1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/cutils.h" 21 #include "qemu/option.h" 22 #include "qemu/vfio-helpers.h" 23 #include "block/block_int.h" 24 #include "trace.h" 25 26 #include "block/nvme.h" 27 28 #define NVME_SQ_ENTRY_BYTES 64 29 #define NVME_CQ_ENTRY_BYTES 16 30 #define NVME_QUEUE_SIZE 128 31 #define NVME_BAR_SIZE 8192 32 33 typedef struct { 34 int32_t head, tail; 35 uint8_t *queue; 36 uint64_t iova; 37 /* Hardware MMIO register */ 38 volatile uint32_t *doorbell; 39 } NVMeQueue; 40 41 typedef struct { 42 BlockCompletionFunc *cb; 43 void *opaque; 44 int cid; 45 void *prp_list_page; 46 uint64_t prp_list_iova; 47 bool busy; 48 } NVMeRequest; 49 50 typedef struct { 51 CoQueue free_req_queue; 52 QemuMutex lock; 53 54 /* Fields protected by BQL */ 55 int index; 56 uint8_t *prp_list_pages; 57 58 /* Fields protected by @lock */ 59 NVMeQueue sq, cq; 60 int cq_phase; 61 NVMeRequest reqs[NVME_QUEUE_SIZE]; 62 bool busy; 63 int need_kick; 64 int inflight; 65 } NVMeQueuePair; 66 67 /* Memory mapped registers */ 68 typedef volatile struct { 69 uint64_t cap; 70 uint32_t vs; 71 uint32_t intms; 72 uint32_t intmc; 73 uint32_t cc; 74 uint32_t reserved0; 75 uint32_t csts; 76 uint32_t nssr; 77 uint32_t aqa; 78 uint64_t asq; 79 uint64_t acq; 80 uint32_t cmbloc; 81 uint32_t cmbsz; 82 uint8_t reserved1[0xec0]; 83 uint8_t cmd_set_specfic[0x100]; 84 uint32_t doorbells[]; 85 } QEMU_PACKED NVMeRegs; 86 87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); 88 89 typedef struct { 90 AioContext *aio_context; 91 QEMUVFIOState *vfio; 92 NVMeRegs *regs; 93 /* The submission/completion queue pairs. 94 * [0]: admin queue. 95 * [1..]: io queues. 96 */ 97 NVMeQueuePair **queues; 98 int nr_queues; 99 size_t page_size; 100 /* How many uint32_t elements does each doorbell entry take. */ 101 size_t doorbell_scale; 102 bool write_cache_supported; 103 EventNotifier irq_notifier; 104 uint64_t nsze; /* Namespace size reported by identify command */ 105 int nsid; /* The namespace id to read/write data. */ 106 uint64_t max_transfer; 107 bool plugged; 108 109 CoMutex dma_map_lock; 110 CoQueue dma_flush_queue; 111 112 /* Total size of mapped qiov, accessed under dma_map_lock */ 113 int dma_map_count; 114 } BDRVNVMeState; 115 116 #define NVME_BLOCK_OPT_DEVICE "device" 117 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 118 119 static QemuOptsList runtime_opts = { 120 .name = "nvme", 121 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 122 .desc = { 123 { 124 .name = NVME_BLOCK_OPT_DEVICE, 125 .type = QEMU_OPT_STRING, 126 .help = "NVMe PCI device address", 127 }, 128 { 129 .name = NVME_BLOCK_OPT_NAMESPACE, 130 .type = QEMU_OPT_NUMBER, 131 .help = "NVMe namespace", 132 }, 133 { /* end of list */ } 134 }, 135 }; 136 137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, 138 int nentries, int entry_bytes, Error **errp) 139 { 140 BDRVNVMeState *s = bs->opaque; 141 size_t bytes; 142 int r; 143 144 bytes = ROUND_UP(nentries * entry_bytes, s->page_size); 145 q->head = q->tail = 0; 146 q->queue = qemu_try_blockalign0(bs, bytes); 147 148 if (!q->queue) { 149 error_setg(errp, "Cannot allocate queue"); 150 return; 151 } 152 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 153 if (r) { 154 error_setg(errp, "Cannot map queue"); 155 } 156 } 157 158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) 159 { 160 qemu_vfree(q->prp_list_pages); 161 qemu_vfree(q->sq.queue); 162 qemu_vfree(q->cq.queue); 163 qemu_mutex_destroy(&q->lock); 164 g_free(q); 165 } 166 167 static void nvme_free_req_queue_cb(void *opaque) 168 { 169 NVMeQueuePair *q = opaque; 170 171 qemu_mutex_lock(&q->lock); 172 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 173 /* Retry all pending requests */ 174 } 175 qemu_mutex_unlock(&q->lock); 176 } 177 178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, 179 int idx, int size, 180 Error **errp) 181 { 182 int i, r; 183 BDRVNVMeState *s = bs->opaque; 184 Error *local_err = NULL; 185 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); 186 uint64_t prp_list_iova; 187 188 qemu_mutex_init(&q->lock); 189 q->index = idx; 190 qemu_co_queue_init(&q->free_req_queue); 191 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); 192 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, 193 s->page_size * NVME_QUEUE_SIZE, 194 false, &prp_list_iova); 195 if (r) { 196 goto fail; 197 } 198 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 199 NVMeRequest *req = &q->reqs[i]; 200 req->cid = i + 1; 201 req->prp_list_page = q->prp_list_pages + i * s->page_size; 202 req->prp_list_iova = prp_list_iova + i * s->page_size; 203 } 204 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); 205 if (local_err) { 206 error_propagate(errp, local_err); 207 goto fail; 208 } 209 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; 210 211 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); 212 if (local_err) { 213 error_propagate(errp, local_err); 214 goto fail; 215 } 216 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; 217 218 return q; 219 fail: 220 nvme_free_queue_pair(bs, q); 221 return NULL; 222 } 223 224 /* With q->lock */ 225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) 226 { 227 if (s->plugged || !q->need_kick) { 228 return; 229 } 230 trace_nvme_kick(s, q->index); 231 assert(!(q->sq.tail & 0xFF00)); 232 /* Fence the write to submission queue entry before notifying the device. */ 233 smp_wmb(); 234 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 235 q->inflight += q->need_kick; 236 q->need_kick = 0; 237 } 238 239 /* Find a free request element if any, otherwise: 240 * a) if in coroutine context, try to wait for one to become available; 241 * b) if not in coroutine, return NULL; 242 */ 243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 244 { 245 int i; 246 NVMeRequest *req = NULL; 247 248 qemu_mutex_lock(&q->lock); 249 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { 250 /* We have to leave one slot empty as that is the full queue case (head 251 * == tail + 1). */ 252 if (qemu_in_coroutine()) { 253 trace_nvme_free_req_queue_wait(q); 254 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 255 } else { 256 qemu_mutex_unlock(&q->lock); 257 return NULL; 258 } 259 } 260 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 261 if (!q->reqs[i].busy) { 262 q->reqs[i].busy = true; 263 req = &q->reqs[i]; 264 break; 265 } 266 } 267 /* We have checked inflight and need_kick while holding q->lock, so one 268 * free req must be available. */ 269 assert(req); 270 qemu_mutex_unlock(&q->lock); 271 return req; 272 } 273 274 static inline int nvme_translate_error(const NvmeCqe *c) 275 { 276 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 277 if (status) { 278 trace_nvme_error(le32_to_cpu(c->result), 279 le16_to_cpu(c->sq_head), 280 le16_to_cpu(c->sq_id), 281 le16_to_cpu(c->cid), 282 le16_to_cpu(status)); 283 } 284 switch (status) { 285 case 0: 286 return 0; 287 case 1: 288 return -ENOSYS; 289 case 2: 290 return -EINVAL; 291 default: 292 return -EIO; 293 } 294 } 295 296 /* With q->lock */ 297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) 298 { 299 bool progress = false; 300 NVMeRequest *preq; 301 NVMeRequest req; 302 NvmeCqe *c; 303 304 trace_nvme_process_completion(s, q->index, q->inflight); 305 if (q->busy || s->plugged) { 306 trace_nvme_process_completion_queue_busy(s, q->index); 307 return false; 308 } 309 q->busy = true; 310 assert(q->inflight >= 0); 311 while (q->inflight) { 312 int16_t cid; 313 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 314 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 315 break; 316 } 317 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 318 if (!q->cq.head) { 319 q->cq_phase = !q->cq_phase; 320 } 321 cid = le16_to_cpu(c->cid); 322 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 323 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", 324 cid); 325 continue; 326 } 327 assert(cid <= NVME_QUEUE_SIZE); 328 trace_nvme_complete_command(s, q->index, cid); 329 preq = &q->reqs[cid - 1]; 330 req = *preq; 331 assert(req.cid == cid); 332 assert(req.cb); 333 preq->busy = false; 334 preq->cb = preq->opaque = NULL; 335 qemu_mutex_unlock(&q->lock); 336 req.cb(req.opaque, nvme_translate_error(c)); 337 qemu_mutex_lock(&q->lock); 338 c->cid = cpu_to_le16(0); 339 q->inflight--; 340 /* Flip Phase Tag bit. */ 341 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); 342 progress = true; 343 } 344 if (progress) { 345 /* Notify the device so it can post more completions. */ 346 smp_mb_release(); 347 *q->cq.doorbell = cpu_to_le32(q->cq.head); 348 if (!qemu_co_queue_empty(&q->free_req_queue)) { 349 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); 350 } 351 } 352 q->busy = false; 353 return progress; 354 } 355 356 static void nvme_trace_command(const NvmeCmd *cmd) 357 { 358 int i; 359 360 for (i = 0; i < 8; ++i) { 361 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 362 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 363 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 364 } 365 } 366 367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, 368 NVMeRequest *req, 369 NvmeCmd *cmd, BlockCompletionFunc cb, 370 void *opaque) 371 { 372 assert(!req->cb); 373 req->cb = cb; 374 req->opaque = opaque; 375 cmd->cid = cpu_to_le32(req->cid); 376 377 trace_nvme_submit_command(s, q->index, req->cid); 378 nvme_trace_command(cmd); 379 qemu_mutex_lock(&q->lock); 380 memcpy((uint8_t *)q->sq.queue + 381 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 382 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 383 q->need_kick++; 384 nvme_kick(s, q); 385 nvme_process_completion(s, q); 386 qemu_mutex_unlock(&q->lock); 387 } 388 389 static void nvme_cmd_sync_cb(void *opaque, int ret) 390 { 391 int *pret = opaque; 392 *pret = ret; 393 } 394 395 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, 396 NvmeCmd *cmd) 397 { 398 NVMeRequest *req; 399 BDRVNVMeState *s = bs->opaque; 400 int ret = -EINPROGRESS; 401 req = nvme_get_free_req(q); 402 if (!req) { 403 return -EBUSY; 404 } 405 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); 406 407 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); 408 return ret; 409 } 410 411 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 412 { 413 BDRVNVMeState *s = bs->opaque; 414 NvmeIdCtrl *idctrl; 415 NvmeIdNs *idns; 416 uint8_t *resp; 417 int r; 418 uint64_t iova; 419 NvmeCmd cmd = { 420 .opcode = NVME_ADM_CMD_IDENTIFY, 421 .cdw10 = cpu_to_le32(0x1), 422 }; 423 424 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); 425 if (!resp) { 426 error_setg(errp, "Cannot allocate buffer for identify response"); 427 goto out; 428 } 429 idctrl = (NvmeIdCtrl *)resp; 430 idns = (NvmeIdNs *)resp; 431 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); 432 if (r) { 433 error_setg(errp, "Cannot map buffer for DMA"); 434 goto out; 435 } 436 cmd.prp1 = cpu_to_le64(iova); 437 438 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 439 error_setg(errp, "Failed to identify controller"); 440 goto out; 441 } 442 443 if (le32_to_cpu(idctrl->nn) < namespace) { 444 error_setg(errp, "Invalid namespace"); 445 goto out; 446 } 447 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; 448 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; 449 /* For now the page list buffer per command is one page, to hold at most 450 * s->page_size / sizeof(uint64_t) entries. */ 451 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 452 s->page_size / sizeof(uint64_t) * s->page_size); 453 454 memset(resp, 0, 4096); 455 456 cmd.cdw10 = 0; 457 cmd.nsid = cpu_to_le32(namespace); 458 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 459 error_setg(errp, "Failed to identify namespace"); 460 goto out; 461 } 462 463 s->nsze = le64_to_cpu(idns->nsze); 464 465 out: 466 qemu_vfio_dma_unmap(s->vfio, resp); 467 qemu_vfree(resp); 468 } 469 470 static bool nvme_poll_queues(BDRVNVMeState *s) 471 { 472 bool progress = false; 473 int i; 474 475 for (i = 0; i < s->nr_queues; i++) { 476 NVMeQueuePair *q = s->queues[i]; 477 qemu_mutex_lock(&q->lock); 478 while (nvme_process_completion(s, q)) { 479 /* Keep polling */ 480 progress = true; 481 } 482 qemu_mutex_unlock(&q->lock); 483 } 484 return progress; 485 } 486 487 static void nvme_handle_event(EventNotifier *n) 488 { 489 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); 490 491 trace_nvme_handle_event(s); 492 event_notifier_test_and_clear(n); 493 nvme_poll_queues(s); 494 } 495 496 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 497 { 498 BDRVNVMeState *s = bs->opaque; 499 int n = s->nr_queues; 500 NVMeQueuePair *q; 501 NvmeCmd cmd; 502 int queue_size = NVME_QUEUE_SIZE; 503 504 q = nvme_create_queue_pair(bs, n, queue_size, errp); 505 if (!q) { 506 return false; 507 } 508 cmd = (NvmeCmd) { 509 .opcode = NVME_ADM_CMD_CREATE_CQ, 510 .prp1 = cpu_to_le64(q->cq.iova), 511 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 512 .cdw11 = cpu_to_le32(0x3), 513 }; 514 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 515 error_setg(errp, "Failed to create io queue [%d]", n); 516 nvme_free_queue_pair(bs, q); 517 return false; 518 } 519 cmd = (NvmeCmd) { 520 .opcode = NVME_ADM_CMD_CREATE_SQ, 521 .prp1 = cpu_to_le64(q->sq.iova), 522 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 523 .cdw11 = cpu_to_le32(0x1 | (n << 16)), 524 }; 525 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 526 error_setg(errp, "Failed to create io queue [%d]", n); 527 nvme_free_queue_pair(bs, q); 528 return false; 529 } 530 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 531 s->queues[n] = q; 532 s->nr_queues++; 533 return true; 534 } 535 536 static bool nvme_poll_cb(void *opaque) 537 { 538 EventNotifier *e = opaque; 539 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); 540 bool progress = false; 541 542 trace_nvme_poll_cb(s); 543 progress = nvme_poll_queues(s); 544 return progress; 545 } 546 547 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 548 Error **errp) 549 { 550 BDRVNVMeState *s = bs->opaque; 551 int ret; 552 uint64_t cap; 553 uint64_t timeout_ms; 554 uint64_t deadline, now; 555 Error *local_err = NULL; 556 557 qemu_co_mutex_init(&s->dma_map_lock); 558 qemu_co_queue_init(&s->dma_flush_queue); 559 s->nsid = namespace; 560 s->aio_context = bdrv_get_aio_context(bs); 561 ret = event_notifier_init(&s->irq_notifier, 0); 562 if (ret) { 563 error_setg(errp, "Failed to init event notifier"); 564 return ret; 565 } 566 567 s->vfio = qemu_vfio_open_pci(device, errp); 568 if (!s->vfio) { 569 ret = -EINVAL; 570 goto out; 571 } 572 573 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); 574 if (!s->regs) { 575 ret = -EINVAL; 576 goto out; 577 } 578 579 /* Perform initialize sequence as described in NVMe spec "7.6.1 580 * Initialization". */ 581 582 cap = le64_to_cpu(s->regs->cap); 583 if (!(cap & (1ULL << 37))) { 584 error_setg(errp, "Device doesn't support NVMe command set"); 585 ret = -EINVAL; 586 goto out; 587 } 588 589 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); 590 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); 591 bs->bl.opt_mem_alignment = s->page_size; 592 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); 593 594 /* Reset device to get a clean state. */ 595 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); 596 /* Wait for CSTS.RDY = 0. */ 597 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; 598 while (le32_to_cpu(s->regs->csts) & 0x1) { 599 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 600 error_setg(errp, "Timeout while waiting for device to reset (%" 601 PRId64 " ms)", 602 timeout_ms); 603 ret = -ETIMEDOUT; 604 goto out; 605 } 606 } 607 608 /* Set up admin queue. */ 609 s->queues = g_new(NVMeQueuePair *, 1); 610 s->nr_queues = 1; 611 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); 612 if (!s->queues[0]) { 613 ret = -EINVAL; 614 goto out; 615 } 616 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); 617 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); 618 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); 619 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); 620 621 /* After setting up all control registers we can enable device now. */ 622 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | 623 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 624 0x1); 625 /* Wait for CSTS.RDY = 1. */ 626 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 627 deadline = now + timeout_ms * 1000000; 628 while (!(le32_to_cpu(s->regs->csts) & 0x1)) { 629 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 630 error_setg(errp, "Timeout while waiting for device to start (%" 631 PRId64 " ms)", 632 timeout_ms); 633 ret = -ETIMEDOUT; 634 goto out; 635 } 636 } 637 638 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, 639 VFIO_PCI_MSIX_IRQ_INDEX, errp); 640 if (ret) { 641 goto out; 642 } 643 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 644 false, nvme_handle_event, nvme_poll_cb); 645 646 nvme_identify(bs, namespace, &local_err); 647 if (local_err) { 648 error_propagate(errp, local_err); 649 ret = -EIO; 650 goto out; 651 } 652 653 /* Set up command queues. */ 654 if (!nvme_add_io_queue(bs, errp)) { 655 ret = -EIO; 656 } 657 out: 658 /* Cleaning up is done in nvme_file_open() upon error. */ 659 return ret; 660 } 661 662 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 663 * 664 * nvme://0000:44:00.0/1 665 * 666 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 667 * is the PCI address, and the last part is the namespace number starting from 668 * 1 according to the NVMe spec. */ 669 static void nvme_parse_filename(const char *filename, QDict *options, 670 Error **errp) 671 { 672 int pref = strlen("nvme://"); 673 674 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 675 const char *tmp = filename + pref; 676 char *device; 677 const char *namespace; 678 unsigned long ns; 679 const char *slash = strchr(tmp, '/'); 680 if (!slash) { 681 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 682 return; 683 } 684 device = g_strndup(tmp, slash - tmp); 685 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 686 g_free(device); 687 namespace = slash + 1; 688 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 689 error_setg(errp, "Invalid namespace '%s', positive number expected", 690 namespace); 691 return; 692 } 693 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 694 *namespace ? namespace : "1"); 695 } 696 } 697 698 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 699 Error **errp) 700 { 701 int ret; 702 BDRVNVMeState *s = bs->opaque; 703 NvmeCmd cmd = { 704 .opcode = NVME_ADM_CMD_SET_FEATURES, 705 .nsid = cpu_to_le32(s->nsid), 706 .cdw10 = cpu_to_le32(0x06), 707 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 708 }; 709 710 ret = nvme_cmd_sync(bs, s->queues[0], &cmd); 711 if (ret) { 712 error_setg(errp, "Failed to configure NVMe write cache"); 713 } 714 return ret; 715 } 716 717 static void nvme_close(BlockDriverState *bs) 718 { 719 int i; 720 BDRVNVMeState *s = bs->opaque; 721 722 for (i = 0; i < s->nr_queues; ++i) { 723 nvme_free_queue_pair(bs, s->queues[i]); 724 } 725 g_free(s->queues); 726 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 727 false, NULL, NULL); 728 event_notifier_cleanup(&s->irq_notifier); 729 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); 730 qemu_vfio_close(s->vfio); 731 } 732 733 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 734 Error **errp) 735 { 736 const char *device; 737 QemuOpts *opts; 738 int namespace; 739 int ret; 740 BDRVNVMeState *s = bs->opaque; 741 742 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 743 qemu_opts_absorb_qdict(opts, options, &error_abort); 744 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 745 if (!device) { 746 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 747 qemu_opts_del(opts); 748 return -EINVAL; 749 } 750 751 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 752 ret = nvme_init(bs, device, namespace, errp); 753 qemu_opts_del(opts); 754 if (ret) { 755 goto fail; 756 } 757 if (flags & BDRV_O_NOCACHE) { 758 if (!s->write_cache_supported) { 759 error_setg(errp, 760 "NVMe controller doesn't support write cache configuration"); 761 ret = -EINVAL; 762 } else { 763 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 764 errp); 765 } 766 if (ret) { 767 goto fail; 768 } 769 } 770 bs->supported_write_flags = BDRV_REQ_FUA; 771 return 0; 772 fail: 773 nvme_close(bs); 774 return ret; 775 } 776 777 static int64_t nvme_getlength(BlockDriverState *bs) 778 { 779 BDRVNVMeState *s = bs->opaque; 780 781 return s->nsze << BDRV_SECTOR_BITS; 782 } 783 784 /* Called with s->dma_map_lock */ 785 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 786 QEMUIOVector *qiov) 787 { 788 int r = 0; 789 BDRVNVMeState *s = bs->opaque; 790 791 s->dma_map_count -= qiov->size; 792 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 793 r = qemu_vfio_dma_reset_temporary(s->vfio); 794 if (!r) { 795 qemu_co_queue_restart_all(&s->dma_flush_queue); 796 } 797 } 798 return r; 799 } 800 801 /* Called with s->dma_map_lock */ 802 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 803 NVMeRequest *req, QEMUIOVector *qiov) 804 { 805 BDRVNVMeState *s = bs->opaque; 806 uint64_t *pagelist = req->prp_list_page; 807 int i, j, r; 808 int entries = 0; 809 810 assert(qiov->size); 811 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 812 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 813 for (i = 0; i < qiov->niov; ++i) { 814 bool retry = true; 815 uint64_t iova; 816 try_map: 817 r = qemu_vfio_dma_map(s->vfio, 818 qiov->iov[i].iov_base, 819 qiov->iov[i].iov_len, 820 true, &iova); 821 if (r == -ENOMEM && retry) { 822 retry = false; 823 trace_nvme_dma_flush_queue_wait(s); 824 if (s->dma_map_count) { 825 trace_nvme_dma_map_flush(s); 826 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 827 } else { 828 r = qemu_vfio_dma_reset_temporary(s->vfio); 829 if (r) { 830 goto fail; 831 } 832 } 833 goto try_map; 834 } 835 if (r) { 836 goto fail; 837 } 838 839 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 840 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 841 } 842 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 843 qiov->iov[i].iov_len / s->page_size); 844 } 845 846 s->dma_map_count += qiov->size; 847 848 assert(entries <= s->page_size / sizeof(uint64_t)); 849 switch (entries) { 850 case 0: 851 abort(); 852 case 1: 853 cmd->prp1 = pagelist[0]; 854 cmd->prp2 = 0; 855 break; 856 case 2: 857 cmd->prp1 = pagelist[0]; 858 cmd->prp2 = pagelist[1]; 859 break; 860 default: 861 cmd->prp1 = pagelist[0]; 862 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 863 break; 864 } 865 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 866 for (i = 0; i < entries; ++i) { 867 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 868 } 869 return 0; 870 fail: 871 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 872 * increment s->dma_map_count. This is okay for fixed mapping memory areas 873 * because they are already mapped before calling this function; for 874 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 875 * calling qemu_vfio_dma_reset_temporary when necessary. */ 876 return r; 877 } 878 879 typedef struct { 880 Coroutine *co; 881 int ret; 882 AioContext *ctx; 883 } NVMeCoData; 884 885 static void nvme_rw_cb_bh(void *opaque) 886 { 887 NVMeCoData *data = opaque; 888 qemu_coroutine_enter(data->co); 889 } 890 891 static void nvme_rw_cb(void *opaque, int ret) 892 { 893 NVMeCoData *data = opaque; 894 data->ret = ret; 895 if (!data->co) { 896 /* The rw coroutine hasn't yielded, don't try to enter. */ 897 return; 898 } 899 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); 900 } 901 902 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 903 uint64_t offset, uint64_t bytes, 904 QEMUIOVector *qiov, 905 bool is_write, 906 int flags) 907 { 908 int r; 909 BDRVNVMeState *s = bs->opaque; 910 NVMeQueuePair *ioq = s->queues[1]; 911 NVMeRequest *req; 912 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | 913 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 914 NvmeCmd cmd = { 915 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 916 .nsid = cpu_to_le32(s->nsid), 917 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), 918 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), 919 .cdw12 = cpu_to_le32(cdw12), 920 }; 921 NVMeCoData data = { 922 .ctx = bdrv_get_aio_context(bs), 923 .ret = -EINPROGRESS, 924 }; 925 926 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 927 assert(s->nr_queues > 1); 928 req = nvme_get_free_req(ioq); 929 assert(req); 930 931 qemu_co_mutex_lock(&s->dma_map_lock); 932 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 933 qemu_co_mutex_unlock(&s->dma_map_lock); 934 if (r) { 935 req->busy = false; 936 return r; 937 } 938 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 939 940 data.co = qemu_coroutine_self(); 941 while (data.ret == -EINPROGRESS) { 942 qemu_coroutine_yield(); 943 } 944 945 qemu_co_mutex_lock(&s->dma_map_lock); 946 r = nvme_cmd_unmap_qiov(bs, qiov); 947 qemu_co_mutex_unlock(&s->dma_map_lock); 948 if (r) { 949 return r; 950 } 951 952 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 953 return data.ret; 954 } 955 956 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 957 const QEMUIOVector *qiov) 958 { 959 int i; 960 BDRVNVMeState *s = bs->opaque; 961 962 for (i = 0; i < qiov->niov; ++i) { 963 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || 964 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { 965 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 966 qiov->iov[i].iov_len, s->page_size); 967 return false; 968 } 969 } 970 return true; 971 } 972 973 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 974 QEMUIOVector *qiov, bool is_write, int flags) 975 { 976 BDRVNVMeState *s = bs->opaque; 977 int r; 978 uint8_t *buf = NULL; 979 QEMUIOVector local_qiov; 980 981 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 982 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 983 assert(bytes <= s->max_transfer); 984 if (nvme_qiov_aligned(bs, qiov)) { 985 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 986 } 987 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 988 buf = qemu_try_blockalign(bs, bytes); 989 990 if (!buf) { 991 return -ENOMEM; 992 } 993 qemu_iovec_init(&local_qiov, 1); 994 if (is_write) { 995 qemu_iovec_to_buf(qiov, 0, buf, bytes); 996 } 997 qemu_iovec_add(&local_qiov, buf, bytes); 998 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 999 qemu_iovec_destroy(&local_qiov); 1000 if (!r && !is_write) { 1001 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1002 } 1003 qemu_vfree(buf); 1004 return r; 1005 } 1006 1007 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1008 uint64_t offset, uint64_t bytes, 1009 QEMUIOVector *qiov, int flags) 1010 { 1011 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1012 } 1013 1014 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1015 uint64_t offset, uint64_t bytes, 1016 QEMUIOVector *qiov, int flags) 1017 { 1018 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1019 } 1020 1021 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1022 { 1023 BDRVNVMeState *s = bs->opaque; 1024 NVMeQueuePair *ioq = s->queues[1]; 1025 NVMeRequest *req; 1026 NvmeCmd cmd = { 1027 .opcode = NVME_CMD_FLUSH, 1028 .nsid = cpu_to_le32(s->nsid), 1029 }; 1030 NVMeCoData data = { 1031 .ctx = bdrv_get_aio_context(bs), 1032 .ret = -EINPROGRESS, 1033 }; 1034 1035 assert(s->nr_queues > 1); 1036 req = nvme_get_free_req(ioq); 1037 assert(req); 1038 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1039 1040 data.co = qemu_coroutine_self(); 1041 if (data.ret == -EINPROGRESS) { 1042 qemu_coroutine_yield(); 1043 } 1044 1045 return data.ret; 1046 } 1047 1048 1049 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1050 BlockReopenQueue *queue, Error **errp) 1051 { 1052 return 0; 1053 } 1054 1055 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts) 1056 { 1057 qdict_del(opts, "filename"); 1058 1059 if (!qdict_size(opts)) { 1060 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://", 1061 bs->drv->format_name); 1062 } 1063 1064 qdict_put_str(opts, "driver", bs->drv->format_name); 1065 bs->full_open_options = qobject_ref(opts); 1066 } 1067 1068 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1069 { 1070 BDRVNVMeState *s = bs->opaque; 1071 1072 bs->bl.opt_mem_alignment = s->page_size; 1073 bs->bl.request_alignment = s->page_size; 1074 bs->bl.max_transfer = s->max_transfer; 1075 } 1076 1077 static void nvme_detach_aio_context(BlockDriverState *bs) 1078 { 1079 BDRVNVMeState *s = bs->opaque; 1080 1081 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 1082 false, NULL, NULL); 1083 } 1084 1085 static void nvme_attach_aio_context(BlockDriverState *bs, 1086 AioContext *new_context) 1087 { 1088 BDRVNVMeState *s = bs->opaque; 1089 1090 s->aio_context = new_context; 1091 aio_set_event_notifier(new_context, &s->irq_notifier, 1092 false, nvme_handle_event, nvme_poll_cb); 1093 } 1094 1095 static void nvme_aio_plug(BlockDriverState *bs) 1096 { 1097 BDRVNVMeState *s = bs->opaque; 1098 assert(!s->plugged); 1099 s->plugged = true; 1100 } 1101 1102 static void nvme_aio_unplug(BlockDriverState *bs) 1103 { 1104 int i; 1105 BDRVNVMeState *s = bs->opaque; 1106 assert(s->plugged); 1107 s->plugged = false; 1108 for (i = 1; i < s->nr_queues; i++) { 1109 NVMeQueuePair *q = s->queues[i]; 1110 qemu_mutex_lock(&q->lock); 1111 nvme_kick(s, q); 1112 nvme_process_completion(s, q); 1113 qemu_mutex_unlock(&q->lock); 1114 } 1115 } 1116 1117 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1118 { 1119 int ret; 1120 BDRVNVMeState *s = bs->opaque; 1121 1122 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1123 if (ret) { 1124 /* FIXME: we may run out of IOVA addresses after repeated 1125 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1126 * doesn't reclaim addresses for fixed mappings. */ 1127 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1128 } 1129 } 1130 1131 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1132 { 1133 BDRVNVMeState *s = bs->opaque; 1134 1135 qemu_vfio_dma_unmap(s->vfio, host); 1136 } 1137 1138 static BlockDriver bdrv_nvme = { 1139 .format_name = "nvme", 1140 .protocol_name = "nvme", 1141 .instance_size = sizeof(BDRVNVMeState), 1142 1143 .bdrv_parse_filename = nvme_parse_filename, 1144 .bdrv_file_open = nvme_file_open, 1145 .bdrv_close = nvme_close, 1146 .bdrv_getlength = nvme_getlength, 1147 1148 .bdrv_co_preadv = nvme_co_preadv, 1149 .bdrv_co_pwritev = nvme_co_pwritev, 1150 .bdrv_co_flush_to_disk = nvme_co_flush, 1151 .bdrv_reopen_prepare = nvme_reopen_prepare, 1152 1153 .bdrv_refresh_filename = nvme_refresh_filename, 1154 .bdrv_refresh_limits = nvme_refresh_limits, 1155 1156 .bdrv_detach_aio_context = nvme_detach_aio_context, 1157 .bdrv_attach_aio_context = nvme_attach_aio_context, 1158 1159 .bdrv_io_plug = nvme_aio_plug, 1160 .bdrv_io_unplug = nvme_aio_unplug, 1161 1162 .bdrv_register_buf = nvme_register_buf, 1163 .bdrv_unregister_buf = nvme_unregister_buf, 1164 }; 1165 1166 static void bdrv_nvme_init(void) 1167 { 1168 bdrv_register(&bdrv_nvme); 1169 } 1170 1171 block_init(bdrv_nvme_init); 1172