1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t old_l1_table_offset, old_l1_size; 39 int64_t new_l1_table_offset, new_l1_size; 40 uint8_t data[12]; 41 42 if (min_size <= s->l1_size) 43 return 0; 44 45 if (exact_size) { 46 new_l1_size = min_size; 47 } else { 48 /* Bump size up to reduce the number of times we have to grow */ 49 new_l1_size = s->l1_size; 50 if (new_l1_size == 0) { 51 new_l1_size = 1; 52 } 53 while (min_size > new_l1_size) { 54 new_l1_size = (new_l1_size * 3 + 1) / 2; 55 } 56 } 57 58 if (new_l1_size > INT_MAX) { 59 return -EFBIG; 60 } 61 62 #ifdef DEBUG_ALLOC2 63 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 64 s->l1_size, new_l1_size); 65 #endif 66 67 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 68 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 69 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 70 71 /* write new table (align to cluster) */ 72 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 73 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 74 if (new_l1_table_offset < 0) { 75 g_free(new_l1_table); 76 return new_l1_table_offset; 77 } 78 79 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 80 if (ret < 0) { 81 goto fail; 82 } 83 84 /* the L1 position has not yet been updated, so these clusters must 85 * indeed be completely free */ 86 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 87 new_l1_size2); 88 if (ret < 0) { 89 goto fail; 90 } 91 92 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 93 for(i = 0; i < s->l1_size; i++) 94 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 95 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 96 if (ret < 0) 97 goto fail; 98 for(i = 0; i < s->l1_size; i++) 99 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 100 101 /* set new table */ 102 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 103 cpu_to_be32w((uint32_t*)data, new_l1_size); 104 stq_be_p(data + 4, new_l1_table_offset); 105 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 106 if (ret < 0) { 107 goto fail; 108 } 109 g_free(s->l1_table); 110 old_l1_table_offset = s->l1_table_offset; 111 s->l1_table_offset = new_l1_table_offset; 112 s->l1_table = new_l1_table; 113 old_l1_size = s->l1_size; 114 s->l1_size = new_l1_size; 115 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 116 QCOW2_DISCARD_OTHER); 117 return 0; 118 fail: 119 g_free(new_l1_table); 120 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 121 QCOW2_DISCARD_OTHER); 122 return ret; 123 } 124 125 /* 126 * l2_load 127 * 128 * Loads a L2 table into memory. If the table is in the cache, the cache 129 * is used; otherwise the L2 table is loaded from the image file. 130 * 131 * Returns a pointer to the L2 table on success, or NULL if the read from 132 * the image file failed. 133 */ 134 135 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 136 uint64_t **l2_table) 137 { 138 BDRVQcowState *s = bs->opaque; 139 int ret; 140 141 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 142 143 return ret; 144 } 145 146 /* 147 * Writes one sector of the L1 table to the disk (can't update single entries 148 * and we really don't want bdrv_pread to perform a read-modify-write) 149 */ 150 #define L1_ENTRIES_PER_SECTOR (512 / 8) 151 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 152 { 153 BDRVQcowState *s = bs->opaque; 154 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 155 int l1_start_index; 156 int i, ret; 157 158 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 159 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 160 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 161 } 162 163 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 164 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 165 if (ret < 0) { 166 return ret; 167 } 168 169 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 170 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 171 buf, sizeof(buf)); 172 if (ret < 0) { 173 return ret; 174 } 175 176 return 0; 177 } 178 179 /* 180 * l2_allocate 181 * 182 * Allocate a new l2 entry in the file. If l1_index points to an already 183 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 184 * table) copy the contents of the old L2 table into the newly allocated one. 185 * Otherwise the new table is initialized with zeros. 186 * 187 */ 188 189 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 190 { 191 BDRVQcowState *s = bs->opaque; 192 uint64_t old_l2_offset; 193 uint64_t *l2_table = NULL; 194 int64_t l2_offset; 195 int ret; 196 197 old_l2_offset = s->l1_table[l1_index]; 198 199 trace_qcow2_l2_allocate(bs, l1_index); 200 201 /* allocate a new l2 entry */ 202 203 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 204 if (l2_offset < 0) { 205 ret = l2_offset; 206 goto fail; 207 } 208 209 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 210 if (ret < 0) { 211 goto fail; 212 } 213 214 /* allocate a new entry in the l2 cache */ 215 216 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 217 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 218 if (ret < 0) { 219 goto fail; 220 } 221 222 l2_table = *table; 223 224 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 225 /* if there was no old l2 table, clear the new table */ 226 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 227 } else { 228 uint64_t* old_table; 229 230 /* if there was an old l2 table, read it from the disk */ 231 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 232 ret = qcow2_cache_get(bs, s->l2_table_cache, 233 old_l2_offset & L1E_OFFSET_MASK, 234 (void**) &old_table); 235 if (ret < 0) { 236 goto fail; 237 } 238 239 memcpy(l2_table, old_table, s->cluster_size); 240 241 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 242 if (ret < 0) { 243 goto fail; 244 } 245 } 246 247 /* write the l2 table to the file */ 248 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 249 250 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 251 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 252 ret = qcow2_cache_flush(bs, s->l2_table_cache); 253 if (ret < 0) { 254 goto fail; 255 } 256 257 /* update the L1 entry */ 258 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 259 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 260 ret = qcow2_write_l1_entry(bs, l1_index); 261 if (ret < 0) { 262 goto fail; 263 } 264 265 *table = l2_table; 266 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 267 return 0; 268 269 fail: 270 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 271 if (l2_table != NULL) { 272 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 273 } 274 s->l1_table[l1_index] = old_l2_offset; 275 if (l2_offset > 0) { 276 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 277 QCOW2_DISCARD_ALWAYS); 278 } 279 return ret; 280 } 281 282 /* 283 * Checks how many clusters in a given L2 table are contiguous in the image 284 * file. As soon as one of the flags in the bitmask stop_flags changes compared 285 * to the first cluster, the search is stopped and the cluster is not counted 286 * as contiguous. (This allows it, for example, to stop at the first compressed 287 * cluster which may require a different handling) 288 */ 289 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 290 uint64_t *l2_table, uint64_t stop_flags) 291 { 292 int i; 293 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 294 uint64_t first_entry = be64_to_cpu(l2_table[0]); 295 uint64_t offset = first_entry & mask; 296 297 if (!offset) 298 return 0; 299 300 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); 301 302 for (i = 0; i < nb_clusters; i++) { 303 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 304 if (offset + (uint64_t) i * cluster_size != l2_entry) { 305 break; 306 } 307 } 308 309 return i; 310 } 311 312 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 313 { 314 int i; 315 316 for (i = 0; i < nb_clusters; i++) { 317 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 318 319 if (type != QCOW2_CLUSTER_UNALLOCATED) { 320 break; 321 } 322 } 323 324 return i; 325 } 326 327 /* The crypt function is compatible with the linux cryptoloop 328 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 329 supported */ 330 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 331 uint8_t *out_buf, const uint8_t *in_buf, 332 int nb_sectors, int enc, 333 const AES_KEY *key) 334 { 335 union { 336 uint64_t ll[2]; 337 uint8_t b[16]; 338 } ivec; 339 int i; 340 341 for(i = 0; i < nb_sectors; i++) { 342 ivec.ll[0] = cpu_to_le64(sector_num); 343 ivec.ll[1] = 0; 344 AES_cbc_encrypt(in_buf, out_buf, 512, key, 345 ivec.b, enc); 346 sector_num++; 347 in_buf += 512; 348 out_buf += 512; 349 } 350 } 351 352 static int coroutine_fn copy_sectors(BlockDriverState *bs, 353 uint64_t start_sect, 354 uint64_t cluster_offset, 355 int n_start, int n_end) 356 { 357 BDRVQcowState *s = bs->opaque; 358 QEMUIOVector qiov; 359 struct iovec iov; 360 int n, ret; 361 362 /* 363 * If this is the last cluster and it is only partially used, we must only 364 * copy until the end of the image, or bdrv_check_request will fail for the 365 * bdrv_read/write calls below. 366 */ 367 if (start_sect + n_end > bs->total_sectors) { 368 n_end = bs->total_sectors - start_sect; 369 } 370 371 n = n_end - n_start; 372 if (n <= 0) { 373 return 0; 374 } 375 376 iov.iov_len = n * BDRV_SECTOR_SIZE; 377 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 378 379 qemu_iovec_init_external(&qiov, &iov, 1); 380 381 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 382 383 if (!bs->drv) { 384 return -ENOMEDIUM; 385 } 386 387 /* Call .bdrv_co_readv() directly instead of using the public block-layer 388 * interface. This avoids double I/O throttling and request tracking, 389 * which can lead to deadlock when block layer copy-on-read is enabled. 390 */ 391 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 392 if (ret < 0) { 393 goto out; 394 } 395 396 if (s->crypt_method) { 397 qcow2_encrypt_sectors(s, start_sect + n_start, 398 iov.iov_base, iov.iov_base, n, 1, 399 &s->aes_encrypt_key); 400 } 401 402 ret = qcow2_pre_write_overlap_check(bs, 0, 403 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 404 if (ret < 0) { 405 goto out; 406 } 407 408 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 409 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 410 if (ret < 0) { 411 goto out; 412 } 413 414 ret = 0; 415 out: 416 qemu_vfree(iov.iov_base); 417 return ret; 418 } 419 420 421 /* 422 * get_cluster_offset 423 * 424 * For a given offset of the disk image, find the cluster offset in 425 * qcow2 file. The offset is stored in *cluster_offset. 426 * 427 * on entry, *num is the number of contiguous sectors we'd like to 428 * access following offset. 429 * 430 * on exit, *num is the number of contiguous sectors we can read. 431 * 432 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 433 * cases. 434 */ 435 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 436 int *num, uint64_t *cluster_offset) 437 { 438 BDRVQcowState *s = bs->opaque; 439 unsigned int l2_index; 440 uint64_t l1_index, l2_offset, *l2_table; 441 int l1_bits, c; 442 unsigned int index_in_cluster, nb_clusters; 443 uint64_t nb_available, nb_needed; 444 int ret; 445 446 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 447 nb_needed = *num + index_in_cluster; 448 449 l1_bits = s->l2_bits + s->cluster_bits; 450 451 /* compute how many bytes there are between the offset and 452 * the end of the l1 entry 453 */ 454 455 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 456 457 /* compute the number of available sectors */ 458 459 nb_available = (nb_available >> 9) + index_in_cluster; 460 461 if (nb_needed > nb_available) { 462 nb_needed = nb_available; 463 } 464 465 *cluster_offset = 0; 466 467 /* seek the the l2 offset in the l1 table */ 468 469 l1_index = offset >> l1_bits; 470 if (l1_index >= s->l1_size) { 471 ret = QCOW2_CLUSTER_UNALLOCATED; 472 goto out; 473 } 474 475 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 476 if (!l2_offset) { 477 ret = QCOW2_CLUSTER_UNALLOCATED; 478 goto out; 479 } 480 481 /* load the l2 table in memory */ 482 483 ret = l2_load(bs, l2_offset, &l2_table); 484 if (ret < 0) { 485 return ret; 486 } 487 488 /* find the cluster offset for the given disk offset */ 489 490 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 491 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 492 nb_clusters = size_to_clusters(s, nb_needed << 9); 493 494 ret = qcow2_get_cluster_type(*cluster_offset); 495 switch (ret) { 496 case QCOW2_CLUSTER_COMPRESSED: 497 /* Compressed clusters can only be processed one by one */ 498 c = 1; 499 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 500 break; 501 case QCOW2_CLUSTER_ZERO: 502 if (s->qcow_version < 3) { 503 return -EIO; 504 } 505 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 506 &l2_table[l2_index], QCOW_OFLAG_ZERO); 507 *cluster_offset = 0; 508 break; 509 case QCOW2_CLUSTER_UNALLOCATED: 510 /* how many empty clusters ? */ 511 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 512 *cluster_offset = 0; 513 break; 514 case QCOW2_CLUSTER_NORMAL: 515 /* how many allocated clusters ? */ 516 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 517 &l2_table[l2_index], QCOW_OFLAG_ZERO); 518 *cluster_offset &= L2E_OFFSET_MASK; 519 break; 520 default: 521 abort(); 522 } 523 524 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 525 526 nb_available = (c * s->cluster_sectors); 527 528 out: 529 if (nb_available > nb_needed) 530 nb_available = nb_needed; 531 532 *num = nb_available - index_in_cluster; 533 534 return ret; 535 } 536 537 /* 538 * get_cluster_table 539 * 540 * for a given disk offset, load (and allocate if needed) 541 * the l2 table. 542 * 543 * the l2 table offset in the qcow2 file and the cluster index 544 * in the l2 table are given to the caller. 545 * 546 * Returns 0 on success, -errno in failure case 547 */ 548 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 549 uint64_t **new_l2_table, 550 int *new_l2_index) 551 { 552 BDRVQcowState *s = bs->opaque; 553 unsigned int l2_index; 554 uint64_t l1_index, l2_offset; 555 uint64_t *l2_table = NULL; 556 int ret; 557 558 /* seek the the l2 offset in the l1 table */ 559 560 l1_index = offset >> (s->l2_bits + s->cluster_bits); 561 if (l1_index >= s->l1_size) { 562 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 563 if (ret < 0) { 564 return ret; 565 } 566 } 567 568 assert(l1_index < s->l1_size); 569 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 570 571 /* seek the l2 table of the given l2 offset */ 572 573 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 574 /* load the l2 table in memory */ 575 ret = l2_load(bs, l2_offset, &l2_table); 576 if (ret < 0) { 577 return ret; 578 } 579 } else { 580 /* First allocate a new L2 table (and do COW if needed) */ 581 ret = l2_allocate(bs, l1_index, &l2_table); 582 if (ret < 0) { 583 return ret; 584 } 585 586 /* Then decrease the refcount of the old table */ 587 if (l2_offset) { 588 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 589 QCOW2_DISCARD_OTHER); 590 } 591 } 592 593 /* find the cluster offset for the given disk offset */ 594 595 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 596 597 *new_l2_table = l2_table; 598 *new_l2_index = l2_index; 599 600 return 0; 601 } 602 603 /* 604 * alloc_compressed_cluster_offset 605 * 606 * For a given offset of the disk image, return cluster offset in 607 * qcow2 file. 608 * 609 * If the offset is not found, allocate a new compressed cluster. 610 * 611 * Return the cluster offset if successful, 612 * Return 0, otherwise. 613 * 614 */ 615 616 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 617 uint64_t offset, 618 int compressed_size) 619 { 620 BDRVQcowState *s = bs->opaque; 621 int l2_index, ret; 622 uint64_t *l2_table; 623 int64_t cluster_offset; 624 int nb_csectors; 625 626 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 627 if (ret < 0) { 628 return 0; 629 } 630 631 /* Compression can't overwrite anything. Fail if the cluster was already 632 * allocated. */ 633 cluster_offset = be64_to_cpu(l2_table[l2_index]); 634 if (cluster_offset & L2E_OFFSET_MASK) { 635 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 636 return 0; 637 } 638 639 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 640 if (cluster_offset < 0) { 641 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 642 return 0; 643 } 644 645 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 646 (cluster_offset >> 9); 647 648 cluster_offset |= QCOW_OFLAG_COMPRESSED | 649 ((uint64_t)nb_csectors << s->csize_shift); 650 651 /* update L2 table */ 652 653 /* compressed clusters never have the copied flag */ 654 655 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 656 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 657 l2_table[l2_index] = cpu_to_be64(cluster_offset); 658 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 659 if (ret < 0) { 660 return 0; 661 } 662 663 return cluster_offset; 664 } 665 666 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 667 { 668 BDRVQcowState *s = bs->opaque; 669 int ret; 670 671 if (r->nb_sectors == 0) { 672 return 0; 673 } 674 675 qemu_co_mutex_unlock(&s->lock); 676 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 677 r->offset / BDRV_SECTOR_SIZE, 678 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 679 qemu_co_mutex_lock(&s->lock); 680 681 if (ret < 0) { 682 return ret; 683 } 684 685 /* 686 * Before we update the L2 table to actually point to the new cluster, we 687 * need to be sure that the refcounts have been increased and COW was 688 * handled. 689 */ 690 qcow2_cache_depends_on_flush(s->l2_table_cache); 691 692 return 0; 693 } 694 695 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 696 { 697 BDRVQcowState *s = bs->opaque; 698 int i, j = 0, l2_index, ret; 699 uint64_t *old_cluster, *l2_table; 700 uint64_t cluster_offset = m->alloc_offset; 701 702 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 703 assert(m->nb_clusters > 0); 704 705 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 706 707 /* copy content of unmodified sectors */ 708 ret = perform_cow(bs, m, &m->cow_start); 709 if (ret < 0) { 710 goto err; 711 } 712 713 ret = perform_cow(bs, m, &m->cow_end); 714 if (ret < 0) { 715 goto err; 716 } 717 718 /* Update L2 table. */ 719 if (s->use_lazy_refcounts) { 720 qcow2_mark_dirty(bs); 721 } 722 if (qcow2_need_accurate_refcounts(s)) { 723 qcow2_cache_set_dependency(bs, s->l2_table_cache, 724 s->refcount_block_cache); 725 } 726 727 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 728 if (ret < 0) { 729 goto err; 730 } 731 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 732 733 assert(l2_index + m->nb_clusters <= s->l2_size); 734 for (i = 0; i < m->nb_clusters; i++) { 735 /* if two concurrent writes happen to the same unallocated cluster 736 * each write allocates separate cluster and writes data concurrently. 737 * The first one to complete updates l2 table with pointer to its 738 * cluster the second one has to do RMW (which is done above by 739 * copy_sectors()), update l2 table with its cluster pointer and free 740 * old cluster. This is what this loop does */ 741 if(l2_table[l2_index + i] != 0) 742 old_cluster[j++] = l2_table[l2_index + i]; 743 744 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 745 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 746 } 747 748 749 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 750 if (ret < 0) { 751 goto err; 752 } 753 754 /* 755 * If this was a COW, we need to decrease the refcount of the old cluster. 756 * Also flush bs->file to get the right order for L2 and refcount update. 757 * 758 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 759 * clusters), the next write will reuse them anyway. 760 */ 761 if (j != 0) { 762 for (i = 0; i < j; i++) { 763 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 764 QCOW2_DISCARD_NEVER); 765 } 766 } 767 768 ret = 0; 769 err: 770 g_free(old_cluster); 771 return ret; 772 } 773 774 /* 775 * Returns the number of contiguous clusters that can be used for an allocating 776 * write, but require COW to be performed (this includes yet unallocated space, 777 * which must copy from the backing file) 778 */ 779 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 780 uint64_t *l2_table, int l2_index) 781 { 782 int i; 783 784 for (i = 0; i < nb_clusters; i++) { 785 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 786 int cluster_type = qcow2_get_cluster_type(l2_entry); 787 788 switch(cluster_type) { 789 case QCOW2_CLUSTER_NORMAL: 790 if (l2_entry & QCOW_OFLAG_COPIED) { 791 goto out; 792 } 793 break; 794 case QCOW2_CLUSTER_UNALLOCATED: 795 case QCOW2_CLUSTER_COMPRESSED: 796 case QCOW2_CLUSTER_ZERO: 797 break; 798 default: 799 abort(); 800 } 801 } 802 803 out: 804 assert(i <= nb_clusters); 805 return i; 806 } 807 808 /* 809 * Check if there already is an AIO write request in flight which allocates 810 * the same cluster. In this case we need to wait until the previous 811 * request has completed and updated the L2 table accordingly. 812 * 813 * Returns: 814 * 0 if there was no dependency. *cur_bytes indicates the number of 815 * bytes from guest_offset that can be read before the next 816 * dependency must be processed (or the request is complete) 817 * 818 * -EAGAIN if we had to wait for another request, previously gathered 819 * information on cluster allocation may be invalid now. The caller 820 * must start over anyway, so consider *cur_bytes undefined. 821 */ 822 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 823 uint64_t *cur_bytes, QCowL2Meta **m) 824 { 825 BDRVQcowState *s = bs->opaque; 826 QCowL2Meta *old_alloc; 827 uint64_t bytes = *cur_bytes; 828 829 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 830 831 uint64_t start = guest_offset; 832 uint64_t end = start + bytes; 833 uint64_t old_start = l2meta_cow_start(old_alloc); 834 uint64_t old_end = l2meta_cow_end(old_alloc); 835 836 if (end <= old_start || start >= old_end) { 837 /* No intersection */ 838 } else { 839 if (start < old_start) { 840 /* Stop at the start of a running allocation */ 841 bytes = old_start - start; 842 } else { 843 bytes = 0; 844 } 845 846 /* Stop if already an l2meta exists. After yielding, it wouldn't 847 * be valid any more, so we'd have to clean up the old L2Metas 848 * and deal with requests depending on them before starting to 849 * gather new ones. Not worth the trouble. */ 850 if (bytes == 0 && *m) { 851 *cur_bytes = 0; 852 return 0; 853 } 854 855 if (bytes == 0) { 856 /* Wait for the dependency to complete. We need to recheck 857 * the free/allocated clusters when we continue. */ 858 qemu_co_mutex_unlock(&s->lock); 859 qemu_co_queue_wait(&old_alloc->dependent_requests); 860 qemu_co_mutex_lock(&s->lock); 861 return -EAGAIN; 862 } 863 } 864 } 865 866 /* Make sure that existing clusters and new allocations are only used up to 867 * the next dependency if we shortened the request above */ 868 *cur_bytes = bytes; 869 870 return 0; 871 } 872 873 /* 874 * Checks how many already allocated clusters that don't require a copy on 875 * write there are at the given guest_offset (up to *bytes). If 876 * *host_offset is not zero, only physically contiguous clusters beginning at 877 * this host offset are counted. 878 * 879 * Note that guest_offset may not be cluster aligned. In this case, the 880 * returned *host_offset points to exact byte referenced by guest_offset and 881 * therefore isn't cluster aligned as well. 882 * 883 * Returns: 884 * 0: if no allocated clusters are available at the given offset. 885 * *bytes is normally unchanged. It is set to 0 if the cluster 886 * is allocated and doesn't need COW, but doesn't have the right 887 * physical offset. 888 * 889 * 1: if allocated clusters that don't require a COW are available at 890 * the requested offset. *bytes may have decreased and describes 891 * the length of the area that can be written to. 892 * 893 * -errno: in error cases 894 */ 895 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 896 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 897 { 898 BDRVQcowState *s = bs->opaque; 899 int l2_index; 900 uint64_t cluster_offset; 901 uint64_t *l2_table; 902 unsigned int nb_clusters; 903 unsigned int keep_clusters; 904 int ret, pret; 905 906 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 907 *bytes); 908 909 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 910 == offset_into_cluster(s, *host_offset)); 911 912 /* 913 * Calculate the number of clusters to look for. We stop at L2 table 914 * boundaries to keep things simple. 915 */ 916 nb_clusters = 917 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 918 919 l2_index = offset_to_l2_index(s, guest_offset); 920 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 921 922 /* Find L2 entry for the first involved cluster */ 923 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 924 if (ret < 0) { 925 return ret; 926 } 927 928 cluster_offset = be64_to_cpu(l2_table[l2_index]); 929 930 /* Check how many clusters are already allocated and don't need COW */ 931 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 932 && (cluster_offset & QCOW_OFLAG_COPIED)) 933 { 934 /* If a specific host_offset is required, check it */ 935 bool offset_matches = 936 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 937 938 if (*host_offset != 0 && !offset_matches) { 939 *bytes = 0; 940 ret = 0; 941 goto out; 942 } 943 944 /* We keep all QCOW_OFLAG_COPIED clusters */ 945 keep_clusters = 946 count_contiguous_clusters(nb_clusters, s->cluster_size, 947 &l2_table[l2_index], 948 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 949 assert(keep_clusters <= nb_clusters); 950 951 *bytes = MIN(*bytes, 952 keep_clusters * s->cluster_size 953 - offset_into_cluster(s, guest_offset)); 954 955 ret = 1; 956 } else { 957 ret = 0; 958 } 959 960 /* Cleanup */ 961 out: 962 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 963 if (pret < 0) { 964 return pret; 965 } 966 967 /* Only return a host offset if we actually made progress. Otherwise we 968 * would make requirements for handle_alloc() that it can't fulfill */ 969 if (ret) { 970 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 971 + offset_into_cluster(s, guest_offset); 972 } 973 974 return ret; 975 } 976 977 /* 978 * Allocates new clusters for the given guest_offset. 979 * 980 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 981 * contain the number of clusters that have been allocated and are contiguous 982 * in the image file. 983 * 984 * If *host_offset is non-zero, it specifies the offset in the image file at 985 * which the new clusters must start. *nb_clusters can be 0 on return in this 986 * case if the cluster at host_offset is already in use. If *host_offset is 987 * zero, the clusters can be allocated anywhere in the image file. 988 * 989 * *host_offset is updated to contain the offset into the image file at which 990 * the first allocated cluster starts. 991 * 992 * Return 0 on success and -errno in error cases. -EAGAIN means that the 993 * function has been waiting for another request and the allocation must be 994 * restarted, but the whole request should not be failed. 995 */ 996 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 997 uint64_t *host_offset, unsigned int *nb_clusters) 998 { 999 BDRVQcowState *s = bs->opaque; 1000 1001 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1002 *host_offset, *nb_clusters); 1003 1004 /* Allocate new clusters */ 1005 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1006 if (*host_offset == 0) { 1007 int64_t cluster_offset = 1008 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1009 if (cluster_offset < 0) { 1010 return cluster_offset; 1011 } 1012 *host_offset = cluster_offset; 1013 return 0; 1014 } else { 1015 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1016 if (ret < 0) { 1017 return ret; 1018 } 1019 *nb_clusters = ret; 1020 return 0; 1021 } 1022 } 1023 1024 /* 1025 * Allocates new clusters for an area that either is yet unallocated or needs a 1026 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1027 * the new allocation can match the specified host offset. 1028 * 1029 * Note that guest_offset may not be cluster aligned. In this case, the 1030 * returned *host_offset points to exact byte referenced by guest_offset and 1031 * therefore isn't cluster aligned as well. 1032 * 1033 * Returns: 1034 * 0: if no clusters could be allocated. *bytes is set to 0, 1035 * *host_offset is left unchanged. 1036 * 1037 * 1: if new clusters were allocated. *bytes may be decreased if the 1038 * new allocation doesn't cover all of the requested area. 1039 * *host_offset is updated to contain the host offset of the first 1040 * newly allocated cluster. 1041 * 1042 * -errno: in error cases 1043 */ 1044 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1045 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1046 { 1047 BDRVQcowState *s = bs->opaque; 1048 int l2_index; 1049 uint64_t *l2_table; 1050 uint64_t entry; 1051 unsigned int nb_clusters; 1052 int ret; 1053 1054 uint64_t alloc_cluster_offset; 1055 1056 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1057 *bytes); 1058 assert(*bytes > 0); 1059 1060 /* 1061 * Calculate the number of clusters to look for. We stop at L2 table 1062 * boundaries to keep things simple. 1063 */ 1064 nb_clusters = 1065 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1066 1067 l2_index = offset_to_l2_index(s, guest_offset); 1068 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1069 1070 /* Find L2 entry for the first involved cluster */ 1071 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1072 if (ret < 0) { 1073 return ret; 1074 } 1075 1076 entry = be64_to_cpu(l2_table[l2_index]); 1077 1078 /* For the moment, overwrite compressed clusters one by one */ 1079 if (entry & QCOW_OFLAG_COMPRESSED) { 1080 nb_clusters = 1; 1081 } else { 1082 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1083 } 1084 1085 /* This function is only called when there were no non-COW clusters, so if 1086 * we can't find any unallocated or COW clusters either, something is 1087 * wrong with our code. */ 1088 assert(nb_clusters > 0); 1089 1090 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1091 if (ret < 0) { 1092 return ret; 1093 } 1094 1095 /* Allocate, if necessary at a given offset in the image file */ 1096 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1097 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1098 &nb_clusters); 1099 if (ret < 0) { 1100 goto fail; 1101 } 1102 1103 /* Can't extend contiguous allocation */ 1104 if (nb_clusters == 0) { 1105 *bytes = 0; 1106 return 0; 1107 } 1108 1109 /* 1110 * Save info needed for meta data update. 1111 * 1112 * requested_sectors: Number of sectors from the start of the first 1113 * newly allocated cluster to the end of the (possibly shortened 1114 * before) write request. 1115 * 1116 * avail_sectors: Number of sectors from the start of the first 1117 * newly allocated to the end of the last newly allocated cluster. 1118 * 1119 * nb_sectors: The number of sectors from the start of the first 1120 * newly allocated cluster to the end of the area that the write 1121 * request actually writes to (excluding COW at the end) 1122 */ 1123 int requested_sectors = 1124 (*bytes + offset_into_cluster(s, guest_offset)) 1125 >> BDRV_SECTOR_BITS; 1126 int avail_sectors = nb_clusters 1127 << (s->cluster_bits - BDRV_SECTOR_BITS); 1128 int alloc_n_start = offset_into_cluster(s, guest_offset) 1129 >> BDRV_SECTOR_BITS; 1130 int nb_sectors = MIN(requested_sectors, avail_sectors); 1131 QCowL2Meta *old_m = *m; 1132 1133 *m = g_malloc0(sizeof(**m)); 1134 1135 **m = (QCowL2Meta) { 1136 .next = old_m, 1137 1138 .alloc_offset = alloc_cluster_offset, 1139 .offset = start_of_cluster(s, guest_offset), 1140 .nb_clusters = nb_clusters, 1141 .nb_available = nb_sectors, 1142 1143 .cow_start = { 1144 .offset = 0, 1145 .nb_sectors = alloc_n_start, 1146 }, 1147 .cow_end = { 1148 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1149 .nb_sectors = avail_sectors - nb_sectors, 1150 }, 1151 }; 1152 qemu_co_queue_init(&(*m)->dependent_requests); 1153 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1154 1155 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1156 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1157 - offset_into_cluster(s, guest_offset)); 1158 assert(*bytes != 0); 1159 1160 return 1; 1161 1162 fail: 1163 if (*m && (*m)->nb_clusters > 0) { 1164 QLIST_REMOVE(*m, next_in_flight); 1165 } 1166 return ret; 1167 } 1168 1169 /* 1170 * alloc_cluster_offset 1171 * 1172 * For a given offset on the virtual disk, find the cluster offset in qcow2 1173 * file. If the offset is not found, allocate a new cluster. 1174 * 1175 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1176 * other fields in m are meaningless. 1177 * 1178 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1179 * contiguous clusters that have been allocated. In this case, the other 1180 * fields of m are valid and contain information about the first allocated 1181 * cluster. 1182 * 1183 * If the request conflicts with another write request in flight, the coroutine 1184 * is queued and will be reentered when the dependency has completed. 1185 * 1186 * Return 0 on success and -errno in error cases 1187 */ 1188 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1189 int *num, uint64_t *host_offset, QCowL2Meta **m) 1190 { 1191 BDRVQcowState *s = bs->opaque; 1192 uint64_t start, remaining; 1193 uint64_t cluster_offset; 1194 uint64_t cur_bytes; 1195 int ret; 1196 1197 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1198 1199 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1200 1201 again: 1202 start = offset; 1203 remaining = *num << BDRV_SECTOR_BITS; 1204 cluster_offset = 0; 1205 *host_offset = 0; 1206 cur_bytes = 0; 1207 *m = NULL; 1208 1209 while (true) { 1210 1211 if (!*host_offset) { 1212 *host_offset = start_of_cluster(s, cluster_offset); 1213 } 1214 1215 assert(remaining >= cur_bytes); 1216 1217 start += cur_bytes; 1218 remaining -= cur_bytes; 1219 cluster_offset += cur_bytes; 1220 1221 if (remaining == 0) { 1222 break; 1223 } 1224 1225 cur_bytes = remaining; 1226 1227 /* 1228 * Now start gathering as many contiguous clusters as possible: 1229 * 1230 * 1. Check for overlaps with in-flight allocations 1231 * 1232 * a) Overlap not in the first cluster -> shorten this request and 1233 * let the caller handle the rest in its next loop iteration. 1234 * 1235 * b) Real overlaps of two requests. Yield and restart the search 1236 * for contiguous clusters (the situation could have changed 1237 * while we were sleeping) 1238 * 1239 * c) TODO: Request starts in the same cluster as the in-flight 1240 * allocation ends. Shorten the COW of the in-fight allocation, 1241 * set cluster_offset to write to the same cluster and set up 1242 * the right synchronisation between the in-flight request and 1243 * the new one. 1244 */ 1245 ret = handle_dependencies(bs, start, &cur_bytes, m); 1246 if (ret == -EAGAIN) { 1247 /* Currently handle_dependencies() doesn't yield if we already had 1248 * an allocation. If it did, we would have to clean up the L2Meta 1249 * structs before starting over. */ 1250 assert(*m == NULL); 1251 goto again; 1252 } else if (ret < 0) { 1253 return ret; 1254 } else if (cur_bytes == 0) { 1255 break; 1256 } else { 1257 /* handle_dependencies() may have decreased cur_bytes (shortened 1258 * the allocations below) so that the next dependency is processed 1259 * correctly during the next loop iteration. */ 1260 } 1261 1262 /* 1263 * 2. Count contiguous COPIED clusters. 1264 */ 1265 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1266 if (ret < 0) { 1267 return ret; 1268 } else if (ret) { 1269 continue; 1270 } else if (cur_bytes == 0) { 1271 break; 1272 } 1273 1274 /* 1275 * 3. If the request still hasn't completed, allocate new clusters, 1276 * considering any cluster_offset of steps 1c or 2. 1277 */ 1278 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1279 if (ret < 0) { 1280 return ret; 1281 } else if (ret) { 1282 continue; 1283 } else { 1284 assert(cur_bytes == 0); 1285 break; 1286 } 1287 } 1288 1289 *num -= remaining >> BDRV_SECTOR_BITS; 1290 assert(*num > 0); 1291 assert(*host_offset != 0); 1292 1293 return 0; 1294 } 1295 1296 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1297 const uint8_t *buf, int buf_size) 1298 { 1299 z_stream strm1, *strm = &strm1; 1300 int ret, out_len; 1301 1302 memset(strm, 0, sizeof(*strm)); 1303 1304 strm->next_in = (uint8_t *)buf; 1305 strm->avail_in = buf_size; 1306 strm->next_out = out_buf; 1307 strm->avail_out = out_buf_size; 1308 1309 ret = inflateInit2(strm, -12); 1310 if (ret != Z_OK) 1311 return -1; 1312 ret = inflate(strm, Z_FINISH); 1313 out_len = strm->next_out - out_buf; 1314 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1315 out_len != out_buf_size) { 1316 inflateEnd(strm); 1317 return -1; 1318 } 1319 inflateEnd(strm); 1320 return 0; 1321 } 1322 1323 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1324 { 1325 BDRVQcowState *s = bs->opaque; 1326 int ret, csize, nb_csectors, sector_offset; 1327 uint64_t coffset; 1328 1329 coffset = cluster_offset & s->cluster_offset_mask; 1330 if (s->cluster_cache_offset != coffset) { 1331 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1332 sector_offset = coffset & 511; 1333 csize = nb_csectors * 512 - sector_offset; 1334 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1335 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1336 if (ret < 0) { 1337 return ret; 1338 } 1339 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1340 s->cluster_data + sector_offset, csize) < 0) { 1341 return -EIO; 1342 } 1343 s->cluster_cache_offset = coffset; 1344 } 1345 return 0; 1346 } 1347 1348 /* 1349 * This discards as many clusters of nb_clusters as possible at once (i.e. 1350 * all clusters in the same L2 table) and returns the number of discarded 1351 * clusters. 1352 */ 1353 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1354 unsigned int nb_clusters, enum qcow2_discard_type type) 1355 { 1356 BDRVQcowState *s = bs->opaque; 1357 uint64_t *l2_table; 1358 int l2_index; 1359 int ret; 1360 int i; 1361 1362 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1363 if (ret < 0) { 1364 return ret; 1365 } 1366 1367 /* Limit nb_clusters to one L2 table */ 1368 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1369 1370 for (i = 0; i < nb_clusters; i++) { 1371 uint64_t old_offset; 1372 1373 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1374 1375 /* 1376 * Make sure that a discarded area reads back as zeroes for v3 images 1377 * (we cannot do it for v2 without actually writing a zero-filled 1378 * buffer). We can skip the operation if the cluster is already marked 1379 * as zero, or if it's unallocated and we don't have a backing file. 1380 * 1381 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1382 * holding s->lock, so that doesn't work today. 1383 */ 1384 if (old_offset & QCOW_OFLAG_ZERO) { 1385 continue; 1386 } 1387 1388 if ((old_offset & L2E_OFFSET_MASK) == 0 && !bs->backing_hd) { 1389 continue; 1390 } 1391 1392 /* First remove L2 entries */ 1393 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1394 if (s->qcow_version >= 3) { 1395 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1396 } else { 1397 l2_table[l2_index + i] = cpu_to_be64(0); 1398 } 1399 1400 /* Then decrease the refcount */ 1401 qcow2_free_any_clusters(bs, old_offset, 1, type); 1402 } 1403 1404 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1405 if (ret < 0) { 1406 return ret; 1407 } 1408 1409 return nb_clusters; 1410 } 1411 1412 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1413 int nb_sectors, enum qcow2_discard_type type) 1414 { 1415 BDRVQcowState *s = bs->opaque; 1416 uint64_t end_offset; 1417 unsigned int nb_clusters; 1418 int ret; 1419 1420 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1421 1422 /* Round start up and end down */ 1423 offset = align_offset(offset, s->cluster_size); 1424 end_offset = start_of_cluster(s, end_offset); 1425 1426 if (offset > end_offset) { 1427 return 0; 1428 } 1429 1430 nb_clusters = size_to_clusters(s, end_offset - offset); 1431 1432 s->cache_discards = true; 1433 1434 /* Each L2 table is handled by its own loop iteration */ 1435 while (nb_clusters > 0) { 1436 ret = discard_single_l2(bs, offset, nb_clusters, type); 1437 if (ret < 0) { 1438 goto fail; 1439 } 1440 1441 nb_clusters -= ret; 1442 offset += (ret * s->cluster_size); 1443 } 1444 1445 ret = 0; 1446 fail: 1447 s->cache_discards = false; 1448 qcow2_process_discards(bs, ret); 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1455 * all clusters in the same L2 table) and returns the number of zeroed 1456 * clusters. 1457 */ 1458 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1459 unsigned int nb_clusters) 1460 { 1461 BDRVQcowState *s = bs->opaque; 1462 uint64_t *l2_table; 1463 int l2_index; 1464 int ret; 1465 int i; 1466 1467 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1468 if (ret < 0) { 1469 return ret; 1470 } 1471 1472 /* Limit nb_clusters to one L2 table */ 1473 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1474 1475 for (i = 0; i < nb_clusters; i++) { 1476 uint64_t old_offset; 1477 1478 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1479 1480 /* Update L2 entries */ 1481 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1482 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1483 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1484 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1485 } else { 1486 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1487 } 1488 } 1489 1490 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1491 if (ret < 0) { 1492 return ret; 1493 } 1494 1495 return nb_clusters; 1496 } 1497 1498 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1499 { 1500 BDRVQcowState *s = bs->opaque; 1501 unsigned int nb_clusters; 1502 int ret; 1503 1504 /* The zero flag is only supported by version 3 and newer */ 1505 if (s->qcow_version < 3) { 1506 return -ENOTSUP; 1507 } 1508 1509 /* Each L2 table is handled by its own loop iteration */ 1510 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1511 1512 s->cache_discards = true; 1513 1514 while (nb_clusters > 0) { 1515 ret = zero_single_l2(bs, offset, nb_clusters); 1516 if (ret < 0) { 1517 goto fail; 1518 } 1519 1520 nb_clusters -= ret; 1521 offset += (ret * s->cluster_size); 1522 } 1523 1524 ret = 0; 1525 fail: 1526 s->cache_discards = false; 1527 qcow2_process_discards(bs, ret); 1528 1529 return ret; 1530 } 1531 1532 /* 1533 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1534 * non-backed non-pre-allocated zero clusters). 1535 * 1536 * expanded_clusters is a bitmap where every bit corresponds to one cluster in 1537 * the image file; a bit gets set if the corresponding cluster has been used for 1538 * zero expansion (i.e., has been filled with zeroes and is referenced from an 1539 * L2 table). nb_clusters contains the total cluster count of the image file, 1540 * i.e., the number of bits in expanded_clusters. 1541 */ 1542 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1543 int l1_size, uint8_t **expanded_clusters, 1544 uint64_t *nb_clusters) 1545 { 1546 BDRVQcowState *s = bs->opaque; 1547 bool is_active_l1 = (l1_table == s->l1_table); 1548 uint64_t *l2_table = NULL; 1549 int ret; 1550 int i, j; 1551 1552 if (!is_active_l1) { 1553 /* inactive L2 tables require a buffer to be stored in when loading 1554 * them from disk */ 1555 l2_table = qemu_blockalign(bs, s->cluster_size); 1556 } 1557 1558 for (i = 0; i < l1_size; i++) { 1559 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1560 bool l2_dirty = false; 1561 1562 if (!l2_offset) { 1563 /* unallocated */ 1564 continue; 1565 } 1566 1567 if (is_active_l1) { 1568 /* get active L2 tables from cache */ 1569 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1570 (void **)&l2_table); 1571 } else { 1572 /* load inactive L2 tables from disk */ 1573 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1574 (void *)l2_table, s->cluster_sectors); 1575 } 1576 if (ret < 0) { 1577 goto fail; 1578 } 1579 1580 for (j = 0; j < s->l2_size; j++) { 1581 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1582 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index; 1583 int cluster_type = qcow2_get_cluster_type(l2_entry); 1584 bool preallocated = offset != 0; 1585 1586 if (cluster_type == QCOW2_CLUSTER_NORMAL) { 1587 cluster_index = offset >> s->cluster_bits; 1588 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1589 if ((*expanded_clusters)[cluster_index / 8] & 1590 (1 << (cluster_index % 8))) { 1591 /* Probably a shared L2 table; this cluster was a zero 1592 * cluster which has been expanded, its refcount 1593 * therefore most likely requires an update. */ 1594 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1, 1595 QCOW2_DISCARD_NEVER); 1596 if (ret < 0) { 1597 goto fail; 1598 } 1599 /* Since we just increased the refcount, the COPIED flag may 1600 * no longer be set. */ 1601 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED); 1602 l2_dirty = true; 1603 } 1604 continue; 1605 } 1606 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) { 1607 continue; 1608 } 1609 1610 if (!preallocated) { 1611 if (!bs->backing_hd) { 1612 /* not backed; therefore we can simply deallocate the 1613 * cluster */ 1614 l2_table[j] = 0; 1615 l2_dirty = true; 1616 continue; 1617 } 1618 1619 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1620 if (offset < 0) { 1621 ret = offset; 1622 goto fail; 1623 } 1624 } 1625 1626 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1627 if (ret < 0) { 1628 if (!preallocated) { 1629 qcow2_free_clusters(bs, offset, s->cluster_size, 1630 QCOW2_DISCARD_ALWAYS); 1631 } 1632 goto fail; 1633 } 1634 1635 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, 1636 s->cluster_sectors, 0); 1637 if (ret < 0) { 1638 if (!preallocated) { 1639 qcow2_free_clusters(bs, offset, s->cluster_size, 1640 QCOW2_DISCARD_ALWAYS); 1641 } 1642 goto fail; 1643 } 1644 1645 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1646 l2_dirty = true; 1647 1648 cluster_index = offset >> s->cluster_bits; 1649 1650 if (cluster_index >= *nb_clusters) { 1651 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8; 1652 uint64_t new_bitmap_size; 1653 /* The offset may lie beyond the old end of the underlying image 1654 * file for growable files only */ 1655 assert(bs->file->growable); 1656 *nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1657 BDRV_SECTOR_SIZE); 1658 new_bitmap_size = (*nb_clusters + 7) / 8; 1659 *expanded_clusters = g_realloc(*expanded_clusters, 1660 new_bitmap_size); 1661 /* clear the newly allocated space */ 1662 memset(&(*expanded_clusters)[old_bitmap_size], 0, 1663 new_bitmap_size - old_bitmap_size); 1664 } 1665 1666 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1667 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8); 1668 } 1669 1670 if (is_active_l1) { 1671 if (l2_dirty) { 1672 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1673 qcow2_cache_depends_on_flush(s->l2_table_cache); 1674 } 1675 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1676 if (ret < 0) { 1677 l2_table = NULL; 1678 goto fail; 1679 } 1680 } else { 1681 if (l2_dirty) { 1682 ret = qcow2_pre_write_overlap_check(bs, 1683 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1684 s->cluster_size); 1685 if (ret < 0) { 1686 goto fail; 1687 } 1688 1689 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1690 (void *)l2_table, s->cluster_sectors); 1691 if (ret < 0) { 1692 goto fail; 1693 } 1694 } 1695 } 1696 } 1697 1698 ret = 0; 1699 1700 fail: 1701 if (l2_table) { 1702 if (!is_active_l1) { 1703 qemu_vfree(l2_table); 1704 } else { 1705 if (ret < 0) { 1706 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1707 } else { 1708 ret = qcow2_cache_put(bs, s->l2_table_cache, 1709 (void **)&l2_table); 1710 } 1711 } 1712 } 1713 return ret; 1714 } 1715 1716 /* 1717 * For backed images, expands all zero clusters on the image. For non-backed 1718 * images, deallocates all non-pre-allocated zero clusters (and claims the 1719 * allocation for pre-allocated ones). This is important for downgrading to a 1720 * qcow2 version which doesn't yet support metadata zero clusters. 1721 */ 1722 int qcow2_expand_zero_clusters(BlockDriverState *bs) 1723 { 1724 BDRVQcowState *s = bs->opaque; 1725 uint64_t *l1_table = NULL; 1726 uint64_t nb_clusters; 1727 uint8_t *expanded_clusters; 1728 int ret; 1729 int i, j; 1730 1731 nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1732 BDRV_SECTOR_SIZE); 1733 expanded_clusters = g_malloc0((nb_clusters + 7) / 8); 1734 1735 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1736 &expanded_clusters, &nb_clusters); 1737 if (ret < 0) { 1738 goto fail; 1739 } 1740 1741 /* Inactive L1 tables may point to active L2 tables - therefore it is 1742 * necessary to flush the L2 table cache before trying to access the L2 1743 * tables pointed to by inactive L1 entries (else we might try to expand 1744 * zero clusters that have already been expanded); furthermore, it is also 1745 * necessary to empty the L2 table cache, since it may contain tables which 1746 * are now going to be modified directly on disk, bypassing the cache. 1747 * qcow2_cache_empty() does both for us. */ 1748 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1749 if (ret < 0) { 1750 goto fail; 1751 } 1752 1753 for (i = 0; i < s->nb_snapshots; i++) { 1754 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1755 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1756 1757 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1758 1759 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / 1760 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); 1761 if (ret < 0) { 1762 goto fail; 1763 } 1764 1765 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1766 be64_to_cpus(&l1_table[j]); 1767 } 1768 1769 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1770 &expanded_clusters, &nb_clusters); 1771 if (ret < 0) { 1772 goto fail; 1773 } 1774 } 1775 1776 ret = 0; 1777 1778 fail: 1779 g_free(expanded_clusters); 1780 g_free(l1_table); 1781 return ret; 1782 } 1783