1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qemu-common.h" 30 #include "block/block_int.h" 31 #include "block/qcow2.h" 32 #include "qemu/bswap.h" 33 #include "trace.h" 34 35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 36 bool exact_size) 37 { 38 BDRVQcow2State *s = bs->opaque; 39 int new_l1_size2, ret, i; 40 uint64_t *new_l1_table; 41 int64_t old_l1_table_offset, old_l1_size; 42 int64_t new_l1_table_offset, new_l1_size; 43 uint8_t data[12]; 44 45 if (min_size <= s->l1_size) 46 return 0; 47 48 /* Do a sanity check on min_size before trying to calculate new_l1_size 49 * (this prevents overflows during the while loop for the calculation of 50 * new_l1_size) */ 51 if (min_size > INT_MAX / sizeof(uint64_t)) { 52 return -EFBIG; 53 } 54 55 if (exact_size) { 56 new_l1_size = min_size; 57 } else { 58 /* Bump size up to reduce the number of times we have to grow */ 59 new_l1_size = s->l1_size; 60 if (new_l1_size == 0) { 61 new_l1_size = 1; 62 } 63 while (min_size > new_l1_size) { 64 new_l1_size = (new_l1_size * 3 + 1) / 2; 65 } 66 } 67 68 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 69 return -EFBIG; 70 } 71 72 #ifdef DEBUG_ALLOC2 73 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 74 s->l1_size, new_l1_size); 75 #endif 76 77 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 78 new_l1_table = qemu_try_blockalign(bs->file->bs, 79 align_offset(new_l1_size2, 512)); 80 if (new_l1_table == NULL) { 81 return -ENOMEM; 82 } 83 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 84 85 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 86 87 /* write new table (align to cluster) */ 88 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 89 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 90 if (new_l1_table_offset < 0) { 91 qemu_vfree(new_l1_table); 92 return new_l1_table_offset; 93 } 94 95 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 96 if (ret < 0) { 97 goto fail; 98 } 99 100 /* the L1 position has not yet been updated, so these clusters must 101 * indeed be completely free */ 102 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 103 new_l1_size2); 104 if (ret < 0) { 105 goto fail; 106 } 107 108 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 109 for(i = 0; i < s->l1_size; i++) 110 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 111 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset, 112 new_l1_table, new_l1_size2); 113 if (ret < 0) 114 goto fail; 115 for(i = 0; i < s->l1_size; i++) 116 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 117 118 /* set new table */ 119 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 120 cpu_to_be32w((uint32_t*)data, new_l1_size); 121 stq_be_p(data + 4, new_l1_table_offset); 122 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size), 123 data, sizeof(data)); 124 if (ret < 0) { 125 goto fail; 126 } 127 qemu_vfree(s->l1_table); 128 old_l1_table_offset = s->l1_table_offset; 129 s->l1_table_offset = new_l1_table_offset; 130 s->l1_table = new_l1_table; 131 old_l1_size = s->l1_size; 132 s->l1_size = new_l1_size; 133 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 134 QCOW2_DISCARD_OTHER); 135 return 0; 136 fail: 137 qemu_vfree(new_l1_table); 138 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 139 QCOW2_DISCARD_OTHER); 140 return ret; 141 } 142 143 /* 144 * l2_load 145 * 146 * Loads a L2 table into memory. If the table is in the cache, the cache 147 * is used; otherwise the L2 table is loaded from the image file. 148 * 149 * Returns a pointer to the L2 table on success, or NULL if the read from 150 * the image file failed. 151 */ 152 153 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 154 uint64_t **l2_table) 155 { 156 BDRVQcow2State *s = bs->opaque; 157 int ret; 158 159 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 160 161 return ret; 162 } 163 164 /* 165 * Writes one sector of the L1 table to the disk (can't update single entries 166 * and we really don't want bdrv_pread to perform a read-modify-write) 167 */ 168 #define L1_ENTRIES_PER_SECTOR (512 / 8) 169 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 170 { 171 BDRVQcow2State *s = bs->opaque; 172 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 173 int l1_start_index; 174 int i, ret; 175 176 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 177 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 178 i++) 179 { 180 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 181 } 182 183 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 184 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 185 if (ret < 0) { 186 return ret; 187 } 188 189 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 190 ret = bdrv_pwrite_sync(bs->file->bs, 191 s->l1_table_offset + 8 * l1_start_index, 192 buf, sizeof(buf)); 193 if (ret < 0) { 194 return ret; 195 } 196 197 return 0; 198 } 199 200 /* 201 * l2_allocate 202 * 203 * Allocate a new l2 entry in the file. If l1_index points to an already 204 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 205 * table) copy the contents of the old L2 table into the newly allocated one. 206 * Otherwise the new table is initialized with zeros. 207 * 208 */ 209 210 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 211 { 212 BDRVQcow2State *s = bs->opaque; 213 uint64_t old_l2_offset; 214 uint64_t *l2_table = NULL; 215 int64_t l2_offset; 216 int ret; 217 218 old_l2_offset = s->l1_table[l1_index]; 219 220 trace_qcow2_l2_allocate(bs, l1_index); 221 222 /* allocate a new l2 entry */ 223 224 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 225 if (l2_offset < 0) { 226 ret = l2_offset; 227 goto fail; 228 } 229 230 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 231 if (ret < 0) { 232 goto fail; 233 } 234 235 /* allocate a new entry in the l2 cache */ 236 237 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 238 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 239 if (ret < 0) { 240 goto fail; 241 } 242 243 l2_table = *table; 244 245 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 246 /* if there was no old l2 table, clear the new table */ 247 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 248 } else { 249 uint64_t* old_table; 250 251 /* if there was an old l2 table, read it from the disk */ 252 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 253 ret = qcow2_cache_get(bs, s->l2_table_cache, 254 old_l2_offset & L1E_OFFSET_MASK, 255 (void**) &old_table); 256 if (ret < 0) { 257 goto fail; 258 } 259 260 memcpy(l2_table, old_table, s->cluster_size); 261 262 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); 263 } 264 265 /* write the l2 table to the file */ 266 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 267 268 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 269 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 270 ret = qcow2_cache_flush(bs, s->l2_table_cache); 271 if (ret < 0) { 272 goto fail; 273 } 274 275 /* update the L1 entry */ 276 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 277 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 278 ret = qcow2_write_l1_entry(bs, l1_index); 279 if (ret < 0) { 280 goto fail; 281 } 282 283 *table = l2_table; 284 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 285 return 0; 286 287 fail: 288 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 289 if (l2_table != NULL) { 290 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 291 } 292 s->l1_table[l1_index] = old_l2_offset; 293 if (l2_offset > 0) { 294 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 295 QCOW2_DISCARD_ALWAYS); 296 } 297 return ret; 298 } 299 300 /* 301 * Checks how many clusters in a given L2 table are contiguous in the image 302 * file. As soon as one of the flags in the bitmask stop_flags changes compared 303 * to the first cluster, the search is stopped and the cluster is not counted 304 * as contiguous. (This allows it, for example, to stop at the first compressed 305 * cluster which may require a different handling) 306 */ 307 static int count_contiguous_clusters(int nb_clusters, int cluster_size, 308 uint64_t *l2_table, uint64_t stop_flags) 309 { 310 int i; 311 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 312 uint64_t first_entry = be64_to_cpu(l2_table[0]); 313 uint64_t offset = first_entry & mask; 314 315 if (!offset) 316 return 0; 317 318 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); 319 320 for (i = 0; i < nb_clusters; i++) { 321 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 322 if (offset + (uint64_t) i * cluster_size != l2_entry) { 323 break; 324 } 325 } 326 327 return i; 328 } 329 330 static int count_contiguous_clusters_by_type(int nb_clusters, 331 uint64_t *l2_table, 332 int wanted_type) 333 { 334 int i; 335 336 for (i = 0; i < nb_clusters; i++) { 337 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 338 339 if (type != wanted_type) { 340 break; 341 } 342 } 343 344 return i; 345 } 346 347 /* The crypt function is compatible with the linux cryptoloop 348 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 349 supported */ 350 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, 351 uint8_t *out_buf, const uint8_t *in_buf, 352 int nb_sectors, bool enc, 353 Error **errp) 354 { 355 union { 356 uint64_t ll[2]; 357 uint8_t b[16]; 358 } ivec; 359 int i; 360 int ret; 361 362 for(i = 0; i < nb_sectors; i++) { 363 ivec.ll[0] = cpu_to_le64(sector_num); 364 ivec.ll[1] = 0; 365 if (qcrypto_cipher_setiv(s->cipher, 366 ivec.b, G_N_ELEMENTS(ivec.b), 367 errp) < 0) { 368 return -1; 369 } 370 if (enc) { 371 ret = qcrypto_cipher_encrypt(s->cipher, 372 in_buf, 373 out_buf, 374 512, 375 errp); 376 } else { 377 ret = qcrypto_cipher_decrypt(s->cipher, 378 in_buf, 379 out_buf, 380 512, 381 errp); 382 } 383 if (ret < 0) { 384 return -1; 385 } 386 sector_num++; 387 in_buf += 512; 388 out_buf += 512; 389 } 390 return 0; 391 } 392 393 static int coroutine_fn do_perform_cow(BlockDriverState *bs, 394 uint64_t src_cluster_offset, 395 uint64_t cluster_offset, 396 int offset_in_cluster, 397 int bytes) 398 { 399 BDRVQcow2State *s = bs->opaque; 400 QEMUIOVector qiov; 401 struct iovec iov; 402 int ret; 403 404 iov.iov_len = bytes; 405 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 406 if (iov.iov_base == NULL) { 407 return -ENOMEM; 408 } 409 410 qemu_iovec_init_external(&qiov, &iov, 1); 411 412 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 413 414 if (!bs->drv) { 415 ret = -ENOMEDIUM; 416 goto out; 417 } 418 419 /* Call .bdrv_co_readv() directly instead of using the public block-layer 420 * interface. This avoids double I/O throttling and request tracking, 421 * which can lead to deadlock when block layer copy-on-read is enabled. 422 */ 423 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, 424 bytes, &qiov, 0); 425 if (ret < 0) { 426 goto out; 427 } 428 429 if (bs->encrypted) { 430 Error *err = NULL; 431 int64_t sector = (cluster_offset + offset_in_cluster) 432 >> BDRV_SECTOR_BITS; 433 assert(s->cipher); 434 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); 435 assert((bytes & ~BDRV_SECTOR_MASK) == 0); 436 if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base, 437 bytes >> BDRV_SECTOR_BITS, true, &err) < 0) { 438 ret = -EIO; 439 error_free(err); 440 goto out; 441 } 442 } 443 444 ret = qcow2_pre_write_overlap_check(bs, 0, 445 cluster_offset + offset_in_cluster, bytes); 446 if (ret < 0) { 447 goto out; 448 } 449 450 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 451 ret = bdrv_co_pwritev(bs->file->bs, cluster_offset + offset_in_cluster, 452 bytes, &qiov, 0); 453 if (ret < 0) { 454 goto out; 455 } 456 457 ret = 0; 458 out: 459 qemu_vfree(iov.iov_base); 460 return ret; 461 } 462 463 464 /* 465 * get_cluster_offset 466 * 467 * For a given offset of the virtual disk, find the cluster type and offset in 468 * the qcow2 file. The offset is stored in *cluster_offset. 469 * 470 * On entry, *bytes is the maximum number of contiguous bytes starting at 471 * offset that we are interested in. 472 * 473 * On exit, *bytes is the number of bytes starting at offset that have the same 474 * cluster type and (if applicable) are stored contiguously in the image file. 475 * Compressed clusters are always returned one by one. 476 * 477 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 478 * cases. 479 */ 480 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 481 unsigned int *bytes, uint64_t *cluster_offset) 482 { 483 BDRVQcow2State *s = bs->opaque; 484 unsigned int l2_index; 485 uint64_t l1_index, l2_offset, *l2_table; 486 int l1_bits, c; 487 unsigned int offset_in_cluster, nb_clusters; 488 uint64_t bytes_available, bytes_needed; 489 int ret; 490 491 offset_in_cluster = offset_into_cluster(s, offset); 492 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 493 494 l1_bits = s->l2_bits + s->cluster_bits; 495 496 /* compute how many bytes there are between the start of the cluster 497 * containing offset and the end of the l1 entry */ 498 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)) 499 + offset_in_cluster; 500 501 if (bytes_needed > bytes_available) { 502 bytes_needed = bytes_available; 503 } 504 assert(bytes_needed <= INT_MAX); 505 506 *cluster_offset = 0; 507 508 /* seek to the l2 offset in the l1 table */ 509 510 l1_index = offset >> l1_bits; 511 if (l1_index >= s->l1_size) { 512 ret = QCOW2_CLUSTER_UNALLOCATED; 513 goto out; 514 } 515 516 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 517 if (!l2_offset) { 518 ret = QCOW2_CLUSTER_UNALLOCATED; 519 goto out; 520 } 521 522 if (offset_into_cluster(s, l2_offset)) { 523 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 524 " unaligned (L1 index: %#" PRIx64 ")", 525 l2_offset, l1_index); 526 return -EIO; 527 } 528 529 /* load the l2 table in memory */ 530 531 ret = l2_load(bs, l2_offset, &l2_table); 532 if (ret < 0) { 533 return ret; 534 } 535 536 /* find the cluster offset for the given disk offset */ 537 538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 539 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 540 541 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ 542 nb_clusters = size_to_clusters(s, bytes_needed); 543 544 ret = qcow2_get_cluster_type(*cluster_offset); 545 switch (ret) { 546 case QCOW2_CLUSTER_COMPRESSED: 547 /* Compressed clusters can only be processed one by one */ 548 c = 1; 549 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 550 break; 551 case QCOW2_CLUSTER_ZERO: 552 if (s->qcow_version < 3) { 553 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 554 " in pre-v3 image (L2 offset: %#" PRIx64 555 ", L2 index: %#x)", l2_offset, l2_index); 556 ret = -EIO; 557 goto fail; 558 } 559 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 560 QCOW2_CLUSTER_ZERO); 561 *cluster_offset = 0; 562 break; 563 case QCOW2_CLUSTER_UNALLOCATED: 564 /* how many empty clusters ? */ 565 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 566 QCOW2_CLUSTER_UNALLOCATED); 567 *cluster_offset = 0; 568 break; 569 case QCOW2_CLUSTER_NORMAL: 570 /* how many allocated clusters ? */ 571 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 572 &l2_table[l2_index], QCOW_OFLAG_ZERO); 573 *cluster_offset &= L2E_OFFSET_MASK; 574 if (offset_into_cluster(s, *cluster_offset)) { 575 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" 576 PRIx64 " unaligned (L2 offset: %#" PRIx64 577 ", L2 index: %#x)", *cluster_offset, 578 l2_offset, l2_index); 579 ret = -EIO; 580 goto fail; 581 } 582 break; 583 default: 584 abort(); 585 } 586 587 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 588 589 bytes_available = (c * s->cluster_size); 590 591 out: 592 if (bytes_available > bytes_needed) { 593 bytes_available = bytes_needed; 594 } 595 596 *bytes = bytes_available - offset_in_cluster; 597 598 return ret; 599 600 fail: 601 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 602 return ret; 603 } 604 605 /* 606 * get_cluster_table 607 * 608 * for a given disk offset, load (and allocate if needed) 609 * the l2 table. 610 * 611 * the l2 table offset in the qcow2 file and the cluster index 612 * in the l2 table are given to the caller. 613 * 614 * Returns 0 on success, -errno in failure case 615 */ 616 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 617 uint64_t **new_l2_table, 618 int *new_l2_index) 619 { 620 BDRVQcow2State *s = bs->opaque; 621 unsigned int l2_index; 622 uint64_t l1_index, l2_offset; 623 uint64_t *l2_table = NULL; 624 int ret; 625 626 /* seek to the l2 offset in the l1 table */ 627 628 l1_index = offset >> (s->l2_bits + s->cluster_bits); 629 if (l1_index >= s->l1_size) { 630 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 631 if (ret < 0) { 632 return ret; 633 } 634 } 635 636 assert(l1_index < s->l1_size); 637 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 638 if (offset_into_cluster(s, l2_offset)) { 639 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 640 " unaligned (L1 index: %#" PRIx64 ")", 641 l2_offset, l1_index); 642 return -EIO; 643 } 644 645 /* seek the l2 table of the given l2 offset */ 646 647 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 648 /* load the l2 table in memory */ 649 ret = l2_load(bs, l2_offset, &l2_table); 650 if (ret < 0) { 651 return ret; 652 } 653 } else { 654 /* First allocate a new L2 table (and do COW if needed) */ 655 ret = l2_allocate(bs, l1_index, &l2_table); 656 if (ret < 0) { 657 return ret; 658 } 659 660 /* Then decrease the refcount of the old table */ 661 if (l2_offset) { 662 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 663 QCOW2_DISCARD_OTHER); 664 } 665 } 666 667 /* find the cluster offset for the given disk offset */ 668 669 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 670 671 *new_l2_table = l2_table; 672 *new_l2_index = l2_index; 673 674 return 0; 675 } 676 677 /* 678 * alloc_compressed_cluster_offset 679 * 680 * For a given offset of the disk image, return cluster offset in 681 * qcow2 file. 682 * 683 * If the offset is not found, allocate a new compressed cluster. 684 * 685 * Return the cluster offset if successful, 686 * Return 0, otherwise. 687 * 688 */ 689 690 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 691 uint64_t offset, 692 int compressed_size) 693 { 694 BDRVQcow2State *s = bs->opaque; 695 int l2_index, ret; 696 uint64_t *l2_table; 697 int64_t cluster_offset; 698 int nb_csectors; 699 700 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 701 if (ret < 0) { 702 return 0; 703 } 704 705 /* Compression can't overwrite anything. Fail if the cluster was already 706 * allocated. */ 707 cluster_offset = be64_to_cpu(l2_table[l2_index]); 708 if (cluster_offset & L2E_OFFSET_MASK) { 709 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 710 return 0; 711 } 712 713 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 714 if (cluster_offset < 0) { 715 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 716 return 0; 717 } 718 719 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 720 (cluster_offset >> 9); 721 722 cluster_offset |= QCOW_OFLAG_COMPRESSED | 723 ((uint64_t)nb_csectors << s->csize_shift); 724 725 /* update L2 table */ 726 727 /* compressed clusters never have the copied flag */ 728 729 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 730 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 731 l2_table[l2_index] = cpu_to_be64(cluster_offset); 732 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 733 734 return cluster_offset; 735 } 736 737 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 738 { 739 BDRVQcow2State *s = bs->opaque; 740 int ret; 741 742 if (r->nb_bytes == 0) { 743 return 0; 744 } 745 746 qemu_co_mutex_unlock(&s->lock); 747 ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes); 748 qemu_co_mutex_lock(&s->lock); 749 750 if (ret < 0) { 751 return ret; 752 } 753 754 /* 755 * Before we update the L2 table to actually point to the new cluster, we 756 * need to be sure that the refcounts have been increased and COW was 757 * handled. 758 */ 759 qcow2_cache_depends_on_flush(s->l2_table_cache); 760 761 return 0; 762 } 763 764 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 765 { 766 BDRVQcow2State *s = bs->opaque; 767 int i, j = 0, l2_index, ret; 768 uint64_t *old_cluster, *l2_table; 769 uint64_t cluster_offset = m->alloc_offset; 770 771 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 772 assert(m->nb_clusters > 0); 773 774 old_cluster = g_try_new(uint64_t, m->nb_clusters); 775 if (old_cluster == NULL) { 776 ret = -ENOMEM; 777 goto err; 778 } 779 780 /* copy content of unmodified sectors */ 781 ret = perform_cow(bs, m, &m->cow_start); 782 if (ret < 0) { 783 goto err; 784 } 785 786 ret = perform_cow(bs, m, &m->cow_end); 787 if (ret < 0) { 788 goto err; 789 } 790 791 /* Update L2 table. */ 792 if (s->use_lazy_refcounts) { 793 qcow2_mark_dirty(bs); 794 } 795 if (qcow2_need_accurate_refcounts(s)) { 796 qcow2_cache_set_dependency(bs, s->l2_table_cache, 797 s->refcount_block_cache); 798 } 799 800 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 801 if (ret < 0) { 802 goto err; 803 } 804 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 805 806 assert(l2_index + m->nb_clusters <= s->l2_size); 807 for (i = 0; i < m->nb_clusters; i++) { 808 /* if two concurrent writes happen to the same unallocated cluster 809 * each write allocates separate cluster and writes data concurrently. 810 * The first one to complete updates l2 table with pointer to its 811 * cluster the second one has to do RMW (which is done above by 812 * perform_cow()), update l2 table with its cluster pointer and free 813 * old cluster. This is what this loop does */ 814 if (l2_table[l2_index + i] != 0) { 815 old_cluster[j++] = l2_table[l2_index + i]; 816 } 817 818 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 819 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 820 } 821 822 823 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 824 825 /* 826 * If this was a COW, we need to decrease the refcount of the old cluster. 827 * 828 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 829 * clusters), the next write will reuse them anyway. 830 */ 831 if (j != 0) { 832 for (i = 0; i < j; i++) { 833 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 834 QCOW2_DISCARD_NEVER); 835 } 836 } 837 838 ret = 0; 839 err: 840 g_free(old_cluster); 841 return ret; 842 } 843 844 /* 845 * Returns the number of contiguous clusters that can be used for an allocating 846 * write, but require COW to be performed (this includes yet unallocated space, 847 * which must copy from the backing file) 848 */ 849 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, 850 uint64_t *l2_table, int l2_index) 851 { 852 int i; 853 854 for (i = 0; i < nb_clusters; i++) { 855 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 856 int cluster_type = qcow2_get_cluster_type(l2_entry); 857 858 switch(cluster_type) { 859 case QCOW2_CLUSTER_NORMAL: 860 if (l2_entry & QCOW_OFLAG_COPIED) { 861 goto out; 862 } 863 break; 864 case QCOW2_CLUSTER_UNALLOCATED: 865 case QCOW2_CLUSTER_COMPRESSED: 866 case QCOW2_CLUSTER_ZERO: 867 break; 868 default: 869 abort(); 870 } 871 } 872 873 out: 874 assert(i <= nb_clusters); 875 return i; 876 } 877 878 /* 879 * Check if there already is an AIO write request in flight which allocates 880 * the same cluster. In this case we need to wait until the previous 881 * request has completed and updated the L2 table accordingly. 882 * 883 * Returns: 884 * 0 if there was no dependency. *cur_bytes indicates the number of 885 * bytes from guest_offset that can be read before the next 886 * dependency must be processed (or the request is complete) 887 * 888 * -EAGAIN if we had to wait for another request, previously gathered 889 * information on cluster allocation may be invalid now. The caller 890 * must start over anyway, so consider *cur_bytes undefined. 891 */ 892 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 893 uint64_t *cur_bytes, QCowL2Meta **m) 894 { 895 BDRVQcow2State *s = bs->opaque; 896 QCowL2Meta *old_alloc; 897 uint64_t bytes = *cur_bytes; 898 899 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 900 901 uint64_t start = guest_offset; 902 uint64_t end = start + bytes; 903 uint64_t old_start = l2meta_cow_start(old_alloc); 904 uint64_t old_end = l2meta_cow_end(old_alloc); 905 906 if (end <= old_start || start >= old_end) { 907 /* No intersection */ 908 } else { 909 if (start < old_start) { 910 /* Stop at the start of a running allocation */ 911 bytes = old_start - start; 912 } else { 913 bytes = 0; 914 } 915 916 /* Stop if already an l2meta exists. After yielding, it wouldn't 917 * be valid any more, so we'd have to clean up the old L2Metas 918 * and deal with requests depending on them before starting to 919 * gather new ones. Not worth the trouble. */ 920 if (bytes == 0 && *m) { 921 *cur_bytes = 0; 922 return 0; 923 } 924 925 if (bytes == 0) { 926 /* Wait for the dependency to complete. We need to recheck 927 * the free/allocated clusters when we continue. */ 928 qemu_co_mutex_unlock(&s->lock); 929 qemu_co_queue_wait(&old_alloc->dependent_requests); 930 qemu_co_mutex_lock(&s->lock); 931 return -EAGAIN; 932 } 933 } 934 } 935 936 /* Make sure that existing clusters and new allocations are only used up to 937 * the next dependency if we shortened the request above */ 938 *cur_bytes = bytes; 939 940 return 0; 941 } 942 943 /* 944 * Checks how many already allocated clusters that don't require a copy on 945 * write there are at the given guest_offset (up to *bytes). If 946 * *host_offset is not zero, only physically contiguous clusters beginning at 947 * this host offset are counted. 948 * 949 * Note that guest_offset may not be cluster aligned. In this case, the 950 * returned *host_offset points to exact byte referenced by guest_offset and 951 * therefore isn't cluster aligned as well. 952 * 953 * Returns: 954 * 0: if no allocated clusters are available at the given offset. 955 * *bytes is normally unchanged. It is set to 0 if the cluster 956 * is allocated and doesn't need COW, but doesn't have the right 957 * physical offset. 958 * 959 * 1: if allocated clusters that don't require a COW are available at 960 * the requested offset. *bytes may have decreased and describes 961 * the length of the area that can be written to. 962 * 963 * -errno: in error cases 964 */ 965 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 966 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 967 { 968 BDRVQcow2State *s = bs->opaque; 969 int l2_index; 970 uint64_t cluster_offset; 971 uint64_t *l2_table; 972 uint64_t nb_clusters; 973 unsigned int keep_clusters; 974 int ret; 975 976 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 977 *bytes); 978 979 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 980 == offset_into_cluster(s, *host_offset)); 981 982 /* 983 * Calculate the number of clusters to look for. We stop at L2 table 984 * boundaries to keep things simple. 985 */ 986 nb_clusters = 987 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 988 989 l2_index = offset_to_l2_index(s, guest_offset); 990 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 991 assert(nb_clusters <= INT_MAX); 992 993 /* Find L2 entry for the first involved cluster */ 994 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 995 if (ret < 0) { 996 return ret; 997 } 998 999 cluster_offset = be64_to_cpu(l2_table[l2_index]); 1000 1001 /* Check how many clusters are already allocated and don't need COW */ 1002 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 1003 && (cluster_offset & QCOW_OFLAG_COPIED)) 1004 { 1005 /* If a specific host_offset is required, check it */ 1006 bool offset_matches = 1007 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1008 1009 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1010 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1011 "%#llx unaligned (guest offset: %#" PRIx64 1012 ")", cluster_offset & L2E_OFFSET_MASK, 1013 guest_offset); 1014 ret = -EIO; 1015 goto out; 1016 } 1017 1018 if (*host_offset != 0 && !offset_matches) { 1019 *bytes = 0; 1020 ret = 0; 1021 goto out; 1022 } 1023 1024 /* We keep all QCOW_OFLAG_COPIED clusters */ 1025 keep_clusters = 1026 count_contiguous_clusters(nb_clusters, s->cluster_size, 1027 &l2_table[l2_index], 1028 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1029 assert(keep_clusters <= nb_clusters); 1030 1031 *bytes = MIN(*bytes, 1032 keep_clusters * s->cluster_size 1033 - offset_into_cluster(s, guest_offset)); 1034 1035 ret = 1; 1036 } else { 1037 ret = 0; 1038 } 1039 1040 /* Cleanup */ 1041 out: 1042 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1043 1044 /* Only return a host offset if we actually made progress. Otherwise we 1045 * would make requirements for handle_alloc() that it can't fulfill */ 1046 if (ret > 0) { 1047 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1048 + offset_into_cluster(s, guest_offset); 1049 } 1050 1051 return ret; 1052 } 1053 1054 /* 1055 * Allocates new clusters for the given guest_offset. 1056 * 1057 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1058 * contain the number of clusters that have been allocated and are contiguous 1059 * in the image file. 1060 * 1061 * If *host_offset is non-zero, it specifies the offset in the image file at 1062 * which the new clusters must start. *nb_clusters can be 0 on return in this 1063 * case if the cluster at host_offset is already in use. If *host_offset is 1064 * zero, the clusters can be allocated anywhere in the image file. 1065 * 1066 * *host_offset is updated to contain the offset into the image file at which 1067 * the first allocated cluster starts. 1068 * 1069 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1070 * function has been waiting for another request and the allocation must be 1071 * restarted, but the whole request should not be failed. 1072 */ 1073 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1074 uint64_t *host_offset, uint64_t *nb_clusters) 1075 { 1076 BDRVQcow2State *s = bs->opaque; 1077 1078 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1079 *host_offset, *nb_clusters); 1080 1081 /* Allocate new clusters */ 1082 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1083 if (*host_offset == 0) { 1084 int64_t cluster_offset = 1085 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1086 if (cluster_offset < 0) { 1087 return cluster_offset; 1088 } 1089 *host_offset = cluster_offset; 1090 return 0; 1091 } else { 1092 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1093 if (ret < 0) { 1094 return ret; 1095 } 1096 *nb_clusters = ret; 1097 return 0; 1098 } 1099 } 1100 1101 /* 1102 * Allocates new clusters for an area that either is yet unallocated or needs a 1103 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1104 * the new allocation can match the specified host offset. 1105 * 1106 * Note that guest_offset may not be cluster aligned. In this case, the 1107 * returned *host_offset points to exact byte referenced by guest_offset and 1108 * therefore isn't cluster aligned as well. 1109 * 1110 * Returns: 1111 * 0: if no clusters could be allocated. *bytes is set to 0, 1112 * *host_offset is left unchanged. 1113 * 1114 * 1: if new clusters were allocated. *bytes may be decreased if the 1115 * new allocation doesn't cover all of the requested area. 1116 * *host_offset is updated to contain the host offset of the first 1117 * newly allocated cluster. 1118 * 1119 * -errno: in error cases 1120 */ 1121 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1122 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1123 { 1124 BDRVQcow2State *s = bs->opaque; 1125 int l2_index; 1126 uint64_t *l2_table; 1127 uint64_t entry; 1128 uint64_t nb_clusters; 1129 int ret; 1130 1131 uint64_t alloc_cluster_offset; 1132 1133 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1134 *bytes); 1135 assert(*bytes > 0); 1136 1137 /* 1138 * Calculate the number of clusters to look for. We stop at L2 table 1139 * boundaries to keep things simple. 1140 */ 1141 nb_clusters = 1142 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1143 1144 l2_index = offset_to_l2_index(s, guest_offset); 1145 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1146 assert(nb_clusters <= INT_MAX); 1147 1148 /* Find L2 entry for the first involved cluster */ 1149 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1150 if (ret < 0) { 1151 return ret; 1152 } 1153 1154 entry = be64_to_cpu(l2_table[l2_index]); 1155 1156 /* For the moment, overwrite compressed clusters one by one */ 1157 if (entry & QCOW_OFLAG_COMPRESSED) { 1158 nb_clusters = 1; 1159 } else { 1160 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1161 } 1162 1163 /* This function is only called when there were no non-COW clusters, so if 1164 * we can't find any unallocated or COW clusters either, something is 1165 * wrong with our code. */ 1166 assert(nb_clusters > 0); 1167 1168 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1169 1170 /* Allocate, if necessary at a given offset in the image file */ 1171 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1172 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1173 &nb_clusters); 1174 if (ret < 0) { 1175 goto fail; 1176 } 1177 1178 /* Can't extend contiguous allocation */ 1179 if (nb_clusters == 0) { 1180 *bytes = 0; 1181 return 0; 1182 } 1183 1184 /* !*host_offset would overwrite the image header and is reserved for "no 1185 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1186 * following overlap check; do that now to avoid having an invalid value in 1187 * *host_offset. */ 1188 if (!alloc_cluster_offset) { 1189 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1190 nb_clusters * s->cluster_size); 1191 assert(ret < 0); 1192 goto fail; 1193 } 1194 1195 /* 1196 * Save info needed for meta data update. 1197 * 1198 * requested_bytes: Number of bytes from the start of the first 1199 * newly allocated cluster to the end of the (possibly shortened 1200 * before) write request. 1201 * 1202 * avail_bytes: Number of bytes from the start of the first 1203 * newly allocated to the end of the last newly allocated cluster. 1204 * 1205 * nb_bytes: The number of bytes from the start of the first 1206 * newly allocated cluster to the end of the area that the write 1207 * request actually writes to (excluding COW at the end) 1208 */ 1209 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1210 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); 1211 int nb_bytes = MIN(requested_bytes, avail_bytes); 1212 QCowL2Meta *old_m = *m; 1213 1214 *m = g_malloc0(sizeof(**m)); 1215 1216 **m = (QCowL2Meta) { 1217 .next = old_m, 1218 1219 .alloc_offset = alloc_cluster_offset, 1220 .offset = start_of_cluster(s, guest_offset), 1221 .nb_clusters = nb_clusters, 1222 1223 .cow_start = { 1224 .offset = 0, 1225 .nb_bytes = offset_into_cluster(s, guest_offset), 1226 }, 1227 .cow_end = { 1228 .offset = nb_bytes, 1229 .nb_bytes = avail_bytes - nb_bytes, 1230 }, 1231 }; 1232 qemu_co_queue_init(&(*m)->dependent_requests); 1233 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1234 1235 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1236 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1237 assert(*bytes != 0); 1238 1239 return 1; 1240 1241 fail: 1242 if (*m && (*m)->nb_clusters > 0) { 1243 QLIST_REMOVE(*m, next_in_flight); 1244 } 1245 return ret; 1246 } 1247 1248 /* 1249 * alloc_cluster_offset 1250 * 1251 * For a given offset on the virtual disk, find the cluster offset in qcow2 1252 * file. If the offset is not found, allocate a new cluster. 1253 * 1254 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1255 * other fields in m are meaningless. 1256 * 1257 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1258 * contiguous clusters that have been allocated. In this case, the other 1259 * fields of m are valid and contain information about the first allocated 1260 * cluster. 1261 * 1262 * If the request conflicts with another write request in flight, the coroutine 1263 * is queued and will be reentered when the dependency has completed. 1264 * 1265 * Return 0 on success and -errno in error cases 1266 */ 1267 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1268 unsigned int *bytes, uint64_t *host_offset, 1269 QCowL2Meta **m) 1270 { 1271 BDRVQcow2State *s = bs->opaque; 1272 uint64_t start, remaining; 1273 uint64_t cluster_offset; 1274 uint64_t cur_bytes; 1275 int ret; 1276 1277 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1278 1279 again: 1280 start = offset; 1281 remaining = *bytes; 1282 cluster_offset = 0; 1283 *host_offset = 0; 1284 cur_bytes = 0; 1285 *m = NULL; 1286 1287 while (true) { 1288 1289 if (!*host_offset) { 1290 *host_offset = start_of_cluster(s, cluster_offset); 1291 } 1292 1293 assert(remaining >= cur_bytes); 1294 1295 start += cur_bytes; 1296 remaining -= cur_bytes; 1297 cluster_offset += cur_bytes; 1298 1299 if (remaining == 0) { 1300 break; 1301 } 1302 1303 cur_bytes = remaining; 1304 1305 /* 1306 * Now start gathering as many contiguous clusters as possible: 1307 * 1308 * 1. Check for overlaps with in-flight allocations 1309 * 1310 * a) Overlap not in the first cluster -> shorten this request and 1311 * let the caller handle the rest in its next loop iteration. 1312 * 1313 * b) Real overlaps of two requests. Yield and restart the search 1314 * for contiguous clusters (the situation could have changed 1315 * while we were sleeping) 1316 * 1317 * c) TODO: Request starts in the same cluster as the in-flight 1318 * allocation ends. Shorten the COW of the in-fight allocation, 1319 * set cluster_offset to write to the same cluster and set up 1320 * the right synchronisation between the in-flight request and 1321 * the new one. 1322 */ 1323 ret = handle_dependencies(bs, start, &cur_bytes, m); 1324 if (ret == -EAGAIN) { 1325 /* Currently handle_dependencies() doesn't yield if we already had 1326 * an allocation. If it did, we would have to clean up the L2Meta 1327 * structs before starting over. */ 1328 assert(*m == NULL); 1329 goto again; 1330 } else if (ret < 0) { 1331 return ret; 1332 } else if (cur_bytes == 0) { 1333 break; 1334 } else { 1335 /* handle_dependencies() may have decreased cur_bytes (shortened 1336 * the allocations below) so that the next dependency is processed 1337 * correctly during the next loop iteration. */ 1338 } 1339 1340 /* 1341 * 2. Count contiguous COPIED clusters. 1342 */ 1343 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1344 if (ret < 0) { 1345 return ret; 1346 } else if (ret) { 1347 continue; 1348 } else if (cur_bytes == 0) { 1349 break; 1350 } 1351 1352 /* 1353 * 3. If the request still hasn't completed, allocate new clusters, 1354 * considering any cluster_offset of steps 1c or 2. 1355 */ 1356 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1357 if (ret < 0) { 1358 return ret; 1359 } else if (ret) { 1360 continue; 1361 } else { 1362 assert(cur_bytes == 0); 1363 break; 1364 } 1365 } 1366 1367 *bytes -= remaining; 1368 assert(*bytes > 0); 1369 assert(*host_offset != 0); 1370 1371 return 0; 1372 } 1373 1374 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1375 const uint8_t *buf, int buf_size) 1376 { 1377 z_stream strm1, *strm = &strm1; 1378 int ret, out_len; 1379 1380 memset(strm, 0, sizeof(*strm)); 1381 1382 strm->next_in = (uint8_t *)buf; 1383 strm->avail_in = buf_size; 1384 strm->next_out = out_buf; 1385 strm->avail_out = out_buf_size; 1386 1387 ret = inflateInit2(strm, -12); 1388 if (ret != Z_OK) 1389 return -1; 1390 ret = inflate(strm, Z_FINISH); 1391 out_len = strm->next_out - out_buf; 1392 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1393 out_len != out_buf_size) { 1394 inflateEnd(strm); 1395 return -1; 1396 } 1397 inflateEnd(strm); 1398 return 0; 1399 } 1400 1401 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1402 { 1403 BDRVQcow2State *s = bs->opaque; 1404 int ret, csize, nb_csectors, sector_offset; 1405 uint64_t coffset; 1406 1407 coffset = cluster_offset & s->cluster_offset_mask; 1408 if (s->cluster_cache_offset != coffset) { 1409 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1410 sector_offset = coffset & 511; 1411 csize = nb_csectors * 512 - sector_offset; 1412 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1413 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data, 1414 nb_csectors); 1415 if (ret < 0) { 1416 return ret; 1417 } 1418 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1419 s->cluster_data + sector_offset, csize) < 0) { 1420 return -EIO; 1421 } 1422 s->cluster_cache_offset = coffset; 1423 } 1424 return 0; 1425 } 1426 1427 /* 1428 * This discards as many clusters of nb_clusters as possible at once (i.e. 1429 * all clusters in the same L2 table) and returns the number of discarded 1430 * clusters. 1431 */ 1432 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1433 uint64_t nb_clusters, enum qcow2_discard_type type, 1434 bool full_discard) 1435 { 1436 BDRVQcow2State *s = bs->opaque; 1437 uint64_t *l2_table; 1438 int l2_index; 1439 int ret; 1440 int i; 1441 1442 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1443 if (ret < 0) { 1444 return ret; 1445 } 1446 1447 /* Limit nb_clusters to one L2 table */ 1448 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1449 assert(nb_clusters <= INT_MAX); 1450 1451 for (i = 0; i < nb_clusters; i++) { 1452 uint64_t old_l2_entry; 1453 1454 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1455 1456 /* 1457 * If full_discard is false, make sure that a discarded area reads back 1458 * as zeroes for v3 images (we cannot do it for v2 without actually 1459 * writing a zero-filled buffer). We can skip the operation if the 1460 * cluster is already marked as zero, or if it's unallocated and we 1461 * don't have a backing file. 1462 * 1463 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1464 * holding s->lock, so that doesn't work today. 1465 * 1466 * If full_discard is true, the sector should not read back as zeroes, 1467 * but rather fall through to the backing file. 1468 */ 1469 switch (qcow2_get_cluster_type(old_l2_entry)) { 1470 case QCOW2_CLUSTER_UNALLOCATED: 1471 if (full_discard || !bs->backing) { 1472 continue; 1473 } 1474 break; 1475 1476 case QCOW2_CLUSTER_ZERO: 1477 if (!full_discard) { 1478 continue; 1479 } 1480 break; 1481 1482 case QCOW2_CLUSTER_NORMAL: 1483 case QCOW2_CLUSTER_COMPRESSED: 1484 break; 1485 1486 default: 1487 abort(); 1488 } 1489 1490 /* First remove L2 entries */ 1491 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1492 if (!full_discard && s->qcow_version >= 3) { 1493 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1494 } else { 1495 l2_table[l2_index + i] = cpu_to_be64(0); 1496 } 1497 1498 /* Then decrease the refcount */ 1499 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1500 } 1501 1502 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1503 1504 return nb_clusters; 1505 } 1506 1507 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1508 int nb_sectors, enum qcow2_discard_type type, bool full_discard) 1509 { 1510 BDRVQcow2State *s = bs->opaque; 1511 uint64_t end_offset; 1512 uint64_t nb_clusters; 1513 int ret; 1514 1515 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1516 1517 /* Round start up and end down */ 1518 offset = align_offset(offset, s->cluster_size); 1519 end_offset = start_of_cluster(s, end_offset); 1520 1521 if (offset > end_offset) { 1522 return 0; 1523 } 1524 1525 nb_clusters = size_to_clusters(s, end_offset - offset); 1526 1527 s->cache_discards = true; 1528 1529 /* Each L2 table is handled by its own loop iteration */ 1530 while (nb_clusters > 0) { 1531 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); 1532 if (ret < 0) { 1533 goto fail; 1534 } 1535 1536 nb_clusters -= ret; 1537 offset += (ret * s->cluster_size); 1538 } 1539 1540 ret = 0; 1541 fail: 1542 s->cache_discards = false; 1543 qcow2_process_discards(bs, ret); 1544 1545 return ret; 1546 } 1547 1548 /* 1549 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1550 * all clusters in the same L2 table) and returns the number of zeroed 1551 * clusters. 1552 */ 1553 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1554 uint64_t nb_clusters) 1555 { 1556 BDRVQcow2State *s = bs->opaque; 1557 uint64_t *l2_table; 1558 int l2_index; 1559 int ret; 1560 int i; 1561 1562 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1563 if (ret < 0) { 1564 return ret; 1565 } 1566 1567 /* Limit nb_clusters to one L2 table */ 1568 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1569 assert(nb_clusters <= INT_MAX); 1570 1571 for (i = 0; i < nb_clusters; i++) { 1572 uint64_t old_offset; 1573 1574 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1575 1576 /* Update L2 entries */ 1577 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1578 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1579 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1580 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1581 } else { 1582 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1583 } 1584 } 1585 1586 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1587 1588 return nb_clusters; 1589 } 1590 1591 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1592 { 1593 BDRVQcow2State *s = bs->opaque; 1594 uint64_t nb_clusters; 1595 int ret; 1596 1597 /* The zero flag is only supported by version 3 and newer */ 1598 if (s->qcow_version < 3) { 1599 return -ENOTSUP; 1600 } 1601 1602 /* Each L2 table is handled by its own loop iteration */ 1603 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1604 1605 s->cache_discards = true; 1606 1607 while (nb_clusters > 0) { 1608 ret = zero_single_l2(bs, offset, nb_clusters); 1609 if (ret < 0) { 1610 goto fail; 1611 } 1612 1613 nb_clusters -= ret; 1614 offset += (ret * s->cluster_size); 1615 } 1616 1617 ret = 0; 1618 fail: 1619 s->cache_discards = false; 1620 qcow2_process_discards(bs, ret); 1621 1622 return ret; 1623 } 1624 1625 /* 1626 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1627 * non-backed non-pre-allocated zero clusters). 1628 * 1629 * l1_entries and *visited_l1_entries are used to keep track of progress for 1630 * status_cb(). l1_entries contains the total number of L1 entries and 1631 * *visited_l1_entries counts all visited L1 entries. 1632 */ 1633 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1634 int l1_size, int64_t *visited_l1_entries, 1635 int64_t l1_entries, 1636 BlockDriverAmendStatusCB *status_cb, 1637 void *cb_opaque) 1638 { 1639 BDRVQcow2State *s = bs->opaque; 1640 bool is_active_l1 = (l1_table == s->l1_table); 1641 uint64_t *l2_table = NULL; 1642 int ret; 1643 int i, j; 1644 1645 if (!is_active_l1) { 1646 /* inactive L2 tables require a buffer to be stored in when loading 1647 * them from disk */ 1648 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); 1649 if (l2_table == NULL) { 1650 return -ENOMEM; 1651 } 1652 } 1653 1654 for (i = 0; i < l1_size; i++) { 1655 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1656 bool l2_dirty = false; 1657 uint64_t l2_refcount; 1658 1659 if (!l2_offset) { 1660 /* unallocated */ 1661 (*visited_l1_entries)++; 1662 if (status_cb) { 1663 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1664 } 1665 continue; 1666 } 1667 1668 if (offset_into_cluster(s, l2_offset)) { 1669 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1670 PRIx64 " unaligned (L1 index: %#x)", 1671 l2_offset, i); 1672 ret = -EIO; 1673 goto fail; 1674 } 1675 1676 if (is_active_l1) { 1677 /* get active L2 tables from cache */ 1678 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1679 (void **)&l2_table); 1680 } else { 1681 /* load inactive L2 tables from disk */ 1682 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1683 (void *)l2_table, s->cluster_sectors); 1684 } 1685 if (ret < 0) { 1686 goto fail; 1687 } 1688 1689 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1690 &l2_refcount); 1691 if (ret < 0) { 1692 goto fail; 1693 } 1694 1695 for (j = 0; j < s->l2_size; j++) { 1696 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1697 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1698 int cluster_type = qcow2_get_cluster_type(l2_entry); 1699 bool preallocated = offset != 0; 1700 1701 if (cluster_type != QCOW2_CLUSTER_ZERO) { 1702 continue; 1703 } 1704 1705 if (!preallocated) { 1706 if (!bs->backing) { 1707 /* not backed; therefore we can simply deallocate the 1708 * cluster */ 1709 l2_table[j] = 0; 1710 l2_dirty = true; 1711 continue; 1712 } 1713 1714 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1715 if (offset < 0) { 1716 ret = offset; 1717 goto fail; 1718 } 1719 1720 if (l2_refcount > 1) { 1721 /* For shared L2 tables, set the refcount accordingly (it is 1722 * already 1 and needs to be l2_refcount) */ 1723 ret = qcow2_update_cluster_refcount(bs, 1724 offset >> s->cluster_bits, 1725 refcount_diff(1, l2_refcount), false, 1726 QCOW2_DISCARD_OTHER); 1727 if (ret < 0) { 1728 qcow2_free_clusters(bs, offset, s->cluster_size, 1729 QCOW2_DISCARD_OTHER); 1730 goto fail; 1731 } 1732 } 1733 } 1734 1735 if (offset_into_cluster(s, offset)) { 1736 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1737 "%#" PRIx64 " unaligned (L2 offset: %#" 1738 PRIx64 ", L2 index: %#x)", offset, 1739 l2_offset, j); 1740 if (!preallocated) { 1741 qcow2_free_clusters(bs, offset, s->cluster_size, 1742 QCOW2_DISCARD_ALWAYS); 1743 } 1744 ret = -EIO; 1745 goto fail; 1746 } 1747 1748 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1749 if (ret < 0) { 1750 if (!preallocated) { 1751 qcow2_free_clusters(bs, offset, s->cluster_size, 1752 QCOW2_DISCARD_ALWAYS); 1753 } 1754 goto fail; 1755 } 1756 1757 ret = bdrv_pwrite_zeroes(bs->file->bs, offset, s->cluster_size, 0); 1758 if (ret < 0) { 1759 if (!preallocated) { 1760 qcow2_free_clusters(bs, offset, s->cluster_size, 1761 QCOW2_DISCARD_ALWAYS); 1762 } 1763 goto fail; 1764 } 1765 1766 if (l2_refcount == 1) { 1767 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1768 } else { 1769 l2_table[j] = cpu_to_be64(offset); 1770 } 1771 l2_dirty = true; 1772 } 1773 1774 if (is_active_l1) { 1775 if (l2_dirty) { 1776 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1777 qcow2_cache_depends_on_flush(s->l2_table_cache); 1778 } 1779 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1780 } else { 1781 if (l2_dirty) { 1782 ret = qcow2_pre_write_overlap_check(bs, 1783 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1784 s->cluster_size); 1785 if (ret < 0) { 1786 goto fail; 1787 } 1788 1789 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1790 (void *)l2_table, s->cluster_sectors); 1791 if (ret < 0) { 1792 goto fail; 1793 } 1794 } 1795 } 1796 1797 (*visited_l1_entries)++; 1798 if (status_cb) { 1799 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1800 } 1801 } 1802 1803 ret = 0; 1804 1805 fail: 1806 if (l2_table) { 1807 if (!is_active_l1) { 1808 qemu_vfree(l2_table); 1809 } else { 1810 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1811 } 1812 } 1813 return ret; 1814 } 1815 1816 /* 1817 * For backed images, expands all zero clusters on the image. For non-backed 1818 * images, deallocates all non-pre-allocated zero clusters (and claims the 1819 * allocation for pre-allocated ones). This is important for downgrading to a 1820 * qcow2 version which doesn't yet support metadata zero clusters. 1821 */ 1822 int qcow2_expand_zero_clusters(BlockDriverState *bs, 1823 BlockDriverAmendStatusCB *status_cb, 1824 void *cb_opaque) 1825 { 1826 BDRVQcow2State *s = bs->opaque; 1827 uint64_t *l1_table = NULL; 1828 int64_t l1_entries = 0, visited_l1_entries = 0; 1829 int ret; 1830 int i, j; 1831 1832 if (status_cb) { 1833 l1_entries = s->l1_size; 1834 for (i = 0; i < s->nb_snapshots; i++) { 1835 l1_entries += s->snapshots[i].l1_size; 1836 } 1837 } 1838 1839 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1840 &visited_l1_entries, l1_entries, 1841 status_cb, cb_opaque); 1842 if (ret < 0) { 1843 goto fail; 1844 } 1845 1846 /* Inactive L1 tables may point to active L2 tables - therefore it is 1847 * necessary to flush the L2 table cache before trying to access the L2 1848 * tables pointed to by inactive L1 entries (else we might try to expand 1849 * zero clusters that have already been expanded); furthermore, it is also 1850 * necessary to empty the L2 table cache, since it may contain tables which 1851 * are now going to be modified directly on disk, bypassing the cache. 1852 * qcow2_cache_empty() does both for us. */ 1853 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1854 if (ret < 0) { 1855 goto fail; 1856 } 1857 1858 for (i = 0; i < s->nb_snapshots; i++) { 1859 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size * 1860 sizeof(uint64_t), BDRV_SECTOR_SIZE); 1861 1862 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1863 1864 ret = bdrv_read(bs->file->bs, 1865 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, 1866 (void *)l1_table, l1_sectors); 1867 if (ret < 0) { 1868 goto fail; 1869 } 1870 1871 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1872 be64_to_cpus(&l1_table[j]); 1873 } 1874 1875 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1876 &visited_l1_entries, l1_entries, 1877 status_cb, cb_opaque); 1878 if (ret < 0) { 1879 goto fail; 1880 } 1881 } 1882 1883 ret = 0; 1884 1885 fail: 1886 g_free(l1_table); 1887 return ret; 1888 } 1889