1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/cutils.h" 21 #include "qemu/option.h" 22 #include "qemu/vfio-helpers.h" 23 #include "block/block_int.h" 24 #include "trace.h" 25 26 #include "block/nvme.h" 27 28 #define NVME_SQ_ENTRY_BYTES 64 29 #define NVME_CQ_ENTRY_BYTES 16 30 #define NVME_QUEUE_SIZE 128 31 #define NVME_BAR_SIZE 8192 32 33 typedef struct { 34 int32_t head, tail; 35 uint8_t *queue; 36 uint64_t iova; 37 /* Hardware MMIO register */ 38 volatile uint32_t *doorbell; 39 } NVMeQueue; 40 41 typedef struct { 42 BlockCompletionFunc *cb; 43 void *opaque; 44 int cid; 45 void *prp_list_page; 46 uint64_t prp_list_iova; 47 bool busy; 48 } NVMeRequest; 49 50 typedef struct { 51 CoQueue free_req_queue; 52 QemuMutex lock; 53 54 /* Fields protected by BQL */ 55 int index; 56 uint8_t *prp_list_pages; 57 58 /* Fields protected by @lock */ 59 NVMeQueue sq, cq; 60 int cq_phase; 61 NVMeRequest reqs[NVME_QUEUE_SIZE]; 62 bool busy; 63 int need_kick; 64 int inflight; 65 } NVMeQueuePair; 66 67 /* Memory mapped registers */ 68 typedef volatile struct { 69 uint64_t cap; 70 uint32_t vs; 71 uint32_t intms; 72 uint32_t intmc; 73 uint32_t cc; 74 uint32_t reserved0; 75 uint32_t csts; 76 uint32_t nssr; 77 uint32_t aqa; 78 uint64_t asq; 79 uint64_t acq; 80 uint32_t cmbloc; 81 uint32_t cmbsz; 82 uint8_t reserved1[0xec0]; 83 uint8_t cmd_set_specfic[0x100]; 84 uint32_t doorbells[]; 85 } QEMU_PACKED NVMeRegs; 86 87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); 88 89 typedef struct { 90 AioContext *aio_context; 91 QEMUVFIOState *vfio; 92 NVMeRegs *regs; 93 /* The submission/completion queue pairs. 94 * [0]: admin queue. 95 * [1..]: io queues. 96 */ 97 NVMeQueuePair **queues; 98 int nr_queues; 99 size_t page_size; 100 /* How many uint32_t elements does each doorbell entry take. */ 101 size_t doorbell_scale; 102 bool write_cache_supported; 103 EventNotifier irq_notifier; 104 uint64_t nsze; /* Namespace size reported by identify command */ 105 int nsid; /* The namespace id to read/write data. */ 106 uint64_t max_transfer; 107 bool plugged; 108 109 CoMutex dma_map_lock; 110 CoQueue dma_flush_queue; 111 112 /* Total size of mapped qiov, accessed under dma_map_lock */ 113 int dma_map_count; 114 } BDRVNVMeState; 115 116 #define NVME_BLOCK_OPT_DEVICE "device" 117 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 118 119 static QemuOptsList runtime_opts = { 120 .name = "nvme", 121 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 122 .desc = { 123 { 124 .name = NVME_BLOCK_OPT_DEVICE, 125 .type = QEMU_OPT_STRING, 126 .help = "NVMe PCI device address", 127 }, 128 { 129 .name = NVME_BLOCK_OPT_NAMESPACE, 130 .type = QEMU_OPT_NUMBER, 131 .help = "NVMe namespace", 132 }, 133 { /* end of list */ } 134 }, 135 }; 136 137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, 138 int nentries, int entry_bytes, Error **errp) 139 { 140 BDRVNVMeState *s = bs->opaque; 141 size_t bytes; 142 int r; 143 144 bytes = ROUND_UP(nentries * entry_bytes, s->page_size); 145 q->head = q->tail = 0; 146 q->queue = qemu_try_blockalign0(bs, bytes); 147 148 if (!q->queue) { 149 error_setg(errp, "Cannot allocate queue"); 150 return; 151 } 152 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 153 if (r) { 154 error_setg(errp, "Cannot map queue"); 155 } 156 } 157 158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) 159 { 160 qemu_vfree(q->prp_list_pages); 161 qemu_vfree(q->sq.queue); 162 qemu_vfree(q->cq.queue); 163 qemu_mutex_destroy(&q->lock); 164 g_free(q); 165 } 166 167 static void nvme_free_req_queue_cb(void *opaque) 168 { 169 NVMeQueuePair *q = opaque; 170 171 qemu_mutex_lock(&q->lock); 172 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 173 /* Retry all pending requests */ 174 } 175 qemu_mutex_unlock(&q->lock); 176 } 177 178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, 179 int idx, int size, 180 Error **errp) 181 { 182 int i, r; 183 BDRVNVMeState *s = bs->opaque; 184 Error *local_err = NULL; 185 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); 186 uint64_t prp_list_iova; 187 188 qemu_mutex_init(&q->lock); 189 q->index = idx; 190 qemu_co_queue_init(&q->free_req_queue); 191 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); 192 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, 193 s->page_size * NVME_QUEUE_SIZE, 194 false, &prp_list_iova); 195 if (r) { 196 goto fail; 197 } 198 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 199 NVMeRequest *req = &q->reqs[i]; 200 req->cid = i + 1; 201 req->prp_list_page = q->prp_list_pages + i * s->page_size; 202 req->prp_list_iova = prp_list_iova + i * s->page_size; 203 } 204 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); 205 if (local_err) { 206 error_propagate(errp, local_err); 207 goto fail; 208 } 209 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; 210 211 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); 212 if (local_err) { 213 error_propagate(errp, local_err); 214 goto fail; 215 } 216 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; 217 218 return q; 219 fail: 220 nvme_free_queue_pair(bs, q); 221 return NULL; 222 } 223 224 /* With q->lock */ 225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) 226 { 227 if (s->plugged || !q->need_kick) { 228 return; 229 } 230 trace_nvme_kick(s, q->index); 231 assert(!(q->sq.tail & 0xFF00)); 232 /* Fence the write to submission queue entry before notifying the device. */ 233 smp_wmb(); 234 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 235 q->inflight += q->need_kick; 236 q->need_kick = 0; 237 } 238 239 /* Find a free request element if any, otherwise: 240 * a) if in coroutine context, try to wait for one to become available; 241 * b) if not in coroutine, return NULL; 242 */ 243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 244 { 245 int i; 246 NVMeRequest *req = NULL; 247 248 qemu_mutex_lock(&q->lock); 249 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { 250 /* We have to leave one slot empty as that is the full queue case (head 251 * == tail + 1). */ 252 if (qemu_in_coroutine()) { 253 trace_nvme_free_req_queue_wait(q); 254 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 255 } else { 256 qemu_mutex_unlock(&q->lock); 257 return NULL; 258 } 259 } 260 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 261 if (!q->reqs[i].busy) { 262 q->reqs[i].busy = true; 263 req = &q->reqs[i]; 264 break; 265 } 266 } 267 /* We have checked inflight and need_kick while holding q->lock, so one 268 * free req must be available. */ 269 assert(req); 270 qemu_mutex_unlock(&q->lock); 271 return req; 272 } 273 274 static inline int nvme_translate_error(const NvmeCqe *c) 275 { 276 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 277 if (status) { 278 trace_nvme_error(le32_to_cpu(c->result), 279 le16_to_cpu(c->sq_head), 280 le16_to_cpu(c->sq_id), 281 le16_to_cpu(c->cid), 282 le16_to_cpu(status)); 283 } 284 switch (status) { 285 case 0: 286 return 0; 287 case 1: 288 return -ENOSYS; 289 case 2: 290 return -EINVAL; 291 default: 292 return -EIO; 293 } 294 } 295 296 /* With q->lock */ 297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) 298 { 299 bool progress = false; 300 NVMeRequest *preq; 301 NVMeRequest req; 302 NvmeCqe *c; 303 304 trace_nvme_process_completion(s, q->index, q->inflight); 305 if (q->busy || s->plugged) { 306 trace_nvme_process_completion_queue_busy(s, q->index); 307 return false; 308 } 309 q->busy = true; 310 assert(q->inflight >= 0); 311 while (q->inflight) { 312 int16_t cid; 313 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 314 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 315 break; 316 } 317 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 318 if (!q->cq.head) { 319 q->cq_phase = !q->cq_phase; 320 } 321 cid = le16_to_cpu(c->cid); 322 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 323 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", 324 cid); 325 continue; 326 } 327 assert(cid <= NVME_QUEUE_SIZE); 328 trace_nvme_complete_command(s, q->index, cid); 329 preq = &q->reqs[cid - 1]; 330 req = *preq; 331 assert(req.cid == cid); 332 assert(req.cb); 333 preq->busy = false; 334 preq->cb = preq->opaque = NULL; 335 qemu_mutex_unlock(&q->lock); 336 req.cb(req.opaque, nvme_translate_error(c)); 337 qemu_mutex_lock(&q->lock); 338 c->cid = cpu_to_le16(0); 339 q->inflight--; 340 /* Flip Phase Tag bit. */ 341 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); 342 progress = true; 343 } 344 if (progress) { 345 /* Notify the device so it can post more completions. */ 346 smp_mb_release(); 347 *q->cq.doorbell = cpu_to_le32(q->cq.head); 348 if (!qemu_co_queue_empty(&q->free_req_queue)) { 349 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); 350 } 351 } 352 q->busy = false; 353 return progress; 354 } 355 356 static void nvme_trace_command(const NvmeCmd *cmd) 357 { 358 int i; 359 360 for (i = 0; i < 8; ++i) { 361 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 362 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 363 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 364 } 365 } 366 367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, 368 NVMeRequest *req, 369 NvmeCmd *cmd, BlockCompletionFunc cb, 370 void *opaque) 371 { 372 assert(!req->cb); 373 req->cb = cb; 374 req->opaque = opaque; 375 cmd->cid = cpu_to_le32(req->cid); 376 377 trace_nvme_submit_command(s, q->index, req->cid); 378 nvme_trace_command(cmd); 379 qemu_mutex_lock(&q->lock); 380 memcpy((uint8_t *)q->sq.queue + 381 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 382 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 383 q->need_kick++; 384 nvme_kick(s, q); 385 nvme_process_completion(s, q); 386 qemu_mutex_unlock(&q->lock); 387 } 388 389 static void nvme_cmd_sync_cb(void *opaque, int ret) 390 { 391 int *pret = opaque; 392 *pret = ret; 393 } 394 395 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, 396 NvmeCmd *cmd) 397 { 398 NVMeRequest *req; 399 BDRVNVMeState *s = bs->opaque; 400 int ret = -EINPROGRESS; 401 req = nvme_get_free_req(q); 402 if (!req) { 403 return -EBUSY; 404 } 405 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); 406 407 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); 408 return ret; 409 } 410 411 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 412 { 413 BDRVNVMeState *s = bs->opaque; 414 NvmeIdCtrl *idctrl; 415 NvmeIdNs *idns; 416 uint8_t *resp; 417 int r; 418 uint64_t iova; 419 NvmeCmd cmd = { 420 .opcode = NVME_ADM_CMD_IDENTIFY, 421 .cdw10 = cpu_to_le32(0x1), 422 }; 423 424 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); 425 if (!resp) { 426 error_setg(errp, "Cannot allocate buffer for identify response"); 427 goto out; 428 } 429 idctrl = (NvmeIdCtrl *)resp; 430 idns = (NvmeIdNs *)resp; 431 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); 432 if (r) { 433 error_setg(errp, "Cannot map buffer for DMA"); 434 goto out; 435 } 436 cmd.prp1 = cpu_to_le64(iova); 437 438 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 439 error_setg(errp, "Failed to identify controller"); 440 goto out; 441 } 442 443 if (le32_to_cpu(idctrl->nn) < namespace) { 444 error_setg(errp, "Invalid namespace"); 445 goto out; 446 } 447 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; 448 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; 449 /* For now the page list buffer per command is one page, to hold at most 450 * s->page_size / sizeof(uint64_t) entries. */ 451 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 452 s->page_size / sizeof(uint64_t) * s->page_size); 453 454 memset(resp, 0, 4096); 455 456 cmd.cdw10 = 0; 457 cmd.nsid = cpu_to_le32(namespace); 458 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 459 error_setg(errp, "Failed to identify namespace"); 460 goto out; 461 } 462 463 s->nsze = le64_to_cpu(idns->nsze); 464 465 out: 466 qemu_vfio_dma_unmap(s->vfio, resp); 467 qemu_vfree(resp); 468 } 469 470 static bool nvme_poll_queues(BDRVNVMeState *s) 471 { 472 bool progress = false; 473 int i; 474 475 for (i = 0; i < s->nr_queues; i++) { 476 NVMeQueuePair *q = s->queues[i]; 477 qemu_mutex_lock(&q->lock); 478 while (nvme_process_completion(s, q)) { 479 /* Keep polling */ 480 progress = true; 481 } 482 qemu_mutex_unlock(&q->lock); 483 } 484 return progress; 485 } 486 487 static void nvme_handle_event(EventNotifier *n) 488 { 489 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); 490 491 trace_nvme_handle_event(s); 492 aio_context_acquire(s->aio_context); 493 event_notifier_test_and_clear(n); 494 nvme_poll_queues(s); 495 aio_context_release(s->aio_context); 496 } 497 498 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 499 { 500 BDRVNVMeState *s = bs->opaque; 501 int n = s->nr_queues; 502 NVMeQueuePair *q; 503 NvmeCmd cmd; 504 int queue_size = NVME_QUEUE_SIZE; 505 506 q = nvme_create_queue_pair(bs, n, queue_size, errp); 507 if (!q) { 508 return false; 509 } 510 cmd = (NvmeCmd) { 511 .opcode = NVME_ADM_CMD_CREATE_CQ, 512 .prp1 = cpu_to_le64(q->cq.iova), 513 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 514 .cdw11 = cpu_to_le32(0x3), 515 }; 516 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 517 error_setg(errp, "Failed to create io queue [%d]", n); 518 nvme_free_queue_pair(bs, q); 519 return false; 520 } 521 cmd = (NvmeCmd) { 522 .opcode = NVME_ADM_CMD_CREATE_SQ, 523 .prp1 = cpu_to_le64(q->sq.iova), 524 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 525 .cdw11 = cpu_to_le32(0x1 | (n << 16)), 526 }; 527 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 528 error_setg(errp, "Failed to create io queue [%d]", n); 529 nvme_free_queue_pair(bs, q); 530 return false; 531 } 532 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 533 s->queues[n] = q; 534 s->nr_queues++; 535 return true; 536 } 537 538 static bool nvme_poll_cb(void *opaque) 539 { 540 EventNotifier *e = opaque; 541 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); 542 bool progress = false; 543 544 trace_nvme_poll_cb(s); 545 progress = nvme_poll_queues(s); 546 return progress; 547 } 548 549 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 550 Error **errp) 551 { 552 BDRVNVMeState *s = bs->opaque; 553 int ret; 554 uint64_t cap; 555 uint64_t timeout_ms; 556 uint64_t deadline, now; 557 Error *local_err = NULL; 558 559 qemu_co_mutex_init(&s->dma_map_lock); 560 qemu_co_queue_init(&s->dma_flush_queue); 561 s->nsid = namespace; 562 s->aio_context = bdrv_get_aio_context(bs); 563 ret = event_notifier_init(&s->irq_notifier, 0); 564 if (ret) { 565 error_setg(errp, "Failed to init event notifier"); 566 return ret; 567 } 568 569 s->vfio = qemu_vfio_open_pci(device, errp); 570 if (!s->vfio) { 571 ret = -EINVAL; 572 goto out; 573 } 574 575 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); 576 if (!s->regs) { 577 ret = -EINVAL; 578 goto out; 579 } 580 581 /* Perform initialize sequence as described in NVMe spec "7.6.1 582 * Initialization". */ 583 584 cap = le64_to_cpu(s->regs->cap); 585 if (!(cap & (1ULL << 37))) { 586 error_setg(errp, "Device doesn't support NVMe command set"); 587 ret = -EINVAL; 588 goto out; 589 } 590 591 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); 592 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); 593 bs->bl.opt_mem_alignment = s->page_size; 594 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); 595 596 /* Reset device to get a clean state. */ 597 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); 598 /* Wait for CSTS.RDY = 0. */ 599 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; 600 while (le32_to_cpu(s->regs->csts) & 0x1) { 601 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 602 error_setg(errp, "Timeout while waiting for device to reset (%" 603 PRId64 " ms)", 604 timeout_ms); 605 ret = -ETIMEDOUT; 606 goto out; 607 } 608 } 609 610 /* Set up admin queue. */ 611 s->queues = g_new(NVMeQueuePair *, 1); 612 s->nr_queues = 1; 613 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); 614 if (!s->queues[0]) { 615 ret = -EINVAL; 616 goto out; 617 } 618 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); 619 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); 620 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); 621 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); 622 623 /* After setting up all control registers we can enable device now. */ 624 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | 625 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 626 0x1); 627 /* Wait for CSTS.RDY = 1. */ 628 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 629 deadline = now + timeout_ms * 1000000; 630 while (!(le32_to_cpu(s->regs->csts) & 0x1)) { 631 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 632 error_setg(errp, "Timeout while waiting for device to start (%" 633 PRId64 " ms)", 634 timeout_ms); 635 ret = -ETIMEDOUT; 636 goto out; 637 } 638 } 639 640 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, 641 VFIO_PCI_MSIX_IRQ_INDEX, errp); 642 if (ret) { 643 goto out; 644 } 645 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 646 false, nvme_handle_event, nvme_poll_cb); 647 648 nvme_identify(bs, namespace, &local_err); 649 if (local_err) { 650 error_propagate(errp, local_err); 651 ret = -EIO; 652 goto out; 653 } 654 655 /* Set up command queues. */ 656 if (!nvme_add_io_queue(bs, errp)) { 657 ret = -EIO; 658 } 659 out: 660 /* Cleaning up is done in nvme_file_open() upon error. */ 661 return ret; 662 } 663 664 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 665 * 666 * nvme://0000:44:00.0/1 667 * 668 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 669 * is the PCI address, and the last part is the namespace number starting from 670 * 1 according to the NVMe spec. */ 671 static void nvme_parse_filename(const char *filename, QDict *options, 672 Error **errp) 673 { 674 int pref = strlen("nvme://"); 675 676 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 677 const char *tmp = filename + pref; 678 char *device; 679 const char *namespace; 680 unsigned long ns; 681 const char *slash = strchr(tmp, '/'); 682 if (!slash) { 683 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 684 return; 685 } 686 device = g_strndup(tmp, slash - tmp); 687 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 688 g_free(device); 689 namespace = slash + 1; 690 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 691 error_setg(errp, "Invalid namespace '%s', positive number expected", 692 namespace); 693 return; 694 } 695 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 696 *namespace ? namespace : "1"); 697 } 698 } 699 700 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 701 Error **errp) 702 { 703 int ret; 704 BDRVNVMeState *s = bs->opaque; 705 NvmeCmd cmd = { 706 .opcode = NVME_ADM_CMD_SET_FEATURES, 707 .nsid = cpu_to_le32(s->nsid), 708 .cdw10 = cpu_to_le32(0x06), 709 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 710 }; 711 712 ret = nvme_cmd_sync(bs, s->queues[0], &cmd); 713 if (ret) { 714 error_setg(errp, "Failed to configure NVMe write cache"); 715 } 716 return ret; 717 } 718 719 static void nvme_close(BlockDriverState *bs) 720 { 721 int i; 722 BDRVNVMeState *s = bs->opaque; 723 724 for (i = 0; i < s->nr_queues; ++i) { 725 nvme_free_queue_pair(bs, s->queues[i]); 726 } 727 g_free(s->queues); 728 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 729 false, NULL, NULL); 730 event_notifier_cleanup(&s->irq_notifier); 731 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); 732 qemu_vfio_close(s->vfio); 733 } 734 735 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 736 Error **errp) 737 { 738 const char *device; 739 QemuOpts *opts; 740 int namespace; 741 int ret; 742 BDRVNVMeState *s = bs->opaque; 743 744 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 745 qemu_opts_absorb_qdict(opts, options, &error_abort); 746 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 747 if (!device) { 748 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 749 qemu_opts_del(opts); 750 return -EINVAL; 751 } 752 753 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 754 ret = nvme_init(bs, device, namespace, errp); 755 qemu_opts_del(opts); 756 if (ret) { 757 goto fail; 758 } 759 if (flags & BDRV_O_NOCACHE) { 760 if (!s->write_cache_supported) { 761 error_setg(errp, 762 "NVMe controller doesn't support write cache configuration"); 763 ret = -EINVAL; 764 } else { 765 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 766 errp); 767 } 768 if (ret) { 769 goto fail; 770 } 771 } 772 bs->supported_write_flags = BDRV_REQ_FUA; 773 return 0; 774 fail: 775 nvme_close(bs); 776 return ret; 777 } 778 779 static int64_t nvme_getlength(BlockDriverState *bs) 780 { 781 BDRVNVMeState *s = bs->opaque; 782 783 return s->nsze << BDRV_SECTOR_BITS; 784 } 785 786 /* Called with s->dma_map_lock */ 787 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 788 QEMUIOVector *qiov) 789 { 790 int r = 0; 791 BDRVNVMeState *s = bs->opaque; 792 793 s->dma_map_count -= qiov->size; 794 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 795 r = qemu_vfio_dma_reset_temporary(s->vfio); 796 if (!r) { 797 qemu_co_queue_restart_all(&s->dma_flush_queue); 798 } 799 } 800 return r; 801 } 802 803 /* Called with s->dma_map_lock */ 804 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 805 NVMeRequest *req, QEMUIOVector *qiov) 806 { 807 BDRVNVMeState *s = bs->opaque; 808 uint64_t *pagelist = req->prp_list_page; 809 int i, j, r; 810 int entries = 0; 811 812 assert(qiov->size); 813 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 814 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 815 for (i = 0; i < qiov->niov; ++i) { 816 bool retry = true; 817 uint64_t iova; 818 try_map: 819 r = qemu_vfio_dma_map(s->vfio, 820 qiov->iov[i].iov_base, 821 qiov->iov[i].iov_len, 822 true, &iova); 823 if (r == -ENOMEM && retry) { 824 retry = false; 825 trace_nvme_dma_flush_queue_wait(s); 826 if (s->dma_map_count) { 827 trace_nvme_dma_map_flush(s); 828 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 829 } else { 830 r = qemu_vfio_dma_reset_temporary(s->vfio); 831 if (r) { 832 goto fail; 833 } 834 } 835 goto try_map; 836 } 837 if (r) { 838 goto fail; 839 } 840 841 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 842 pagelist[entries++] = iova + j * s->page_size; 843 } 844 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 845 qiov->iov[i].iov_len / s->page_size); 846 } 847 848 s->dma_map_count += qiov->size; 849 850 assert(entries <= s->page_size / sizeof(uint64_t)); 851 switch (entries) { 852 case 0: 853 abort(); 854 case 1: 855 cmd->prp1 = cpu_to_le64(pagelist[0]); 856 cmd->prp2 = 0; 857 break; 858 case 2: 859 cmd->prp1 = cpu_to_le64(pagelist[0]); 860 cmd->prp2 = cpu_to_le64(pagelist[1]);; 861 break; 862 default: 863 cmd->prp1 = cpu_to_le64(pagelist[0]); 864 cmd->prp2 = cpu_to_le64(req->prp_list_iova); 865 for (i = 0; i < entries - 1; ++i) { 866 pagelist[i] = cpu_to_le64(pagelist[i + 1]); 867 } 868 pagelist[entries - 1] = 0; 869 break; 870 } 871 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 872 for (i = 0; i < entries; ++i) { 873 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 874 } 875 return 0; 876 fail: 877 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 878 * increment s->dma_map_count. This is okay for fixed mapping memory areas 879 * because they are already mapped before calling this function; for 880 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 881 * calling qemu_vfio_dma_reset_temporary when necessary. */ 882 return r; 883 } 884 885 typedef struct { 886 Coroutine *co; 887 int ret; 888 AioContext *ctx; 889 } NVMeCoData; 890 891 static void nvme_rw_cb_bh(void *opaque) 892 { 893 NVMeCoData *data = opaque; 894 qemu_coroutine_enter(data->co); 895 } 896 897 static void nvme_rw_cb(void *opaque, int ret) 898 { 899 NVMeCoData *data = opaque; 900 data->ret = ret; 901 if (!data->co) { 902 /* The rw coroutine hasn't yielded, don't try to enter. */ 903 return; 904 } 905 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); 906 } 907 908 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 909 uint64_t offset, uint64_t bytes, 910 QEMUIOVector *qiov, 911 bool is_write, 912 int flags) 913 { 914 int r; 915 BDRVNVMeState *s = bs->opaque; 916 NVMeQueuePair *ioq = s->queues[1]; 917 NVMeRequest *req; 918 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | 919 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 920 NvmeCmd cmd = { 921 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 922 .nsid = cpu_to_le32(s->nsid), 923 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), 924 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), 925 .cdw12 = cpu_to_le32(cdw12), 926 }; 927 NVMeCoData data = { 928 .ctx = bdrv_get_aio_context(bs), 929 .ret = -EINPROGRESS, 930 }; 931 932 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 933 assert(s->nr_queues > 1); 934 req = nvme_get_free_req(ioq); 935 assert(req); 936 937 qemu_co_mutex_lock(&s->dma_map_lock); 938 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 939 qemu_co_mutex_unlock(&s->dma_map_lock); 940 if (r) { 941 req->busy = false; 942 return r; 943 } 944 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 945 946 data.co = qemu_coroutine_self(); 947 while (data.ret == -EINPROGRESS) { 948 qemu_coroutine_yield(); 949 } 950 951 qemu_co_mutex_lock(&s->dma_map_lock); 952 r = nvme_cmd_unmap_qiov(bs, qiov); 953 qemu_co_mutex_unlock(&s->dma_map_lock); 954 if (r) { 955 return r; 956 } 957 958 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 959 return data.ret; 960 } 961 962 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 963 const QEMUIOVector *qiov) 964 { 965 int i; 966 BDRVNVMeState *s = bs->opaque; 967 968 for (i = 0; i < qiov->niov; ++i) { 969 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || 970 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { 971 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 972 qiov->iov[i].iov_len, s->page_size); 973 return false; 974 } 975 } 976 return true; 977 } 978 979 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 980 QEMUIOVector *qiov, bool is_write, int flags) 981 { 982 BDRVNVMeState *s = bs->opaque; 983 int r; 984 uint8_t *buf = NULL; 985 QEMUIOVector local_qiov; 986 987 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 988 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 989 assert(bytes <= s->max_transfer); 990 if (nvme_qiov_aligned(bs, qiov)) { 991 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 992 } 993 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 994 buf = qemu_try_blockalign(bs, bytes); 995 996 if (!buf) { 997 return -ENOMEM; 998 } 999 qemu_iovec_init(&local_qiov, 1); 1000 if (is_write) { 1001 qemu_iovec_to_buf(qiov, 0, buf, bytes); 1002 } 1003 qemu_iovec_add(&local_qiov, buf, bytes); 1004 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1005 qemu_iovec_destroy(&local_qiov); 1006 if (!r && !is_write) { 1007 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1008 } 1009 qemu_vfree(buf); 1010 return r; 1011 } 1012 1013 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1014 uint64_t offset, uint64_t bytes, 1015 QEMUIOVector *qiov, int flags) 1016 { 1017 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1018 } 1019 1020 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1021 uint64_t offset, uint64_t bytes, 1022 QEMUIOVector *qiov, int flags) 1023 { 1024 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1025 } 1026 1027 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1028 { 1029 BDRVNVMeState *s = bs->opaque; 1030 NVMeQueuePair *ioq = s->queues[1]; 1031 NVMeRequest *req; 1032 NvmeCmd cmd = { 1033 .opcode = NVME_CMD_FLUSH, 1034 .nsid = cpu_to_le32(s->nsid), 1035 }; 1036 NVMeCoData data = { 1037 .ctx = bdrv_get_aio_context(bs), 1038 .ret = -EINPROGRESS, 1039 }; 1040 1041 assert(s->nr_queues > 1); 1042 req = nvme_get_free_req(ioq); 1043 assert(req); 1044 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1045 1046 data.co = qemu_coroutine_self(); 1047 if (data.ret == -EINPROGRESS) { 1048 qemu_coroutine_yield(); 1049 } 1050 1051 return data.ret; 1052 } 1053 1054 1055 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1056 BlockReopenQueue *queue, Error **errp) 1057 { 1058 return 0; 1059 } 1060 1061 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts) 1062 { 1063 qdict_del(opts, "filename"); 1064 1065 if (!qdict_size(opts)) { 1066 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://", 1067 bs->drv->format_name); 1068 } 1069 1070 qdict_put_str(opts, "driver", bs->drv->format_name); 1071 bs->full_open_options = qobject_ref(opts); 1072 } 1073 1074 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1075 { 1076 BDRVNVMeState *s = bs->opaque; 1077 1078 bs->bl.opt_mem_alignment = s->page_size; 1079 bs->bl.request_alignment = s->page_size; 1080 bs->bl.max_transfer = s->max_transfer; 1081 } 1082 1083 static void nvme_detach_aio_context(BlockDriverState *bs) 1084 { 1085 BDRVNVMeState *s = bs->opaque; 1086 1087 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 1088 false, NULL, NULL); 1089 } 1090 1091 static void nvme_attach_aio_context(BlockDriverState *bs, 1092 AioContext *new_context) 1093 { 1094 BDRVNVMeState *s = bs->opaque; 1095 1096 s->aio_context = new_context; 1097 aio_set_event_notifier(new_context, &s->irq_notifier, 1098 false, nvme_handle_event, nvme_poll_cb); 1099 } 1100 1101 static void nvme_aio_plug(BlockDriverState *bs) 1102 { 1103 BDRVNVMeState *s = bs->opaque; 1104 assert(!s->plugged); 1105 s->plugged = true; 1106 } 1107 1108 static void nvme_aio_unplug(BlockDriverState *bs) 1109 { 1110 int i; 1111 BDRVNVMeState *s = bs->opaque; 1112 assert(s->plugged); 1113 s->plugged = false; 1114 for (i = 1; i < s->nr_queues; i++) { 1115 NVMeQueuePair *q = s->queues[i]; 1116 qemu_mutex_lock(&q->lock); 1117 nvme_kick(s, q); 1118 nvme_process_completion(s, q); 1119 qemu_mutex_unlock(&q->lock); 1120 } 1121 } 1122 1123 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1124 { 1125 int ret; 1126 BDRVNVMeState *s = bs->opaque; 1127 1128 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1129 if (ret) { 1130 /* FIXME: we may run out of IOVA addresses after repeated 1131 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1132 * doesn't reclaim addresses for fixed mappings. */ 1133 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1134 } 1135 } 1136 1137 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1138 { 1139 BDRVNVMeState *s = bs->opaque; 1140 1141 qemu_vfio_dma_unmap(s->vfio, host); 1142 } 1143 1144 static BlockDriver bdrv_nvme = { 1145 .format_name = "nvme", 1146 .protocol_name = "nvme", 1147 .instance_size = sizeof(BDRVNVMeState), 1148 1149 .bdrv_parse_filename = nvme_parse_filename, 1150 .bdrv_file_open = nvme_file_open, 1151 .bdrv_close = nvme_close, 1152 .bdrv_getlength = nvme_getlength, 1153 1154 .bdrv_co_preadv = nvme_co_preadv, 1155 .bdrv_co_pwritev = nvme_co_pwritev, 1156 .bdrv_co_flush_to_disk = nvme_co_flush, 1157 .bdrv_reopen_prepare = nvme_reopen_prepare, 1158 1159 .bdrv_refresh_filename = nvme_refresh_filename, 1160 .bdrv_refresh_limits = nvme_refresh_limits, 1161 1162 .bdrv_detach_aio_context = nvme_detach_aio_context, 1163 .bdrv_attach_aio_context = nvme_attach_aio_context, 1164 1165 .bdrv_io_plug = nvme_aio_plug, 1166 .bdrv_io_unplug = nvme_aio_unplug, 1167 1168 .bdrv_register_buf = nvme_register_buf, 1169 .bdrv_unregister_buf = nvme_unregister_buf, 1170 }; 1171 1172 static void bdrv_nvme_init(void) 1173 { 1174 bdrv_register(&bdrv_nvme); 1175 } 1176 1177 block_init(bdrv_nvme_init); 1178