     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1364         out_len != out_buf_size) {
1365         inflateEnd(strm);
1366         return -1;
1367     }
1368     inflateEnd(strm);
1369     return 0;
1370 }
1371 
1372 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1373 {
1374     BDRVQcowState *s = bs->opaque;
1375     int ret, csize, nb_csectors, sector_offset;
1376     uint64_t coffset;
1377 
1378     coffset = cluster_offset & s->cluster_offset_mask;
1379     if (s->cluster_cache_offset != coffset) {
1380         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1381         sector_offset = coffset & 511;
1382         csize = nb_csectors * 512 - sector_offset;
1383         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1384         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1385         if (ret < 0) {
1386             return ret;
1387         }
1388         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1389                               s->cluster_data + sector_offset, csize) < 0) {
1390             return -EIO;
1391         }
1392         s->cluster_cache_offset = coffset;
1393     }
1394     return 0;
1395 }
1396 
1397 /*
1398  * This discards as many clusters of nb_clusters as possible at once (i.e.
1399  * all clusters in the same L2 table) and returns the number of discarded
1400  * clusters.
1401  */
1402 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1403     unsigned int nb_clusters, enum qcow2_discard_type type, bool full_discard)
1404 {
1405     BDRVQcowState *s = bs->opaque;
1406     uint64_t *l2_table;
1407     int l2_index;
1408     int ret;
1409     int i;
1410 
1411     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1412     if (ret < 0) {
1413         return ret;
1414     }
1415 
1416     /* Limit nb_clusters to one L2 table */
1417     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1418 
1419     for (i = 0; i < nb_clusters; i++) {
1420         uint64_t old_l2_entry;
1421 
1422         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1423 
1424         /*
1425          * If full_discard is false, make sure that a discarded area reads back
1426          * as zeroes for v3 images (we cannot do it for v2 without actually
1427          * writing a zero-filled buffer). We can skip the operation if the
1428          * cluster is already marked as zero, or if it's unallocated and we
1429          * don't have a backing file.
1430          *
1431          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1432          * holding s->lock, so that doesn't work today.
1433          *
1434          * If full_discard is true, the sector should not read back as zeroes,
1435          * but rather fall through to the backing file.
1436          */
1437         switch (qcow2_get_cluster_type(old_l2_entry)) {
1438             case QCOW2_CLUSTER_UNALLOCATED:
1439                 if (full_discard || !bs->backing_hd) {
1440                     continue;
1441                 }
1442                 break;
1443 
1444             case QCOW2_CLUSTER_ZERO:
1445                 if (!full_discard) {
1446                     continue;
1447                 }
1448                 break;
1449 
1450             case QCOW2_CLUSTER_NORMAL:
1451             case QCOW2_CLUSTER_COMPRESSED:
1452                 break;
1453 
1454             default:
1455                 abort();
1456         }
1457 
1458         /* First remove L2 entries */
1459         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1460         if (!full_discard && s->qcow_version >= 3) {
1461             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1462         } else {
1463             l2_table[l2_index + i] = cpu_to_be64(0);
1464         }
1465 
1466         /* Then decrease the refcount */
1467         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1468     }
1469 
1470     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1471 
1472     return nb_clusters;
1473 }
1474 
1475 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1476     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1477 {
1478     BDRVQcowState *s = bs->opaque;
1479     uint64_t end_offset;
1480     unsigned int nb_clusters;
1481     int ret;
1482 
1483     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1484 
1485     /* Round start up and end down */
1486     offset = align_offset(offset, s->cluster_size);
1487     end_offset = start_of_cluster(s, end_offset);
1488 
1489     if (offset > end_offset) {
1490         return 0;
1491     }
1492 
1493     nb_clusters = size_to_clusters(s, end_offset - offset);
1494 
1495     s->cache_discards = true;
1496 
1497     /* Each L2 table is handled by its own loop iteration */
1498     while (nb_clusters > 0) {
1499         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1500         if (ret < 0) {
1501             goto fail;
1502         }
1503 
1504         nb_clusters -= ret;
1505         offset += (ret * s->cluster_size);
1506     }
1507 
1508     ret = 0;
1509 fail:
1510     s->cache_discards = false;
1511     qcow2_process_discards(bs, ret);
1512 
1513     return ret;
1514 }
1515 
1516 /*
1517  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1518  * all clusters in the same L2 table) and returns the number of zeroed
1519  * clusters.
1520  */
1521 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1522     unsigned int nb_clusters)
1523 {
1524     BDRVQcowState *s = bs->opaque;
1525     uint64_t *l2_table;
1526     int l2_index;
1527     int ret;
1528     int i;
1529 
1530     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1531     if (ret < 0) {
1532         return ret;
1533     }
1534 
1535     /* Limit nb_clusters to one L2 table */
1536     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1537 
1538     for (i = 0; i < nb_clusters; i++) {
1539         uint64_t old_offset;
1540 
1541         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1542 
1543         /* Update L2 entries */
1544         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1545         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1546             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1547             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1548         } else {
1549             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1550         }
1551     }
1552 
1553     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1554 
1555     return nb_clusters;
1556 }
1557 
1558 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1559 {
1560     BDRVQcowState *s = bs->opaque;
1561     unsigned int nb_clusters;
1562     int ret;
1563 
1564     /* The zero flag is only supported by version 3 and newer */
1565     if (s->qcow_version < 3) {
1566         return -ENOTSUP;
1567     }
1568 
1569     /* Each L2 table is handled by its own loop iteration */
1570     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1571 
1572     s->cache_discards = true;
1573 
1574     while (nb_clusters > 0) {
1575         ret = zero_single_l2(bs, offset, nb_clusters);
1576         if (ret < 0) {
1577             goto fail;
1578         }
1579 
1580         nb_clusters -= ret;
1581         offset += (ret * s->cluster_size);
1582     }
1583 
1584     ret = 0;
1585 fail:
1586     s->cache_discards = false;
1587     qcow2_process_discards(bs, ret);
1588 
1589     return ret;
1590 }
1591 
1592 /*
1593  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1594  * non-backed non-pre-allocated zero clusters).
1595  *
1596  * l1_entries and *visited_l1_entries are used to keep track of progress for
1597  * status_cb(). l1_entries contains the total number of L1 entries and
1598  * *visited_l1_entries counts all visited L1 entries.
1599  */
1600 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1601                                       int l1_size, int64_t *visited_l1_entries,
1602                                       int64_t l1_entries,
1603                                       BlockDriverAmendStatusCB *status_cb)
1604 {
1605     BDRVQcowState *s = bs->opaque;
1606     bool is_active_l1 = (l1_table == s->l1_table);
1607     uint64_t *l2_table = NULL;
1608     int ret;
1609     int i, j;
1610 
1611     if (!is_active_l1) {
1612         /* inactive L2 tables require a buffer to be stored in when loading
1613          * them from disk */
1614         l2_table = qemu_try_blockalign(bs->file, s->cluster_size);
1615         if (l2_table == NULL) {
1616             return -ENOMEM;
1617         }
1618     }
1619 
1620     for (i = 0; i < l1_size; i++) {
1621         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1622         bool l2_dirty = false;
1623         uint64_t l2_refcount;
1624 
1625         if (!l2_offset) {
1626             /* unallocated */
1627             (*visited_l1_entries)++;
1628             if (status_cb) {
1629                 status_cb(bs, *visited_l1_entries, l1_entries);
1630             }
1631             continue;
1632         }
1633 
1634         if (offset_into_cluster(s, l2_offset)) {
1635             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1636                                     PRIx64 " unaligned (L1 index: %#x)",
1637                                     l2_offset, i);
1638             ret = -EIO;
1639             goto fail;
1640         }
1641 
1642         if (is_active_l1) {
1643             /* get active L2 tables from cache */
1644             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1645                     (void **)&l2_table);
1646         } else {
1647             /* load inactive L2 tables from disk */
1648             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1649                     (void *)l2_table, s->cluster_sectors);
1650         }
1651         if (ret < 0) {
1652             goto fail;
1653         }
1654 
1655         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1656                                  &l2_refcount);
1657         if (ret < 0) {
1658             goto fail;
1659         }
1660 
1661         for (j = 0; j < s->l2_size; j++) {
1662             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1663             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1664             int cluster_type = qcow2_get_cluster_type(l2_entry);
1665             bool preallocated = offset != 0;
1666 
1667             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1668                 continue;
1669             }
1670 
1671             if (!preallocated) {
1672                 if (!bs->backing_hd) {
1673                     /* not backed; therefore we can simply deallocate the
1674                      * cluster */
1675                     l2_table[j] = 0;
1676                     l2_dirty = true;
1677                     continue;
1678                 }
1679 
1680                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1681                 if (offset < 0) {
1682                     ret = offset;
1683                     goto fail;
1684                 }
1685 
1686                 if (l2_refcount > 1) {
1687                     /* For shared L2 tables, set the refcount accordingly (it is
1688                      * already 1 and needs to be l2_refcount) */
1689                     ret = qcow2_update_cluster_refcount(bs,
1690                             offset >> s->cluster_bits,
1691                             refcount_diff(1, l2_refcount), false,
1692                             QCOW2_DISCARD_OTHER);
1693                     if (ret < 0) {
1694                         qcow2_free_clusters(bs, offset, s->cluster_size,
1695                                             QCOW2_DISCARD_OTHER);
1696                         goto fail;
1697                     }
1698                 }
1699             }
1700 
1701             if (offset_into_cluster(s, offset)) {
1702                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1703                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1704                                         PRIx64 ", L2 index: %#x)", offset,
1705                                         l2_offset, j);
1706                 if (!preallocated) {
1707                     qcow2_free_clusters(bs, offset, s->cluster_size,
1708                                         QCOW2_DISCARD_ALWAYS);
1709                 }
1710                 ret = -EIO;
1711                 goto fail;
1712             }
1713 
1714             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1715             if (ret < 0) {
1716                 if (!preallocated) {
1717                     qcow2_free_clusters(bs, offset, s->cluster_size,
1718                                         QCOW2_DISCARD_ALWAYS);
1719                 }
1720                 goto fail;
1721             }
1722 
1723             ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1724                                     s->cluster_sectors, 0);
1725             if (ret < 0) {
1726                 if (!preallocated) {
1727                     qcow2_free_clusters(bs, offset, s->cluster_size,
1728                                         QCOW2_DISCARD_ALWAYS);
1729                 }
1730                 goto fail;
1731             }
1732 
1733             if (l2_refcount == 1) {
1734                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1735             } else {
1736                 l2_table[j] = cpu_to_be64(offset);
1737             }
1738             l2_dirty = true;
1739         }
1740 
1741         if (is_active_l1) {
1742             if (l2_dirty) {
1743                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1744                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1745             }
1746             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1747         } else {
1748             if (l2_dirty) {
1749                 ret = qcow2_pre_write_overlap_check(bs,
1750                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1751                         s->cluster_size);
1752                 if (ret < 0) {
1753                     goto fail;
1754                 }
1755 
1756                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1757                         (void *)l2_table, s->cluster_sectors);
1758                 if (ret < 0) {
1759                     goto fail;
1760                 }
1761             }
1762         }
1763 
1764         (*visited_l1_entries)++;
1765         if (status_cb) {
1766             status_cb(bs, *visited_l1_entries, l1_entries);
1767         }
1768     }
1769 
1770     ret = 0;
1771 
1772 fail:
1773     if (l2_table) {
1774         if (!is_active_l1) {
1775             qemu_vfree(l2_table);
1776         } else {
1777             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1778         }
1779     }
1780     return ret;
1781 }
1782 
1783 /*
1784  * For backed images, expands all zero clusters on the image. For non-backed
1785  * images, deallocates all non-pre-allocated zero clusters (and claims the
1786  * allocation for pre-allocated ones). This is important for downgrading to a
1787  * qcow2 version which doesn't yet support metadata zero clusters.
1788  */
1789 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1790                                BlockDriverAmendStatusCB *status_cb)
1791 {
1792     BDRVQcowState *s = bs->opaque;
1793     uint64_t *l1_table = NULL;
1794     int64_t l1_entries = 0, visited_l1_entries = 0;
1795     int ret;
1796     int i, j;
1797 
1798     if (status_cb) {
1799         l1_entries = s->l1_size;
1800         for (i = 0; i < s->nb_snapshots; i++) {
1801             l1_entries += s->snapshots[i].l1_size;
1802         }
1803     }
1804 
1805     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1806                                      &visited_l1_entries, l1_entries,
1807                                      status_cb);
1808     if (ret < 0) {
1809         goto fail;
1810     }
1811 
1812     /* Inactive L1 tables may point to active L2 tables - therefore it is
1813      * necessary to flush the L2 table cache before trying to access the L2
1814      * tables pointed to by inactive L1 entries (else we might try to expand
1815      * zero clusters that have already been expanded); furthermore, it is also
1816      * necessary to empty the L2 table cache, since it may contain tables which
1817      * are now going to be modified directly on disk, bypassing the cache.
1818      * qcow2_cache_empty() does both for us. */
1819     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1820     if (ret < 0) {
1821         goto fail;
1822     }
1823 
1824     for (i = 0; i < s->nb_snapshots; i++) {
1825         int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1826                 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1827 
1828         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1829 
1830         ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1831                 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1832         if (ret < 0) {
1833             goto fail;
1834         }
1835 
1836         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1837             be64_to_cpus(&l1_table[j]);
1838         }
1839 
1840         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1841                                          &visited_l1_entries, l1_entries,
1842                                          status_cb);
1843         if (ret < 0) {
1844             goto fail;
1845         }
1846     }
1847 
1848     ret = 0;
1849 
1850 fail:
1851     g_free(l1_table);
1852     return ret;
1853 }
1854