1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t old_l1_table_offset, old_l1_size; 39 int64_t new_l1_table_offset, new_l1_size; 40 uint8_t data[12]; 41 42 if (min_size <= s->l1_size) 43 return 0; 44 45 /* Do a sanity check on min_size before trying to calculate new_l1_size 46 * (this prevents overflows during the while loop for the calculation of 47 * new_l1_size) */ 48 if (min_size > INT_MAX / sizeof(uint64_t)) { 49 return -EFBIG; 50 } 51 52 if (exact_size) { 53 new_l1_size = min_size; 54 } else { 55 /* Bump size up to reduce the number of times we have to grow */ 56 new_l1_size = s->l1_size; 57 if (new_l1_size == 0) { 58 new_l1_size = 1; 59 } 60 while (min_size > new_l1_size) { 61 new_l1_size = (new_l1_size * 3 + 1) / 2; 62 } 63 } 64 65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 66 return -EFBIG; 67 } 68 69 #ifdef DEBUG_ALLOC2 70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 71 s->l1_size, new_l1_size); 72 #endif 73 74 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 75 new_l1_table = qemu_try_blockalign(bs->file, 76 align_offset(new_l1_size2, 512)); 77 if (new_l1_table == NULL) { 78 return -ENOMEM; 79 } 80 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 81 82 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 83 84 /* write new table (align to cluster) */ 85 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 86 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 87 if (new_l1_table_offset < 0) { 88 qemu_vfree(new_l1_table); 89 return new_l1_table_offset; 90 } 91 92 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 93 if (ret < 0) { 94 goto fail; 95 } 96 97 /* the L1 position has not yet been updated, so these clusters must 98 * indeed be completely free */ 99 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 100 new_l1_size2); 101 if (ret < 0) { 102 goto fail; 103 } 104 105 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 106 for(i = 0; i < s->l1_size; i++) 107 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 108 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 109 if (ret < 0) 110 goto fail; 111 for(i = 0; i < s->l1_size; i++) 112 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 113 114 /* set new table */ 115 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 116 cpu_to_be32w((uint32_t*)data, new_l1_size); 117 stq_be_p(data + 4, new_l1_table_offset); 118 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 119 if (ret < 0) { 120 goto fail; 121 } 122 qemu_vfree(s->l1_table); 123 old_l1_table_offset = s->l1_table_offset; 124 s->l1_table_offset = new_l1_table_offset; 125 s->l1_table = new_l1_table; 126 old_l1_size = s->l1_size; 127 s->l1_size = new_l1_size; 128 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 129 QCOW2_DISCARD_OTHER); 130 return 0; 131 fail: 132 qemu_vfree(new_l1_table); 133 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 134 QCOW2_DISCARD_OTHER); 135 return ret; 136 } 137 138 /* 139 * l2_load 140 * 141 * Loads a L2 table into memory. If the table is in the cache, the cache 142 * is used; otherwise the L2 table is loaded from the image file. 143 * 144 * Returns a pointer to the L2 table on success, or NULL if the read from 145 * the image file failed. 146 */ 147 148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 149 uint64_t **l2_table) 150 { 151 BDRVQcowState *s = bs->opaque; 152 int ret; 153 154 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 155 156 return ret; 157 } 158 159 /* 160 * Writes one sector of the L1 table to the disk (can't update single entries 161 * and we really don't want bdrv_pread to perform a read-modify-write) 162 */ 163 #define L1_ENTRIES_PER_SECTOR (512 / 8) 164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 165 { 166 BDRVQcowState *s = bs->opaque; 167 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 168 int l1_start_index; 169 int i, ret; 170 171 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 172 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 173 i++) 174 { 175 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 176 } 177 178 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 179 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 180 if (ret < 0) { 181 return ret; 182 } 183 184 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 185 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 186 buf, sizeof(buf)); 187 if (ret < 0) { 188 return ret; 189 } 190 191 return 0; 192 } 193 194 /* 195 * l2_allocate 196 * 197 * Allocate a new l2 entry in the file. If l1_index points to an already 198 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 199 * table) copy the contents of the old L2 table into the newly allocated one. 200 * Otherwise the new table is initialized with zeros. 201 * 202 */ 203 204 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 205 { 206 BDRVQcowState *s = bs->opaque; 207 uint64_t old_l2_offset; 208 uint64_t *l2_table = NULL; 209 int64_t l2_offset; 210 int ret; 211 212 old_l2_offset = s->l1_table[l1_index]; 213 214 trace_qcow2_l2_allocate(bs, l1_index); 215 216 /* allocate a new l2 entry */ 217 218 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 219 if (l2_offset < 0) { 220 ret = l2_offset; 221 goto fail; 222 } 223 224 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 225 if (ret < 0) { 226 goto fail; 227 } 228 229 /* allocate a new entry in the l2 cache */ 230 231 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 232 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 233 if (ret < 0) { 234 goto fail; 235 } 236 237 l2_table = *table; 238 239 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 240 /* if there was no old l2 table, clear the new table */ 241 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 242 } else { 243 uint64_t* old_table; 244 245 /* if there was an old l2 table, read it from the disk */ 246 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 247 ret = qcow2_cache_get(bs, s->l2_table_cache, 248 old_l2_offset & L1E_OFFSET_MASK, 249 (void**) &old_table); 250 if (ret < 0) { 251 goto fail; 252 } 253 254 memcpy(l2_table, old_table, s->cluster_size); 255 256 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); 257 } 258 259 /* write the l2 table to the file */ 260 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 261 262 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 263 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 264 ret = qcow2_cache_flush(bs, s->l2_table_cache); 265 if (ret < 0) { 266 goto fail; 267 } 268 269 /* update the L1 entry */ 270 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 271 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 272 ret = qcow2_write_l1_entry(bs, l1_index); 273 if (ret < 0) { 274 goto fail; 275 } 276 277 *table = l2_table; 278 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 279 return 0; 280 281 fail: 282 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 283 if (l2_table != NULL) { 284 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 285 } 286 s->l1_table[l1_index] = old_l2_offset; 287 if (l2_offset > 0) { 288 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 289 QCOW2_DISCARD_ALWAYS); 290 } 291 return ret; 292 } 293 294 /* 295 * Checks how many clusters in a given L2 table are contiguous in the image 296 * file. As soon as one of the flags in the bitmask stop_flags changes compared 297 * to the first cluster, the search is stopped and the cluster is not counted 298 * as contiguous. (This allows it, for example, to stop at the first compressed 299 * cluster which may require a different handling) 300 */ 301 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 302 uint64_t *l2_table, uint64_t stop_flags) 303 { 304 int i; 305 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 306 uint64_t first_entry = be64_to_cpu(l2_table[0]); 307 uint64_t offset = first_entry & mask; 308 309 if (!offset) 310 return 0; 311 312 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); 313 314 for (i = 0; i < nb_clusters; i++) { 315 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 316 if (offset + (uint64_t) i * cluster_size != l2_entry) { 317 break; 318 } 319 } 320 321 return i; 322 } 323 324 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 325 { 326 int i; 327 328 for (i = 0; i < nb_clusters; i++) { 329 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 330 331 if (type != QCOW2_CLUSTER_UNALLOCATED) { 332 break; 333 } 334 } 335 336 return i; 337 } 338 339 /* The crypt function is compatible with the linux cryptoloop 340 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 341 supported */ 342 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 343 uint8_t *out_buf, const uint8_t *in_buf, 344 int nb_sectors, int enc, 345 const AES_KEY *key) 346 { 347 union { 348 uint64_t ll[2]; 349 uint8_t b[16]; 350 } ivec; 351 int i; 352 353 for(i = 0; i < nb_sectors; i++) { 354 ivec.ll[0] = cpu_to_le64(sector_num); 355 ivec.ll[1] = 0; 356 AES_cbc_encrypt(in_buf, out_buf, 512, key, 357 ivec.b, enc); 358 sector_num++; 359 in_buf += 512; 360 out_buf += 512; 361 } 362 } 363 364 static int coroutine_fn copy_sectors(BlockDriverState *bs, 365 uint64_t start_sect, 366 uint64_t cluster_offset, 367 int n_start, int n_end) 368 { 369 BDRVQcowState *s = bs->opaque; 370 QEMUIOVector qiov; 371 struct iovec iov; 372 int n, ret; 373 374 n = n_end - n_start; 375 if (n <= 0) { 376 return 0; 377 } 378 379 iov.iov_len = n * BDRV_SECTOR_SIZE; 380 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 381 if (iov.iov_base == NULL) { 382 return -ENOMEM; 383 } 384 385 qemu_iovec_init_external(&qiov, &iov, 1); 386 387 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 388 389 if (!bs->drv) { 390 ret = -ENOMEDIUM; 391 goto out; 392 } 393 394 /* Call .bdrv_co_readv() directly instead of using the public block-layer 395 * interface. This avoids double I/O throttling and request tracking, 396 * which can lead to deadlock when block layer copy-on-read is enabled. 397 */ 398 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 399 if (ret < 0) { 400 goto out; 401 } 402 403 if (bs->encrypted) { 404 assert(s->crypt_method); 405 qcow2_encrypt_sectors(s, start_sect + n_start, 406 iov.iov_base, iov.iov_base, n, 1, 407 &s->aes_encrypt_key); 408 } 409 410 ret = qcow2_pre_write_overlap_check(bs, 0, 411 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 412 if (ret < 0) { 413 goto out; 414 } 415 416 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 417 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 418 if (ret < 0) { 419 goto out; 420 } 421 422 ret = 0; 423 out: 424 qemu_vfree(iov.iov_base); 425 return ret; 426 } 427 428 429 /* 430 * get_cluster_offset 431 * 432 * For a given offset of the disk image, find the cluster offset in 433 * qcow2 file. The offset is stored in *cluster_offset. 434 * 435 * on entry, *num is the number of contiguous sectors we'd like to 436 * access following offset. 437 * 438 * on exit, *num is the number of contiguous sectors we can read. 439 * 440 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 441 * cases. 442 */ 443 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 444 int *num, uint64_t *cluster_offset) 445 { 446 BDRVQcowState *s = bs->opaque; 447 unsigned int l2_index; 448 uint64_t l1_index, l2_offset, *l2_table; 449 int l1_bits, c; 450 unsigned int index_in_cluster, nb_clusters; 451 uint64_t nb_available, nb_needed; 452 int ret; 453 454 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 455 nb_needed = *num + index_in_cluster; 456 457 l1_bits = s->l2_bits + s->cluster_bits; 458 459 /* compute how many bytes there are between the offset and 460 * the end of the l1 entry 461 */ 462 463 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 464 465 /* compute the number of available sectors */ 466 467 nb_available = (nb_available >> 9) + index_in_cluster; 468 469 if (nb_needed > nb_available) { 470 nb_needed = nb_available; 471 } 472 473 *cluster_offset = 0; 474 475 /* seek the the l2 offset in the l1 table */ 476 477 l1_index = offset >> l1_bits; 478 if (l1_index >= s->l1_size) { 479 ret = QCOW2_CLUSTER_UNALLOCATED; 480 goto out; 481 } 482 483 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 484 if (!l2_offset) { 485 ret = QCOW2_CLUSTER_UNALLOCATED; 486 goto out; 487 } 488 489 if (offset_into_cluster(s, l2_offset)) { 490 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 491 " unaligned (L1 index: %#" PRIx64 ")", 492 l2_offset, l1_index); 493 return -EIO; 494 } 495 496 /* load the l2 table in memory */ 497 498 ret = l2_load(bs, l2_offset, &l2_table); 499 if (ret < 0) { 500 return ret; 501 } 502 503 /* find the cluster offset for the given disk offset */ 504 505 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 506 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 507 nb_clusters = size_to_clusters(s, nb_needed << 9); 508 509 ret = qcow2_get_cluster_type(*cluster_offset); 510 switch (ret) { 511 case QCOW2_CLUSTER_COMPRESSED: 512 /* Compressed clusters can only be processed one by one */ 513 c = 1; 514 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 515 break; 516 case QCOW2_CLUSTER_ZERO: 517 if (s->qcow_version < 3) { 518 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 519 " in pre-v3 image (L2 offset: %#" PRIx64 520 ", L2 index: %#x)", l2_offset, l2_index); 521 ret = -EIO; 522 goto fail; 523 } 524 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 525 &l2_table[l2_index], QCOW_OFLAG_ZERO); 526 *cluster_offset = 0; 527 break; 528 case QCOW2_CLUSTER_UNALLOCATED: 529 /* how many empty clusters ? */ 530 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 531 *cluster_offset = 0; 532 break; 533 case QCOW2_CLUSTER_NORMAL: 534 /* how many allocated clusters ? */ 535 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 536 &l2_table[l2_index], QCOW_OFLAG_ZERO); 537 *cluster_offset &= L2E_OFFSET_MASK; 538 if (offset_into_cluster(s, *cluster_offset)) { 539 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" 540 PRIx64 " unaligned (L2 offset: %#" PRIx64 541 ", L2 index: %#x)", *cluster_offset, 542 l2_offset, l2_index); 543 ret = -EIO; 544 goto fail; 545 } 546 break; 547 default: 548 abort(); 549 } 550 551 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 552 553 nb_available = (c * s->cluster_sectors); 554 555 out: 556 if (nb_available > nb_needed) 557 nb_available = nb_needed; 558 559 *num = nb_available - index_in_cluster; 560 561 return ret; 562 563 fail: 564 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 565 return ret; 566 } 567 568 /* 569 * get_cluster_table 570 * 571 * for a given disk offset, load (and allocate if needed) 572 * the l2 table. 573 * 574 * the l2 table offset in the qcow2 file and the cluster index 575 * in the l2 table are given to the caller. 576 * 577 * Returns 0 on success, -errno in failure case 578 */ 579 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 580 uint64_t **new_l2_table, 581 int *new_l2_index) 582 { 583 BDRVQcowState *s = bs->opaque; 584 unsigned int l2_index; 585 uint64_t l1_index, l2_offset; 586 uint64_t *l2_table = NULL; 587 int ret; 588 589 /* seek the the l2 offset in the l1 table */ 590 591 l1_index = offset >> (s->l2_bits + s->cluster_bits); 592 if (l1_index >= s->l1_size) { 593 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 594 if (ret < 0) { 595 return ret; 596 } 597 } 598 599 assert(l1_index < s->l1_size); 600 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 601 if (offset_into_cluster(s, l2_offset)) { 602 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 603 " unaligned (L1 index: %#" PRIx64 ")", 604 l2_offset, l1_index); 605 return -EIO; 606 } 607 608 /* seek the l2 table of the given l2 offset */ 609 610 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 611 /* load the l2 table in memory */ 612 ret = l2_load(bs, l2_offset, &l2_table); 613 if (ret < 0) { 614 return ret; 615 } 616 } else { 617 /* First allocate a new L2 table (and do COW if needed) */ 618 ret = l2_allocate(bs, l1_index, &l2_table); 619 if (ret < 0) { 620 return ret; 621 } 622 623 /* Then decrease the refcount of the old table */ 624 if (l2_offset) { 625 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 626 QCOW2_DISCARD_OTHER); 627 } 628 } 629 630 /* find the cluster offset for the given disk offset */ 631 632 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 633 634 *new_l2_table = l2_table; 635 *new_l2_index = l2_index; 636 637 return 0; 638 } 639 640 /* 641 * alloc_compressed_cluster_offset 642 * 643 * For a given offset of the disk image, return cluster offset in 644 * qcow2 file. 645 * 646 * If the offset is not found, allocate a new compressed cluster. 647 * 648 * Return the cluster offset if successful, 649 * Return 0, otherwise. 650 * 651 */ 652 653 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 654 uint64_t offset, 655 int compressed_size) 656 { 657 BDRVQcowState *s = bs->opaque; 658 int l2_index, ret; 659 uint64_t *l2_table; 660 int64_t cluster_offset; 661 int nb_csectors; 662 663 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 664 if (ret < 0) { 665 return 0; 666 } 667 668 /* Compression can't overwrite anything. Fail if the cluster was already 669 * allocated. */ 670 cluster_offset = be64_to_cpu(l2_table[l2_index]); 671 if (cluster_offset & L2E_OFFSET_MASK) { 672 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 673 return 0; 674 } 675 676 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 677 if (cluster_offset < 0) { 678 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 679 return 0; 680 } 681 682 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 683 (cluster_offset >> 9); 684 685 cluster_offset |= QCOW_OFLAG_COMPRESSED | 686 ((uint64_t)nb_csectors << s->csize_shift); 687 688 /* update L2 table */ 689 690 /* compressed clusters never have the copied flag */ 691 692 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 693 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 694 l2_table[l2_index] = cpu_to_be64(cluster_offset); 695 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 696 697 return cluster_offset; 698 } 699 700 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 701 { 702 BDRVQcowState *s = bs->opaque; 703 int ret; 704 705 if (r->nb_sectors == 0) { 706 return 0; 707 } 708 709 qemu_co_mutex_unlock(&s->lock); 710 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 711 r->offset / BDRV_SECTOR_SIZE, 712 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 713 qemu_co_mutex_lock(&s->lock); 714 715 if (ret < 0) { 716 return ret; 717 } 718 719 /* 720 * Before we update the L2 table to actually point to the new cluster, we 721 * need to be sure that the refcounts have been increased and COW was 722 * handled. 723 */ 724 qcow2_cache_depends_on_flush(s->l2_table_cache); 725 726 return 0; 727 } 728 729 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 730 { 731 BDRVQcowState *s = bs->opaque; 732 int i, j = 0, l2_index, ret; 733 uint64_t *old_cluster, *l2_table; 734 uint64_t cluster_offset = m->alloc_offset; 735 736 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 737 assert(m->nb_clusters > 0); 738 739 old_cluster = g_try_new(uint64_t, m->nb_clusters); 740 if (old_cluster == NULL) { 741 ret = -ENOMEM; 742 goto err; 743 } 744 745 /* copy content of unmodified sectors */ 746 ret = perform_cow(bs, m, &m->cow_start); 747 if (ret < 0) { 748 goto err; 749 } 750 751 ret = perform_cow(bs, m, &m->cow_end); 752 if (ret < 0) { 753 goto err; 754 } 755 756 /* Update L2 table. */ 757 if (s->use_lazy_refcounts) { 758 qcow2_mark_dirty(bs); 759 } 760 if (qcow2_need_accurate_refcounts(s)) { 761 qcow2_cache_set_dependency(bs, s->l2_table_cache, 762 s->refcount_block_cache); 763 } 764 765 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 766 if (ret < 0) { 767 goto err; 768 } 769 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 770 771 assert(l2_index + m->nb_clusters <= s->l2_size); 772 for (i = 0; i < m->nb_clusters; i++) { 773 /* if two concurrent writes happen to the same unallocated cluster 774 * each write allocates separate cluster and writes data concurrently. 775 * The first one to complete updates l2 table with pointer to its 776 * cluster the second one has to do RMW (which is done above by 777 * copy_sectors()), update l2 table with its cluster pointer and free 778 * old cluster. This is what this loop does */ 779 if(l2_table[l2_index + i] != 0) 780 old_cluster[j++] = l2_table[l2_index + i]; 781 782 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 783 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 784 } 785 786 787 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 788 789 /* 790 * If this was a COW, we need to decrease the refcount of the old cluster. 791 * Also flush bs->file to get the right order for L2 and refcount update. 792 * 793 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 794 * clusters), the next write will reuse them anyway. 795 */ 796 if (j != 0) { 797 for (i = 0; i < j; i++) { 798 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 799 QCOW2_DISCARD_NEVER); 800 } 801 } 802 803 ret = 0; 804 err: 805 g_free(old_cluster); 806 return ret; 807 } 808 809 /* 810 * Returns the number of contiguous clusters that can be used for an allocating 811 * write, but require COW to be performed (this includes yet unallocated space, 812 * which must copy from the backing file) 813 */ 814 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 815 uint64_t *l2_table, int l2_index) 816 { 817 int i; 818 819 for (i = 0; i < nb_clusters; i++) { 820 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 821 int cluster_type = qcow2_get_cluster_type(l2_entry); 822 823 switch(cluster_type) { 824 case QCOW2_CLUSTER_NORMAL: 825 if (l2_entry & QCOW_OFLAG_COPIED) { 826 goto out; 827 } 828 break; 829 case QCOW2_CLUSTER_UNALLOCATED: 830 case QCOW2_CLUSTER_COMPRESSED: 831 case QCOW2_CLUSTER_ZERO: 832 break; 833 default: 834 abort(); 835 } 836 } 837 838 out: 839 assert(i <= nb_clusters); 840 return i; 841 } 842 843 /* 844 * Check if there already is an AIO write request in flight which allocates 845 * the same cluster. In this case we need to wait until the previous 846 * request has completed and updated the L2 table accordingly. 847 * 848 * Returns: 849 * 0 if there was no dependency. *cur_bytes indicates the number of 850 * bytes from guest_offset that can be read before the next 851 * dependency must be processed (or the request is complete) 852 * 853 * -EAGAIN if we had to wait for another request, previously gathered 854 * information on cluster allocation may be invalid now. The caller 855 * must start over anyway, so consider *cur_bytes undefined. 856 */ 857 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 858 uint64_t *cur_bytes, QCowL2Meta **m) 859 { 860 BDRVQcowState *s = bs->opaque; 861 QCowL2Meta *old_alloc; 862 uint64_t bytes = *cur_bytes; 863 864 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 865 866 uint64_t start = guest_offset; 867 uint64_t end = start + bytes; 868 uint64_t old_start = l2meta_cow_start(old_alloc); 869 uint64_t old_end = l2meta_cow_end(old_alloc); 870 871 if (end <= old_start || start >= old_end) { 872 /* No intersection */ 873 } else { 874 if (start < old_start) { 875 /* Stop at the start of a running allocation */ 876 bytes = old_start - start; 877 } else { 878 bytes = 0; 879 } 880 881 /* Stop if already an l2meta exists. After yielding, it wouldn't 882 * be valid any more, so we'd have to clean up the old L2Metas 883 * and deal with requests depending on them before starting to 884 * gather new ones. Not worth the trouble. */ 885 if (bytes == 0 && *m) { 886 *cur_bytes = 0; 887 return 0; 888 } 889 890 if (bytes == 0) { 891 /* Wait for the dependency to complete. We need to recheck 892 * the free/allocated clusters when we continue. */ 893 qemu_co_mutex_unlock(&s->lock); 894 qemu_co_queue_wait(&old_alloc->dependent_requests); 895 qemu_co_mutex_lock(&s->lock); 896 return -EAGAIN; 897 } 898 } 899 } 900 901 /* Make sure that existing clusters and new allocations are only used up to 902 * the next dependency if we shortened the request above */ 903 *cur_bytes = bytes; 904 905 return 0; 906 } 907 908 /* 909 * Checks how many already allocated clusters that don't require a copy on 910 * write there are at the given guest_offset (up to *bytes). If 911 * *host_offset is not zero, only physically contiguous clusters beginning at 912 * this host offset are counted. 913 * 914 * Note that guest_offset may not be cluster aligned. In this case, the 915 * returned *host_offset points to exact byte referenced by guest_offset and 916 * therefore isn't cluster aligned as well. 917 * 918 * Returns: 919 * 0: if no allocated clusters are available at the given offset. 920 * *bytes is normally unchanged. It is set to 0 if the cluster 921 * is allocated and doesn't need COW, but doesn't have the right 922 * physical offset. 923 * 924 * 1: if allocated clusters that don't require a COW are available at 925 * the requested offset. *bytes may have decreased and describes 926 * the length of the area that can be written to. 927 * 928 * -errno: in error cases 929 */ 930 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 931 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 932 { 933 BDRVQcowState *s = bs->opaque; 934 int l2_index; 935 uint64_t cluster_offset; 936 uint64_t *l2_table; 937 unsigned int nb_clusters; 938 unsigned int keep_clusters; 939 int ret; 940 941 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 942 *bytes); 943 944 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 945 == offset_into_cluster(s, *host_offset)); 946 947 /* 948 * Calculate the number of clusters to look for. We stop at L2 table 949 * boundaries to keep things simple. 950 */ 951 nb_clusters = 952 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 953 954 l2_index = offset_to_l2_index(s, guest_offset); 955 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 956 957 /* Find L2 entry for the first involved cluster */ 958 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 959 if (ret < 0) { 960 return ret; 961 } 962 963 cluster_offset = be64_to_cpu(l2_table[l2_index]); 964 965 /* Check how many clusters are already allocated and don't need COW */ 966 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 967 && (cluster_offset & QCOW_OFLAG_COPIED)) 968 { 969 /* If a specific host_offset is required, check it */ 970 bool offset_matches = 971 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 972 973 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 974 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 975 "%#llx unaligned (guest offset: %#" PRIx64 976 ")", cluster_offset & L2E_OFFSET_MASK, 977 guest_offset); 978 ret = -EIO; 979 goto out; 980 } 981 982 if (*host_offset != 0 && !offset_matches) { 983 *bytes = 0; 984 ret = 0; 985 goto out; 986 } 987 988 /* We keep all QCOW_OFLAG_COPIED clusters */ 989 keep_clusters = 990 count_contiguous_clusters(nb_clusters, s->cluster_size, 991 &l2_table[l2_index], 992 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 993 assert(keep_clusters <= nb_clusters); 994 995 *bytes = MIN(*bytes, 996 keep_clusters * s->cluster_size 997 - offset_into_cluster(s, guest_offset)); 998 999 ret = 1; 1000 } else { 1001 ret = 0; 1002 } 1003 1004 /* Cleanup */ 1005 out: 1006 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1007 1008 /* Only return a host offset if we actually made progress. Otherwise we 1009 * would make requirements for handle_alloc() that it can't fulfill */ 1010 if (ret > 0) { 1011 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1012 + offset_into_cluster(s, guest_offset); 1013 } 1014 1015 return ret; 1016 } 1017 1018 /* 1019 * Allocates new clusters for the given guest_offset. 1020 * 1021 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1022 * contain the number of clusters that have been allocated and are contiguous 1023 * in the image file. 1024 * 1025 * If *host_offset is non-zero, it specifies the offset in the image file at 1026 * which the new clusters must start. *nb_clusters can be 0 on return in this 1027 * case if the cluster at host_offset is already in use. If *host_offset is 1028 * zero, the clusters can be allocated anywhere in the image file. 1029 * 1030 * *host_offset is updated to contain the offset into the image file at which 1031 * the first allocated cluster starts. 1032 * 1033 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1034 * function has been waiting for another request and the allocation must be 1035 * restarted, but the whole request should not be failed. 1036 */ 1037 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1038 uint64_t *host_offset, unsigned int *nb_clusters) 1039 { 1040 BDRVQcowState *s = bs->opaque; 1041 1042 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1043 *host_offset, *nb_clusters); 1044 1045 /* Allocate new clusters */ 1046 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1047 if (*host_offset == 0) { 1048 int64_t cluster_offset = 1049 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1050 if (cluster_offset < 0) { 1051 return cluster_offset; 1052 } 1053 *host_offset = cluster_offset; 1054 return 0; 1055 } else { 1056 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1057 if (ret < 0) { 1058 return ret; 1059 } 1060 *nb_clusters = ret; 1061 return 0; 1062 } 1063 } 1064 1065 /* 1066 * Allocates new clusters for an area that either is yet unallocated or needs a 1067 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1068 * the new allocation can match the specified host offset. 1069 * 1070 * Note that guest_offset may not be cluster aligned. In this case, the 1071 * returned *host_offset points to exact byte referenced by guest_offset and 1072 * therefore isn't cluster aligned as well. 1073 * 1074 * Returns: 1075 * 0: if no clusters could be allocated. *bytes is set to 0, 1076 * *host_offset is left unchanged. 1077 * 1078 * 1: if new clusters were allocated. *bytes may be decreased if the 1079 * new allocation doesn't cover all of the requested area. 1080 * *host_offset is updated to contain the host offset of the first 1081 * newly allocated cluster. 1082 * 1083 * -errno: in error cases 1084 */ 1085 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1086 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1087 { 1088 BDRVQcowState *s = bs->opaque; 1089 int l2_index; 1090 uint64_t *l2_table; 1091 uint64_t entry; 1092 unsigned int nb_clusters; 1093 int ret; 1094 1095 uint64_t alloc_cluster_offset; 1096 1097 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1098 *bytes); 1099 assert(*bytes > 0); 1100 1101 /* 1102 * Calculate the number of clusters to look for. We stop at L2 table 1103 * boundaries to keep things simple. 1104 */ 1105 nb_clusters = 1106 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1107 1108 l2_index = offset_to_l2_index(s, guest_offset); 1109 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1110 1111 /* Find L2 entry for the first involved cluster */ 1112 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1113 if (ret < 0) { 1114 return ret; 1115 } 1116 1117 entry = be64_to_cpu(l2_table[l2_index]); 1118 1119 /* For the moment, overwrite compressed clusters one by one */ 1120 if (entry & QCOW_OFLAG_COMPRESSED) { 1121 nb_clusters = 1; 1122 } else { 1123 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1124 } 1125 1126 /* This function is only called when there were no non-COW clusters, so if 1127 * we can't find any unallocated or COW clusters either, something is 1128 * wrong with our code. */ 1129 assert(nb_clusters > 0); 1130 1131 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1132 1133 /* Allocate, if necessary at a given offset in the image file */ 1134 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1135 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1136 &nb_clusters); 1137 if (ret < 0) { 1138 goto fail; 1139 } 1140 1141 /* Can't extend contiguous allocation */ 1142 if (nb_clusters == 0) { 1143 *bytes = 0; 1144 return 0; 1145 } 1146 1147 /* !*host_offset would overwrite the image header and is reserved for "no 1148 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1149 * following overlap check; do that now to avoid having an invalid value in 1150 * *host_offset. */ 1151 if (!alloc_cluster_offset) { 1152 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1153 nb_clusters * s->cluster_size); 1154 assert(ret < 0); 1155 goto fail; 1156 } 1157 1158 /* 1159 * Save info needed for meta data update. 1160 * 1161 * requested_sectors: Number of sectors from the start of the first 1162 * newly allocated cluster to the end of the (possibly shortened 1163 * before) write request. 1164 * 1165 * avail_sectors: Number of sectors from the start of the first 1166 * newly allocated to the end of the last newly allocated cluster. 1167 * 1168 * nb_sectors: The number of sectors from the start of the first 1169 * newly allocated cluster to the end of the area that the write 1170 * request actually writes to (excluding COW at the end) 1171 */ 1172 int requested_sectors = 1173 (*bytes + offset_into_cluster(s, guest_offset)) 1174 >> BDRV_SECTOR_BITS; 1175 int avail_sectors = nb_clusters 1176 << (s->cluster_bits - BDRV_SECTOR_BITS); 1177 int alloc_n_start = offset_into_cluster(s, guest_offset) 1178 >> BDRV_SECTOR_BITS; 1179 int nb_sectors = MIN(requested_sectors, avail_sectors); 1180 QCowL2Meta *old_m = *m; 1181 1182 *m = g_malloc0(sizeof(**m)); 1183 1184 **m = (QCowL2Meta) { 1185 .next = old_m, 1186 1187 .alloc_offset = alloc_cluster_offset, 1188 .offset = start_of_cluster(s, guest_offset), 1189 .nb_clusters = nb_clusters, 1190 .nb_available = nb_sectors, 1191 1192 .cow_start = { 1193 .offset = 0, 1194 .nb_sectors = alloc_n_start, 1195 }, 1196 .cow_end = { 1197 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1198 .nb_sectors = avail_sectors - nb_sectors, 1199 }, 1200 }; 1201 qemu_co_queue_init(&(*m)->dependent_requests); 1202 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1203 1204 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1205 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1206 - offset_into_cluster(s, guest_offset)); 1207 assert(*bytes != 0); 1208 1209 return 1; 1210 1211 fail: 1212 if (*m && (*m)->nb_clusters > 0) { 1213 QLIST_REMOVE(*m, next_in_flight); 1214 } 1215 return ret; 1216 } 1217 1218 /* 1219 * alloc_cluster_offset 1220 * 1221 * For a given offset on the virtual disk, find the cluster offset in qcow2 1222 * file. If the offset is not found, allocate a new cluster. 1223 * 1224 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1225 * other fields in m are meaningless. 1226 * 1227 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1228 * contiguous clusters that have been allocated. In this case, the other 1229 * fields of m are valid and contain information about the first allocated 1230 * cluster. 1231 * 1232 * If the request conflicts with another write request in flight, the coroutine 1233 * is queued and will be reentered when the dependency has completed. 1234 * 1235 * Return 0 on success and -errno in error cases 1236 */ 1237 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1238 int *num, uint64_t *host_offset, QCowL2Meta **m) 1239 { 1240 BDRVQcowState *s = bs->opaque; 1241 uint64_t start, remaining; 1242 uint64_t cluster_offset; 1243 uint64_t cur_bytes; 1244 int ret; 1245 1246 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1247 1248 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1249 1250 again: 1251 start = offset; 1252 remaining = (uint64_t)*num << BDRV_SECTOR_BITS; 1253 cluster_offset = 0; 1254 *host_offset = 0; 1255 cur_bytes = 0; 1256 *m = NULL; 1257 1258 while (true) { 1259 1260 if (!*host_offset) { 1261 *host_offset = start_of_cluster(s, cluster_offset); 1262 } 1263 1264 assert(remaining >= cur_bytes); 1265 1266 start += cur_bytes; 1267 remaining -= cur_bytes; 1268 cluster_offset += cur_bytes; 1269 1270 if (remaining == 0) { 1271 break; 1272 } 1273 1274 cur_bytes = remaining; 1275 1276 /* 1277 * Now start gathering as many contiguous clusters as possible: 1278 * 1279 * 1. Check for overlaps with in-flight allocations 1280 * 1281 * a) Overlap not in the first cluster -> shorten this request and 1282 * let the caller handle the rest in its next loop iteration. 1283 * 1284 * b) Real overlaps of two requests. Yield and restart the search 1285 * for contiguous clusters (the situation could have changed 1286 * while we were sleeping) 1287 * 1288 * c) TODO: Request starts in the same cluster as the in-flight 1289 * allocation ends. Shorten the COW of the in-fight allocation, 1290 * set cluster_offset to write to the same cluster and set up 1291 * the right synchronisation between the in-flight request and 1292 * the new one. 1293 */ 1294 ret = handle_dependencies(bs, start, &cur_bytes, m); 1295 if (ret == -EAGAIN) { 1296 /* Currently handle_dependencies() doesn't yield if we already had 1297 * an allocation. If it did, we would have to clean up the L2Meta 1298 * structs before starting over. */ 1299 assert(*m == NULL); 1300 goto again; 1301 } else if (ret < 0) { 1302 return ret; 1303 } else if (cur_bytes == 0) { 1304 break; 1305 } else { 1306 /* handle_dependencies() may have decreased cur_bytes (shortened 1307 * the allocations below) so that the next dependency is processed 1308 * correctly during the next loop iteration. */ 1309 } 1310 1311 /* 1312 * 2. Count contiguous COPIED clusters. 1313 */ 1314 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1315 if (ret < 0) { 1316 return ret; 1317 } else if (ret) { 1318 continue; 1319 } else if (cur_bytes == 0) { 1320 break; 1321 } 1322 1323 /* 1324 * 3. If the request still hasn't completed, allocate new clusters, 1325 * considering any cluster_offset of steps 1c or 2. 1326 */ 1327 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1328 if (ret < 0) { 1329 return ret; 1330 } else if (ret) { 1331 continue; 1332 } else { 1333 assert(cur_bytes == 0); 1334 break; 1335 } 1336 } 1337 1338 *num -= remaining >> BDRV_SECTOR_BITS; 1339 assert(*num > 0); 1340 assert(*host_offset != 0); 1341 1342 return 0; 1343 } 1344 1345 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1346 const uint8_t *buf, int buf_size) 1347 { 1348 z_stream strm1, *strm = &strm1; 1349 int ret, out_len; 1350 1351 memset(strm, 0, sizeof(*strm)); 1352 1353 strm->next_in = (uint8_t *)buf; 1354 strm->avail_in = buf_size; 1355 strm->next_out = out_buf; 1356 strm->avail_out = out_buf_size; 1357 1358 ret = inflateInit2(strm, -12); 1359 if (ret != Z_OK) 1360 return -1; 1361 ret = inflate(strm, Z_FINISH); 1362 out_len = strm->next_out - out_buf; 1363 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1364 out_len != out_buf_size) { 1365 inflateEnd(strm); 1366 return -1; 1367 } 1368 inflateEnd(strm); 1369 return 0; 1370 } 1371 1372 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1373 { 1374 BDRVQcowState *s = bs->opaque; 1375 int ret, csize, nb_csectors, sector_offset; 1376 uint64_t coffset; 1377 1378 coffset = cluster_offset & s->cluster_offset_mask; 1379 if (s->cluster_cache_offset != coffset) { 1380 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1381 sector_offset = coffset & 511; 1382 csize = nb_csectors * 512 - sector_offset; 1383 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1384 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1385 if (ret < 0) { 1386 return ret; 1387 } 1388 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1389 s->cluster_data + sector_offset, csize) < 0) { 1390 return -EIO; 1391 } 1392 s->cluster_cache_offset = coffset; 1393 } 1394 return 0; 1395 } 1396 1397 /* 1398 * This discards as many clusters of nb_clusters as possible at once (i.e. 1399 * all clusters in the same L2 table) and returns the number of discarded 1400 * clusters. 1401 */ 1402 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1403 unsigned int nb_clusters, enum qcow2_discard_type type, bool full_discard) 1404 { 1405 BDRVQcowState *s = bs->opaque; 1406 uint64_t *l2_table; 1407 int l2_index; 1408 int ret; 1409 int i; 1410 1411 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1412 if (ret < 0) { 1413 return ret; 1414 } 1415 1416 /* Limit nb_clusters to one L2 table */ 1417 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1418 1419 for (i = 0; i < nb_clusters; i++) { 1420 uint64_t old_l2_entry; 1421 1422 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1423 1424 /* 1425 * If full_discard is false, make sure that a discarded area reads back 1426 * as zeroes for v3 images (we cannot do it for v2 without actually 1427 * writing a zero-filled buffer). We can skip the operation if the 1428 * cluster is already marked as zero, or if it's unallocated and we 1429 * don't have a backing file. 1430 * 1431 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1432 * holding s->lock, so that doesn't work today. 1433 * 1434 * If full_discard is true, the sector should not read back as zeroes, 1435 * but rather fall through to the backing file. 1436 */ 1437 switch (qcow2_get_cluster_type(old_l2_entry)) { 1438 case QCOW2_CLUSTER_UNALLOCATED: 1439 if (full_discard || !bs->backing_hd) { 1440 continue; 1441 } 1442 break; 1443 1444 case QCOW2_CLUSTER_ZERO: 1445 if (!full_discard) { 1446 continue; 1447 } 1448 break; 1449 1450 case QCOW2_CLUSTER_NORMAL: 1451 case QCOW2_CLUSTER_COMPRESSED: 1452 break; 1453 1454 default: 1455 abort(); 1456 } 1457 1458 /* First remove L2 entries */ 1459 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1460 if (!full_discard && s->qcow_version >= 3) { 1461 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1462 } else { 1463 l2_table[l2_index + i] = cpu_to_be64(0); 1464 } 1465 1466 /* Then decrease the refcount */ 1467 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1468 } 1469 1470 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1471 1472 return nb_clusters; 1473 } 1474 1475 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1476 int nb_sectors, enum qcow2_discard_type type, bool full_discard) 1477 { 1478 BDRVQcowState *s = bs->opaque; 1479 uint64_t end_offset; 1480 unsigned int nb_clusters; 1481 int ret; 1482 1483 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1484 1485 /* Round start up and end down */ 1486 offset = align_offset(offset, s->cluster_size); 1487 end_offset = start_of_cluster(s, end_offset); 1488 1489 if (offset > end_offset) { 1490 return 0; 1491 } 1492 1493 nb_clusters = size_to_clusters(s, end_offset - offset); 1494 1495 s->cache_discards = true; 1496 1497 /* Each L2 table is handled by its own loop iteration */ 1498 while (nb_clusters > 0) { 1499 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); 1500 if (ret < 0) { 1501 goto fail; 1502 } 1503 1504 nb_clusters -= ret; 1505 offset += (ret * s->cluster_size); 1506 } 1507 1508 ret = 0; 1509 fail: 1510 s->cache_discards = false; 1511 qcow2_process_discards(bs, ret); 1512 1513 return ret; 1514 } 1515 1516 /* 1517 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1518 * all clusters in the same L2 table) and returns the number of zeroed 1519 * clusters. 1520 */ 1521 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1522 unsigned int nb_clusters) 1523 { 1524 BDRVQcowState *s = bs->opaque; 1525 uint64_t *l2_table; 1526 int l2_index; 1527 int ret; 1528 int i; 1529 1530 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1531 if (ret < 0) { 1532 return ret; 1533 } 1534 1535 /* Limit nb_clusters to one L2 table */ 1536 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1537 1538 for (i = 0; i < nb_clusters; i++) { 1539 uint64_t old_offset; 1540 1541 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1542 1543 /* Update L2 entries */ 1544 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1545 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1546 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1547 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1548 } else { 1549 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1550 } 1551 } 1552 1553 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1554 1555 return nb_clusters; 1556 } 1557 1558 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1559 { 1560 BDRVQcowState *s = bs->opaque; 1561 unsigned int nb_clusters; 1562 int ret; 1563 1564 /* The zero flag is only supported by version 3 and newer */ 1565 if (s->qcow_version < 3) { 1566 return -ENOTSUP; 1567 } 1568 1569 /* Each L2 table is handled by its own loop iteration */ 1570 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1571 1572 s->cache_discards = true; 1573 1574 while (nb_clusters > 0) { 1575 ret = zero_single_l2(bs, offset, nb_clusters); 1576 if (ret < 0) { 1577 goto fail; 1578 } 1579 1580 nb_clusters -= ret; 1581 offset += (ret * s->cluster_size); 1582 } 1583 1584 ret = 0; 1585 fail: 1586 s->cache_discards = false; 1587 qcow2_process_discards(bs, ret); 1588 1589 return ret; 1590 } 1591 1592 /* 1593 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1594 * non-backed non-pre-allocated zero clusters). 1595 * 1596 * l1_entries and *visited_l1_entries are used to keep track of progress for 1597 * status_cb(). l1_entries contains the total number of L1 entries and 1598 * *visited_l1_entries counts all visited L1 entries. 1599 */ 1600 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1601 int l1_size, int64_t *visited_l1_entries, 1602 int64_t l1_entries, 1603 BlockDriverAmendStatusCB *status_cb) 1604 { 1605 BDRVQcowState *s = bs->opaque; 1606 bool is_active_l1 = (l1_table == s->l1_table); 1607 uint64_t *l2_table = NULL; 1608 int ret; 1609 int i, j; 1610 1611 if (!is_active_l1) { 1612 /* inactive L2 tables require a buffer to be stored in when loading 1613 * them from disk */ 1614 l2_table = qemu_try_blockalign(bs->file, s->cluster_size); 1615 if (l2_table == NULL) { 1616 return -ENOMEM; 1617 } 1618 } 1619 1620 for (i = 0; i < l1_size; i++) { 1621 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1622 bool l2_dirty = false; 1623 uint64_t l2_refcount; 1624 1625 if (!l2_offset) { 1626 /* unallocated */ 1627 (*visited_l1_entries)++; 1628 if (status_cb) { 1629 status_cb(bs, *visited_l1_entries, l1_entries); 1630 } 1631 continue; 1632 } 1633 1634 if (offset_into_cluster(s, l2_offset)) { 1635 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1636 PRIx64 " unaligned (L1 index: %#x)", 1637 l2_offset, i); 1638 ret = -EIO; 1639 goto fail; 1640 } 1641 1642 if (is_active_l1) { 1643 /* get active L2 tables from cache */ 1644 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1645 (void **)&l2_table); 1646 } else { 1647 /* load inactive L2 tables from disk */ 1648 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1649 (void *)l2_table, s->cluster_sectors); 1650 } 1651 if (ret < 0) { 1652 goto fail; 1653 } 1654 1655 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1656 &l2_refcount); 1657 if (ret < 0) { 1658 goto fail; 1659 } 1660 1661 for (j = 0; j < s->l2_size; j++) { 1662 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1663 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1664 int cluster_type = qcow2_get_cluster_type(l2_entry); 1665 bool preallocated = offset != 0; 1666 1667 if (cluster_type != QCOW2_CLUSTER_ZERO) { 1668 continue; 1669 } 1670 1671 if (!preallocated) { 1672 if (!bs->backing_hd) { 1673 /* not backed; therefore we can simply deallocate the 1674 * cluster */ 1675 l2_table[j] = 0; 1676 l2_dirty = true; 1677 continue; 1678 } 1679 1680 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1681 if (offset < 0) { 1682 ret = offset; 1683 goto fail; 1684 } 1685 1686 if (l2_refcount > 1) { 1687 /* For shared L2 tables, set the refcount accordingly (it is 1688 * already 1 and needs to be l2_refcount) */ 1689 ret = qcow2_update_cluster_refcount(bs, 1690 offset >> s->cluster_bits, 1691 refcount_diff(1, l2_refcount), false, 1692 QCOW2_DISCARD_OTHER); 1693 if (ret < 0) { 1694 qcow2_free_clusters(bs, offset, s->cluster_size, 1695 QCOW2_DISCARD_OTHER); 1696 goto fail; 1697 } 1698 } 1699 } 1700 1701 if (offset_into_cluster(s, offset)) { 1702 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1703 "%#" PRIx64 " unaligned (L2 offset: %#" 1704 PRIx64 ", L2 index: %#x)", offset, 1705 l2_offset, j); 1706 if (!preallocated) { 1707 qcow2_free_clusters(bs, offset, s->cluster_size, 1708 QCOW2_DISCARD_ALWAYS); 1709 } 1710 ret = -EIO; 1711 goto fail; 1712 } 1713 1714 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1715 if (ret < 0) { 1716 if (!preallocated) { 1717 qcow2_free_clusters(bs, offset, s->cluster_size, 1718 QCOW2_DISCARD_ALWAYS); 1719 } 1720 goto fail; 1721 } 1722 1723 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, 1724 s->cluster_sectors, 0); 1725 if (ret < 0) { 1726 if (!preallocated) { 1727 qcow2_free_clusters(bs, offset, s->cluster_size, 1728 QCOW2_DISCARD_ALWAYS); 1729 } 1730 goto fail; 1731 } 1732 1733 if (l2_refcount == 1) { 1734 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1735 } else { 1736 l2_table[j] = cpu_to_be64(offset); 1737 } 1738 l2_dirty = true; 1739 } 1740 1741 if (is_active_l1) { 1742 if (l2_dirty) { 1743 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1744 qcow2_cache_depends_on_flush(s->l2_table_cache); 1745 } 1746 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1747 } else { 1748 if (l2_dirty) { 1749 ret = qcow2_pre_write_overlap_check(bs, 1750 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1751 s->cluster_size); 1752 if (ret < 0) { 1753 goto fail; 1754 } 1755 1756 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1757 (void *)l2_table, s->cluster_sectors); 1758 if (ret < 0) { 1759 goto fail; 1760 } 1761 } 1762 } 1763 1764 (*visited_l1_entries)++; 1765 if (status_cb) { 1766 status_cb(bs, *visited_l1_entries, l1_entries); 1767 } 1768 } 1769 1770 ret = 0; 1771 1772 fail: 1773 if (l2_table) { 1774 if (!is_active_l1) { 1775 qemu_vfree(l2_table); 1776 } else { 1777 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1778 } 1779 } 1780 return ret; 1781 } 1782 1783 /* 1784 * For backed images, expands all zero clusters on the image. For non-backed 1785 * images, deallocates all non-pre-allocated zero clusters (and claims the 1786 * allocation for pre-allocated ones). This is important for downgrading to a 1787 * qcow2 version which doesn't yet support metadata zero clusters. 1788 */ 1789 int qcow2_expand_zero_clusters(BlockDriverState *bs, 1790 BlockDriverAmendStatusCB *status_cb) 1791 { 1792 BDRVQcowState *s = bs->opaque; 1793 uint64_t *l1_table = NULL; 1794 int64_t l1_entries = 0, visited_l1_entries = 0; 1795 int ret; 1796 int i, j; 1797 1798 if (status_cb) { 1799 l1_entries = s->l1_size; 1800 for (i = 0; i < s->nb_snapshots; i++) { 1801 l1_entries += s->snapshots[i].l1_size; 1802 } 1803 } 1804 1805 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1806 &visited_l1_entries, l1_entries, 1807 status_cb); 1808 if (ret < 0) { 1809 goto fail; 1810 } 1811 1812 /* Inactive L1 tables may point to active L2 tables - therefore it is 1813 * necessary to flush the L2 table cache before trying to access the L2 1814 * tables pointed to by inactive L1 entries (else we might try to expand 1815 * zero clusters that have already been expanded); furthermore, it is also 1816 * necessary to empty the L2 table cache, since it may contain tables which 1817 * are now going to be modified directly on disk, bypassing the cache. 1818 * qcow2_cache_empty() does both for us. */ 1819 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1820 if (ret < 0) { 1821 goto fail; 1822 } 1823 1824 for (i = 0; i < s->nb_snapshots; i++) { 1825 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1826 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1827 1828 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1829 1830 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / 1831 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); 1832 if (ret < 0) { 1833 goto fail; 1834 } 1835 1836 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1837 be64_to_cpus(&l1_table[j]); 1838 } 1839 1840 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1841 &visited_l1_entries, l1_entries, 1842 status_cb); 1843 if (ret < 0) { 1844 goto fail; 1845 } 1846 } 1847 1848 ret = 0; 1849 1850 fail: 1851 g_free(l1_table); 1852 return ret; 1853 } 1854