xref: /openbmc/qemu/block/qcow2-cluster.c (revision 07e2034d0817b8006ae4eff07d9d67169d52855a)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36                         bool exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size2, ret, i;
40     uint64_t *new_l1_table;
41     int64_t old_l1_table_offset, old_l1_size;
42     int64_t new_l1_table_offset, new_l1_size;
43     uint8_t data[12];
44 
45     if (min_size <= s->l1_size)
46         return 0;
47 
48     /* Do a sanity check on min_size before trying to calculate new_l1_size
49      * (this prevents overflows during the while loop for the calculation of
50      * new_l1_size) */
51     if (min_size > INT_MAX / sizeof(uint64_t)) {
52         return -EFBIG;
53     }
54 
55     if (exact_size) {
56         new_l1_size = min_size;
57     } else {
58         /* Bump size up to reduce the number of times we have to grow */
59         new_l1_size = s->l1_size;
60         if (new_l1_size == 0) {
61             new_l1_size = 1;
62         }
63         while (min_size > new_l1_size) {
64             new_l1_size = (new_l1_size * 3 + 1) / 2;
65         }
66     }
67 
68     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
69         return -EFBIG;
70     }
71 
72 #ifdef DEBUG_ALLOC2
73     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
74             s->l1_size, new_l1_size);
75 #endif
76 
77     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
78     new_l1_table = qemu_try_blockalign(bs->file->bs,
79                                        align_offset(new_l1_size2, 512));
80     if (new_l1_table == NULL) {
81         return -ENOMEM;
82     }
83     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
84 
85     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
86 
87     /* write new table (align to cluster) */
88     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
89     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
90     if (new_l1_table_offset < 0) {
91         qemu_vfree(new_l1_table);
92         return new_l1_table_offset;
93     }
94 
95     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
96     if (ret < 0) {
97         goto fail;
98     }
99 
100     /* the L1 position has not yet been updated, so these clusters must
101      * indeed be completely free */
102     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
103                                         new_l1_size2);
104     if (ret < 0) {
105         goto fail;
106     }
107 
108     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
109     for(i = 0; i < s->l1_size; i++)
110         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
111     ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset,
112                            new_l1_table, new_l1_size2);
113     if (ret < 0)
114         goto fail;
115     for(i = 0; i < s->l1_size; i++)
116         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
117 
118     /* set new table */
119     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
120     cpu_to_be32w((uint32_t*)data, new_l1_size);
121     stq_be_p(data + 4, new_l1_table_offset);
122     ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size),
123                            data, sizeof(data));
124     if (ret < 0) {
125         goto fail;
126     }
127     qemu_vfree(s->l1_table);
128     old_l1_table_offset = s->l1_table_offset;
129     s->l1_table_offset = new_l1_table_offset;
130     s->l1_table = new_l1_table;
131     old_l1_size = s->l1_size;
132     s->l1_size = new_l1_size;
133     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
134                         QCOW2_DISCARD_OTHER);
135     return 0;
136  fail:
137     qemu_vfree(new_l1_table);
138     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
139                         QCOW2_DISCARD_OTHER);
140     return ret;
141 }
142 
143 /*
144  * l2_load
145  *
146  * Loads a L2 table into memory. If the table is in the cache, the cache
147  * is used; otherwise the L2 table is loaded from the image file.
148  *
149  * Returns a pointer to the L2 table on success, or NULL if the read from
150  * the image file failed.
151  */
152 
153 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
154     uint64_t **l2_table)
155 {
156     BDRVQcow2State *s = bs->opaque;
157     int ret;
158 
159     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
160 
161     return ret;
162 }
163 
164 /*
165  * Writes one sector of the L1 table to the disk (can't update single entries
166  * and we really don't want bdrv_pread to perform a read-modify-write)
167  */
168 #define L1_ENTRIES_PER_SECTOR (512 / 8)
169 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
170 {
171     BDRVQcow2State *s = bs->opaque;
172     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
173     int l1_start_index;
174     int i, ret;
175 
176     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
177     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
178          i++)
179     {
180         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
181     }
182 
183     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
184             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
185     if (ret < 0) {
186         return ret;
187     }
188 
189     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
190     ret = bdrv_pwrite_sync(bs->file->bs,
191                            s->l1_table_offset + 8 * l1_start_index,
192                            buf, sizeof(buf));
193     if (ret < 0) {
194         return ret;
195     }
196 
197     return 0;
198 }
199 
200 /*
201  * l2_allocate
202  *
203  * Allocate a new l2 entry in the file. If l1_index points to an already
204  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
205  * table) copy the contents of the old L2 table into the newly allocated one.
206  * Otherwise the new table is initialized with zeros.
207  *
208  */
209 
210 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
211 {
212     BDRVQcow2State *s = bs->opaque;
213     uint64_t old_l2_offset;
214     uint64_t *l2_table = NULL;
215     int64_t l2_offset;
216     int ret;
217 
218     old_l2_offset = s->l1_table[l1_index];
219 
220     trace_qcow2_l2_allocate(bs, l1_index);
221 
222     /* allocate a new l2 entry */
223 
224     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
225     if (l2_offset < 0) {
226         ret = l2_offset;
227         goto fail;
228     }
229 
230     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
231     if (ret < 0) {
232         goto fail;
233     }
234 
235     /* allocate a new entry in the l2 cache */
236 
237     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
238     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
239     if (ret < 0) {
240         goto fail;
241     }
242 
243     l2_table = *table;
244 
245     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
246         /* if there was no old l2 table, clear the new table */
247         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
248     } else {
249         uint64_t* old_table;
250 
251         /* if there was an old l2 table, read it from the disk */
252         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
253         ret = qcow2_cache_get(bs, s->l2_table_cache,
254             old_l2_offset & L1E_OFFSET_MASK,
255             (void**) &old_table);
256         if (ret < 0) {
257             goto fail;
258         }
259 
260         memcpy(l2_table, old_table, s->cluster_size);
261 
262         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
263     }
264 
265     /* write the l2 table to the file */
266     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
267 
268     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
269     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
270     ret = qcow2_cache_flush(bs, s->l2_table_cache);
271     if (ret < 0) {
272         goto fail;
273     }
274 
275     /* update the L1 entry */
276     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
277     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
278     ret = qcow2_write_l1_entry(bs, l1_index);
279     if (ret < 0) {
280         goto fail;
281     }
282 
283     *table = l2_table;
284     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
285     return 0;
286 
287 fail:
288     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
289     if (l2_table != NULL) {
290         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
291     }
292     s->l1_table[l1_index] = old_l2_offset;
293     if (l2_offset > 0) {
294         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
295                             QCOW2_DISCARD_ALWAYS);
296     }
297     return ret;
298 }
299 
300 /*
301  * Checks how many clusters in a given L2 table are contiguous in the image
302  * file. As soon as one of the flags in the bitmask stop_flags changes compared
303  * to the first cluster, the search is stopped and the cluster is not counted
304  * as contiguous. (This allows it, for example, to stop at the first compressed
305  * cluster which may require a different handling)
306  */
307 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
308         uint64_t *l2_table, uint64_t stop_flags)
309 {
310     int i;
311     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
312     uint64_t first_entry = be64_to_cpu(l2_table[0]);
313     uint64_t offset = first_entry & mask;
314 
315     if (!offset)
316         return 0;
317 
318     assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
319 
320     for (i = 0; i < nb_clusters; i++) {
321         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
322         if (offset + (uint64_t) i * cluster_size != l2_entry) {
323             break;
324         }
325     }
326 
327 	return i;
328 }
329 
330 static int count_contiguous_clusters_by_type(int nb_clusters,
331                                              uint64_t *l2_table,
332                                              int wanted_type)
333 {
334     int i;
335 
336     for (i = 0; i < nb_clusters; i++) {
337         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
338 
339         if (type != wanted_type) {
340             break;
341         }
342     }
343 
344     return i;
345 }
346 
347 /* The crypt function is compatible with the linux cryptoloop
348    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
349    supported */
350 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
351                           uint8_t *out_buf, const uint8_t *in_buf,
352                           int nb_sectors, bool enc,
353                           Error **errp)
354 {
355     union {
356         uint64_t ll[2];
357         uint8_t b[16];
358     } ivec;
359     int i;
360     int ret;
361 
362     for(i = 0; i < nb_sectors; i++) {
363         ivec.ll[0] = cpu_to_le64(sector_num);
364         ivec.ll[1] = 0;
365         if (qcrypto_cipher_setiv(s->cipher,
366                                  ivec.b, G_N_ELEMENTS(ivec.b),
367                                  errp) < 0) {
368             return -1;
369         }
370         if (enc) {
371             ret = qcrypto_cipher_encrypt(s->cipher,
372                                          in_buf,
373                                          out_buf,
374                                          512,
375                                          errp);
376         } else {
377             ret = qcrypto_cipher_decrypt(s->cipher,
378                                          in_buf,
379                                          out_buf,
380                                          512,
381                                          errp);
382         }
383         if (ret < 0) {
384             return -1;
385         }
386         sector_num++;
387         in_buf += 512;
388         out_buf += 512;
389     }
390     return 0;
391 }
392 
393 static int coroutine_fn do_perform_cow(BlockDriverState *bs,
394                                        uint64_t src_cluster_offset,
395                                        uint64_t cluster_offset,
396                                        int offset_in_cluster,
397                                        int bytes)
398 {
399     BDRVQcow2State *s = bs->opaque;
400     QEMUIOVector qiov;
401     struct iovec iov;
402     int ret;
403 
404     iov.iov_len = bytes;
405     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
406     if (iov.iov_base == NULL) {
407         return -ENOMEM;
408     }
409 
410     qemu_iovec_init_external(&qiov, &iov, 1);
411 
412     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
413 
414     if (!bs->drv) {
415         ret = -ENOMEDIUM;
416         goto out;
417     }
418 
419     /* Call .bdrv_co_readv() directly instead of using the public block-layer
420      * interface.  This avoids double I/O throttling and request tracking,
421      * which can lead to deadlock when block layer copy-on-read is enabled.
422      */
423     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
424                                   bytes, &qiov, 0);
425     if (ret < 0) {
426         goto out;
427     }
428 
429     if (bs->encrypted) {
430         Error *err = NULL;
431         int64_t sector = (cluster_offset + offset_in_cluster)
432                          >> BDRV_SECTOR_BITS;
433         assert(s->cipher);
434         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
435         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
436         if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
437                                   bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
438             ret = -EIO;
439             error_free(err);
440             goto out;
441         }
442     }
443 
444     ret = qcow2_pre_write_overlap_check(bs, 0,
445             cluster_offset + offset_in_cluster, bytes);
446     if (ret < 0) {
447         goto out;
448     }
449 
450     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
451     ret = bdrv_co_pwritev(bs->file->bs, cluster_offset + offset_in_cluster,
452                           bytes, &qiov, 0);
453     if (ret < 0) {
454         goto out;
455     }
456 
457     ret = 0;
458 out:
459     qemu_vfree(iov.iov_base);
460     return ret;
461 }
462 
463 
464 /*
465  * get_cluster_offset
466  *
467  * For a given offset of the virtual disk, find the cluster type and offset in
468  * the qcow2 file. The offset is stored in *cluster_offset.
469  *
470  * On entry, *bytes is the maximum number of contiguous bytes starting at
471  * offset that we are interested in.
472  *
473  * On exit, *bytes is the number of bytes starting at offset that have the same
474  * cluster type and (if applicable) are stored contiguously in the image file.
475  * Compressed clusters are always returned one by one.
476  *
477  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
478  * cases.
479  */
480 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
481                              unsigned int *bytes, uint64_t *cluster_offset)
482 {
483     BDRVQcow2State *s = bs->opaque;
484     unsigned int l2_index;
485     uint64_t l1_index, l2_offset, *l2_table;
486     int l1_bits, c;
487     unsigned int offset_in_cluster, nb_clusters;
488     uint64_t bytes_available, bytes_needed;
489     int ret;
490 
491     offset_in_cluster = offset_into_cluster(s, offset);
492     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
493 
494     l1_bits = s->l2_bits + s->cluster_bits;
495 
496     /* compute how many bytes there are between the start of the cluster
497      * containing offset and the end of the l1 entry */
498     bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
499                     + offset_in_cluster;
500 
501     if (bytes_needed > bytes_available) {
502         bytes_needed = bytes_available;
503     }
504     assert(bytes_needed <= INT_MAX);
505 
506     *cluster_offset = 0;
507 
508     /* seek to the l2 offset in the l1 table */
509 
510     l1_index = offset >> l1_bits;
511     if (l1_index >= s->l1_size) {
512         ret = QCOW2_CLUSTER_UNALLOCATED;
513         goto out;
514     }
515 
516     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
517     if (!l2_offset) {
518         ret = QCOW2_CLUSTER_UNALLOCATED;
519         goto out;
520     }
521 
522     if (offset_into_cluster(s, l2_offset)) {
523         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
524                                 " unaligned (L1 index: %#" PRIx64 ")",
525                                 l2_offset, l1_index);
526         return -EIO;
527     }
528 
529     /* load the l2 table in memory */
530 
531     ret = l2_load(bs, l2_offset, &l2_table);
532     if (ret < 0) {
533         return ret;
534     }
535 
536     /* find the cluster offset for the given disk offset */
537 
538     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
539     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
540 
541     /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
542     nb_clusters = size_to_clusters(s, bytes_needed);
543 
544     ret = qcow2_get_cluster_type(*cluster_offset);
545     switch (ret) {
546     case QCOW2_CLUSTER_COMPRESSED:
547         /* Compressed clusters can only be processed one by one */
548         c = 1;
549         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
550         break;
551     case QCOW2_CLUSTER_ZERO:
552         if (s->qcow_version < 3) {
553             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
554                                     " in pre-v3 image (L2 offset: %#" PRIx64
555                                     ", L2 index: %#x)", l2_offset, l2_index);
556             ret = -EIO;
557             goto fail;
558         }
559         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
560                                               QCOW2_CLUSTER_ZERO);
561         *cluster_offset = 0;
562         break;
563     case QCOW2_CLUSTER_UNALLOCATED:
564         /* how many empty clusters ? */
565         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
566                                               QCOW2_CLUSTER_UNALLOCATED);
567         *cluster_offset = 0;
568         break;
569     case QCOW2_CLUSTER_NORMAL:
570         /* how many allocated clusters ? */
571         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
572                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
573         *cluster_offset &= L2E_OFFSET_MASK;
574         if (offset_into_cluster(s, *cluster_offset)) {
575             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
576                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
577                                     ", L2 index: %#x)", *cluster_offset,
578                                     l2_offset, l2_index);
579             ret = -EIO;
580             goto fail;
581         }
582         break;
583     default:
584         abort();
585     }
586 
587     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
588 
589     bytes_available = (c * s->cluster_size);
590 
591 out:
592     if (bytes_available > bytes_needed) {
593         bytes_available = bytes_needed;
594     }
595 
596     *bytes = bytes_available - offset_in_cluster;
597 
598     return ret;
599 
600 fail:
601     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
602     return ret;
603 }
604 
605 /*
606  * get_cluster_table
607  *
608  * for a given disk offset, load (and allocate if needed)
609  * the l2 table.
610  *
611  * the l2 table offset in the qcow2 file and the cluster index
612  * in the l2 table are given to the caller.
613  *
614  * Returns 0 on success, -errno in failure case
615  */
616 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
617                              uint64_t **new_l2_table,
618                              int *new_l2_index)
619 {
620     BDRVQcow2State *s = bs->opaque;
621     unsigned int l2_index;
622     uint64_t l1_index, l2_offset;
623     uint64_t *l2_table = NULL;
624     int ret;
625 
626     /* seek to the l2 offset in the l1 table */
627 
628     l1_index = offset >> (s->l2_bits + s->cluster_bits);
629     if (l1_index >= s->l1_size) {
630         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
631         if (ret < 0) {
632             return ret;
633         }
634     }
635 
636     assert(l1_index < s->l1_size);
637     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
638     if (offset_into_cluster(s, l2_offset)) {
639         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
640                                 " unaligned (L1 index: %#" PRIx64 ")",
641                                 l2_offset, l1_index);
642         return -EIO;
643     }
644 
645     /* seek the l2 table of the given l2 offset */
646 
647     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
648         /* load the l2 table in memory */
649         ret = l2_load(bs, l2_offset, &l2_table);
650         if (ret < 0) {
651             return ret;
652         }
653     } else {
654         /* First allocate a new L2 table (and do COW if needed) */
655         ret = l2_allocate(bs, l1_index, &l2_table);
656         if (ret < 0) {
657             return ret;
658         }
659 
660         /* Then decrease the refcount of the old table */
661         if (l2_offset) {
662             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
663                                 QCOW2_DISCARD_OTHER);
664         }
665     }
666 
667     /* find the cluster offset for the given disk offset */
668 
669     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
670 
671     *new_l2_table = l2_table;
672     *new_l2_index = l2_index;
673 
674     return 0;
675 }
676 
677 /*
678  * alloc_compressed_cluster_offset
679  *
680  * For a given offset of the disk image, return cluster offset in
681  * qcow2 file.
682  *
683  * If the offset is not found, allocate a new compressed cluster.
684  *
685  * Return the cluster offset if successful,
686  * Return 0, otherwise.
687  *
688  */
689 
690 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
691                                                uint64_t offset,
692                                                int compressed_size)
693 {
694     BDRVQcow2State *s = bs->opaque;
695     int l2_index, ret;
696     uint64_t *l2_table;
697     int64_t cluster_offset;
698     int nb_csectors;
699 
700     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
701     if (ret < 0) {
702         return 0;
703     }
704 
705     /* Compression can't overwrite anything. Fail if the cluster was already
706      * allocated. */
707     cluster_offset = be64_to_cpu(l2_table[l2_index]);
708     if (cluster_offset & L2E_OFFSET_MASK) {
709         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
710         return 0;
711     }
712 
713     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
714     if (cluster_offset < 0) {
715         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
716         return 0;
717     }
718 
719     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
720                   (cluster_offset >> 9);
721 
722     cluster_offset |= QCOW_OFLAG_COMPRESSED |
723                       ((uint64_t)nb_csectors << s->csize_shift);
724 
725     /* update L2 table */
726 
727     /* compressed clusters never have the copied flag */
728 
729     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
730     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
731     l2_table[l2_index] = cpu_to_be64(cluster_offset);
732     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
733 
734     return cluster_offset;
735 }
736 
737 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
738 {
739     BDRVQcow2State *s = bs->opaque;
740     int ret;
741 
742     if (r->nb_bytes == 0) {
743         return 0;
744     }
745 
746     qemu_co_mutex_unlock(&s->lock);
747     ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
748     qemu_co_mutex_lock(&s->lock);
749 
750     if (ret < 0) {
751         return ret;
752     }
753 
754     /*
755      * Before we update the L2 table to actually point to the new cluster, we
756      * need to be sure that the refcounts have been increased and COW was
757      * handled.
758      */
759     qcow2_cache_depends_on_flush(s->l2_table_cache);
760 
761     return 0;
762 }
763 
764 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
765 {
766     BDRVQcow2State *s = bs->opaque;
767     int i, j = 0, l2_index, ret;
768     uint64_t *old_cluster, *l2_table;
769     uint64_t cluster_offset = m->alloc_offset;
770 
771     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
772     assert(m->nb_clusters > 0);
773 
774     old_cluster = g_try_new(uint64_t, m->nb_clusters);
775     if (old_cluster == NULL) {
776         ret = -ENOMEM;
777         goto err;
778     }
779 
780     /* copy content of unmodified sectors */
781     ret = perform_cow(bs, m, &m->cow_start);
782     if (ret < 0) {
783         goto err;
784     }
785 
786     ret = perform_cow(bs, m, &m->cow_end);
787     if (ret < 0) {
788         goto err;
789     }
790 
791     /* Update L2 table. */
792     if (s->use_lazy_refcounts) {
793         qcow2_mark_dirty(bs);
794     }
795     if (qcow2_need_accurate_refcounts(s)) {
796         qcow2_cache_set_dependency(bs, s->l2_table_cache,
797                                    s->refcount_block_cache);
798     }
799 
800     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
801     if (ret < 0) {
802         goto err;
803     }
804     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
805 
806     assert(l2_index + m->nb_clusters <= s->l2_size);
807     for (i = 0; i < m->nb_clusters; i++) {
808         /* if two concurrent writes happen to the same unallocated cluster
809          * each write allocates separate cluster and writes data concurrently.
810          * The first one to complete updates l2 table with pointer to its
811          * cluster the second one has to do RMW (which is done above by
812          * perform_cow()), update l2 table with its cluster pointer and free
813          * old cluster. This is what this loop does */
814         if (l2_table[l2_index + i] != 0) {
815             old_cluster[j++] = l2_table[l2_index + i];
816         }
817 
818         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
819                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
820      }
821 
822 
823     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
824 
825     /*
826      * If this was a COW, we need to decrease the refcount of the old cluster.
827      *
828      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
829      * clusters), the next write will reuse them anyway.
830      */
831     if (j != 0) {
832         for (i = 0; i < j; i++) {
833             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
834                                     QCOW2_DISCARD_NEVER);
835         }
836     }
837 
838     ret = 0;
839 err:
840     g_free(old_cluster);
841     return ret;
842  }
843 
844 /*
845  * Returns the number of contiguous clusters that can be used for an allocating
846  * write, but require COW to be performed (this includes yet unallocated space,
847  * which must copy from the backing file)
848  */
849 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
850     uint64_t *l2_table, int l2_index)
851 {
852     int i;
853 
854     for (i = 0; i < nb_clusters; i++) {
855         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
856         int cluster_type = qcow2_get_cluster_type(l2_entry);
857 
858         switch(cluster_type) {
859         case QCOW2_CLUSTER_NORMAL:
860             if (l2_entry & QCOW_OFLAG_COPIED) {
861                 goto out;
862             }
863             break;
864         case QCOW2_CLUSTER_UNALLOCATED:
865         case QCOW2_CLUSTER_COMPRESSED:
866         case QCOW2_CLUSTER_ZERO:
867             break;
868         default:
869             abort();
870         }
871     }
872 
873 out:
874     assert(i <= nb_clusters);
875     return i;
876 }
877 
878 /*
879  * Check if there already is an AIO write request in flight which allocates
880  * the same cluster. In this case we need to wait until the previous
881  * request has completed and updated the L2 table accordingly.
882  *
883  * Returns:
884  *   0       if there was no dependency. *cur_bytes indicates the number of
885  *           bytes from guest_offset that can be read before the next
886  *           dependency must be processed (or the request is complete)
887  *
888  *   -EAGAIN if we had to wait for another request, previously gathered
889  *           information on cluster allocation may be invalid now. The caller
890  *           must start over anyway, so consider *cur_bytes undefined.
891  */
892 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
893     uint64_t *cur_bytes, QCowL2Meta **m)
894 {
895     BDRVQcow2State *s = bs->opaque;
896     QCowL2Meta *old_alloc;
897     uint64_t bytes = *cur_bytes;
898 
899     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
900 
901         uint64_t start = guest_offset;
902         uint64_t end = start + bytes;
903         uint64_t old_start = l2meta_cow_start(old_alloc);
904         uint64_t old_end = l2meta_cow_end(old_alloc);
905 
906         if (end <= old_start || start >= old_end) {
907             /* No intersection */
908         } else {
909             if (start < old_start) {
910                 /* Stop at the start of a running allocation */
911                 bytes = old_start - start;
912             } else {
913                 bytes = 0;
914             }
915 
916             /* Stop if already an l2meta exists. After yielding, it wouldn't
917              * be valid any more, so we'd have to clean up the old L2Metas
918              * and deal with requests depending on them before starting to
919              * gather new ones. Not worth the trouble. */
920             if (bytes == 0 && *m) {
921                 *cur_bytes = 0;
922                 return 0;
923             }
924 
925             if (bytes == 0) {
926                 /* Wait for the dependency to complete. We need to recheck
927                  * the free/allocated clusters when we continue. */
928                 qemu_co_mutex_unlock(&s->lock);
929                 qemu_co_queue_wait(&old_alloc->dependent_requests);
930                 qemu_co_mutex_lock(&s->lock);
931                 return -EAGAIN;
932             }
933         }
934     }
935 
936     /* Make sure that existing clusters and new allocations are only used up to
937      * the next dependency if we shortened the request above */
938     *cur_bytes = bytes;
939 
940     return 0;
941 }
942 
943 /*
944  * Checks how many already allocated clusters that don't require a copy on
945  * write there are at the given guest_offset (up to *bytes). If
946  * *host_offset is not zero, only physically contiguous clusters beginning at
947  * this host offset are counted.
948  *
949  * Note that guest_offset may not be cluster aligned. In this case, the
950  * returned *host_offset points to exact byte referenced by guest_offset and
951  * therefore isn't cluster aligned as well.
952  *
953  * Returns:
954  *   0:     if no allocated clusters are available at the given offset.
955  *          *bytes is normally unchanged. It is set to 0 if the cluster
956  *          is allocated and doesn't need COW, but doesn't have the right
957  *          physical offset.
958  *
959  *   1:     if allocated clusters that don't require a COW are available at
960  *          the requested offset. *bytes may have decreased and describes
961  *          the length of the area that can be written to.
962  *
963  *  -errno: in error cases
964  */
965 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
966     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
967 {
968     BDRVQcow2State *s = bs->opaque;
969     int l2_index;
970     uint64_t cluster_offset;
971     uint64_t *l2_table;
972     uint64_t nb_clusters;
973     unsigned int keep_clusters;
974     int ret;
975 
976     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
977                               *bytes);
978 
979     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
980                                 == offset_into_cluster(s, *host_offset));
981 
982     /*
983      * Calculate the number of clusters to look for. We stop at L2 table
984      * boundaries to keep things simple.
985      */
986     nb_clusters =
987         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
988 
989     l2_index = offset_to_l2_index(s, guest_offset);
990     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
991     assert(nb_clusters <= INT_MAX);
992 
993     /* Find L2 entry for the first involved cluster */
994     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
995     if (ret < 0) {
996         return ret;
997     }
998 
999     cluster_offset = be64_to_cpu(l2_table[l2_index]);
1000 
1001     /* Check how many clusters are already allocated and don't need COW */
1002     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1003         && (cluster_offset & QCOW_OFLAG_COPIED))
1004     {
1005         /* If a specific host_offset is required, check it */
1006         bool offset_matches =
1007             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1008 
1009         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1010             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1011                                     "%#llx unaligned (guest offset: %#" PRIx64
1012                                     ")", cluster_offset & L2E_OFFSET_MASK,
1013                                     guest_offset);
1014             ret = -EIO;
1015             goto out;
1016         }
1017 
1018         if (*host_offset != 0 && !offset_matches) {
1019             *bytes = 0;
1020             ret = 0;
1021             goto out;
1022         }
1023 
1024         /* We keep all QCOW_OFLAG_COPIED clusters */
1025         keep_clusters =
1026             count_contiguous_clusters(nb_clusters, s->cluster_size,
1027                                       &l2_table[l2_index],
1028                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1029         assert(keep_clusters <= nb_clusters);
1030 
1031         *bytes = MIN(*bytes,
1032                  keep_clusters * s->cluster_size
1033                  - offset_into_cluster(s, guest_offset));
1034 
1035         ret = 1;
1036     } else {
1037         ret = 0;
1038     }
1039 
1040     /* Cleanup */
1041 out:
1042     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1043 
1044     /* Only return a host offset if we actually made progress. Otherwise we
1045      * would make requirements for handle_alloc() that it can't fulfill */
1046     if (ret > 0) {
1047         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1048                      + offset_into_cluster(s, guest_offset);
1049     }
1050 
1051     return ret;
1052 }
1053 
1054 /*
1055  * Allocates new clusters for the given guest_offset.
1056  *
1057  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1058  * contain the number of clusters that have been allocated and are contiguous
1059  * in the image file.
1060  *
1061  * If *host_offset is non-zero, it specifies the offset in the image file at
1062  * which the new clusters must start. *nb_clusters can be 0 on return in this
1063  * case if the cluster at host_offset is already in use. If *host_offset is
1064  * zero, the clusters can be allocated anywhere in the image file.
1065  *
1066  * *host_offset is updated to contain the offset into the image file at which
1067  * the first allocated cluster starts.
1068  *
1069  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1070  * function has been waiting for another request and the allocation must be
1071  * restarted, but the whole request should not be failed.
1072  */
1073 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1074                                    uint64_t *host_offset, uint64_t *nb_clusters)
1075 {
1076     BDRVQcow2State *s = bs->opaque;
1077 
1078     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1079                                          *host_offset, *nb_clusters);
1080 
1081     /* Allocate new clusters */
1082     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1083     if (*host_offset == 0) {
1084         int64_t cluster_offset =
1085             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1086         if (cluster_offset < 0) {
1087             return cluster_offset;
1088         }
1089         *host_offset = cluster_offset;
1090         return 0;
1091     } else {
1092         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1093         if (ret < 0) {
1094             return ret;
1095         }
1096         *nb_clusters = ret;
1097         return 0;
1098     }
1099 }
1100 
1101 /*
1102  * Allocates new clusters for an area that either is yet unallocated or needs a
1103  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1104  * the new allocation can match the specified host offset.
1105  *
1106  * Note that guest_offset may not be cluster aligned. In this case, the
1107  * returned *host_offset points to exact byte referenced by guest_offset and
1108  * therefore isn't cluster aligned as well.
1109  *
1110  * Returns:
1111  *   0:     if no clusters could be allocated. *bytes is set to 0,
1112  *          *host_offset is left unchanged.
1113  *
1114  *   1:     if new clusters were allocated. *bytes may be decreased if the
1115  *          new allocation doesn't cover all of the requested area.
1116  *          *host_offset is updated to contain the host offset of the first
1117  *          newly allocated cluster.
1118  *
1119  *  -errno: in error cases
1120  */
1121 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1122     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1123 {
1124     BDRVQcow2State *s = bs->opaque;
1125     int l2_index;
1126     uint64_t *l2_table;
1127     uint64_t entry;
1128     uint64_t nb_clusters;
1129     int ret;
1130 
1131     uint64_t alloc_cluster_offset;
1132 
1133     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1134                              *bytes);
1135     assert(*bytes > 0);
1136 
1137     /*
1138      * Calculate the number of clusters to look for. We stop at L2 table
1139      * boundaries to keep things simple.
1140      */
1141     nb_clusters =
1142         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1143 
1144     l2_index = offset_to_l2_index(s, guest_offset);
1145     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1146     assert(nb_clusters <= INT_MAX);
1147 
1148     /* Find L2 entry for the first involved cluster */
1149     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1150     if (ret < 0) {
1151         return ret;
1152     }
1153 
1154     entry = be64_to_cpu(l2_table[l2_index]);
1155 
1156     /* For the moment, overwrite compressed clusters one by one */
1157     if (entry & QCOW_OFLAG_COMPRESSED) {
1158         nb_clusters = 1;
1159     } else {
1160         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1161     }
1162 
1163     /* This function is only called when there were no non-COW clusters, so if
1164      * we can't find any unallocated or COW clusters either, something is
1165      * wrong with our code. */
1166     assert(nb_clusters > 0);
1167 
1168     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1169 
1170     /* Allocate, if necessary at a given offset in the image file */
1171     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1172     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1173                                   &nb_clusters);
1174     if (ret < 0) {
1175         goto fail;
1176     }
1177 
1178     /* Can't extend contiguous allocation */
1179     if (nb_clusters == 0) {
1180         *bytes = 0;
1181         return 0;
1182     }
1183 
1184     /* !*host_offset would overwrite the image header and is reserved for "no
1185      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1186      * following overlap check; do that now to avoid having an invalid value in
1187      * *host_offset. */
1188     if (!alloc_cluster_offset) {
1189         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1190                                             nb_clusters * s->cluster_size);
1191         assert(ret < 0);
1192         goto fail;
1193     }
1194 
1195     /*
1196      * Save info needed for meta data update.
1197      *
1198      * requested_bytes: Number of bytes from the start of the first
1199      * newly allocated cluster to the end of the (possibly shortened
1200      * before) write request.
1201      *
1202      * avail_bytes: Number of bytes from the start of the first
1203      * newly allocated to the end of the last newly allocated cluster.
1204      *
1205      * nb_bytes: The number of bytes from the start of the first
1206      * newly allocated cluster to the end of the area that the write
1207      * request actually writes to (excluding COW at the end)
1208      */
1209     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1210     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1211     int nb_bytes = MIN(requested_bytes, avail_bytes);
1212     QCowL2Meta *old_m = *m;
1213 
1214     *m = g_malloc0(sizeof(**m));
1215 
1216     **m = (QCowL2Meta) {
1217         .next           = old_m,
1218 
1219         .alloc_offset   = alloc_cluster_offset,
1220         .offset         = start_of_cluster(s, guest_offset),
1221         .nb_clusters    = nb_clusters,
1222 
1223         .cow_start = {
1224             .offset     = 0,
1225             .nb_bytes   = offset_into_cluster(s, guest_offset),
1226         },
1227         .cow_end = {
1228             .offset     = nb_bytes,
1229             .nb_bytes   = avail_bytes - nb_bytes,
1230         },
1231     };
1232     qemu_co_queue_init(&(*m)->dependent_requests);
1233     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1234 
1235     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1236     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1237     assert(*bytes != 0);
1238 
1239     return 1;
1240 
1241 fail:
1242     if (*m && (*m)->nb_clusters > 0) {
1243         QLIST_REMOVE(*m, next_in_flight);
1244     }
1245     return ret;
1246 }
1247 
1248 /*
1249  * alloc_cluster_offset
1250  *
1251  * For a given offset on the virtual disk, find the cluster offset in qcow2
1252  * file. If the offset is not found, allocate a new cluster.
1253  *
1254  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1255  * other fields in m are meaningless.
1256  *
1257  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1258  * contiguous clusters that have been allocated. In this case, the other
1259  * fields of m are valid and contain information about the first allocated
1260  * cluster.
1261  *
1262  * If the request conflicts with another write request in flight, the coroutine
1263  * is queued and will be reentered when the dependency has completed.
1264  *
1265  * Return 0 on success and -errno in error cases
1266  */
1267 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1268                                unsigned int *bytes, uint64_t *host_offset,
1269                                QCowL2Meta **m)
1270 {
1271     BDRVQcow2State *s = bs->opaque;
1272     uint64_t start, remaining;
1273     uint64_t cluster_offset;
1274     uint64_t cur_bytes;
1275     int ret;
1276 
1277     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1278 
1279 again:
1280     start = offset;
1281     remaining = *bytes;
1282     cluster_offset = 0;
1283     *host_offset = 0;
1284     cur_bytes = 0;
1285     *m = NULL;
1286 
1287     while (true) {
1288 
1289         if (!*host_offset) {
1290             *host_offset = start_of_cluster(s, cluster_offset);
1291         }
1292 
1293         assert(remaining >= cur_bytes);
1294 
1295         start           += cur_bytes;
1296         remaining       -= cur_bytes;
1297         cluster_offset  += cur_bytes;
1298 
1299         if (remaining == 0) {
1300             break;
1301         }
1302 
1303         cur_bytes = remaining;
1304 
1305         /*
1306          * Now start gathering as many contiguous clusters as possible:
1307          *
1308          * 1. Check for overlaps with in-flight allocations
1309          *
1310          *      a) Overlap not in the first cluster -> shorten this request and
1311          *         let the caller handle the rest in its next loop iteration.
1312          *
1313          *      b) Real overlaps of two requests. Yield and restart the search
1314          *         for contiguous clusters (the situation could have changed
1315          *         while we were sleeping)
1316          *
1317          *      c) TODO: Request starts in the same cluster as the in-flight
1318          *         allocation ends. Shorten the COW of the in-fight allocation,
1319          *         set cluster_offset to write to the same cluster and set up
1320          *         the right synchronisation between the in-flight request and
1321          *         the new one.
1322          */
1323         ret = handle_dependencies(bs, start, &cur_bytes, m);
1324         if (ret == -EAGAIN) {
1325             /* Currently handle_dependencies() doesn't yield if we already had
1326              * an allocation. If it did, we would have to clean up the L2Meta
1327              * structs before starting over. */
1328             assert(*m == NULL);
1329             goto again;
1330         } else if (ret < 0) {
1331             return ret;
1332         } else if (cur_bytes == 0) {
1333             break;
1334         } else {
1335             /* handle_dependencies() may have decreased cur_bytes (shortened
1336              * the allocations below) so that the next dependency is processed
1337              * correctly during the next loop iteration. */
1338         }
1339 
1340         /*
1341          * 2. Count contiguous COPIED clusters.
1342          */
1343         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1344         if (ret < 0) {
1345             return ret;
1346         } else if (ret) {
1347             continue;
1348         } else if (cur_bytes == 0) {
1349             break;
1350         }
1351 
1352         /*
1353          * 3. If the request still hasn't completed, allocate new clusters,
1354          *    considering any cluster_offset of steps 1c or 2.
1355          */
1356         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1357         if (ret < 0) {
1358             return ret;
1359         } else if (ret) {
1360             continue;
1361         } else {
1362             assert(cur_bytes == 0);
1363             break;
1364         }
1365     }
1366 
1367     *bytes -= remaining;
1368     assert(*bytes > 0);
1369     assert(*host_offset != 0);
1370 
1371     return 0;
1372 }
1373 
1374 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1375                              const uint8_t *buf, int buf_size)
1376 {
1377     z_stream strm1, *strm = &strm1;
1378     int ret, out_len;
1379 
1380     memset(strm, 0, sizeof(*strm));
1381 
1382     strm->next_in = (uint8_t *)buf;
1383     strm->avail_in = buf_size;
1384     strm->next_out = out_buf;
1385     strm->avail_out = out_buf_size;
1386 
1387     ret = inflateInit2(strm, -12);
1388     if (ret != Z_OK)
1389         return -1;
1390     ret = inflate(strm, Z_FINISH);
1391     out_len = strm->next_out - out_buf;
1392     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1393         out_len != out_buf_size) {
1394         inflateEnd(strm);
1395         return -1;
1396     }
1397     inflateEnd(strm);
1398     return 0;
1399 }
1400 
1401 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1402 {
1403     BDRVQcow2State *s = bs->opaque;
1404     int ret, csize, nb_csectors, sector_offset;
1405     uint64_t coffset;
1406 
1407     coffset = cluster_offset & s->cluster_offset_mask;
1408     if (s->cluster_cache_offset != coffset) {
1409         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1410         sector_offset = coffset & 511;
1411         csize = nb_csectors * 512 - sector_offset;
1412         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1413         ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data,
1414                         nb_csectors);
1415         if (ret < 0) {
1416             return ret;
1417         }
1418         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1419                               s->cluster_data + sector_offset, csize) < 0) {
1420             return -EIO;
1421         }
1422         s->cluster_cache_offset = coffset;
1423     }
1424     return 0;
1425 }
1426 
1427 /*
1428  * This discards as many clusters of nb_clusters as possible at once (i.e.
1429  * all clusters in the same L2 table) and returns the number of discarded
1430  * clusters.
1431  */
1432 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1433                              uint64_t nb_clusters, enum qcow2_discard_type type,
1434                              bool full_discard)
1435 {
1436     BDRVQcow2State *s = bs->opaque;
1437     uint64_t *l2_table;
1438     int l2_index;
1439     int ret;
1440     int i;
1441 
1442     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1443     if (ret < 0) {
1444         return ret;
1445     }
1446 
1447     /* Limit nb_clusters to one L2 table */
1448     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1449     assert(nb_clusters <= INT_MAX);
1450 
1451     for (i = 0; i < nb_clusters; i++) {
1452         uint64_t old_l2_entry;
1453 
1454         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1455 
1456         /*
1457          * If full_discard is false, make sure that a discarded area reads back
1458          * as zeroes for v3 images (we cannot do it for v2 without actually
1459          * writing a zero-filled buffer). We can skip the operation if the
1460          * cluster is already marked as zero, or if it's unallocated and we
1461          * don't have a backing file.
1462          *
1463          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1464          * holding s->lock, so that doesn't work today.
1465          *
1466          * If full_discard is true, the sector should not read back as zeroes,
1467          * but rather fall through to the backing file.
1468          */
1469         switch (qcow2_get_cluster_type(old_l2_entry)) {
1470             case QCOW2_CLUSTER_UNALLOCATED:
1471                 if (full_discard || !bs->backing) {
1472                     continue;
1473                 }
1474                 break;
1475 
1476             case QCOW2_CLUSTER_ZERO:
1477                 if (!full_discard) {
1478                     continue;
1479                 }
1480                 break;
1481 
1482             case QCOW2_CLUSTER_NORMAL:
1483             case QCOW2_CLUSTER_COMPRESSED:
1484                 break;
1485 
1486             default:
1487                 abort();
1488         }
1489 
1490         /* First remove L2 entries */
1491         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1492         if (!full_discard && s->qcow_version >= 3) {
1493             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1494         } else {
1495             l2_table[l2_index + i] = cpu_to_be64(0);
1496         }
1497 
1498         /* Then decrease the refcount */
1499         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1500     }
1501 
1502     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1503 
1504     return nb_clusters;
1505 }
1506 
1507 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1508     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1509 {
1510     BDRVQcow2State *s = bs->opaque;
1511     uint64_t end_offset;
1512     uint64_t nb_clusters;
1513     int ret;
1514 
1515     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1516 
1517     /* Round start up and end down */
1518     offset = align_offset(offset, s->cluster_size);
1519     end_offset = start_of_cluster(s, end_offset);
1520 
1521     if (offset > end_offset) {
1522         return 0;
1523     }
1524 
1525     nb_clusters = size_to_clusters(s, end_offset - offset);
1526 
1527     s->cache_discards = true;
1528 
1529     /* Each L2 table is handled by its own loop iteration */
1530     while (nb_clusters > 0) {
1531         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1532         if (ret < 0) {
1533             goto fail;
1534         }
1535 
1536         nb_clusters -= ret;
1537         offset += (ret * s->cluster_size);
1538     }
1539 
1540     ret = 0;
1541 fail:
1542     s->cache_discards = false;
1543     qcow2_process_discards(bs, ret);
1544 
1545     return ret;
1546 }
1547 
1548 /*
1549  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1550  * all clusters in the same L2 table) and returns the number of zeroed
1551  * clusters.
1552  */
1553 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1554                           uint64_t nb_clusters)
1555 {
1556     BDRVQcow2State *s = bs->opaque;
1557     uint64_t *l2_table;
1558     int l2_index;
1559     int ret;
1560     int i;
1561 
1562     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1563     if (ret < 0) {
1564         return ret;
1565     }
1566 
1567     /* Limit nb_clusters to one L2 table */
1568     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1569     assert(nb_clusters <= INT_MAX);
1570 
1571     for (i = 0; i < nb_clusters; i++) {
1572         uint64_t old_offset;
1573 
1574         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1575 
1576         /* Update L2 entries */
1577         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1578         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1579             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1580             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1581         } else {
1582             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1583         }
1584     }
1585 
1586     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1587 
1588     return nb_clusters;
1589 }
1590 
1591 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1592 {
1593     BDRVQcow2State *s = bs->opaque;
1594     uint64_t nb_clusters;
1595     int ret;
1596 
1597     /* The zero flag is only supported by version 3 and newer */
1598     if (s->qcow_version < 3) {
1599         return -ENOTSUP;
1600     }
1601 
1602     /* Each L2 table is handled by its own loop iteration */
1603     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1604 
1605     s->cache_discards = true;
1606 
1607     while (nb_clusters > 0) {
1608         ret = zero_single_l2(bs, offset, nb_clusters);
1609         if (ret < 0) {
1610             goto fail;
1611         }
1612 
1613         nb_clusters -= ret;
1614         offset += (ret * s->cluster_size);
1615     }
1616 
1617     ret = 0;
1618 fail:
1619     s->cache_discards = false;
1620     qcow2_process_discards(bs, ret);
1621 
1622     return ret;
1623 }
1624 
1625 /*
1626  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1627  * non-backed non-pre-allocated zero clusters).
1628  *
1629  * l1_entries and *visited_l1_entries are used to keep track of progress for
1630  * status_cb(). l1_entries contains the total number of L1 entries and
1631  * *visited_l1_entries counts all visited L1 entries.
1632  */
1633 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1634                                       int l1_size, int64_t *visited_l1_entries,
1635                                       int64_t l1_entries,
1636                                       BlockDriverAmendStatusCB *status_cb,
1637                                       void *cb_opaque)
1638 {
1639     BDRVQcow2State *s = bs->opaque;
1640     bool is_active_l1 = (l1_table == s->l1_table);
1641     uint64_t *l2_table = NULL;
1642     int ret;
1643     int i, j;
1644 
1645     if (!is_active_l1) {
1646         /* inactive L2 tables require a buffer to be stored in when loading
1647          * them from disk */
1648         l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1649         if (l2_table == NULL) {
1650             return -ENOMEM;
1651         }
1652     }
1653 
1654     for (i = 0; i < l1_size; i++) {
1655         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1656         bool l2_dirty = false;
1657         uint64_t l2_refcount;
1658 
1659         if (!l2_offset) {
1660             /* unallocated */
1661             (*visited_l1_entries)++;
1662             if (status_cb) {
1663                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1664             }
1665             continue;
1666         }
1667 
1668         if (offset_into_cluster(s, l2_offset)) {
1669             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1670                                     PRIx64 " unaligned (L1 index: %#x)",
1671                                     l2_offset, i);
1672             ret = -EIO;
1673             goto fail;
1674         }
1675 
1676         if (is_active_l1) {
1677             /* get active L2 tables from cache */
1678             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1679                     (void **)&l2_table);
1680         } else {
1681             /* load inactive L2 tables from disk */
1682             ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1683                             (void *)l2_table, s->cluster_sectors);
1684         }
1685         if (ret < 0) {
1686             goto fail;
1687         }
1688 
1689         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1690                                  &l2_refcount);
1691         if (ret < 0) {
1692             goto fail;
1693         }
1694 
1695         for (j = 0; j < s->l2_size; j++) {
1696             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1697             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1698             int cluster_type = qcow2_get_cluster_type(l2_entry);
1699             bool preallocated = offset != 0;
1700 
1701             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1702                 continue;
1703             }
1704 
1705             if (!preallocated) {
1706                 if (!bs->backing) {
1707                     /* not backed; therefore we can simply deallocate the
1708                      * cluster */
1709                     l2_table[j] = 0;
1710                     l2_dirty = true;
1711                     continue;
1712                 }
1713 
1714                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1715                 if (offset < 0) {
1716                     ret = offset;
1717                     goto fail;
1718                 }
1719 
1720                 if (l2_refcount > 1) {
1721                     /* For shared L2 tables, set the refcount accordingly (it is
1722                      * already 1 and needs to be l2_refcount) */
1723                     ret = qcow2_update_cluster_refcount(bs,
1724                             offset >> s->cluster_bits,
1725                             refcount_diff(1, l2_refcount), false,
1726                             QCOW2_DISCARD_OTHER);
1727                     if (ret < 0) {
1728                         qcow2_free_clusters(bs, offset, s->cluster_size,
1729                                             QCOW2_DISCARD_OTHER);
1730                         goto fail;
1731                     }
1732                 }
1733             }
1734 
1735             if (offset_into_cluster(s, offset)) {
1736                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1737                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1738                                         PRIx64 ", L2 index: %#x)", offset,
1739                                         l2_offset, j);
1740                 if (!preallocated) {
1741                     qcow2_free_clusters(bs, offset, s->cluster_size,
1742                                         QCOW2_DISCARD_ALWAYS);
1743                 }
1744                 ret = -EIO;
1745                 goto fail;
1746             }
1747 
1748             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1749             if (ret < 0) {
1750                 if (!preallocated) {
1751                     qcow2_free_clusters(bs, offset, s->cluster_size,
1752                                         QCOW2_DISCARD_ALWAYS);
1753                 }
1754                 goto fail;
1755             }
1756 
1757             ret = bdrv_pwrite_zeroes(bs->file->bs, offset, s->cluster_size, 0);
1758             if (ret < 0) {
1759                 if (!preallocated) {
1760                     qcow2_free_clusters(bs, offset, s->cluster_size,
1761                                         QCOW2_DISCARD_ALWAYS);
1762                 }
1763                 goto fail;
1764             }
1765 
1766             if (l2_refcount == 1) {
1767                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1768             } else {
1769                 l2_table[j] = cpu_to_be64(offset);
1770             }
1771             l2_dirty = true;
1772         }
1773 
1774         if (is_active_l1) {
1775             if (l2_dirty) {
1776                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1777                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1778             }
1779             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1780         } else {
1781             if (l2_dirty) {
1782                 ret = qcow2_pre_write_overlap_check(bs,
1783                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1784                         s->cluster_size);
1785                 if (ret < 0) {
1786                     goto fail;
1787                 }
1788 
1789                 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1790                                  (void *)l2_table, s->cluster_sectors);
1791                 if (ret < 0) {
1792                     goto fail;
1793                 }
1794             }
1795         }
1796 
1797         (*visited_l1_entries)++;
1798         if (status_cb) {
1799             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1800         }
1801     }
1802 
1803     ret = 0;
1804 
1805 fail:
1806     if (l2_table) {
1807         if (!is_active_l1) {
1808             qemu_vfree(l2_table);
1809         } else {
1810             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1811         }
1812     }
1813     return ret;
1814 }
1815 
1816 /*
1817  * For backed images, expands all zero clusters on the image. For non-backed
1818  * images, deallocates all non-pre-allocated zero clusters (and claims the
1819  * allocation for pre-allocated ones). This is important for downgrading to a
1820  * qcow2 version which doesn't yet support metadata zero clusters.
1821  */
1822 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1823                                BlockDriverAmendStatusCB *status_cb,
1824                                void *cb_opaque)
1825 {
1826     BDRVQcow2State *s = bs->opaque;
1827     uint64_t *l1_table = NULL;
1828     int64_t l1_entries = 0, visited_l1_entries = 0;
1829     int ret;
1830     int i, j;
1831 
1832     if (status_cb) {
1833         l1_entries = s->l1_size;
1834         for (i = 0; i < s->nb_snapshots; i++) {
1835             l1_entries += s->snapshots[i].l1_size;
1836         }
1837     }
1838 
1839     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1840                                      &visited_l1_entries, l1_entries,
1841                                      status_cb, cb_opaque);
1842     if (ret < 0) {
1843         goto fail;
1844     }
1845 
1846     /* Inactive L1 tables may point to active L2 tables - therefore it is
1847      * necessary to flush the L2 table cache before trying to access the L2
1848      * tables pointed to by inactive L1 entries (else we might try to expand
1849      * zero clusters that have already been expanded); furthermore, it is also
1850      * necessary to empty the L2 table cache, since it may contain tables which
1851      * are now going to be modified directly on disk, bypassing the cache.
1852      * qcow2_cache_empty() does both for us. */
1853     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1854     if (ret < 0) {
1855         goto fail;
1856     }
1857 
1858     for (i = 0; i < s->nb_snapshots; i++) {
1859         int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1860                                       sizeof(uint64_t), BDRV_SECTOR_SIZE);
1861 
1862         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1863 
1864         ret = bdrv_read(bs->file->bs,
1865                         s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1866                         (void *)l1_table, l1_sectors);
1867         if (ret < 0) {
1868             goto fail;
1869         }
1870 
1871         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1872             be64_to_cpus(&l1_table[j]);
1873         }
1874 
1875         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1876                                          &visited_l1_entries, l1_entries,
1877                                          status_cb, cb_opaque);
1878         if (ret < 0) {
1879             goto fail;
1880         }
1881     }
1882 
1883     ret = 0;
1884 
1885 fail:
1886     g_free(l1_table);
1887     return ret;
1888 }
1889