xref: /openbmc/qemu/block/nvme.c (revision f76b348e)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28 
29 #include "block/nvme.h"
30 
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
35 
36 typedef struct {
37     int32_t  head, tail;
38     uint8_t  *queue;
39     uint64_t iova;
40     /* Hardware MMIO register */
41     volatile uint32_t *doorbell;
42 } NVMeQueue;
43 
44 typedef struct {
45     BlockCompletionFunc *cb;
46     void *opaque;
47     int cid;
48     void *prp_list_page;
49     uint64_t prp_list_iova;
50     bool busy;
51 } NVMeRequest;
52 
53 typedef struct {
54     CoQueue     free_req_queue;
55     QemuMutex   lock;
56 
57     /* Fields protected by BQL */
58     int         index;
59     uint8_t     *prp_list_pages;
60 
61     /* Fields protected by @lock */
62     NVMeQueue   sq, cq;
63     int         cq_phase;
64     NVMeRequest reqs[NVME_QUEUE_SIZE];
65     bool        busy;
66     int         need_kick;
67     int         inflight;
68 } NVMeQueuePair;
69 
70 /* Memory mapped registers */
71 typedef volatile struct {
72     uint64_t cap;
73     uint32_t vs;
74     uint32_t intms;
75     uint32_t intmc;
76     uint32_t cc;
77     uint32_t reserved0;
78     uint32_t csts;
79     uint32_t nssr;
80     uint32_t aqa;
81     uint64_t asq;
82     uint64_t acq;
83     uint32_t cmbloc;
84     uint32_t cmbsz;
85     uint8_t  reserved1[0xec0];
86     uint8_t  cmd_set_specfic[0x100];
87     uint32_t doorbells[];
88 } NVMeRegs;
89 
90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
91 
92 typedef struct {
93     AioContext *aio_context;
94     QEMUVFIOState *vfio;
95     NVMeRegs *regs;
96     /* The submission/completion queue pairs.
97      * [0]: admin queue.
98      * [1..]: io queues.
99      */
100     NVMeQueuePair **queues;
101     int nr_queues;
102     size_t page_size;
103     /* How many uint32_t elements does each doorbell entry take. */
104     size_t doorbell_scale;
105     bool write_cache_supported;
106     EventNotifier irq_notifier;
107 
108     uint64_t nsze; /* Namespace size reported by identify command */
109     int nsid;      /* The namespace id to read/write data. */
110     int blkshift;
111 
112     uint64_t max_transfer;
113     bool plugged;
114 
115     bool supports_write_zeroes;
116     bool supports_discard;
117 
118     CoMutex dma_map_lock;
119     CoQueue dma_flush_queue;
120 
121     /* Total size of mapped qiov, accessed under dma_map_lock */
122     int dma_map_count;
123 
124     /* PCI address (required for nvme_refresh_filename()) */
125     char *device;
126 } BDRVNVMeState;
127 
128 #define NVME_BLOCK_OPT_DEVICE "device"
129 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
130 
131 static QemuOptsList runtime_opts = {
132     .name = "nvme",
133     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
134     .desc = {
135         {
136             .name = NVME_BLOCK_OPT_DEVICE,
137             .type = QEMU_OPT_STRING,
138             .help = "NVMe PCI device address",
139         },
140         {
141             .name = NVME_BLOCK_OPT_NAMESPACE,
142             .type = QEMU_OPT_NUMBER,
143             .help = "NVMe namespace",
144         },
145         { /* end of list */ }
146     },
147 };
148 
149 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
150                             int nentries, int entry_bytes, Error **errp)
151 {
152     BDRVNVMeState *s = bs->opaque;
153     size_t bytes;
154     int r;
155 
156     bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
157     q->head = q->tail = 0;
158     q->queue = qemu_try_blockalign0(bs, bytes);
159 
160     if (!q->queue) {
161         error_setg(errp, "Cannot allocate queue");
162         return;
163     }
164     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
165     if (r) {
166         error_setg(errp, "Cannot map queue");
167     }
168 }
169 
170 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
171 {
172     qemu_vfree(q->prp_list_pages);
173     qemu_vfree(q->sq.queue);
174     qemu_vfree(q->cq.queue);
175     qemu_mutex_destroy(&q->lock);
176     g_free(q);
177 }
178 
179 static void nvme_free_req_queue_cb(void *opaque)
180 {
181     NVMeQueuePair *q = opaque;
182 
183     qemu_mutex_lock(&q->lock);
184     while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
185         /* Retry all pending requests */
186     }
187     qemu_mutex_unlock(&q->lock);
188 }
189 
190 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
191                                              int idx, int size,
192                                              Error **errp)
193 {
194     int i, r;
195     BDRVNVMeState *s = bs->opaque;
196     Error *local_err = NULL;
197     NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
198     uint64_t prp_list_iova;
199 
200     qemu_mutex_init(&q->lock);
201     q->index = idx;
202     qemu_co_queue_init(&q->free_req_queue);
203     q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
204     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
205                           s->page_size * NVME_QUEUE_SIZE,
206                           false, &prp_list_iova);
207     if (r) {
208         goto fail;
209     }
210     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
211         NVMeRequest *req = &q->reqs[i];
212         req->cid = i + 1;
213         req->prp_list_page = q->prp_list_pages + i * s->page_size;
214         req->prp_list_iova = prp_list_iova + i * s->page_size;
215     }
216     nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
217     if (local_err) {
218         error_propagate(errp, local_err);
219         goto fail;
220     }
221     q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
222 
223     nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
224     if (local_err) {
225         error_propagate(errp, local_err);
226         goto fail;
227     }
228     q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
229 
230     return q;
231 fail:
232     nvme_free_queue_pair(bs, q);
233     return NULL;
234 }
235 
236 /* With q->lock */
237 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
238 {
239     if (s->plugged || !q->need_kick) {
240         return;
241     }
242     trace_nvme_kick(s, q->index);
243     assert(!(q->sq.tail & 0xFF00));
244     /* Fence the write to submission queue entry before notifying the device. */
245     smp_wmb();
246     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
247     q->inflight += q->need_kick;
248     q->need_kick = 0;
249 }
250 
251 /* Find a free request element if any, otherwise:
252  * a) if in coroutine context, try to wait for one to become available;
253  * b) if not in coroutine, return NULL;
254  */
255 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
256 {
257     int i;
258     NVMeRequest *req = NULL;
259 
260     qemu_mutex_lock(&q->lock);
261     while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
262         /* We have to leave one slot empty as that is the full queue case (head
263          * == tail + 1). */
264         if (qemu_in_coroutine()) {
265             trace_nvme_free_req_queue_wait(q);
266             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
267         } else {
268             qemu_mutex_unlock(&q->lock);
269             return NULL;
270         }
271     }
272     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
273         if (!q->reqs[i].busy) {
274             q->reqs[i].busy = true;
275             req = &q->reqs[i];
276             break;
277         }
278     }
279     /* We have checked inflight and need_kick while holding q->lock, so one
280      * free req must be available. */
281     assert(req);
282     qemu_mutex_unlock(&q->lock);
283     return req;
284 }
285 
286 static inline int nvme_translate_error(const NvmeCqe *c)
287 {
288     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
289     if (status) {
290         trace_nvme_error(le32_to_cpu(c->result),
291                          le16_to_cpu(c->sq_head),
292                          le16_to_cpu(c->sq_id),
293                          le16_to_cpu(c->cid),
294                          le16_to_cpu(status));
295     }
296     switch (status) {
297     case 0:
298         return 0;
299     case 1:
300         return -ENOSYS;
301     case 2:
302         return -EINVAL;
303     default:
304         return -EIO;
305     }
306 }
307 
308 /* With q->lock */
309 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
310 {
311     bool progress = false;
312     NVMeRequest *preq;
313     NVMeRequest req;
314     NvmeCqe *c;
315 
316     trace_nvme_process_completion(s, q->index, q->inflight);
317     if (q->busy || s->plugged) {
318         trace_nvme_process_completion_queue_busy(s, q->index);
319         return false;
320     }
321     q->busy = true;
322     assert(q->inflight >= 0);
323     while (q->inflight) {
324         int16_t cid;
325         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
326         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
327             break;
328         }
329         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
330         if (!q->cq.head) {
331             q->cq_phase = !q->cq_phase;
332         }
333         cid = le16_to_cpu(c->cid);
334         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
335             fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
336                     cid);
337             continue;
338         }
339         assert(cid <= NVME_QUEUE_SIZE);
340         trace_nvme_complete_command(s, q->index, cid);
341         preq = &q->reqs[cid - 1];
342         req = *preq;
343         assert(req.cid == cid);
344         assert(req.cb);
345         preq->busy = false;
346         preq->cb = preq->opaque = NULL;
347         qemu_mutex_unlock(&q->lock);
348         req.cb(req.opaque, nvme_translate_error(c));
349         qemu_mutex_lock(&q->lock);
350         q->inflight--;
351         progress = true;
352     }
353     if (progress) {
354         /* Notify the device so it can post more completions. */
355         smp_mb_release();
356         *q->cq.doorbell = cpu_to_le32(q->cq.head);
357         if (!qemu_co_queue_empty(&q->free_req_queue)) {
358             replay_bh_schedule_oneshot_event(s->aio_context,
359                                              nvme_free_req_queue_cb, q);
360         }
361     }
362     q->busy = false;
363     return progress;
364 }
365 
366 static void nvme_trace_command(const NvmeCmd *cmd)
367 {
368     int i;
369 
370     for (i = 0; i < 8; ++i) {
371         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
372         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
373                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
374     }
375 }
376 
377 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
378                                 NVMeRequest *req,
379                                 NvmeCmd *cmd, BlockCompletionFunc cb,
380                                 void *opaque)
381 {
382     assert(!req->cb);
383     req->cb = cb;
384     req->opaque = opaque;
385     cmd->cid = cpu_to_le32(req->cid);
386 
387     trace_nvme_submit_command(s, q->index, req->cid);
388     nvme_trace_command(cmd);
389     qemu_mutex_lock(&q->lock);
390     memcpy((uint8_t *)q->sq.queue +
391            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
392     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
393     q->need_kick++;
394     nvme_kick(s, q);
395     nvme_process_completion(s, q);
396     qemu_mutex_unlock(&q->lock);
397 }
398 
399 static void nvme_cmd_sync_cb(void *opaque, int ret)
400 {
401     int *pret = opaque;
402     *pret = ret;
403     aio_wait_kick();
404 }
405 
406 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
407                          NvmeCmd *cmd)
408 {
409     NVMeRequest *req;
410     BDRVNVMeState *s = bs->opaque;
411     int ret = -EINPROGRESS;
412     req = nvme_get_free_req(q);
413     if (!req) {
414         return -EBUSY;
415     }
416     nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
417 
418     BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
419     return ret;
420 }
421 
422 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
423 {
424     BDRVNVMeState *s = bs->opaque;
425     NvmeIdCtrl *idctrl;
426     NvmeIdNs *idns;
427     NvmeLBAF *lbaf;
428     uint8_t *resp;
429     uint16_t oncs;
430     int r;
431     uint64_t iova;
432     NvmeCmd cmd = {
433         .opcode = NVME_ADM_CMD_IDENTIFY,
434         .cdw10 = cpu_to_le32(0x1),
435     };
436 
437     resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
438     if (!resp) {
439         error_setg(errp, "Cannot allocate buffer for identify response");
440         goto out;
441     }
442     idctrl = (NvmeIdCtrl *)resp;
443     idns = (NvmeIdNs *)resp;
444     r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
445     if (r) {
446         error_setg(errp, "Cannot map buffer for DMA");
447         goto out;
448     }
449     cmd.prp1 = cpu_to_le64(iova);
450 
451     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
452         error_setg(errp, "Failed to identify controller");
453         goto out;
454     }
455 
456     if (le32_to_cpu(idctrl->nn) < namespace) {
457         error_setg(errp, "Invalid namespace");
458         goto out;
459     }
460     s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
461     s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
462     /* For now the page list buffer per command is one page, to hold at most
463      * s->page_size / sizeof(uint64_t) entries. */
464     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
465                           s->page_size / sizeof(uint64_t) * s->page_size);
466 
467     oncs = le16_to_cpu(idctrl->oncs);
468     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROS);
469     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
470 
471     memset(resp, 0, 4096);
472 
473     cmd.cdw10 = 0;
474     cmd.nsid = cpu_to_le32(namespace);
475     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
476         error_setg(errp, "Failed to identify namespace");
477         goto out;
478     }
479 
480     s->nsze = le64_to_cpu(idns->nsze);
481     lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
482 
483     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns->dlfeat) &&
484             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns->dlfeat) ==
485                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
486         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
487     }
488 
489     if (lbaf->ms) {
490         error_setg(errp, "Namespaces with metadata are not yet supported");
491         goto out;
492     }
493 
494     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
495         (1 << lbaf->ds) > s->page_size)
496     {
497         error_setg(errp, "Namespace has unsupported block size (2^%d)",
498                    lbaf->ds);
499         goto out;
500     }
501 
502     s->blkshift = lbaf->ds;
503 out:
504     qemu_vfio_dma_unmap(s->vfio, resp);
505     qemu_vfree(resp);
506 }
507 
508 static bool nvme_poll_queues(BDRVNVMeState *s)
509 {
510     bool progress = false;
511     int i;
512 
513     for (i = 0; i < s->nr_queues; i++) {
514         NVMeQueuePair *q = s->queues[i];
515         qemu_mutex_lock(&q->lock);
516         while (nvme_process_completion(s, q)) {
517             /* Keep polling */
518             progress = true;
519         }
520         qemu_mutex_unlock(&q->lock);
521     }
522     return progress;
523 }
524 
525 static void nvme_handle_event(EventNotifier *n)
526 {
527     BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
528 
529     trace_nvme_handle_event(s);
530     event_notifier_test_and_clear(n);
531     nvme_poll_queues(s);
532 }
533 
534 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
535 {
536     BDRVNVMeState *s = bs->opaque;
537     int n = s->nr_queues;
538     NVMeQueuePair *q;
539     NvmeCmd cmd;
540     int queue_size = NVME_QUEUE_SIZE;
541 
542     q = nvme_create_queue_pair(bs, n, queue_size, errp);
543     if (!q) {
544         return false;
545     }
546     cmd = (NvmeCmd) {
547         .opcode = NVME_ADM_CMD_CREATE_CQ,
548         .prp1 = cpu_to_le64(q->cq.iova),
549         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
550         .cdw11 = cpu_to_le32(0x3),
551     };
552     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
553         error_setg(errp, "Failed to create io queue [%d]", n);
554         nvme_free_queue_pair(bs, q);
555         return false;
556     }
557     cmd = (NvmeCmd) {
558         .opcode = NVME_ADM_CMD_CREATE_SQ,
559         .prp1 = cpu_to_le64(q->sq.iova),
560         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
561         .cdw11 = cpu_to_le32(0x1 | (n << 16)),
562     };
563     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
564         error_setg(errp, "Failed to create io queue [%d]", n);
565         nvme_free_queue_pair(bs, q);
566         return false;
567     }
568     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
569     s->queues[n] = q;
570     s->nr_queues++;
571     return true;
572 }
573 
574 static bool nvme_poll_cb(void *opaque)
575 {
576     EventNotifier *e = opaque;
577     BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
578 
579     trace_nvme_poll_cb(s);
580     return nvme_poll_queues(s);
581 }
582 
583 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
584                      Error **errp)
585 {
586     BDRVNVMeState *s = bs->opaque;
587     int ret;
588     uint64_t cap;
589     uint64_t timeout_ms;
590     uint64_t deadline, now;
591     Error *local_err = NULL;
592 
593     qemu_co_mutex_init(&s->dma_map_lock);
594     qemu_co_queue_init(&s->dma_flush_queue);
595     s->device = g_strdup(device);
596     s->nsid = namespace;
597     s->aio_context = bdrv_get_aio_context(bs);
598     ret = event_notifier_init(&s->irq_notifier, 0);
599     if (ret) {
600         error_setg(errp, "Failed to init event notifier");
601         return ret;
602     }
603 
604     s->vfio = qemu_vfio_open_pci(device, errp);
605     if (!s->vfio) {
606         ret = -EINVAL;
607         goto out;
608     }
609 
610     s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
611     if (!s->regs) {
612         ret = -EINVAL;
613         goto out;
614     }
615 
616     /* Perform initialize sequence as described in NVMe spec "7.6.1
617      * Initialization". */
618 
619     cap = le64_to_cpu(s->regs->cap);
620     if (!(cap & (1ULL << 37))) {
621         error_setg(errp, "Device doesn't support NVMe command set");
622         ret = -EINVAL;
623         goto out;
624     }
625 
626     s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
627     s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
628     bs->bl.opt_mem_alignment = s->page_size;
629     timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
630 
631     /* Reset device to get a clean state. */
632     s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
633     /* Wait for CSTS.RDY = 0. */
634     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
635     while (le32_to_cpu(s->regs->csts) & 0x1) {
636         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
637             error_setg(errp, "Timeout while waiting for device to reset (%"
638                              PRId64 " ms)",
639                        timeout_ms);
640             ret = -ETIMEDOUT;
641             goto out;
642         }
643     }
644 
645     /* Set up admin queue. */
646     s->queues = g_new(NVMeQueuePair *, 1);
647     s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
648     if (!s->queues[0]) {
649         ret = -EINVAL;
650         goto out;
651     }
652     s->nr_queues = 1;
653     QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
654     s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
655     s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
656     s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
657 
658     /* After setting up all control registers we can enable device now. */
659     s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
660                               (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
661                               0x1);
662     /* Wait for CSTS.RDY = 1. */
663     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
664     deadline = now + timeout_ms * 1000000;
665     while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
666         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
667             error_setg(errp, "Timeout while waiting for device to start (%"
668                              PRId64 " ms)",
669                        timeout_ms);
670             ret = -ETIMEDOUT;
671             goto out;
672         }
673     }
674 
675     ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
676                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
677     if (ret) {
678         goto out;
679     }
680     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
681                            false, nvme_handle_event, nvme_poll_cb);
682 
683     nvme_identify(bs, namespace, &local_err);
684     if (local_err) {
685         error_propagate(errp, local_err);
686         ret = -EIO;
687         goto out;
688     }
689 
690     /* Set up command queues. */
691     if (!nvme_add_io_queue(bs, errp)) {
692         ret = -EIO;
693     }
694 out:
695     /* Cleaning up is done in nvme_file_open() upon error. */
696     return ret;
697 }
698 
699 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
700  *
701  *     nvme://0000:44:00.0/1
702  *
703  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
704  * is the PCI address, and the last part is the namespace number starting from
705  * 1 according to the NVMe spec. */
706 static void nvme_parse_filename(const char *filename, QDict *options,
707                                 Error **errp)
708 {
709     int pref = strlen("nvme://");
710 
711     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
712         const char *tmp = filename + pref;
713         char *device;
714         const char *namespace;
715         unsigned long ns;
716         const char *slash = strchr(tmp, '/');
717         if (!slash) {
718             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
719             return;
720         }
721         device = g_strndup(tmp, slash - tmp);
722         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
723         g_free(device);
724         namespace = slash + 1;
725         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
726             error_setg(errp, "Invalid namespace '%s', positive number expected",
727                        namespace);
728             return;
729         }
730         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
731                       *namespace ? namespace : "1");
732     }
733 }
734 
735 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
736                                            Error **errp)
737 {
738     int ret;
739     BDRVNVMeState *s = bs->opaque;
740     NvmeCmd cmd = {
741         .opcode = NVME_ADM_CMD_SET_FEATURES,
742         .nsid = cpu_to_le32(s->nsid),
743         .cdw10 = cpu_to_le32(0x06),
744         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
745     };
746 
747     ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
748     if (ret) {
749         error_setg(errp, "Failed to configure NVMe write cache");
750     }
751     return ret;
752 }
753 
754 static void nvme_close(BlockDriverState *bs)
755 {
756     int i;
757     BDRVNVMeState *s = bs->opaque;
758 
759     for (i = 0; i < s->nr_queues; ++i) {
760         nvme_free_queue_pair(bs, s->queues[i]);
761     }
762     g_free(s->queues);
763     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
764                            false, NULL, NULL);
765     event_notifier_cleanup(&s->irq_notifier);
766     qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
767     qemu_vfio_close(s->vfio);
768 
769     g_free(s->device);
770 }
771 
772 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
773                           Error **errp)
774 {
775     const char *device;
776     QemuOpts *opts;
777     int namespace;
778     int ret;
779     BDRVNVMeState *s = bs->opaque;
780 
781     bs->supported_write_flags = BDRV_REQ_FUA;
782 
783     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
784     qemu_opts_absorb_qdict(opts, options, &error_abort);
785     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
786     if (!device) {
787         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
788         qemu_opts_del(opts);
789         return -EINVAL;
790     }
791 
792     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
793     ret = nvme_init(bs, device, namespace, errp);
794     qemu_opts_del(opts);
795     if (ret) {
796         goto fail;
797     }
798     if (flags & BDRV_O_NOCACHE) {
799         if (!s->write_cache_supported) {
800             error_setg(errp,
801                        "NVMe controller doesn't support write cache configuration");
802             ret = -EINVAL;
803         } else {
804             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
805                                                   errp);
806         }
807         if (ret) {
808             goto fail;
809         }
810     }
811     return 0;
812 fail:
813     nvme_close(bs);
814     return ret;
815 }
816 
817 static int64_t nvme_getlength(BlockDriverState *bs)
818 {
819     BDRVNVMeState *s = bs->opaque;
820     return s->nsze << s->blkshift;
821 }
822 
823 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
824 {
825     BDRVNVMeState *s = bs->opaque;
826     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
827     return UINT32_C(1) << s->blkshift;
828 }
829 
830 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
831 {
832     uint32_t blocksize = nvme_get_blocksize(bs);
833     bsz->phys = blocksize;
834     bsz->log = blocksize;
835     return 0;
836 }
837 
838 /* Called with s->dma_map_lock */
839 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
840                                             QEMUIOVector *qiov)
841 {
842     int r = 0;
843     BDRVNVMeState *s = bs->opaque;
844 
845     s->dma_map_count -= qiov->size;
846     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
847         r = qemu_vfio_dma_reset_temporary(s->vfio);
848         if (!r) {
849             qemu_co_queue_restart_all(&s->dma_flush_queue);
850         }
851     }
852     return r;
853 }
854 
855 /* Called with s->dma_map_lock */
856 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
857                                           NVMeRequest *req, QEMUIOVector *qiov)
858 {
859     BDRVNVMeState *s = bs->opaque;
860     uint64_t *pagelist = req->prp_list_page;
861     int i, j, r;
862     int entries = 0;
863 
864     assert(qiov->size);
865     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
866     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
867     for (i = 0; i < qiov->niov; ++i) {
868         bool retry = true;
869         uint64_t iova;
870 try_map:
871         r = qemu_vfio_dma_map(s->vfio,
872                               qiov->iov[i].iov_base,
873                               qiov->iov[i].iov_len,
874                               true, &iova);
875         if (r == -ENOMEM && retry) {
876             retry = false;
877             trace_nvme_dma_flush_queue_wait(s);
878             if (s->dma_map_count) {
879                 trace_nvme_dma_map_flush(s);
880                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
881             } else {
882                 r = qemu_vfio_dma_reset_temporary(s->vfio);
883                 if (r) {
884                     goto fail;
885                 }
886             }
887             goto try_map;
888         }
889         if (r) {
890             goto fail;
891         }
892 
893         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
894             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
895         }
896         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
897                                     qiov->iov[i].iov_len / s->page_size);
898     }
899 
900     s->dma_map_count += qiov->size;
901 
902     assert(entries <= s->page_size / sizeof(uint64_t));
903     switch (entries) {
904     case 0:
905         abort();
906     case 1:
907         cmd->prp1 = pagelist[0];
908         cmd->prp2 = 0;
909         break;
910     case 2:
911         cmd->prp1 = pagelist[0];
912         cmd->prp2 = pagelist[1];
913         break;
914     default:
915         cmd->prp1 = pagelist[0];
916         cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
917         break;
918     }
919     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
920     for (i = 0; i < entries; ++i) {
921         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
922     }
923     return 0;
924 fail:
925     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
926      * increment s->dma_map_count. This is okay for fixed mapping memory areas
927      * because they are already mapped before calling this function; for
928      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
929      * calling qemu_vfio_dma_reset_temporary when necessary. */
930     return r;
931 }
932 
933 typedef struct {
934     Coroutine *co;
935     int ret;
936     AioContext *ctx;
937 } NVMeCoData;
938 
939 static void nvme_rw_cb_bh(void *opaque)
940 {
941     NVMeCoData *data = opaque;
942     qemu_coroutine_enter(data->co);
943 }
944 
945 static void nvme_rw_cb(void *opaque, int ret)
946 {
947     NVMeCoData *data = opaque;
948     data->ret = ret;
949     if (!data->co) {
950         /* The rw coroutine hasn't yielded, don't try to enter. */
951         return;
952     }
953     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
954 }
955 
956 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
957                                             uint64_t offset, uint64_t bytes,
958                                             QEMUIOVector *qiov,
959                                             bool is_write,
960                                             int flags)
961 {
962     int r;
963     BDRVNVMeState *s = bs->opaque;
964     NVMeQueuePair *ioq = s->queues[1];
965     NVMeRequest *req;
966 
967     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
968                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
969     NvmeCmd cmd = {
970         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
971         .nsid = cpu_to_le32(s->nsid),
972         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
973         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
974         .cdw12 = cpu_to_le32(cdw12),
975     };
976     NVMeCoData data = {
977         .ctx = bdrv_get_aio_context(bs),
978         .ret = -EINPROGRESS,
979     };
980 
981     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
982     assert(s->nr_queues > 1);
983     req = nvme_get_free_req(ioq);
984     assert(req);
985 
986     qemu_co_mutex_lock(&s->dma_map_lock);
987     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
988     qemu_co_mutex_unlock(&s->dma_map_lock);
989     if (r) {
990         req->busy = false;
991         return r;
992     }
993     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
994 
995     data.co = qemu_coroutine_self();
996     while (data.ret == -EINPROGRESS) {
997         qemu_coroutine_yield();
998     }
999 
1000     qemu_co_mutex_lock(&s->dma_map_lock);
1001     r = nvme_cmd_unmap_qiov(bs, qiov);
1002     qemu_co_mutex_unlock(&s->dma_map_lock);
1003     if (r) {
1004         return r;
1005     }
1006 
1007     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1008     return data.ret;
1009 }
1010 
1011 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1012                                      const QEMUIOVector *qiov)
1013 {
1014     int i;
1015     BDRVNVMeState *s = bs->opaque;
1016 
1017     for (i = 0; i < qiov->niov; ++i) {
1018         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1019             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1020             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1021                                       qiov->iov[i].iov_len, s->page_size);
1022             return false;
1023         }
1024     }
1025     return true;
1026 }
1027 
1028 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1029                        QEMUIOVector *qiov, bool is_write, int flags)
1030 {
1031     BDRVNVMeState *s = bs->opaque;
1032     int r;
1033     uint8_t *buf = NULL;
1034     QEMUIOVector local_qiov;
1035 
1036     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1037     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1038     assert(bytes <= s->max_transfer);
1039     if (nvme_qiov_aligned(bs, qiov)) {
1040         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1041     }
1042     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1043     buf = qemu_try_blockalign(bs, bytes);
1044 
1045     if (!buf) {
1046         return -ENOMEM;
1047     }
1048     qemu_iovec_init(&local_qiov, 1);
1049     if (is_write) {
1050         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1051     }
1052     qemu_iovec_add(&local_qiov, buf, bytes);
1053     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1054     qemu_iovec_destroy(&local_qiov);
1055     if (!r && !is_write) {
1056         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1057     }
1058     qemu_vfree(buf);
1059     return r;
1060 }
1061 
1062 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1063                                        uint64_t offset, uint64_t bytes,
1064                                        QEMUIOVector *qiov, int flags)
1065 {
1066     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1067 }
1068 
1069 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1070                                         uint64_t offset, uint64_t bytes,
1071                                         QEMUIOVector *qiov, int flags)
1072 {
1073     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1074 }
1075 
1076 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1077 {
1078     BDRVNVMeState *s = bs->opaque;
1079     NVMeQueuePair *ioq = s->queues[1];
1080     NVMeRequest *req;
1081     NvmeCmd cmd = {
1082         .opcode = NVME_CMD_FLUSH,
1083         .nsid = cpu_to_le32(s->nsid),
1084     };
1085     NVMeCoData data = {
1086         .ctx = bdrv_get_aio_context(bs),
1087         .ret = -EINPROGRESS,
1088     };
1089 
1090     assert(s->nr_queues > 1);
1091     req = nvme_get_free_req(ioq);
1092     assert(req);
1093     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1094 
1095     data.co = qemu_coroutine_self();
1096     if (data.ret == -EINPROGRESS) {
1097         qemu_coroutine_yield();
1098     }
1099 
1100     return data.ret;
1101 }
1102 
1103 
1104 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1105                                               int64_t offset,
1106                                               int bytes,
1107                                               BdrvRequestFlags flags)
1108 {
1109     BDRVNVMeState *s = bs->opaque;
1110     NVMeQueuePair *ioq = s->queues[1];
1111     NVMeRequest *req;
1112 
1113     uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1114 
1115     if (!s->supports_write_zeroes) {
1116         return -ENOTSUP;
1117     }
1118 
1119     NvmeCmd cmd = {
1120         .opcode = NVME_CMD_WRITE_ZEROS,
1121         .nsid = cpu_to_le32(s->nsid),
1122         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1123         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1124     };
1125 
1126     NVMeCoData data = {
1127         .ctx = bdrv_get_aio_context(bs),
1128         .ret = -EINPROGRESS,
1129     };
1130 
1131     if (flags & BDRV_REQ_MAY_UNMAP) {
1132         cdw12 |= (1 << 25);
1133     }
1134 
1135     if (flags & BDRV_REQ_FUA) {
1136         cdw12 |= (1 << 30);
1137     }
1138 
1139     cmd.cdw12 = cpu_to_le32(cdw12);
1140 
1141     trace_nvme_write_zeroes(s, offset, bytes, flags);
1142     assert(s->nr_queues > 1);
1143     req = nvme_get_free_req(ioq);
1144     assert(req);
1145 
1146     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1147 
1148     data.co = qemu_coroutine_self();
1149     while (data.ret == -EINPROGRESS) {
1150         qemu_coroutine_yield();
1151     }
1152 
1153     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1154     return data.ret;
1155 }
1156 
1157 
1158 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1159                                          int64_t offset,
1160                                          int bytes)
1161 {
1162     BDRVNVMeState *s = bs->opaque;
1163     NVMeQueuePair *ioq = s->queues[1];
1164     NVMeRequest *req;
1165     NvmeDsmRange *buf;
1166     QEMUIOVector local_qiov;
1167     int ret;
1168 
1169     NvmeCmd cmd = {
1170         .opcode = NVME_CMD_DSM,
1171         .nsid = cpu_to_le32(s->nsid),
1172         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1173         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1174     };
1175 
1176     NVMeCoData data = {
1177         .ctx = bdrv_get_aio_context(bs),
1178         .ret = -EINPROGRESS,
1179     };
1180 
1181     if (!s->supports_discard) {
1182         return -ENOTSUP;
1183     }
1184 
1185     assert(s->nr_queues > 1);
1186 
1187     buf = qemu_try_blockalign0(bs, s->page_size);
1188     if (!buf) {
1189         return -ENOMEM;
1190     }
1191 
1192     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1193     buf->slba = cpu_to_le64(offset >> s->blkshift);
1194     buf->cattr = 0;
1195 
1196     qemu_iovec_init(&local_qiov, 1);
1197     qemu_iovec_add(&local_qiov, buf, 4096);
1198 
1199     req = nvme_get_free_req(ioq);
1200     assert(req);
1201 
1202     qemu_co_mutex_lock(&s->dma_map_lock);
1203     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1204     qemu_co_mutex_unlock(&s->dma_map_lock);
1205 
1206     if (ret) {
1207         req->busy = false;
1208         goto out;
1209     }
1210 
1211     trace_nvme_dsm(s, offset, bytes);
1212 
1213     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1214 
1215     data.co = qemu_coroutine_self();
1216     while (data.ret == -EINPROGRESS) {
1217         qemu_coroutine_yield();
1218     }
1219 
1220     qemu_co_mutex_lock(&s->dma_map_lock);
1221     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1222     qemu_co_mutex_unlock(&s->dma_map_lock);
1223 
1224     if (ret) {
1225         goto out;
1226     }
1227 
1228     ret = data.ret;
1229     trace_nvme_dsm_done(s, offset, bytes, ret);
1230 out:
1231     qemu_iovec_destroy(&local_qiov);
1232     qemu_vfree(buf);
1233     return ret;
1234 
1235 }
1236 
1237 
1238 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1239                                BlockReopenQueue *queue, Error **errp)
1240 {
1241     return 0;
1242 }
1243 
1244 static void nvme_refresh_filename(BlockDriverState *bs)
1245 {
1246     BDRVNVMeState *s = bs->opaque;
1247 
1248     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1249              s->device, s->nsid);
1250 }
1251 
1252 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1253 {
1254     BDRVNVMeState *s = bs->opaque;
1255 
1256     bs->bl.opt_mem_alignment = s->page_size;
1257     bs->bl.request_alignment = s->page_size;
1258     bs->bl.max_transfer = s->max_transfer;
1259 }
1260 
1261 static void nvme_detach_aio_context(BlockDriverState *bs)
1262 {
1263     BDRVNVMeState *s = bs->opaque;
1264 
1265     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1266                            false, NULL, NULL);
1267 }
1268 
1269 static void nvme_attach_aio_context(BlockDriverState *bs,
1270                                     AioContext *new_context)
1271 {
1272     BDRVNVMeState *s = bs->opaque;
1273 
1274     s->aio_context = new_context;
1275     aio_set_event_notifier(new_context, &s->irq_notifier,
1276                            false, nvme_handle_event, nvme_poll_cb);
1277 }
1278 
1279 static void nvme_aio_plug(BlockDriverState *bs)
1280 {
1281     BDRVNVMeState *s = bs->opaque;
1282     assert(!s->plugged);
1283     s->plugged = true;
1284 }
1285 
1286 static void nvme_aio_unplug(BlockDriverState *bs)
1287 {
1288     int i;
1289     BDRVNVMeState *s = bs->opaque;
1290     assert(s->plugged);
1291     s->plugged = false;
1292     for (i = 1; i < s->nr_queues; i++) {
1293         NVMeQueuePair *q = s->queues[i];
1294         qemu_mutex_lock(&q->lock);
1295         nvme_kick(s, q);
1296         nvme_process_completion(s, q);
1297         qemu_mutex_unlock(&q->lock);
1298     }
1299 }
1300 
1301 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1302 {
1303     int ret;
1304     BDRVNVMeState *s = bs->opaque;
1305 
1306     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1307     if (ret) {
1308         /* FIXME: we may run out of IOVA addresses after repeated
1309          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1310          * doesn't reclaim addresses for fixed mappings. */
1311         error_report("nvme_register_buf failed: %s", strerror(-ret));
1312     }
1313 }
1314 
1315 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1316 {
1317     BDRVNVMeState *s = bs->opaque;
1318 
1319     qemu_vfio_dma_unmap(s->vfio, host);
1320 }
1321 
1322 static const char *const nvme_strong_runtime_opts[] = {
1323     NVME_BLOCK_OPT_DEVICE,
1324     NVME_BLOCK_OPT_NAMESPACE,
1325 
1326     NULL
1327 };
1328 
1329 static BlockDriver bdrv_nvme = {
1330     .format_name              = "nvme",
1331     .protocol_name            = "nvme",
1332     .instance_size            = sizeof(BDRVNVMeState),
1333 
1334     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1335     .create_opts              = &bdrv_create_opts_simple,
1336 
1337     .bdrv_parse_filename      = nvme_parse_filename,
1338     .bdrv_file_open           = nvme_file_open,
1339     .bdrv_close               = nvme_close,
1340     .bdrv_getlength           = nvme_getlength,
1341     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1342 
1343     .bdrv_co_preadv           = nvme_co_preadv,
1344     .bdrv_co_pwritev          = nvme_co_pwritev,
1345 
1346     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1347     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1348 
1349     .bdrv_co_flush_to_disk    = nvme_co_flush,
1350     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1351 
1352     .bdrv_refresh_filename    = nvme_refresh_filename,
1353     .bdrv_refresh_limits      = nvme_refresh_limits,
1354     .strong_runtime_opts      = nvme_strong_runtime_opts,
1355 
1356     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1357     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1358 
1359     .bdrv_io_plug             = nvme_aio_plug,
1360     .bdrv_io_unplug           = nvme_aio_unplug,
1361 
1362     .bdrv_register_buf        = nvme_register_buf,
1363     .bdrv_unregister_buf      = nvme_unregister_buf,
1364 };
1365 
1366 static void bdrv_nvme_init(void)
1367 {
1368     bdrv_register(&bdrv_nvme);
1369 }
1370 
1371 block_init(bdrv_nvme_init);
1372