xref: /openbmc/qemu/block/qcow.c (revision 51b24e34)
1 /*
2  * Block driver for the QCOW format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu-common.h"
25 #include "block_int.h"
26 #include "module.h"
27 #include <zlib.h>
28 #include "aes.h"
29 
30 /**************************************************************/
31 /* QEMU COW block driver with compression and encryption support */
32 
33 #define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
34 #define QCOW_VERSION 1
35 
36 #define QCOW_CRYPT_NONE 0
37 #define QCOW_CRYPT_AES  1
38 
39 #define QCOW_OFLAG_COMPRESSED (1LL << 63)
40 
41 typedef struct QCowHeader {
42     uint32_t magic;
43     uint32_t version;
44     uint64_t backing_file_offset;
45     uint32_t backing_file_size;
46     uint32_t mtime;
47     uint64_t size; /* in bytes */
48     uint8_t cluster_bits;
49     uint8_t l2_bits;
50     uint32_t crypt_method;
51     uint64_t l1_table_offset;
52 } QCowHeader;
53 
54 #define L2_CACHE_SIZE 16
55 
56 typedef struct BDRVQcowState {
57     int cluster_bits;
58     int cluster_size;
59     int cluster_sectors;
60     int l2_bits;
61     int l2_size;
62     int l1_size;
63     uint64_t cluster_offset_mask;
64     uint64_t l1_table_offset;
65     uint64_t *l1_table;
66     uint64_t *l2_cache;
67     uint64_t l2_cache_offsets[L2_CACHE_SIZE];
68     uint32_t l2_cache_counts[L2_CACHE_SIZE];
69     uint8_t *cluster_cache;
70     uint8_t *cluster_data;
71     uint64_t cluster_cache_offset;
72     uint32_t crypt_method; /* current crypt method, 0 if no key yet */
73     uint32_t crypt_method_header;
74     AES_KEY aes_encrypt_key;
75     AES_KEY aes_decrypt_key;
76 } BDRVQcowState;
77 
78 static int decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset);
79 
80 static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
81 {
82     const QCowHeader *cow_header = (const void *)buf;
83 
84     if (buf_size >= sizeof(QCowHeader) &&
85         be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
86         be32_to_cpu(cow_header->version) == QCOW_VERSION)
87         return 100;
88     else
89         return 0;
90 }
91 
92 static int qcow_open(BlockDriverState *bs, int flags)
93 {
94     BDRVQcowState *s = bs->opaque;
95     int len, i, shift;
96     QCowHeader header;
97 
98     if (bdrv_pread(bs->file, 0, &header, sizeof(header)) != sizeof(header))
99         goto fail;
100     be32_to_cpus(&header.magic);
101     be32_to_cpus(&header.version);
102     be64_to_cpus(&header.backing_file_offset);
103     be32_to_cpus(&header.backing_file_size);
104     be32_to_cpus(&header.mtime);
105     be64_to_cpus(&header.size);
106     be32_to_cpus(&header.crypt_method);
107     be64_to_cpus(&header.l1_table_offset);
108 
109     if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
110         goto fail;
111     if (header.size <= 1 || header.cluster_bits < 9)
112         goto fail;
113     if (header.crypt_method > QCOW_CRYPT_AES)
114         goto fail;
115     s->crypt_method_header = header.crypt_method;
116     if (s->crypt_method_header)
117         bs->encrypted = 1;
118     s->cluster_bits = header.cluster_bits;
119     s->cluster_size = 1 << s->cluster_bits;
120     s->cluster_sectors = 1 << (s->cluster_bits - 9);
121     s->l2_bits = header.l2_bits;
122     s->l2_size = 1 << s->l2_bits;
123     bs->total_sectors = header.size / 512;
124     s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1;
125 
126     /* read the level 1 table */
127     shift = s->cluster_bits + s->l2_bits;
128     s->l1_size = (header.size + (1LL << shift) - 1) >> shift;
129 
130     s->l1_table_offset = header.l1_table_offset;
131     s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
132     if (!s->l1_table)
133         goto fail;
134     if (bdrv_pread(bs->file, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
135         s->l1_size * sizeof(uint64_t))
136         goto fail;
137     for(i = 0;i < s->l1_size; i++) {
138         be64_to_cpus(&s->l1_table[i]);
139     }
140     /* alloc L2 cache */
141     s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
142     if (!s->l2_cache)
143         goto fail;
144     s->cluster_cache = qemu_malloc(s->cluster_size);
145     if (!s->cluster_cache)
146         goto fail;
147     s->cluster_data = qemu_malloc(s->cluster_size);
148     if (!s->cluster_data)
149         goto fail;
150     s->cluster_cache_offset = -1;
151 
152     /* read the backing file name */
153     if (header.backing_file_offset != 0) {
154         len = header.backing_file_size;
155         if (len > 1023)
156             len = 1023;
157         if (bdrv_pread(bs->file, header.backing_file_offset, bs->backing_file, len) != len)
158             goto fail;
159         bs->backing_file[len] = '\0';
160     }
161     return 0;
162 
163  fail:
164     qemu_free(s->l1_table);
165     qemu_free(s->l2_cache);
166     qemu_free(s->cluster_cache);
167     qemu_free(s->cluster_data);
168     return -1;
169 }
170 
171 static int qcow_set_key(BlockDriverState *bs, const char *key)
172 {
173     BDRVQcowState *s = bs->opaque;
174     uint8_t keybuf[16];
175     int len, i;
176 
177     memset(keybuf, 0, 16);
178     len = strlen(key);
179     if (len > 16)
180         len = 16;
181     /* XXX: we could compress the chars to 7 bits to increase
182        entropy */
183     for(i = 0;i < len;i++) {
184         keybuf[i] = key[i];
185     }
186     s->crypt_method = s->crypt_method_header;
187 
188     if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
189         return -1;
190     if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
191         return -1;
192 #if 0
193     /* test */
194     {
195         uint8_t in[16];
196         uint8_t out[16];
197         uint8_t tmp[16];
198         for(i=0;i<16;i++)
199             in[i] = i;
200         AES_encrypt(in, tmp, &s->aes_encrypt_key);
201         AES_decrypt(tmp, out, &s->aes_decrypt_key);
202         for(i = 0; i < 16; i++)
203             printf(" %02x", tmp[i]);
204         printf("\n");
205         for(i = 0; i < 16; i++)
206             printf(" %02x", out[i]);
207         printf("\n");
208     }
209 #endif
210     return 0;
211 }
212 
213 /* The crypt function is compatible with the linux cryptoloop
214    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
215    supported */
216 static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
217                             uint8_t *out_buf, const uint8_t *in_buf,
218                             int nb_sectors, int enc,
219                             const AES_KEY *key)
220 {
221     union {
222         uint64_t ll[2];
223         uint8_t b[16];
224     } ivec;
225     int i;
226 
227     for(i = 0; i < nb_sectors; i++) {
228         ivec.ll[0] = cpu_to_le64(sector_num);
229         ivec.ll[1] = 0;
230         AES_cbc_encrypt(in_buf, out_buf, 512, key,
231                         ivec.b, enc);
232         sector_num++;
233         in_buf += 512;
234         out_buf += 512;
235     }
236 }
237 
238 /* 'allocate' is:
239  *
240  * 0 to not allocate.
241  *
242  * 1 to allocate a normal cluster (for sector indexes 'n_start' to
243  * 'n_end')
244  *
245  * 2 to allocate a compressed cluster of size
246  * 'compressed_size'. 'compressed_size' must be > 0 and <
247  * cluster_size
248  *
249  * return 0 if not allocated.
250  */
251 static uint64_t get_cluster_offset(BlockDriverState *bs,
252                                    uint64_t offset, int allocate,
253                                    int compressed_size,
254                                    int n_start, int n_end)
255 {
256     BDRVQcowState *s = bs->opaque;
257     int min_index, i, j, l1_index, l2_index;
258     uint64_t l2_offset, *l2_table, cluster_offset, tmp;
259     uint32_t min_count;
260     int new_l2_table;
261 
262     l1_index = offset >> (s->l2_bits + s->cluster_bits);
263     l2_offset = s->l1_table[l1_index];
264     new_l2_table = 0;
265     if (!l2_offset) {
266         if (!allocate)
267             return 0;
268         /* allocate a new l2 entry */
269         l2_offset = bdrv_getlength(bs->file);
270         /* round to cluster size */
271         l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1);
272         /* update the L1 entry */
273         s->l1_table[l1_index] = l2_offset;
274         tmp = cpu_to_be64(l2_offset);
275         if (bdrv_pwrite_sync(bs->file,
276                 s->l1_table_offset + l1_index * sizeof(tmp),
277                 &tmp, sizeof(tmp)) < 0)
278             return 0;
279         new_l2_table = 1;
280     }
281     for(i = 0; i < L2_CACHE_SIZE; i++) {
282         if (l2_offset == s->l2_cache_offsets[i]) {
283             /* increment the hit count */
284             if (++s->l2_cache_counts[i] == 0xffffffff) {
285                 for(j = 0; j < L2_CACHE_SIZE; j++) {
286                     s->l2_cache_counts[j] >>= 1;
287                 }
288             }
289             l2_table = s->l2_cache + (i << s->l2_bits);
290             goto found;
291         }
292     }
293     /* not found: load a new entry in the least used one */
294     min_index = 0;
295     min_count = 0xffffffff;
296     for(i = 0; i < L2_CACHE_SIZE; i++) {
297         if (s->l2_cache_counts[i] < min_count) {
298             min_count = s->l2_cache_counts[i];
299             min_index = i;
300         }
301     }
302     l2_table = s->l2_cache + (min_index << s->l2_bits);
303     if (new_l2_table) {
304         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
305         if (bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
306                 s->l2_size * sizeof(uint64_t)) < 0)
307             return 0;
308     } else {
309         if (bdrv_pread(bs->file, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
310             s->l2_size * sizeof(uint64_t))
311             return 0;
312     }
313     s->l2_cache_offsets[min_index] = l2_offset;
314     s->l2_cache_counts[min_index] = 1;
315  found:
316     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
317     cluster_offset = be64_to_cpu(l2_table[l2_index]);
318     if (!cluster_offset ||
319         ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) {
320         if (!allocate)
321             return 0;
322         /* allocate a new cluster */
323         if ((cluster_offset & QCOW_OFLAG_COMPRESSED) &&
324             (n_end - n_start) < s->cluster_sectors) {
325             /* if the cluster is already compressed, we must
326                decompress it in the case it is not completely
327                overwritten */
328             if (decompress_cluster(bs, cluster_offset) < 0)
329                 return 0;
330             cluster_offset = bdrv_getlength(bs->file);
331             cluster_offset = (cluster_offset + s->cluster_size - 1) &
332                 ~(s->cluster_size - 1);
333             /* write the cluster content */
334             if (bdrv_pwrite(bs->file, cluster_offset, s->cluster_cache, s->cluster_size) !=
335                 s->cluster_size)
336                 return -1;
337         } else {
338             cluster_offset = bdrv_getlength(bs->file);
339             if (allocate == 1) {
340                 /* round to cluster size */
341                 cluster_offset = (cluster_offset + s->cluster_size - 1) &
342                     ~(s->cluster_size - 1);
343                 bdrv_truncate(bs->file, cluster_offset + s->cluster_size);
344                 /* if encrypted, we must initialize the cluster
345                    content which won't be written */
346                 if (s->crypt_method &&
347                     (n_end - n_start) < s->cluster_sectors) {
348                     uint64_t start_sect;
349                     start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
350                     memset(s->cluster_data + 512, 0x00, 512);
351                     for(i = 0; i < s->cluster_sectors; i++) {
352                         if (i < n_start || i >= n_end) {
353                             encrypt_sectors(s, start_sect + i,
354                                             s->cluster_data,
355                                             s->cluster_data + 512, 1, 1,
356                                             &s->aes_encrypt_key);
357                             if (bdrv_pwrite(bs->file, cluster_offset + i * 512,
358                                             s->cluster_data, 512) != 512)
359                                 return -1;
360                         }
361                     }
362                 }
363             } else if (allocate == 2) {
364                 cluster_offset |= QCOW_OFLAG_COMPRESSED |
365                     (uint64_t)compressed_size << (63 - s->cluster_bits);
366             }
367         }
368         /* update L2 table */
369         tmp = cpu_to_be64(cluster_offset);
370         l2_table[l2_index] = tmp;
371         if (bdrv_pwrite_sync(bs->file, l2_offset + l2_index * sizeof(tmp),
372                 &tmp, sizeof(tmp)) < 0)
373             return 0;
374     }
375     return cluster_offset;
376 }
377 
378 static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
379                              int nb_sectors, int *pnum)
380 {
381     BDRVQcowState *s = bs->opaque;
382     int index_in_cluster, n;
383     uint64_t cluster_offset;
384 
385     cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
386     index_in_cluster = sector_num & (s->cluster_sectors - 1);
387     n = s->cluster_sectors - index_in_cluster;
388     if (n > nb_sectors)
389         n = nb_sectors;
390     *pnum = n;
391     return (cluster_offset != 0);
392 }
393 
394 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
395                              const uint8_t *buf, int buf_size)
396 {
397     z_stream strm1, *strm = &strm1;
398     int ret, out_len;
399 
400     memset(strm, 0, sizeof(*strm));
401 
402     strm->next_in = (uint8_t *)buf;
403     strm->avail_in = buf_size;
404     strm->next_out = out_buf;
405     strm->avail_out = out_buf_size;
406 
407     ret = inflateInit2(strm, -12);
408     if (ret != Z_OK)
409         return -1;
410     ret = inflate(strm, Z_FINISH);
411     out_len = strm->next_out - out_buf;
412     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
413         out_len != out_buf_size) {
414         inflateEnd(strm);
415         return -1;
416     }
417     inflateEnd(strm);
418     return 0;
419 }
420 
421 static int decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
422 {
423     BDRVQcowState *s = bs->opaque;
424     int ret, csize;
425     uint64_t coffset;
426 
427     coffset = cluster_offset & s->cluster_offset_mask;
428     if (s->cluster_cache_offset != coffset) {
429         csize = cluster_offset >> (63 - s->cluster_bits);
430         csize &= (s->cluster_size - 1);
431         ret = bdrv_pread(bs->file, coffset, s->cluster_data, csize);
432         if (ret != csize)
433             return -1;
434         if (decompress_buffer(s->cluster_cache, s->cluster_size,
435                               s->cluster_data, csize) < 0) {
436             return -1;
437         }
438         s->cluster_cache_offset = coffset;
439     }
440     return 0;
441 }
442 
443 #if 0
444 
445 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
446                      uint8_t *buf, int nb_sectors)
447 {
448     BDRVQcowState *s = bs->opaque;
449     int ret, index_in_cluster, n;
450     uint64_t cluster_offset;
451 
452     while (nb_sectors > 0) {
453         cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
454         index_in_cluster = sector_num & (s->cluster_sectors - 1);
455         n = s->cluster_sectors - index_in_cluster;
456         if (n > nb_sectors)
457             n = nb_sectors;
458         if (!cluster_offset) {
459             if (bs->backing_hd) {
460                 /* read from the base image */
461                 ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
462                 if (ret < 0)
463                     return -1;
464             } else {
465                 memset(buf, 0, 512 * n);
466             }
467         } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
468             if (decompress_cluster(bs, cluster_offset) < 0)
469                 return -1;
470             memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
471         } else {
472             ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
473             if (ret != n * 512)
474                 return -1;
475             if (s->crypt_method) {
476                 encrypt_sectors(s, sector_num, buf, buf, n, 0,
477                                 &s->aes_decrypt_key);
478             }
479         }
480         nb_sectors -= n;
481         sector_num += n;
482         buf += n * 512;
483     }
484     return 0;
485 }
486 #endif
487 
488 typedef struct QCowAIOCB {
489     BlockDriverAIOCB common;
490     int64_t sector_num;
491     QEMUIOVector *qiov;
492     uint8_t *buf;
493     void *orig_buf;
494     int nb_sectors;
495     int n;
496     uint64_t cluster_offset;
497     uint8_t *cluster_data;
498     struct iovec hd_iov;
499     bool is_write;
500     QEMUBH *bh;
501     QEMUIOVector hd_qiov;
502     BlockDriverAIOCB *hd_aiocb;
503 } QCowAIOCB;
504 
505 static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
506 {
507     QCowAIOCB *acb = container_of(blockacb, QCowAIOCB, common);
508     if (acb->hd_aiocb)
509         bdrv_aio_cancel(acb->hd_aiocb);
510     qemu_aio_release(acb);
511 }
512 
513 static AIOPool qcow_aio_pool = {
514     .aiocb_size         = sizeof(QCowAIOCB),
515     .cancel             = qcow_aio_cancel,
516 };
517 
518 static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
519         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
520         BlockDriverCompletionFunc *cb, void *opaque, int is_write)
521 {
522     QCowAIOCB *acb;
523 
524     acb = qemu_aio_get(&qcow_aio_pool, bs, cb, opaque);
525     if (!acb)
526         return NULL;
527     acb->hd_aiocb = NULL;
528     acb->sector_num = sector_num;
529     acb->qiov = qiov;
530     acb->is_write = is_write;
531 
532     if (qiov->niov > 1) {
533         acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
534         if (is_write)
535             qemu_iovec_to_buffer(qiov, acb->buf);
536     } else {
537         acb->buf = (uint8_t *)qiov->iov->iov_base;
538     }
539     acb->nb_sectors = nb_sectors;
540     acb->n = 0;
541     acb->cluster_offset = 0;
542     return acb;
543 }
544 
545 static void qcow_aio_read_cb(void *opaque, int ret);
546 static void qcow_aio_write_cb(void *opaque, int ret);
547 
548 static void qcow_aio_rw_bh(void *opaque)
549 {
550     QCowAIOCB *acb = opaque;
551     qemu_bh_delete(acb->bh);
552     acb->bh = NULL;
553 
554     if (acb->is_write) {
555         qcow_aio_write_cb(opaque, 0);
556     } else {
557         qcow_aio_read_cb(opaque, 0);
558     }
559 }
560 
561 static int qcow_schedule_bh(QEMUBHFunc *cb, QCowAIOCB *acb)
562 {
563     if (acb->bh) {
564         return -EIO;
565     }
566 
567     acb->bh = qemu_bh_new(cb, acb);
568     if (!acb->bh) {
569         return -EIO;
570     }
571 
572     qemu_bh_schedule(acb->bh);
573 
574     return 0;
575 }
576 
577 static void qcow_aio_read_cb(void *opaque, int ret)
578 {
579     QCowAIOCB *acb = opaque;
580     BlockDriverState *bs = acb->common.bs;
581     BDRVQcowState *s = bs->opaque;
582     int index_in_cluster;
583 
584     acb->hd_aiocb = NULL;
585     if (ret < 0)
586         goto done;
587 
588  redo:
589     /* post process the read buffer */
590     if (!acb->cluster_offset) {
591         /* nothing to do */
592     } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
593         /* nothing to do */
594     } else {
595         if (s->crypt_method) {
596             encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
597                             acb->n, 0,
598                             &s->aes_decrypt_key);
599         }
600     }
601 
602     acb->nb_sectors -= acb->n;
603     acb->sector_num += acb->n;
604     acb->buf += acb->n * 512;
605 
606     if (acb->nb_sectors == 0) {
607         /* request completed */
608         ret = 0;
609         goto done;
610     }
611 
612     /* prepare next AIO request */
613     acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9,
614                                              0, 0, 0, 0);
615     index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
616     acb->n = s->cluster_sectors - index_in_cluster;
617     if (acb->n > acb->nb_sectors)
618         acb->n = acb->nb_sectors;
619 
620     if (!acb->cluster_offset) {
621         if (bs->backing_hd) {
622             /* read from the base image */
623             acb->hd_iov.iov_base = (void *)acb->buf;
624             acb->hd_iov.iov_len = acb->n * 512;
625             qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
626             acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num,
627                 &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
628             if (acb->hd_aiocb == NULL) {
629                 ret = -EIO;
630                 goto done;
631             }
632         } else {
633             /* Note: in this case, no need to wait */
634             memset(acb->buf, 0, 512 * acb->n);
635             goto redo;
636         }
637     } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
638         /* add AIO support for compressed blocks ? */
639         if (decompress_cluster(bs, acb->cluster_offset) < 0) {
640             ret = -EIO;
641             goto done;
642         }
643         memcpy(acb->buf,
644                s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
645         goto redo;
646     } else {
647         if ((acb->cluster_offset & 511) != 0) {
648             ret = -EIO;
649             goto done;
650         }
651         acb->hd_iov.iov_base = (void *)acb->buf;
652         acb->hd_iov.iov_len = acb->n * 512;
653         qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
654         acb->hd_aiocb = bdrv_aio_readv(bs->file,
655                             (acb->cluster_offset >> 9) + index_in_cluster,
656                             &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
657         if (acb->hd_aiocb == NULL) {
658             ret = -EIO;
659             goto done;
660         }
661     }
662 
663     return;
664 
665 done:
666     if (acb->qiov->niov > 1) {
667         qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
668         qemu_vfree(acb->orig_buf);
669     }
670     acb->common.cb(acb->common.opaque, ret);
671     qemu_aio_release(acb);
672 }
673 
674 static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs,
675         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
676         BlockDriverCompletionFunc *cb, void *opaque)
677 {
678     QCowAIOCB *acb;
679     int ret;
680 
681     acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
682     if (!acb)
683         return NULL;
684 
685     ret = qcow_schedule_bh(qcow_aio_rw_bh, acb);
686     if (ret < 0) {
687         if (acb->qiov->niov > 1) {
688             qemu_vfree(acb->orig_buf);
689         }
690         qemu_aio_release(acb);
691         return NULL;
692     }
693 
694     return &acb->common;
695 }
696 
697 static void qcow_aio_write_cb(void *opaque, int ret)
698 {
699     QCowAIOCB *acb = opaque;
700     BlockDriverState *bs = acb->common.bs;
701     BDRVQcowState *s = bs->opaque;
702     int index_in_cluster;
703     uint64_t cluster_offset;
704     const uint8_t *src_buf;
705 
706     acb->hd_aiocb = NULL;
707 
708     if (ret < 0)
709         goto done;
710 
711     acb->nb_sectors -= acb->n;
712     acb->sector_num += acb->n;
713     acb->buf += acb->n * 512;
714 
715     if (acb->nb_sectors == 0) {
716         /* request completed */
717         ret = 0;
718         goto done;
719     }
720 
721     index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
722     acb->n = s->cluster_sectors - index_in_cluster;
723     if (acb->n > acb->nb_sectors)
724         acb->n = acb->nb_sectors;
725     cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, 1, 0,
726                                         index_in_cluster,
727                                         index_in_cluster + acb->n);
728     if (!cluster_offset || (cluster_offset & 511) != 0) {
729         ret = -EIO;
730         goto done;
731     }
732     if (s->crypt_method) {
733         if (!acb->cluster_data) {
734             acb->cluster_data = qemu_mallocz(s->cluster_size);
735             if (!acb->cluster_data) {
736                 ret = -ENOMEM;
737                 goto done;
738             }
739         }
740         encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
741                         acb->n, 1, &s->aes_encrypt_key);
742         src_buf = acb->cluster_data;
743     } else {
744         src_buf = acb->buf;
745     }
746 
747     acb->hd_iov.iov_base = (void *)src_buf;
748     acb->hd_iov.iov_len = acb->n * 512;
749     qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
750     acb->hd_aiocb = bdrv_aio_writev(bs->file,
751                                     (cluster_offset >> 9) + index_in_cluster,
752                                     &acb->hd_qiov, acb->n,
753                                     qcow_aio_write_cb, acb);
754     if (acb->hd_aiocb == NULL) {
755         ret = -EIO;
756         goto done;
757     }
758     return;
759 
760 done:
761     if (acb->qiov->niov > 1)
762         qemu_vfree(acb->orig_buf);
763     acb->common.cb(acb->common.opaque, ret);
764     qemu_aio_release(acb);
765 }
766 
767 static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs,
768         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
769         BlockDriverCompletionFunc *cb, void *opaque)
770 {
771     BDRVQcowState *s = bs->opaque;
772     QCowAIOCB *acb;
773     int ret;
774 
775     s->cluster_cache_offset = -1; /* disable compressed cache */
776 
777     acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
778     if (!acb)
779         return NULL;
780 
781 
782     ret = qcow_schedule_bh(qcow_aio_rw_bh, acb);
783     if (ret < 0) {
784         if (acb->qiov->niov > 1) {
785             qemu_vfree(acb->orig_buf);
786         }
787         qemu_aio_release(acb);
788         return NULL;
789     }
790 
791     return &acb->common;
792 }
793 
794 static void qcow_close(BlockDriverState *bs)
795 {
796     BDRVQcowState *s = bs->opaque;
797     qemu_free(s->l1_table);
798     qemu_free(s->l2_cache);
799     qemu_free(s->cluster_cache);
800     qemu_free(s->cluster_data);
801 }
802 
803 static int qcow_create(const char *filename, QEMUOptionParameter *options)
804 {
805     int fd, header_size, backing_filename_len, l1_size, i, shift;
806     QCowHeader header;
807     uint64_t tmp;
808     int64_t total_size = 0;
809     const char *backing_file = NULL;
810     int flags = 0;
811     int ret;
812 
813     /* Read out options */
814     while (options && options->name) {
815         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
816             total_size = options->value.n / 512;
817         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
818             backing_file = options->value.s;
819         } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
820             flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
821         }
822         options++;
823     }
824 
825     fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
826     if (fd < 0)
827         return -errno;
828     memset(&header, 0, sizeof(header));
829     header.magic = cpu_to_be32(QCOW_MAGIC);
830     header.version = cpu_to_be32(QCOW_VERSION);
831     header.size = cpu_to_be64(total_size * 512);
832     header_size = sizeof(header);
833     backing_filename_len = 0;
834     if (backing_file) {
835         if (strcmp(backing_file, "fat:")) {
836             header.backing_file_offset = cpu_to_be64(header_size);
837             backing_filename_len = strlen(backing_file);
838             header.backing_file_size = cpu_to_be32(backing_filename_len);
839             header_size += backing_filename_len;
840         } else {
841             /* special backing file for vvfat */
842             backing_file = NULL;
843         }
844         header.cluster_bits = 9; /* 512 byte cluster to avoid copying
845                                     unmodifyed sectors */
846         header.l2_bits = 12; /* 32 KB L2 tables */
847     } else {
848         header.cluster_bits = 12; /* 4 KB clusters */
849         header.l2_bits = 9; /* 4 KB L2 tables */
850     }
851     header_size = (header_size + 7) & ~7;
852     shift = header.cluster_bits + header.l2_bits;
853     l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift;
854 
855     header.l1_table_offset = cpu_to_be64(header_size);
856     if (flags & BLOCK_FLAG_ENCRYPT) {
857         header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
858     } else {
859         header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
860     }
861 
862     /* write all the data */
863     ret = qemu_write_full(fd, &header, sizeof(header));
864     if (ret != sizeof(header)) {
865         ret = -errno;
866         goto exit;
867     }
868 
869     if (backing_file) {
870         ret = qemu_write_full(fd, backing_file, backing_filename_len);
871         if (ret != backing_filename_len) {
872             ret = -errno;
873             goto exit;
874         }
875 
876     }
877     lseek(fd, header_size, SEEK_SET);
878     tmp = 0;
879     for(i = 0;i < l1_size; i++) {
880         ret = qemu_write_full(fd, &tmp, sizeof(tmp));
881         if (ret != sizeof(tmp)) {
882             ret = -errno;
883             goto exit;
884         }
885     }
886 
887     ret = 0;
888 exit:
889     close(fd);
890     return ret;
891 }
892 
893 static int qcow_make_empty(BlockDriverState *bs)
894 {
895     BDRVQcowState *s = bs->opaque;
896     uint32_t l1_length = s->l1_size * sizeof(uint64_t);
897     int ret;
898 
899     memset(s->l1_table, 0, l1_length);
900     if (bdrv_pwrite_sync(bs->file, s->l1_table_offset, s->l1_table,
901             l1_length) < 0)
902         return -1;
903     ret = bdrv_truncate(bs->file, s->l1_table_offset + l1_length);
904     if (ret < 0)
905         return ret;
906 
907     memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
908     memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
909     memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
910 
911     return 0;
912 }
913 
914 /* XXX: put compressed sectors first, then all the cluster aligned
915    tables to avoid losing bytes in alignment */
916 static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
917                                  const uint8_t *buf, int nb_sectors)
918 {
919     BDRVQcowState *s = bs->opaque;
920     z_stream strm;
921     int ret, out_len;
922     uint8_t *out_buf;
923     uint64_t cluster_offset;
924 
925     if (nb_sectors != s->cluster_sectors)
926         return -EINVAL;
927 
928     out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
929     if (!out_buf)
930         return -1;
931 
932     /* best compression, small window, no zlib header */
933     memset(&strm, 0, sizeof(strm));
934     ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
935                        Z_DEFLATED, -12,
936                        9, Z_DEFAULT_STRATEGY);
937     if (ret != 0) {
938         qemu_free(out_buf);
939         return -1;
940     }
941 
942     strm.avail_in = s->cluster_size;
943     strm.next_in = (uint8_t *)buf;
944     strm.avail_out = s->cluster_size;
945     strm.next_out = out_buf;
946 
947     ret = deflate(&strm, Z_FINISH);
948     if (ret != Z_STREAM_END && ret != Z_OK) {
949         qemu_free(out_buf);
950         deflateEnd(&strm);
951         return -1;
952     }
953     out_len = strm.next_out - out_buf;
954 
955     deflateEnd(&strm);
956 
957     if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
958         /* could not compress: write normal cluster */
959         bdrv_write(bs, sector_num, buf, s->cluster_sectors);
960     } else {
961         cluster_offset = get_cluster_offset(bs, sector_num << 9, 2,
962                                             out_len, 0, 0);
963         cluster_offset &= s->cluster_offset_mask;
964         if (bdrv_pwrite(bs->file, cluster_offset, out_buf, out_len) != out_len) {
965             qemu_free(out_buf);
966             return -1;
967         }
968     }
969 
970     qemu_free(out_buf);
971     return 0;
972 }
973 
974 static int qcow_flush(BlockDriverState *bs)
975 {
976     return bdrv_flush(bs->file);
977 }
978 
979 static BlockDriverAIOCB *qcow_aio_flush(BlockDriverState *bs,
980         BlockDriverCompletionFunc *cb, void *opaque)
981 {
982     return bdrv_aio_flush(bs->file, cb, opaque);
983 }
984 
985 static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
986 {
987     BDRVQcowState *s = bs->opaque;
988     bdi->cluster_size = s->cluster_size;
989     return 0;
990 }
991 
992 
993 static QEMUOptionParameter qcow_create_options[] = {
994     {
995         .name = BLOCK_OPT_SIZE,
996         .type = OPT_SIZE,
997         .help = "Virtual disk size"
998     },
999     {
1000         .name = BLOCK_OPT_BACKING_FILE,
1001         .type = OPT_STRING,
1002         .help = "File name of a base image"
1003     },
1004     {
1005         .name = BLOCK_OPT_ENCRYPT,
1006         .type = OPT_FLAG,
1007         .help = "Encrypt the image"
1008     },
1009     { NULL }
1010 };
1011 
1012 static BlockDriver bdrv_qcow = {
1013     .format_name	= "qcow",
1014     .instance_size	= sizeof(BDRVQcowState),
1015     .bdrv_probe		= qcow_probe,
1016     .bdrv_open		= qcow_open,
1017     .bdrv_close		= qcow_close,
1018     .bdrv_create	= qcow_create,
1019     .bdrv_flush		= qcow_flush,
1020     .bdrv_is_allocated	= qcow_is_allocated,
1021     .bdrv_set_key	= qcow_set_key,
1022     .bdrv_make_empty	= qcow_make_empty,
1023     .bdrv_aio_readv	= qcow_aio_readv,
1024     .bdrv_aio_writev	= qcow_aio_writev,
1025     .bdrv_aio_flush	= qcow_aio_flush,
1026     .bdrv_write_compressed = qcow_write_compressed,
1027     .bdrv_get_info	= qcow_get_info,
1028 
1029     .create_options = qcow_create_options,
1030 };
1031 
1032 static void bdrv_qcow_init(void)
1033 {
1034     bdrv_register(&bdrv_qcow);
1035 }
1036 
1037 block_init(bdrv_qcow_init);
1038