1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/cutils.h" 21 #include "qemu/option.h" 22 #include "qemu/vfio-helpers.h" 23 #include "block/block_int.h" 24 #include "trace.h" 25 26 #include "block/nvme.h" 27 28 #define NVME_SQ_ENTRY_BYTES 64 29 #define NVME_CQ_ENTRY_BYTES 16 30 #define NVME_QUEUE_SIZE 128 31 #define NVME_BAR_SIZE 8192 32 33 typedef struct { 34 int32_t head, tail; 35 uint8_t *queue; 36 uint64_t iova; 37 /* Hardware MMIO register */ 38 volatile uint32_t *doorbell; 39 } NVMeQueue; 40 41 typedef struct { 42 BlockCompletionFunc *cb; 43 void *opaque; 44 int cid; 45 void *prp_list_page; 46 uint64_t prp_list_iova; 47 bool busy; 48 } NVMeRequest; 49 50 typedef struct { 51 CoQueue free_req_queue; 52 QemuMutex lock; 53 54 /* Fields protected by BQL */ 55 int index; 56 uint8_t *prp_list_pages; 57 58 /* Fields protected by @lock */ 59 NVMeQueue sq, cq; 60 int cq_phase; 61 NVMeRequest reqs[NVME_QUEUE_SIZE]; 62 bool busy; 63 int need_kick; 64 int inflight; 65 } NVMeQueuePair; 66 67 /* Memory mapped registers */ 68 typedef volatile struct { 69 uint64_t cap; 70 uint32_t vs; 71 uint32_t intms; 72 uint32_t intmc; 73 uint32_t cc; 74 uint32_t reserved0; 75 uint32_t csts; 76 uint32_t nssr; 77 uint32_t aqa; 78 uint64_t asq; 79 uint64_t acq; 80 uint32_t cmbloc; 81 uint32_t cmbsz; 82 uint8_t reserved1[0xec0]; 83 uint8_t cmd_set_specfic[0x100]; 84 uint32_t doorbells[]; 85 } NVMeRegs; 86 87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); 88 89 typedef struct { 90 AioContext *aio_context; 91 QEMUVFIOState *vfio; 92 NVMeRegs *regs; 93 /* The submission/completion queue pairs. 94 * [0]: admin queue. 95 * [1..]: io queues. 96 */ 97 NVMeQueuePair **queues; 98 int nr_queues; 99 size_t page_size; 100 /* How many uint32_t elements does each doorbell entry take. */ 101 size_t doorbell_scale; 102 bool write_cache_supported; 103 EventNotifier irq_notifier; 104 uint64_t nsze; /* Namespace size reported by identify command */ 105 int nsid; /* The namespace id to read/write data. */ 106 uint64_t max_transfer; 107 bool plugged; 108 109 CoMutex dma_map_lock; 110 CoQueue dma_flush_queue; 111 112 /* Total size of mapped qiov, accessed under dma_map_lock */ 113 int dma_map_count; 114 115 /* PCI address (required for nvme_refresh_filename()) */ 116 char *device; 117 } BDRVNVMeState; 118 119 #define NVME_BLOCK_OPT_DEVICE "device" 120 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 121 122 static QemuOptsList runtime_opts = { 123 .name = "nvme", 124 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 125 .desc = { 126 { 127 .name = NVME_BLOCK_OPT_DEVICE, 128 .type = QEMU_OPT_STRING, 129 .help = "NVMe PCI device address", 130 }, 131 { 132 .name = NVME_BLOCK_OPT_NAMESPACE, 133 .type = QEMU_OPT_NUMBER, 134 .help = "NVMe namespace", 135 }, 136 { /* end of list */ } 137 }, 138 }; 139 140 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, 141 int nentries, int entry_bytes, Error **errp) 142 { 143 BDRVNVMeState *s = bs->opaque; 144 size_t bytes; 145 int r; 146 147 bytes = ROUND_UP(nentries * entry_bytes, s->page_size); 148 q->head = q->tail = 0; 149 q->queue = qemu_try_blockalign0(bs, bytes); 150 151 if (!q->queue) { 152 error_setg(errp, "Cannot allocate queue"); 153 return; 154 } 155 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 156 if (r) { 157 error_setg(errp, "Cannot map queue"); 158 } 159 } 160 161 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) 162 { 163 qemu_vfree(q->prp_list_pages); 164 qemu_vfree(q->sq.queue); 165 qemu_vfree(q->cq.queue); 166 qemu_mutex_destroy(&q->lock); 167 g_free(q); 168 } 169 170 static void nvme_free_req_queue_cb(void *opaque) 171 { 172 NVMeQueuePair *q = opaque; 173 174 qemu_mutex_lock(&q->lock); 175 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 176 /* Retry all pending requests */ 177 } 178 qemu_mutex_unlock(&q->lock); 179 } 180 181 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, 182 int idx, int size, 183 Error **errp) 184 { 185 int i, r; 186 BDRVNVMeState *s = bs->opaque; 187 Error *local_err = NULL; 188 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); 189 uint64_t prp_list_iova; 190 191 qemu_mutex_init(&q->lock); 192 q->index = idx; 193 qemu_co_queue_init(&q->free_req_queue); 194 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); 195 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, 196 s->page_size * NVME_QUEUE_SIZE, 197 false, &prp_list_iova); 198 if (r) { 199 goto fail; 200 } 201 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 202 NVMeRequest *req = &q->reqs[i]; 203 req->cid = i + 1; 204 req->prp_list_page = q->prp_list_pages + i * s->page_size; 205 req->prp_list_iova = prp_list_iova + i * s->page_size; 206 } 207 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); 208 if (local_err) { 209 error_propagate(errp, local_err); 210 goto fail; 211 } 212 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; 213 214 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); 215 if (local_err) { 216 error_propagate(errp, local_err); 217 goto fail; 218 } 219 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; 220 221 return q; 222 fail: 223 nvme_free_queue_pair(bs, q); 224 return NULL; 225 } 226 227 /* With q->lock */ 228 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) 229 { 230 if (s->plugged || !q->need_kick) { 231 return; 232 } 233 trace_nvme_kick(s, q->index); 234 assert(!(q->sq.tail & 0xFF00)); 235 /* Fence the write to submission queue entry before notifying the device. */ 236 smp_wmb(); 237 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 238 q->inflight += q->need_kick; 239 q->need_kick = 0; 240 } 241 242 /* Find a free request element if any, otherwise: 243 * a) if in coroutine context, try to wait for one to become available; 244 * b) if not in coroutine, return NULL; 245 */ 246 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 247 { 248 int i; 249 NVMeRequest *req = NULL; 250 251 qemu_mutex_lock(&q->lock); 252 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { 253 /* We have to leave one slot empty as that is the full queue case (head 254 * == tail + 1). */ 255 if (qemu_in_coroutine()) { 256 trace_nvme_free_req_queue_wait(q); 257 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 258 } else { 259 qemu_mutex_unlock(&q->lock); 260 return NULL; 261 } 262 } 263 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 264 if (!q->reqs[i].busy) { 265 q->reqs[i].busy = true; 266 req = &q->reqs[i]; 267 break; 268 } 269 } 270 /* We have checked inflight and need_kick while holding q->lock, so one 271 * free req must be available. */ 272 assert(req); 273 qemu_mutex_unlock(&q->lock); 274 return req; 275 } 276 277 static inline int nvme_translate_error(const NvmeCqe *c) 278 { 279 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 280 if (status) { 281 trace_nvme_error(le32_to_cpu(c->result), 282 le16_to_cpu(c->sq_head), 283 le16_to_cpu(c->sq_id), 284 le16_to_cpu(c->cid), 285 le16_to_cpu(status)); 286 } 287 switch (status) { 288 case 0: 289 return 0; 290 case 1: 291 return -ENOSYS; 292 case 2: 293 return -EINVAL; 294 default: 295 return -EIO; 296 } 297 } 298 299 /* With q->lock */ 300 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) 301 { 302 bool progress = false; 303 NVMeRequest *preq; 304 NVMeRequest req; 305 NvmeCqe *c; 306 307 trace_nvme_process_completion(s, q->index, q->inflight); 308 if (q->busy || s->plugged) { 309 trace_nvme_process_completion_queue_busy(s, q->index); 310 return false; 311 } 312 q->busy = true; 313 assert(q->inflight >= 0); 314 while (q->inflight) { 315 int16_t cid; 316 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 317 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 318 break; 319 } 320 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 321 if (!q->cq.head) { 322 q->cq_phase = !q->cq_phase; 323 } 324 cid = le16_to_cpu(c->cid); 325 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 326 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", 327 cid); 328 continue; 329 } 330 assert(cid <= NVME_QUEUE_SIZE); 331 trace_nvme_complete_command(s, q->index, cid); 332 preq = &q->reqs[cid - 1]; 333 req = *preq; 334 assert(req.cid == cid); 335 assert(req.cb); 336 preq->busy = false; 337 preq->cb = preq->opaque = NULL; 338 qemu_mutex_unlock(&q->lock); 339 req.cb(req.opaque, nvme_translate_error(c)); 340 qemu_mutex_lock(&q->lock); 341 c->cid = cpu_to_le16(0); 342 q->inflight--; 343 /* Flip Phase Tag bit. */ 344 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); 345 progress = true; 346 } 347 if (progress) { 348 /* Notify the device so it can post more completions. */ 349 smp_mb_release(); 350 *q->cq.doorbell = cpu_to_le32(q->cq.head); 351 if (!qemu_co_queue_empty(&q->free_req_queue)) { 352 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); 353 } 354 } 355 q->busy = false; 356 return progress; 357 } 358 359 static void nvme_trace_command(const NvmeCmd *cmd) 360 { 361 int i; 362 363 for (i = 0; i < 8; ++i) { 364 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 365 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 366 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 367 } 368 } 369 370 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, 371 NVMeRequest *req, 372 NvmeCmd *cmd, BlockCompletionFunc cb, 373 void *opaque) 374 { 375 assert(!req->cb); 376 req->cb = cb; 377 req->opaque = opaque; 378 cmd->cid = cpu_to_le32(req->cid); 379 380 trace_nvme_submit_command(s, q->index, req->cid); 381 nvme_trace_command(cmd); 382 qemu_mutex_lock(&q->lock); 383 memcpy((uint8_t *)q->sq.queue + 384 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 385 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 386 q->need_kick++; 387 nvme_kick(s, q); 388 nvme_process_completion(s, q); 389 qemu_mutex_unlock(&q->lock); 390 } 391 392 static void nvme_cmd_sync_cb(void *opaque, int ret) 393 { 394 int *pret = opaque; 395 *pret = ret; 396 aio_wait_kick(); 397 } 398 399 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, 400 NvmeCmd *cmd) 401 { 402 NVMeRequest *req; 403 BDRVNVMeState *s = bs->opaque; 404 int ret = -EINPROGRESS; 405 req = nvme_get_free_req(q); 406 if (!req) { 407 return -EBUSY; 408 } 409 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); 410 411 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); 412 return ret; 413 } 414 415 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 416 { 417 BDRVNVMeState *s = bs->opaque; 418 NvmeIdCtrl *idctrl; 419 NvmeIdNs *idns; 420 uint8_t *resp; 421 int r; 422 uint64_t iova; 423 NvmeCmd cmd = { 424 .opcode = NVME_ADM_CMD_IDENTIFY, 425 .cdw10 = cpu_to_le32(0x1), 426 }; 427 428 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); 429 if (!resp) { 430 error_setg(errp, "Cannot allocate buffer for identify response"); 431 goto out; 432 } 433 idctrl = (NvmeIdCtrl *)resp; 434 idns = (NvmeIdNs *)resp; 435 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); 436 if (r) { 437 error_setg(errp, "Cannot map buffer for DMA"); 438 goto out; 439 } 440 cmd.prp1 = cpu_to_le64(iova); 441 442 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 443 error_setg(errp, "Failed to identify controller"); 444 goto out; 445 } 446 447 if (le32_to_cpu(idctrl->nn) < namespace) { 448 error_setg(errp, "Invalid namespace"); 449 goto out; 450 } 451 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; 452 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; 453 /* For now the page list buffer per command is one page, to hold at most 454 * s->page_size / sizeof(uint64_t) entries. */ 455 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 456 s->page_size / sizeof(uint64_t) * s->page_size); 457 458 memset(resp, 0, 4096); 459 460 cmd.cdw10 = 0; 461 cmd.nsid = cpu_to_le32(namespace); 462 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 463 error_setg(errp, "Failed to identify namespace"); 464 goto out; 465 } 466 467 s->nsze = le64_to_cpu(idns->nsze); 468 469 out: 470 qemu_vfio_dma_unmap(s->vfio, resp); 471 qemu_vfree(resp); 472 } 473 474 static bool nvme_poll_queues(BDRVNVMeState *s) 475 { 476 bool progress = false; 477 int i; 478 479 for (i = 0; i < s->nr_queues; i++) { 480 NVMeQueuePair *q = s->queues[i]; 481 qemu_mutex_lock(&q->lock); 482 while (nvme_process_completion(s, q)) { 483 /* Keep polling */ 484 progress = true; 485 } 486 qemu_mutex_unlock(&q->lock); 487 } 488 return progress; 489 } 490 491 static void nvme_handle_event(EventNotifier *n) 492 { 493 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); 494 495 trace_nvme_handle_event(s); 496 event_notifier_test_and_clear(n); 497 nvme_poll_queues(s); 498 } 499 500 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 501 { 502 BDRVNVMeState *s = bs->opaque; 503 int n = s->nr_queues; 504 NVMeQueuePair *q; 505 NvmeCmd cmd; 506 int queue_size = NVME_QUEUE_SIZE; 507 508 q = nvme_create_queue_pair(bs, n, queue_size, errp); 509 if (!q) { 510 return false; 511 } 512 cmd = (NvmeCmd) { 513 .opcode = NVME_ADM_CMD_CREATE_CQ, 514 .prp1 = cpu_to_le64(q->cq.iova), 515 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 516 .cdw11 = cpu_to_le32(0x3), 517 }; 518 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 519 error_setg(errp, "Failed to create io queue [%d]", n); 520 nvme_free_queue_pair(bs, q); 521 return false; 522 } 523 cmd = (NvmeCmd) { 524 .opcode = NVME_ADM_CMD_CREATE_SQ, 525 .prp1 = cpu_to_le64(q->sq.iova), 526 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 527 .cdw11 = cpu_to_le32(0x1 | (n << 16)), 528 }; 529 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 530 error_setg(errp, "Failed to create io queue [%d]", n); 531 nvme_free_queue_pair(bs, q); 532 return false; 533 } 534 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 535 s->queues[n] = q; 536 s->nr_queues++; 537 return true; 538 } 539 540 static bool nvme_poll_cb(void *opaque) 541 { 542 EventNotifier *e = opaque; 543 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); 544 bool progress = false; 545 546 trace_nvme_poll_cb(s); 547 progress = nvme_poll_queues(s); 548 return progress; 549 } 550 551 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 552 Error **errp) 553 { 554 BDRVNVMeState *s = bs->opaque; 555 int ret; 556 uint64_t cap; 557 uint64_t timeout_ms; 558 uint64_t deadline, now; 559 Error *local_err = NULL; 560 561 qemu_co_mutex_init(&s->dma_map_lock); 562 qemu_co_queue_init(&s->dma_flush_queue); 563 s->device = g_strdup(device); 564 s->nsid = namespace; 565 s->aio_context = bdrv_get_aio_context(bs); 566 ret = event_notifier_init(&s->irq_notifier, 0); 567 if (ret) { 568 error_setg(errp, "Failed to init event notifier"); 569 return ret; 570 } 571 572 s->vfio = qemu_vfio_open_pci(device, errp); 573 if (!s->vfio) { 574 ret = -EINVAL; 575 goto out; 576 } 577 578 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); 579 if (!s->regs) { 580 ret = -EINVAL; 581 goto out; 582 } 583 584 /* Perform initialize sequence as described in NVMe spec "7.6.1 585 * Initialization". */ 586 587 cap = le64_to_cpu(s->regs->cap); 588 if (!(cap & (1ULL << 37))) { 589 error_setg(errp, "Device doesn't support NVMe command set"); 590 ret = -EINVAL; 591 goto out; 592 } 593 594 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); 595 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); 596 bs->bl.opt_mem_alignment = s->page_size; 597 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); 598 599 /* Reset device to get a clean state. */ 600 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); 601 /* Wait for CSTS.RDY = 0. */ 602 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; 603 while (le32_to_cpu(s->regs->csts) & 0x1) { 604 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 605 error_setg(errp, "Timeout while waiting for device to reset (%" 606 PRId64 " ms)", 607 timeout_ms); 608 ret = -ETIMEDOUT; 609 goto out; 610 } 611 } 612 613 /* Set up admin queue. */ 614 s->queues = g_new(NVMeQueuePair *, 1); 615 s->nr_queues = 1; 616 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); 617 if (!s->queues[0]) { 618 ret = -EINVAL; 619 goto out; 620 } 621 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); 622 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); 623 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); 624 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); 625 626 /* After setting up all control registers we can enable device now. */ 627 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | 628 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 629 0x1); 630 /* Wait for CSTS.RDY = 1. */ 631 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 632 deadline = now + timeout_ms * 1000000; 633 while (!(le32_to_cpu(s->regs->csts) & 0x1)) { 634 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 635 error_setg(errp, "Timeout while waiting for device to start (%" 636 PRId64 " ms)", 637 timeout_ms); 638 ret = -ETIMEDOUT; 639 goto out; 640 } 641 } 642 643 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, 644 VFIO_PCI_MSIX_IRQ_INDEX, errp); 645 if (ret) { 646 goto out; 647 } 648 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 649 false, nvme_handle_event, nvme_poll_cb); 650 651 nvme_identify(bs, namespace, &local_err); 652 if (local_err) { 653 error_propagate(errp, local_err); 654 ret = -EIO; 655 goto out; 656 } 657 658 /* Set up command queues. */ 659 if (!nvme_add_io_queue(bs, errp)) { 660 ret = -EIO; 661 } 662 out: 663 /* Cleaning up is done in nvme_file_open() upon error. */ 664 return ret; 665 } 666 667 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 668 * 669 * nvme://0000:44:00.0/1 670 * 671 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 672 * is the PCI address, and the last part is the namespace number starting from 673 * 1 according to the NVMe spec. */ 674 static void nvme_parse_filename(const char *filename, QDict *options, 675 Error **errp) 676 { 677 int pref = strlen("nvme://"); 678 679 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 680 const char *tmp = filename + pref; 681 char *device; 682 const char *namespace; 683 unsigned long ns; 684 const char *slash = strchr(tmp, '/'); 685 if (!slash) { 686 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 687 return; 688 } 689 device = g_strndup(tmp, slash - tmp); 690 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 691 g_free(device); 692 namespace = slash + 1; 693 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 694 error_setg(errp, "Invalid namespace '%s', positive number expected", 695 namespace); 696 return; 697 } 698 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 699 *namespace ? namespace : "1"); 700 } 701 } 702 703 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 704 Error **errp) 705 { 706 int ret; 707 BDRVNVMeState *s = bs->opaque; 708 NvmeCmd cmd = { 709 .opcode = NVME_ADM_CMD_SET_FEATURES, 710 .nsid = cpu_to_le32(s->nsid), 711 .cdw10 = cpu_to_le32(0x06), 712 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 713 }; 714 715 ret = nvme_cmd_sync(bs, s->queues[0], &cmd); 716 if (ret) { 717 error_setg(errp, "Failed to configure NVMe write cache"); 718 } 719 return ret; 720 } 721 722 static void nvme_close(BlockDriverState *bs) 723 { 724 int i; 725 BDRVNVMeState *s = bs->opaque; 726 727 for (i = 0; i < s->nr_queues; ++i) { 728 nvme_free_queue_pair(bs, s->queues[i]); 729 } 730 g_free(s->queues); 731 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 732 false, NULL, NULL); 733 event_notifier_cleanup(&s->irq_notifier); 734 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); 735 qemu_vfio_close(s->vfio); 736 737 g_free(s->device); 738 } 739 740 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 741 Error **errp) 742 { 743 const char *device; 744 QemuOpts *opts; 745 int namespace; 746 int ret; 747 BDRVNVMeState *s = bs->opaque; 748 749 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 750 qemu_opts_absorb_qdict(opts, options, &error_abort); 751 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 752 if (!device) { 753 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 754 qemu_opts_del(opts); 755 return -EINVAL; 756 } 757 758 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 759 ret = nvme_init(bs, device, namespace, errp); 760 qemu_opts_del(opts); 761 if (ret) { 762 goto fail; 763 } 764 if (flags & BDRV_O_NOCACHE) { 765 if (!s->write_cache_supported) { 766 error_setg(errp, 767 "NVMe controller doesn't support write cache configuration"); 768 ret = -EINVAL; 769 } else { 770 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 771 errp); 772 } 773 if (ret) { 774 goto fail; 775 } 776 } 777 bs->supported_write_flags = BDRV_REQ_FUA; 778 return 0; 779 fail: 780 nvme_close(bs); 781 return ret; 782 } 783 784 static int64_t nvme_getlength(BlockDriverState *bs) 785 { 786 BDRVNVMeState *s = bs->opaque; 787 788 return s->nsze << BDRV_SECTOR_BITS; 789 } 790 791 /* Called with s->dma_map_lock */ 792 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 793 QEMUIOVector *qiov) 794 { 795 int r = 0; 796 BDRVNVMeState *s = bs->opaque; 797 798 s->dma_map_count -= qiov->size; 799 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 800 r = qemu_vfio_dma_reset_temporary(s->vfio); 801 if (!r) { 802 qemu_co_queue_restart_all(&s->dma_flush_queue); 803 } 804 } 805 return r; 806 } 807 808 /* Called with s->dma_map_lock */ 809 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 810 NVMeRequest *req, QEMUIOVector *qiov) 811 { 812 BDRVNVMeState *s = bs->opaque; 813 uint64_t *pagelist = req->prp_list_page; 814 int i, j, r; 815 int entries = 0; 816 817 assert(qiov->size); 818 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 819 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 820 for (i = 0; i < qiov->niov; ++i) { 821 bool retry = true; 822 uint64_t iova; 823 try_map: 824 r = qemu_vfio_dma_map(s->vfio, 825 qiov->iov[i].iov_base, 826 qiov->iov[i].iov_len, 827 true, &iova); 828 if (r == -ENOMEM && retry) { 829 retry = false; 830 trace_nvme_dma_flush_queue_wait(s); 831 if (s->dma_map_count) { 832 trace_nvme_dma_map_flush(s); 833 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 834 } else { 835 r = qemu_vfio_dma_reset_temporary(s->vfio); 836 if (r) { 837 goto fail; 838 } 839 } 840 goto try_map; 841 } 842 if (r) { 843 goto fail; 844 } 845 846 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 847 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 848 } 849 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 850 qiov->iov[i].iov_len / s->page_size); 851 } 852 853 s->dma_map_count += qiov->size; 854 855 assert(entries <= s->page_size / sizeof(uint64_t)); 856 switch (entries) { 857 case 0: 858 abort(); 859 case 1: 860 cmd->prp1 = pagelist[0]; 861 cmd->prp2 = 0; 862 break; 863 case 2: 864 cmd->prp1 = pagelist[0]; 865 cmd->prp2 = pagelist[1]; 866 break; 867 default: 868 cmd->prp1 = pagelist[0]; 869 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 870 break; 871 } 872 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 873 for (i = 0; i < entries; ++i) { 874 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 875 } 876 return 0; 877 fail: 878 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 879 * increment s->dma_map_count. This is okay for fixed mapping memory areas 880 * because they are already mapped before calling this function; for 881 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 882 * calling qemu_vfio_dma_reset_temporary when necessary. */ 883 return r; 884 } 885 886 typedef struct { 887 Coroutine *co; 888 int ret; 889 AioContext *ctx; 890 } NVMeCoData; 891 892 static void nvme_rw_cb_bh(void *opaque) 893 { 894 NVMeCoData *data = opaque; 895 qemu_coroutine_enter(data->co); 896 } 897 898 static void nvme_rw_cb(void *opaque, int ret) 899 { 900 NVMeCoData *data = opaque; 901 data->ret = ret; 902 if (!data->co) { 903 /* The rw coroutine hasn't yielded, don't try to enter. */ 904 return; 905 } 906 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); 907 } 908 909 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 910 uint64_t offset, uint64_t bytes, 911 QEMUIOVector *qiov, 912 bool is_write, 913 int flags) 914 { 915 int r; 916 BDRVNVMeState *s = bs->opaque; 917 NVMeQueuePair *ioq = s->queues[1]; 918 NVMeRequest *req; 919 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | 920 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 921 NvmeCmd cmd = { 922 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 923 .nsid = cpu_to_le32(s->nsid), 924 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), 925 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), 926 .cdw12 = cpu_to_le32(cdw12), 927 }; 928 NVMeCoData data = { 929 .ctx = bdrv_get_aio_context(bs), 930 .ret = -EINPROGRESS, 931 }; 932 933 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 934 assert(s->nr_queues > 1); 935 req = nvme_get_free_req(ioq); 936 assert(req); 937 938 qemu_co_mutex_lock(&s->dma_map_lock); 939 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 940 qemu_co_mutex_unlock(&s->dma_map_lock); 941 if (r) { 942 req->busy = false; 943 return r; 944 } 945 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 946 947 data.co = qemu_coroutine_self(); 948 while (data.ret == -EINPROGRESS) { 949 qemu_coroutine_yield(); 950 } 951 952 qemu_co_mutex_lock(&s->dma_map_lock); 953 r = nvme_cmd_unmap_qiov(bs, qiov); 954 qemu_co_mutex_unlock(&s->dma_map_lock); 955 if (r) { 956 return r; 957 } 958 959 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 960 return data.ret; 961 } 962 963 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 964 const QEMUIOVector *qiov) 965 { 966 int i; 967 BDRVNVMeState *s = bs->opaque; 968 969 for (i = 0; i < qiov->niov; ++i) { 970 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || 971 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { 972 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 973 qiov->iov[i].iov_len, s->page_size); 974 return false; 975 } 976 } 977 return true; 978 } 979 980 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 981 QEMUIOVector *qiov, bool is_write, int flags) 982 { 983 BDRVNVMeState *s = bs->opaque; 984 int r; 985 uint8_t *buf = NULL; 986 QEMUIOVector local_qiov; 987 988 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 989 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 990 assert(bytes <= s->max_transfer); 991 if (nvme_qiov_aligned(bs, qiov)) { 992 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 993 } 994 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 995 buf = qemu_try_blockalign(bs, bytes); 996 997 if (!buf) { 998 return -ENOMEM; 999 } 1000 qemu_iovec_init(&local_qiov, 1); 1001 if (is_write) { 1002 qemu_iovec_to_buf(qiov, 0, buf, bytes); 1003 } 1004 qemu_iovec_add(&local_qiov, buf, bytes); 1005 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1006 qemu_iovec_destroy(&local_qiov); 1007 if (!r && !is_write) { 1008 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1009 } 1010 qemu_vfree(buf); 1011 return r; 1012 } 1013 1014 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1015 uint64_t offset, uint64_t bytes, 1016 QEMUIOVector *qiov, int flags) 1017 { 1018 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1019 } 1020 1021 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1022 uint64_t offset, uint64_t bytes, 1023 QEMUIOVector *qiov, int flags) 1024 { 1025 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1026 } 1027 1028 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1029 { 1030 BDRVNVMeState *s = bs->opaque; 1031 NVMeQueuePair *ioq = s->queues[1]; 1032 NVMeRequest *req; 1033 NvmeCmd cmd = { 1034 .opcode = NVME_CMD_FLUSH, 1035 .nsid = cpu_to_le32(s->nsid), 1036 }; 1037 NVMeCoData data = { 1038 .ctx = bdrv_get_aio_context(bs), 1039 .ret = -EINPROGRESS, 1040 }; 1041 1042 assert(s->nr_queues > 1); 1043 req = nvme_get_free_req(ioq); 1044 assert(req); 1045 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1046 1047 data.co = qemu_coroutine_self(); 1048 if (data.ret == -EINPROGRESS) { 1049 qemu_coroutine_yield(); 1050 } 1051 1052 return data.ret; 1053 } 1054 1055 1056 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1057 BlockReopenQueue *queue, Error **errp) 1058 { 1059 return 0; 1060 } 1061 1062 static void nvme_refresh_filename(BlockDriverState *bs) 1063 { 1064 BDRVNVMeState *s = bs->opaque; 1065 1066 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", 1067 s->device, s->nsid); 1068 } 1069 1070 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1071 { 1072 BDRVNVMeState *s = bs->opaque; 1073 1074 bs->bl.opt_mem_alignment = s->page_size; 1075 bs->bl.request_alignment = s->page_size; 1076 bs->bl.max_transfer = s->max_transfer; 1077 } 1078 1079 static void nvme_detach_aio_context(BlockDriverState *bs) 1080 { 1081 BDRVNVMeState *s = bs->opaque; 1082 1083 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 1084 false, NULL, NULL); 1085 } 1086 1087 static void nvme_attach_aio_context(BlockDriverState *bs, 1088 AioContext *new_context) 1089 { 1090 BDRVNVMeState *s = bs->opaque; 1091 1092 s->aio_context = new_context; 1093 aio_set_event_notifier(new_context, &s->irq_notifier, 1094 false, nvme_handle_event, nvme_poll_cb); 1095 } 1096 1097 static void nvme_aio_plug(BlockDriverState *bs) 1098 { 1099 BDRVNVMeState *s = bs->opaque; 1100 assert(!s->plugged); 1101 s->plugged = true; 1102 } 1103 1104 static void nvme_aio_unplug(BlockDriverState *bs) 1105 { 1106 int i; 1107 BDRVNVMeState *s = bs->opaque; 1108 assert(s->plugged); 1109 s->plugged = false; 1110 for (i = 1; i < s->nr_queues; i++) { 1111 NVMeQueuePair *q = s->queues[i]; 1112 qemu_mutex_lock(&q->lock); 1113 nvme_kick(s, q); 1114 nvme_process_completion(s, q); 1115 qemu_mutex_unlock(&q->lock); 1116 } 1117 } 1118 1119 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1120 { 1121 int ret; 1122 BDRVNVMeState *s = bs->opaque; 1123 1124 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1125 if (ret) { 1126 /* FIXME: we may run out of IOVA addresses after repeated 1127 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1128 * doesn't reclaim addresses for fixed mappings. */ 1129 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1130 } 1131 } 1132 1133 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1134 { 1135 BDRVNVMeState *s = bs->opaque; 1136 1137 qemu_vfio_dma_unmap(s->vfio, host); 1138 } 1139 1140 static const char *const nvme_strong_runtime_opts[] = { 1141 NVME_BLOCK_OPT_DEVICE, 1142 NVME_BLOCK_OPT_NAMESPACE, 1143 1144 NULL 1145 }; 1146 1147 static BlockDriver bdrv_nvme = { 1148 .format_name = "nvme", 1149 .protocol_name = "nvme", 1150 .instance_size = sizeof(BDRVNVMeState), 1151 1152 .bdrv_parse_filename = nvme_parse_filename, 1153 .bdrv_file_open = nvme_file_open, 1154 .bdrv_close = nvme_close, 1155 .bdrv_getlength = nvme_getlength, 1156 1157 .bdrv_co_preadv = nvme_co_preadv, 1158 .bdrv_co_pwritev = nvme_co_pwritev, 1159 .bdrv_co_flush_to_disk = nvme_co_flush, 1160 .bdrv_reopen_prepare = nvme_reopen_prepare, 1161 1162 .bdrv_refresh_filename = nvme_refresh_filename, 1163 .bdrv_refresh_limits = nvme_refresh_limits, 1164 .strong_runtime_opts = nvme_strong_runtime_opts, 1165 1166 .bdrv_detach_aio_context = nvme_detach_aio_context, 1167 .bdrv_attach_aio_context = nvme_attach_aio_context, 1168 1169 .bdrv_io_plug = nvme_aio_plug, 1170 .bdrv_io_unplug = nvme_aio_unplug, 1171 1172 .bdrv_register_buf = nvme_register_buf, 1173 .bdrv_unregister_buf = nvme_unregister_buf, 1174 }; 1175 1176 static void bdrv_nvme_init(void) 1177 { 1178 bdrv_register(&bdrv_nvme); 1179 } 1180 1181 block_init(bdrv_nvme_init); 1182