1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/defer-call.h" 20 #include "qemu/error-report.h" 21 #include "qemu/main-loop.h" 22 #include "qemu/module.h" 23 #include "qemu/cutils.h" 24 #include "qemu/option.h" 25 #include "qemu/memalign.h" 26 #include "qemu/vfio-helpers.h" 27 #include "block/block-io.h" 28 #include "block/block_int.h" 29 #include "sysemu/block-backend.h" 30 #include "sysemu/replay.h" 31 #include "trace.h" 32 33 #include "block/nvme.h" 34 35 #define NVME_SQ_ENTRY_BYTES 64 36 #define NVME_CQ_ENTRY_BYTES 16 37 #define NVME_QUEUE_SIZE 128 38 #define NVME_DOORBELL_SIZE 4096 39 40 /* 41 * We have to leave one slot empty as that is the full queue case where 42 * head == tail + 1. 43 */ 44 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1) 45 46 typedef struct BDRVNVMeState BDRVNVMeState; 47 48 /* Same index is used for queues and IRQs */ 49 #define INDEX_ADMIN 0 50 #define INDEX_IO(n) (1 + n) 51 52 /* This driver shares a single MSIX IRQ for the admin and I/O queues */ 53 enum { 54 MSIX_SHARED_IRQ_IDX = 0, 55 MSIX_IRQ_COUNT = 1 56 }; 57 58 typedef struct { 59 int32_t head, tail; 60 uint8_t *queue; 61 uint64_t iova; 62 /* Hardware MMIO register */ 63 volatile uint32_t *doorbell; 64 } NVMeQueue; 65 66 typedef struct { 67 BlockCompletionFunc *cb; 68 void *opaque; 69 int cid; 70 void *prp_list_page; 71 uint64_t prp_list_iova; 72 int free_req_next; /* q->reqs[] index of next free req */ 73 } NVMeRequest; 74 75 typedef struct { 76 QemuMutex lock; 77 78 /* Read from I/O code path, initialized under BQL */ 79 BDRVNVMeState *s; 80 int index; 81 82 /* Fields protected by BQL */ 83 uint8_t *prp_list_pages; 84 85 /* Fields protected by @lock */ 86 CoQueue free_req_queue; 87 NVMeQueue sq, cq; 88 int cq_phase; 89 int free_req_head; 90 NVMeRequest reqs[NVME_NUM_REQS]; 91 int need_kick; 92 int inflight; 93 94 /* Thread-safe, no lock necessary */ 95 QEMUBH *completion_bh; 96 } NVMeQueuePair; 97 98 struct BDRVNVMeState { 99 AioContext *aio_context; 100 QEMUVFIOState *vfio; 101 void *bar0_wo_map; 102 /* Memory mapped registers */ 103 volatile struct { 104 uint32_t sq_tail; 105 uint32_t cq_head; 106 } *doorbells; 107 /* The submission/completion queue pairs. 108 * [0]: admin queue. 109 * [1..]: io queues. 110 */ 111 NVMeQueuePair **queues; 112 unsigned queue_count; 113 size_t page_size; 114 /* How many uint32_t elements does each doorbell entry take. */ 115 size_t doorbell_scale; 116 bool write_cache_supported; 117 EventNotifier irq_notifier[MSIX_IRQ_COUNT]; 118 119 uint64_t nsze; /* Namespace size reported by identify command */ 120 int nsid; /* The namespace id to read/write data. */ 121 int blkshift; 122 123 uint64_t max_transfer; 124 125 bool supports_write_zeroes; 126 bool supports_discard; 127 128 CoMutex dma_map_lock; 129 CoQueue dma_flush_queue; 130 131 /* Total size of mapped qiov, accessed under dma_map_lock */ 132 int dma_map_count; 133 134 /* PCI address (required for nvme_refresh_filename()) */ 135 char *device; 136 137 struct { 138 uint64_t completion_errors; 139 uint64_t aligned_accesses; 140 uint64_t unaligned_accesses; 141 } stats; 142 }; 143 144 #define NVME_BLOCK_OPT_DEVICE "device" 145 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 146 147 static void nvme_process_completion_bh(void *opaque); 148 149 static QemuOptsList runtime_opts = { 150 .name = "nvme", 151 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 152 .desc = { 153 { 154 .name = NVME_BLOCK_OPT_DEVICE, 155 .type = QEMU_OPT_STRING, 156 .help = "NVMe PCI device address", 157 }, 158 { 159 .name = NVME_BLOCK_OPT_NAMESPACE, 160 .type = QEMU_OPT_NUMBER, 161 .help = "NVMe namespace", 162 }, 163 { /* end of list */ } 164 }, 165 }; 166 167 /* Returns true on success, false on failure. */ 168 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q, 169 unsigned nentries, size_t entry_bytes, Error **errp) 170 { 171 ERRP_GUARD(); 172 size_t bytes; 173 int r; 174 175 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size()); 176 q->head = q->tail = 0; 177 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes); 178 if (!q->queue) { 179 error_setg(errp, "Cannot allocate queue"); 180 return false; 181 } 182 memset(q->queue, 0, bytes); 183 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp); 184 if (r) { 185 error_prepend(errp, "Cannot map queue: "); 186 } 187 return r == 0; 188 } 189 190 static void nvme_free_queue(NVMeQueue *q) 191 { 192 qemu_vfree(q->queue); 193 } 194 195 static void nvme_free_queue_pair(NVMeQueuePair *q) 196 { 197 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq); 198 if (q->completion_bh) { 199 qemu_bh_delete(q->completion_bh); 200 } 201 nvme_free_queue(&q->sq); 202 nvme_free_queue(&q->cq); 203 qemu_vfree(q->prp_list_pages); 204 qemu_mutex_destroy(&q->lock); 205 g_free(q); 206 } 207 208 static void nvme_free_req_queue_cb(void *opaque) 209 { 210 NVMeQueuePair *q = opaque; 211 212 qemu_mutex_lock(&q->lock); 213 while (q->free_req_head != -1 && 214 qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 215 /* Retry waiting requests */ 216 } 217 qemu_mutex_unlock(&q->lock); 218 } 219 220 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s, 221 AioContext *aio_context, 222 unsigned idx, size_t size, 223 Error **errp) 224 { 225 ERRP_GUARD(); 226 int i, r; 227 NVMeQueuePair *q; 228 uint64_t prp_list_iova; 229 size_t bytes; 230 231 q = g_try_new0(NVMeQueuePair, 1); 232 if (!q) { 233 error_setg(errp, "Cannot allocate queue pair"); 234 return NULL; 235 } 236 trace_nvme_create_queue_pair(idx, q, size, aio_context, 237 event_notifier_get_fd(s->irq_notifier)); 238 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS, 239 qemu_real_host_page_size()); 240 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes); 241 if (!q->prp_list_pages) { 242 error_setg(errp, "Cannot allocate PRP page list"); 243 goto fail; 244 } 245 memset(q->prp_list_pages, 0, bytes); 246 qemu_mutex_init(&q->lock); 247 q->s = s; 248 q->index = idx; 249 qemu_co_queue_init(&q->free_req_queue); 250 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q); 251 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes, 252 false, &prp_list_iova, errp); 253 if (r) { 254 error_prepend(errp, "Cannot map buffer for DMA: "); 255 goto fail; 256 } 257 q->free_req_head = -1; 258 for (i = 0; i < NVME_NUM_REQS; i++) { 259 NVMeRequest *req = &q->reqs[i]; 260 req->cid = i + 1; 261 req->free_req_next = q->free_req_head; 262 q->free_req_head = i; 263 req->prp_list_page = q->prp_list_pages + i * s->page_size; 264 req->prp_list_iova = prp_list_iova + i * s->page_size; 265 } 266 267 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) { 268 goto fail; 269 } 270 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail; 271 272 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) { 273 goto fail; 274 } 275 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head; 276 277 return q; 278 fail: 279 nvme_free_queue_pair(q); 280 return NULL; 281 } 282 283 /* With q->lock */ 284 static void nvme_kick(NVMeQueuePair *q) 285 { 286 BDRVNVMeState *s = q->s; 287 288 if (!q->need_kick) { 289 return; 290 } 291 trace_nvme_kick(s, q->index); 292 assert(!(q->sq.tail & 0xFF00)); 293 /* Fence the write to submission queue entry before notifying the device. */ 294 smp_wmb(); 295 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 296 q->inflight += q->need_kick; 297 q->need_kick = 0; 298 } 299 300 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q) 301 { 302 NVMeRequest *req; 303 304 req = &q->reqs[q->free_req_head]; 305 q->free_req_head = req->free_req_next; 306 req->free_req_next = -1; 307 return req; 308 } 309 310 /* Return a free request element if any, otherwise return NULL. */ 311 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q) 312 { 313 QEMU_LOCK_GUARD(&q->lock); 314 if (q->free_req_head == -1) { 315 return NULL; 316 } 317 return nvme_get_free_req_nofail_locked(q); 318 } 319 320 /* 321 * Wait for a free request to become available if necessary, then 322 * return it. 323 */ 324 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 325 { 326 QEMU_LOCK_GUARD(&q->lock); 327 328 while (q->free_req_head == -1) { 329 trace_nvme_free_req_queue_wait(q->s, q->index); 330 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 331 } 332 333 return nvme_get_free_req_nofail_locked(q); 334 } 335 336 /* With q->lock */ 337 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req) 338 { 339 req->free_req_next = q->free_req_head; 340 q->free_req_head = req - q->reqs; 341 } 342 343 /* With q->lock */ 344 static void nvme_wake_free_req_locked(NVMeQueuePair *q) 345 { 346 if (!qemu_co_queue_empty(&q->free_req_queue)) { 347 replay_bh_schedule_oneshot_event(q->s->aio_context, 348 nvme_free_req_queue_cb, q); 349 } 350 } 351 352 /* Insert a request in the freelist and wake waiters */ 353 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req) 354 { 355 qemu_mutex_lock(&q->lock); 356 nvme_put_free_req_locked(q, req); 357 nvme_wake_free_req_locked(q); 358 qemu_mutex_unlock(&q->lock); 359 } 360 361 static inline int nvme_translate_error(const NvmeCqe *c) 362 { 363 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 364 if (status) { 365 trace_nvme_error(le32_to_cpu(c->result), 366 le16_to_cpu(c->sq_head), 367 le16_to_cpu(c->sq_id), 368 le16_to_cpu(c->cid), 369 le16_to_cpu(status)); 370 } 371 switch (status) { 372 case 0: 373 return 0; 374 case 1: 375 return -ENOSYS; 376 case 2: 377 return -EINVAL; 378 default: 379 return -EIO; 380 } 381 } 382 383 /* With q->lock */ 384 static bool nvme_process_completion(NVMeQueuePair *q) 385 { 386 BDRVNVMeState *s = q->s; 387 bool progress = false; 388 NVMeRequest *preq; 389 NVMeRequest req; 390 NvmeCqe *c; 391 392 trace_nvme_process_completion(s, q->index, q->inflight); 393 394 /* 395 * Support re-entrancy when a request cb() function invokes aio_poll(). 396 * Pending completions must be visible to aio_poll() so that a cb() 397 * function can wait for the completion of another request. 398 * 399 * The aio_poll() loop will execute our BH and we'll resume completion 400 * processing there. 401 */ 402 qemu_bh_schedule(q->completion_bh); 403 404 assert(q->inflight >= 0); 405 while (q->inflight) { 406 int ret; 407 int16_t cid; 408 409 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 410 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 411 break; 412 } 413 ret = nvme_translate_error(c); 414 if (ret) { 415 s->stats.completion_errors++; 416 } 417 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 418 if (!q->cq.head) { 419 q->cq_phase = !q->cq_phase; 420 } 421 cid = le16_to_cpu(c->cid); 422 if (cid == 0 || cid > NVME_NUM_REQS) { 423 warn_report("NVMe: Unexpected CID in completion queue: %" PRIu32 424 ", should be within: 1..%u inclusively", cid, 425 NVME_NUM_REQS); 426 continue; 427 } 428 trace_nvme_complete_command(s, q->index, cid); 429 preq = &q->reqs[cid - 1]; 430 req = *preq; 431 assert(req.cid == cid); 432 assert(req.cb); 433 nvme_put_free_req_locked(q, preq); 434 preq->cb = preq->opaque = NULL; 435 q->inflight--; 436 qemu_mutex_unlock(&q->lock); 437 req.cb(req.opaque, ret); 438 qemu_mutex_lock(&q->lock); 439 progress = true; 440 } 441 if (progress) { 442 /* Notify the device so it can post more completions. */ 443 smp_mb_release(); 444 *q->cq.doorbell = cpu_to_le32(q->cq.head); 445 nvme_wake_free_req_locked(q); 446 } 447 448 qemu_bh_cancel(q->completion_bh); 449 450 return progress; 451 } 452 453 static void nvme_process_completion_bh(void *opaque) 454 { 455 NVMeQueuePair *q = opaque; 456 457 /* 458 * We're being invoked because a nvme_process_completion() cb() function 459 * called aio_poll(). The callback may be waiting for further completions 460 * so notify the device that it has space to fill in more completions now. 461 */ 462 smp_mb_release(); 463 *q->cq.doorbell = cpu_to_le32(q->cq.head); 464 nvme_wake_free_req_locked(q); 465 466 nvme_process_completion(q); 467 } 468 469 static void nvme_trace_command(const NvmeCmd *cmd) 470 { 471 int i; 472 473 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) { 474 return; 475 } 476 for (i = 0; i < 8; ++i) { 477 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 478 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 479 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 480 } 481 } 482 483 static void nvme_deferred_fn(void *opaque) 484 { 485 NVMeQueuePair *q = opaque; 486 487 QEMU_LOCK_GUARD(&q->lock); 488 nvme_kick(q); 489 nvme_process_completion(q); 490 } 491 492 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req, 493 NvmeCmd *cmd, BlockCompletionFunc cb, 494 void *opaque) 495 { 496 assert(!req->cb); 497 req->cb = cb; 498 req->opaque = opaque; 499 cmd->cid = cpu_to_le16(req->cid); 500 501 trace_nvme_submit_command(q->s, q->index, req->cid); 502 nvme_trace_command(cmd); 503 qemu_mutex_lock(&q->lock); 504 memcpy((uint8_t *)q->sq.queue + 505 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 506 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 507 q->need_kick++; 508 qemu_mutex_unlock(&q->lock); 509 510 defer_call(nvme_deferred_fn, q); 511 } 512 513 static void nvme_admin_cmd_sync_cb(void *opaque, int ret) 514 { 515 int *pret = opaque; 516 *pret = ret; 517 aio_wait_kick(); 518 } 519 520 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd) 521 { 522 BDRVNVMeState *s = bs->opaque; 523 NVMeQueuePair *q = s->queues[INDEX_ADMIN]; 524 AioContext *aio_context = bdrv_get_aio_context(bs); 525 NVMeRequest *req; 526 int ret = -EINPROGRESS; 527 req = nvme_get_free_req_nowait(q); 528 if (!req) { 529 return -EBUSY; 530 } 531 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret); 532 533 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS); 534 return ret; 535 } 536 537 /* Returns true on success, false on failure. */ 538 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 539 { 540 ERRP_GUARD(); 541 BDRVNVMeState *s = bs->opaque; 542 bool ret = false; 543 QEMU_AUTO_VFREE union { 544 NvmeIdCtrl ctrl; 545 NvmeIdNs ns; 546 } *id = NULL; 547 NvmeLBAF *lbaf; 548 uint16_t oncs; 549 int r; 550 uint64_t iova; 551 NvmeCmd cmd = { 552 .opcode = NVME_ADM_CMD_IDENTIFY, 553 .cdw10 = cpu_to_le32(0x1), 554 }; 555 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size()); 556 557 id = qemu_try_memalign(qemu_real_host_page_size(), id_size); 558 if (!id) { 559 error_setg(errp, "Cannot allocate buffer for identify response"); 560 goto out; 561 } 562 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp); 563 if (r) { 564 error_prepend(errp, "Cannot map buffer for DMA: "); 565 goto out; 566 } 567 568 memset(id, 0, id_size); 569 cmd.dptr.prp1 = cpu_to_le64(iova); 570 if (nvme_admin_cmd_sync(bs, &cmd)) { 571 error_setg(errp, "Failed to identify controller"); 572 goto out; 573 } 574 575 if (le32_to_cpu(id->ctrl.nn) < namespace) { 576 error_setg(errp, "Invalid namespace"); 577 goto out; 578 } 579 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1; 580 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size; 581 /* For now the page list buffer per command is one page, to hold at most 582 * s->page_size / sizeof(uint64_t) entries. */ 583 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 584 s->page_size / sizeof(uint64_t) * s->page_size); 585 586 oncs = le16_to_cpu(id->ctrl.oncs); 587 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES); 588 s->supports_discard = !!(oncs & NVME_ONCS_DSM); 589 590 memset(id, 0, id_size); 591 cmd.cdw10 = 0; 592 cmd.nsid = cpu_to_le32(namespace); 593 if (nvme_admin_cmd_sync(bs, &cmd)) { 594 error_setg(errp, "Failed to identify namespace"); 595 goto out; 596 } 597 598 s->nsze = le64_to_cpu(id->ns.nsze); 599 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)]; 600 601 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) && 602 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) == 603 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) { 604 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP; 605 } 606 607 if (lbaf->ms) { 608 error_setg(errp, "Namespaces with metadata are not yet supported"); 609 goto out; 610 } 611 612 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || 613 (1 << lbaf->ds) > s->page_size) 614 { 615 error_setg(errp, "Namespace has unsupported block size (2^%d)", 616 lbaf->ds); 617 goto out; 618 } 619 620 ret = true; 621 s->blkshift = lbaf->ds; 622 out: 623 qemu_vfio_dma_unmap(s->vfio, id); 624 625 return ret; 626 } 627 628 static void nvme_poll_queue(NVMeQueuePair *q) 629 { 630 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES; 631 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset]; 632 633 trace_nvme_poll_queue(q->s, q->index); 634 /* 635 * Do an early check for completions. q->lock isn't needed because 636 * nvme_process_completion() only runs in the event loop thread and 637 * cannot race with itself. 638 */ 639 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) { 640 return; 641 } 642 643 qemu_mutex_lock(&q->lock); 644 while (nvme_process_completion(q)) { 645 /* Keep polling */ 646 } 647 qemu_mutex_unlock(&q->lock); 648 } 649 650 static void nvme_poll_queues(BDRVNVMeState *s) 651 { 652 int i; 653 654 for (i = 0; i < s->queue_count; i++) { 655 nvme_poll_queue(s->queues[i]); 656 } 657 } 658 659 static void nvme_handle_event(EventNotifier *n) 660 { 661 BDRVNVMeState *s = container_of(n, BDRVNVMeState, 662 irq_notifier[MSIX_SHARED_IRQ_IDX]); 663 664 trace_nvme_handle_event(s); 665 event_notifier_test_and_clear(n); 666 nvme_poll_queues(s); 667 } 668 669 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 670 { 671 BDRVNVMeState *s = bs->opaque; 672 unsigned n = s->queue_count; 673 NVMeQueuePair *q; 674 NvmeCmd cmd; 675 unsigned queue_size = NVME_QUEUE_SIZE; 676 677 assert(n <= UINT16_MAX); 678 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs), 679 n, queue_size, errp); 680 if (!q) { 681 return false; 682 } 683 cmd = (NvmeCmd) { 684 .opcode = NVME_ADM_CMD_CREATE_CQ, 685 .dptr.prp1 = cpu_to_le64(q->cq.iova), 686 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), 687 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC), 688 }; 689 if (nvme_admin_cmd_sync(bs, &cmd)) { 690 error_setg(errp, "Failed to create CQ io queue [%u]", n); 691 goto out_error; 692 } 693 cmd = (NvmeCmd) { 694 .opcode = NVME_ADM_CMD_CREATE_SQ, 695 .dptr.prp1 = cpu_to_le64(q->sq.iova), 696 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), 697 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)), 698 }; 699 if (nvme_admin_cmd_sync(bs, &cmd)) { 700 error_setg(errp, "Failed to create SQ io queue [%u]", n); 701 goto out_error; 702 } 703 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 704 s->queues[n] = q; 705 s->queue_count++; 706 return true; 707 out_error: 708 nvme_free_queue_pair(q); 709 return false; 710 } 711 712 static bool nvme_poll_cb(void *opaque) 713 { 714 EventNotifier *e = opaque; 715 BDRVNVMeState *s = container_of(e, BDRVNVMeState, 716 irq_notifier[MSIX_SHARED_IRQ_IDX]); 717 int i; 718 719 for (i = 0; i < s->queue_count; i++) { 720 NVMeQueuePair *q = s->queues[i]; 721 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES; 722 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset]; 723 724 /* 725 * q->lock isn't needed because nvme_process_completion() only runs in 726 * the event loop thread and cannot race with itself. 727 */ 728 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) { 729 return true; 730 } 731 } 732 return false; 733 } 734 735 static void nvme_poll_ready(EventNotifier *e) 736 { 737 BDRVNVMeState *s = container_of(e, BDRVNVMeState, 738 irq_notifier[MSIX_SHARED_IRQ_IDX]); 739 740 nvme_poll_queues(s); 741 } 742 743 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 744 Error **errp) 745 { 746 BDRVNVMeState *s = bs->opaque; 747 NVMeQueuePair *q; 748 AioContext *aio_context = bdrv_get_aio_context(bs); 749 int ret; 750 uint64_t cap; 751 uint32_t ver; 752 uint64_t timeout_ms; 753 uint64_t deadline, now; 754 volatile NvmeBar *regs = NULL; 755 756 qemu_co_mutex_init(&s->dma_map_lock); 757 qemu_co_queue_init(&s->dma_flush_queue); 758 s->device = g_strdup(device); 759 s->nsid = namespace; 760 s->aio_context = bdrv_get_aio_context(bs); 761 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0); 762 if (ret) { 763 error_setg(errp, "Failed to init event notifier"); 764 return ret; 765 } 766 767 s->vfio = qemu_vfio_open_pci(device, errp); 768 if (!s->vfio) { 769 ret = -EINVAL; 770 goto out; 771 } 772 773 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar), 774 PROT_READ | PROT_WRITE, errp); 775 if (!regs) { 776 ret = -EINVAL; 777 goto out; 778 } 779 /* Perform initialize sequence as described in NVMe spec "7.6.1 780 * Initialization". */ 781 782 cap = le64_to_cpu(regs->cap); 783 trace_nvme_controller_capability_raw(cap); 784 trace_nvme_controller_capability("Maximum Queue Entries Supported", 785 1 + NVME_CAP_MQES(cap)); 786 trace_nvme_controller_capability("Contiguous Queues Required", 787 NVME_CAP_CQR(cap)); 788 trace_nvme_controller_capability("Doorbell Stride", 789 1 << (2 + NVME_CAP_DSTRD(cap))); 790 trace_nvme_controller_capability("Subsystem Reset Supported", 791 NVME_CAP_NSSRS(cap)); 792 trace_nvme_controller_capability("Memory Page Size Minimum", 793 1 << (12 + NVME_CAP_MPSMIN(cap))); 794 trace_nvme_controller_capability("Memory Page Size Maximum", 795 1 << (12 + NVME_CAP_MPSMAX(cap))); 796 if (!NVME_CAP_CSS(cap)) { 797 error_setg(errp, "Device doesn't support NVMe command set"); 798 ret = -EINVAL; 799 goto out; 800 } 801 802 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap)); 803 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t); 804 bs->bl.opt_mem_alignment = s->page_size; 805 bs->bl.request_alignment = s->page_size; 806 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000); 807 808 ver = le32_to_cpu(regs->vs); 809 trace_nvme_controller_spec_version(extract32(ver, 16, 16), 810 extract32(ver, 8, 8), 811 extract32(ver, 0, 8)); 812 813 /* Reset device to get a clean state. */ 814 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE); 815 /* Wait for CSTS.RDY = 0. */ 816 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS; 817 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { 818 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 819 error_setg(errp, "Timeout while waiting for device to reset (%" 820 PRId64 " ms)", 821 timeout_ms); 822 ret = -ETIMEDOUT; 823 goto out; 824 } 825 } 826 827 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0, 828 sizeof(NvmeBar) + NVME_DOORBELL_SIZE, 829 PROT_WRITE, errp); 830 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar)); 831 if (!s->doorbells) { 832 ret = -EINVAL; 833 goto out; 834 } 835 836 /* Set up admin queue. */ 837 s->queues = g_new(NVMeQueuePair *, 1); 838 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp); 839 if (!q) { 840 ret = -EINVAL; 841 goto out; 842 } 843 s->queues[INDEX_ADMIN] = q; 844 s->queue_count = 1; 845 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000); 846 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) | 847 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT)); 848 regs->asq = cpu_to_le64(q->sq.iova); 849 regs->acq = cpu_to_le64(q->cq.iova); 850 851 /* After setting up all control registers we can enable device now. */ 852 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) | 853 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) | 854 CC_EN_MASK); 855 /* Wait for CSTS.RDY = 1. */ 856 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 857 deadline = now + timeout_ms * SCALE_MS; 858 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { 859 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 860 error_setg(errp, "Timeout while waiting for device to start (%" 861 PRId64 " ms)", 862 timeout_ms); 863 ret = -ETIMEDOUT; 864 goto out; 865 } 866 } 867 868 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier, 869 VFIO_PCI_MSIX_IRQ_INDEX, errp); 870 if (ret) { 871 goto out; 872 } 873 aio_set_event_notifier(bdrv_get_aio_context(bs), 874 &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 875 nvme_handle_event, nvme_poll_cb, 876 nvme_poll_ready); 877 878 if (!nvme_identify(bs, namespace, errp)) { 879 ret = -EIO; 880 goto out; 881 } 882 883 /* Set up command queues. */ 884 if (!nvme_add_io_queue(bs, errp)) { 885 ret = -EIO; 886 } 887 out: 888 if (regs) { 889 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar)); 890 } 891 892 /* Cleaning up is done in nvme_file_open() upon error. */ 893 return ret; 894 } 895 896 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 897 * 898 * nvme://0000:44:00.0/1 899 * 900 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 901 * is the PCI address, and the last part is the namespace number starting from 902 * 1 according to the NVMe spec. */ 903 static void nvme_parse_filename(const char *filename, QDict *options, 904 Error **errp) 905 { 906 int pref = strlen("nvme://"); 907 908 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 909 const char *tmp = filename + pref; 910 char *device; 911 const char *namespace; 912 unsigned long ns; 913 const char *slash = strchr(tmp, '/'); 914 if (!slash) { 915 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 916 return; 917 } 918 device = g_strndup(tmp, slash - tmp); 919 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 920 g_free(device); 921 namespace = slash + 1; 922 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 923 error_setg(errp, "Invalid namespace '%s', positive number expected", 924 namespace); 925 return; 926 } 927 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 928 *namespace ? namespace : "1"); 929 } 930 } 931 932 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 933 Error **errp) 934 { 935 int ret; 936 BDRVNVMeState *s = bs->opaque; 937 NvmeCmd cmd = { 938 .opcode = NVME_ADM_CMD_SET_FEATURES, 939 .nsid = cpu_to_le32(s->nsid), 940 .cdw10 = cpu_to_le32(0x06), 941 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 942 }; 943 944 ret = nvme_admin_cmd_sync(bs, &cmd); 945 if (ret) { 946 error_setg(errp, "Failed to configure NVMe write cache"); 947 } 948 return ret; 949 } 950 951 static void nvme_close(BlockDriverState *bs) 952 { 953 BDRVNVMeState *s = bs->opaque; 954 955 for (unsigned i = 0; i < s->queue_count; ++i) { 956 nvme_free_queue_pair(s->queues[i]); 957 } 958 g_free(s->queues); 959 aio_set_event_notifier(bdrv_get_aio_context(bs), 960 &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 961 NULL, NULL, NULL); 962 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]); 963 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map, 964 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE); 965 qemu_vfio_close(s->vfio); 966 967 g_free(s->device); 968 } 969 970 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 971 Error **errp) 972 { 973 const char *device; 974 QemuOpts *opts; 975 int namespace; 976 int ret; 977 BDRVNVMeState *s = bs->opaque; 978 979 bs->supported_write_flags = BDRV_REQ_FUA; 980 981 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 982 qemu_opts_absorb_qdict(opts, options, &error_abort); 983 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 984 if (!device) { 985 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 986 qemu_opts_del(opts); 987 return -EINVAL; 988 } 989 990 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 991 ret = nvme_init(bs, device, namespace, errp); 992 qemu_opts_del(opts); 993 if (ret) { 994 goto fail; 995 } 996 if (flags & BDRV_O_NOCACHE) { 997 if (!s->write_cache_supported) { 998 error_setg(errp, 999 "NVMe controller doesn't support write cache configuration"); 1000 ret = -EINVAL; 1001 } else { 1002 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 1003 errp); 1004 } 1005 if (ret) { 1006 goto fail; 1007 } 1008 } 1009 return 0; 1010 fail: 1011 nvme_close(bs); 1012 return ret; 1013 } 1014 1015 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs) 1016 { 1017 BDRVNVMeState *s = bs->opaque; 1018 return s->nsze << s->blkshift; 1019 } 1020 1021 static uint32_t nvme_get_blocksize(BlockDriverState *bs) 1022 { 1023 BDRVNVMeState *s = bs->opaque; 1024 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); 1025 return UINT32_C(1) << s->blkshift; 1026 } 1027 1028 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) 1029 { 1030 uint32_t blocksize = nvme_get_blocksize(bs); 1031 bsz->phys = blocksize; 1032 bsz->log = blocksize; 1033 return 0; 1034 } 1035 1036 /* Called with s->dma_map_lock */ 1037 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 1038 QEMUIOVector *qiov) 1039 { 1040 int r = 0; 1041 BDRVNVMeState *s = bs->opaque; 1042 1043 s->dma_map_count -= qiov->size; 1044 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 1045 r = qemu_vfio_dma_reset_temporary(s->vfio); 1046 if (!r) { 1047 qemu_co_queue_restart_all(&s->dma_flush_queue); 1048 } 1049 } 1050 return r; 1051 } 1052 1053 /* Called with s->dma_map_lock */ 1054 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 1055 NVMeRequest *req, QEMUIOVector *qiov) 1056 { 1057 BDRVNVMeState *s = bs->opaque; 1058 uint64_t *pagelist = req->prp_list_page; 1059 int i, j, r; 1060 int entries = 0; 1061 Error *local_err = NULL, **errp = NULL; 1062 1063 assert(qiov->size); 1064 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 1065 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 1066 for (i = 0; i < qiov->niov; ++i) { 1067 bool retry = true; 1068 uint64_t iova; 1069 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len, 1070 qemu_real_host_page_size()); 1071 try_map: 1072 r = qemu_vfio_dma_map(s->vfio, 1073 qiov->iov[i].iov_base, 1074 len, true, &iova, errp); 1075 if (r == -ENOSPC) { 1076 /* 1077 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA 1078 * ioctl returns -ENOSPC to signal the user exhausted the DMA 1079 * mappings available for a container since Linux kernel commit 1080 * 492855939bdb ("vfio/type1: Limit DMA mappings per container", 1081 * April 2019, see CVE-2019-3882). 1082 * 1083 * This block driver already handles this error path by checking 1084 * for the -ENOMEM error, so we directly replace -ENOSPC by 1085 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev 1086 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and 1087 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator 1088 * to add more storage to the blockdev. Not something we can do 1089 * easily with an IOMMU :) 1090 */ 1091 r = -ENOMEM; 1092 } 1093 if (r == -ENOMEM && retry) { 1094 /* 1095 * We exhausted the DMA mappings available for our container: 1096 * recycle the volatile IOVA mappings. 1097 */ 1098 retry = false; 1099 trace_nvme_dma_flush_queue_wait(s); 1100 if (s->dma_map_count) { 1101 trace_nvme_dma_map_flush(s); 1102 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 1103 } else { 1104 r = qemu_vfio_dma_reset_temporary(s->vfio); 1105 if (r) { 1106 goto fail; 1107 } 1108 } 1109 errp = &local_err; 1110 1111 goto try_map; 1112 } 1113 if (r) { 1114 goto fail; 1115 } 1116 1117 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 1118 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 1119 } 1120 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 1121 qiov->iov[i].iov_len / s->page_size); 1122 } 1123 1124 s->dma_map_count += qiov->size; 1125 1126 assert(entries <= s->page_size / sizeof(uint64_t)); 1127 switch (entries) { 1128 case 0: 1129 abort(); 1130 case 1: 1131 cmd->dptr.prp1 = pagelist[0]; 1132 cmd->dptr.prp2 = 0; 1133 break; 1134 case 2: 1135 cmd->dptr.prp1 = pagelist[0]; 1136 cmd->dptr.prp2 = pagelist[1]; 1137 break; 1138 default: 1139 cmd->dptr.prp1 = pagelist[0]; 1140 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 1141 break; 1142 } 1143 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 1144 for (i = 0; i < entries; ++i) { 1145 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 1146 } 1147 return 0; 1148 fail: 1149 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 1150 * increment s->dma_map_count. This is okay for fixed mapping memory areas 1151 * because they are already mapped before calling this function; for 1152 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 1153 * calling qemu_vfio_dma_reset_temporary when necessary. */ 1154 if (local_err) { 1155 error_reportf_err(local_err, "Cannot map buffer for DMA: "); 1156 } 1157 return r; 1158 } 1159 1160 typedef struct { 1161 Coroutine *co; 1162 int ret; 1163 AioContext *ctx; 1164 } NVMeCoData; 1165 1166 static void nvme_rw_cb_bh(void *opaque) 1167 { 1168 NVMeCoData *data = opaque; 1169 qemu_coroutine_enter(data->co); 1170 } 1171 1172 static void nvme_rw_cb(void *opaque, int ret) 1173 { 1174 NVMeCoData *data = opaque; 1175 data->ret = ret; 1176 if (!data->co) { 1177 /* The rw coroutine hasn't yielded, don't try to enter. */ 1178 return; 1179 } 1180 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data); 1181 } 1182 1183 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 1184 uint64_t offset, uint64_t bytes, 1185 QEMUIOVector *qiov, 1186 bool is_write, 1187 int flags) 1188 { 1189 int r; 1190 BDRVNVMeState *s = bs->opaque; 1191 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1192 NVMeRequest *req; 1193 1194 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | 1195 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 1196 NvmeCmd cmd = { 1197 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 1198 .nsid = cpu_to_le32(s->nsid), 1199 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 1200 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 1201 .cdw12 = cpu_to_le32(cdw12), 1202 }; 1203 NVMeCoData data = { 1204 .ctx = bdrv_get_aio_context(bs), 1205 .ret = -EINPROGRESS, 1206 }; 1207 1208 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 1209 assert(s->queue_count > 1); 1210 req = nvme_get_free_req(ioq); 1211 assert(req); 1212 1213 qemu_co_mutex_lock(&s->dma_map_lock); 1214 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 1215 qemu_co_mutex_unlock(&s->dma_map_lock); 1216 if (r) { 1217 nvme_put_free_req_and_wake(ioq, req); 1218 return r; 1219 } 1220 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1221 1222 data.co = qemu_coroutine_self(); 1223 while (data.ret == -EINPROGRESS) { 1224 qemu_coroutine_yield(); 1225 } 1226 1227 qemu_co_mutex_lock(&s->dma_map_lock); 1228 r = nvme_cmd_unmap_qiov(bs, qiov); 1229 qemu_co_mutex_unlock(&s->dma_map_lock); 1230 if (r) { 1231 return r; 1232 } 1233 1234 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 1235 return data.ret; 1236 } 1237 1238 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 1239 const QEMUIOVector *qiov) 1240 { 1241 int i; 1242 BDRVNVMeState *s = bs->opaque; 1243 1244 for (i = 0; i < qiov->niov; ++i) { 1245 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, 1246 qemu_real_host_page_size()) || 1247 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) { 1248 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 1249 qiov->iov[i].iov_len, s->page_size); 1250 return false; 1251 } 1252 } 1253 return true; 1254 } 1255 1256 static coroutine_fn int nvme_co_prw(BlockDriverState *bs, 1257 uint64_t offset, uint64_t bytes, 1258 QEMUIOVector *qiov, bool is_write, 1259 int flags) 1260 { 1261 BDRVNVMeState *s = bs->opaque; 1262 int r; 1263 QEMU_AUTO_VFREE uint8_t *buf = NULL; 1264 QEMUIOVector local_qiov; 1265 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size()); 1266 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 1267 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 1268 assert(bytes <= s->max_transfer); 1269 if (nvme_qiov_aligned(bs, qiov)) { 1270 s->stats.aligned_accesses++; 1271 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 1272 } 1273 s->stats.unaligned_accesses++; 1274 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 1275 buf = qemu_try_memalign(qemu_real_host_page_size(), len); 1276 1277 if (!buf) { 1278 return -ENOMEM; 1279 } 1280 qemu_iovec_init(&local_qiov, 1); 1281 if (is_write) { 1282 qemu_iovec_to_buf(qiov, 0, buf, bytes); 1283 } 1284 qemu_iovec_add(&local_qiov, buf, bytes); 1285 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1286 qemu_iovec_destroy(&local_qiov); 1287 if (!r && !is_write) { 1288 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1289 } 1290 return r; 1291 } 1292 1293 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1294 int64_t offset, int64_t bytes, 1295 QEMUIOVector *qiov, 1296 BdrvRequestFlags flags) 1297 { 1298 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1299 } 1300 1301 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1302 int64_t offset, int64_t bytes, 1303 QEMUIOVector *qiov, 1304 BdrvRequestFlags flags) 1305 { 1306 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1307 } 1308 1309 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1310 { 1311 BDRVNVMeState *s = bs->opaque; 1312 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1313 NVMeRequest *req; 1314 NvmeCmd cmd = { 1315 .opcode = NVME_CMD_FLUSH, 1316 .nsid = cpu_to_le32(s->nsid), 1317 }; 1318 NVMeCoData data = { 1319 .ctx = bdrv_get_aio_context(bs), 1320 .ret = -EINPROGRESS, 1321 }; 1322 1323 assert(s->queue_count > 1); 1324 req = nvme_get_free_req(ioq); 1325 assert(req); 1326 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1327 1328 data.co = qemu_coroutine_self(); 1329 if (data.ret == -EINPROGRESS) { 1330 qemu_coroutine_yield(); 1331 } 1332 1333 return data.ret; 1334 } 1335 1336 1337 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs, 1338 int64_t offset, 1339 int64_t bytes, 1340 BdrvRequestFlags flags) 1341 { 1342 BDRVNVMeState *s = bs->opaque; 1343 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1344 NVMeRequest *req; 1345 uint32_t cdw12; 1346 1347 if (!s->supports_write_zeroes) { 1348 return -ENOTSUP; 1349 } 1350 1351 if (bytes == 0) { 1352 return 0; 1353 } 1354 1355 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF; 1356 /* 1357 * We should not lose information. pwrite_zeroes_alignment and 1358 * max_pwrite_zeroes guarantees it. 1359 */ 1360 assert(((cdw12 + 1) << s->blkshift) == bytes); 1361 1362 NvmeCmd cmd = { 1363 .opcode = NVME_CMD_WRITE_ZEROES, 1364 .nsid = cpu_to_le32(s->nsid), 1365 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 1366 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 1367 }; 1368 1369 NVMeCoData data = { 1370 .ctx = bdrv_get_aio_context(bs), 1371 .ret = -EINPROGRESS, 1372 }; 1373 1374 if (flags & BDRV_REQ_MAY_UNMAP) { 1375 cdw12 |= (1 << 25); 1376 } 1377 1378 if (flags & BDRV_REQ_FUA) { 1379 cdw12 |= (1 << 30); 1380 } 1381 1382 cmd.cdw12 = cpu_to_le32(cdw12); 1383 1384 trace_nvme_write_zeroes(s, offset, bytes, flags); 1385 assert(s->queue_count > 1); 1386 req = nvme_get_free_req(ioq); 1387 assert(req); 1388 1389 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1390 1391 data.co = qemu_coroutine_self(); 1392 while (data.ret == -EINPROGRESS) { 1393 qemu_coroutine_yield(); 1394 } 1395 1396 trace_nvme_rw_done(s, true, offset, bytes, data.ret); 1397 return data.ret; 1398 } 1399 1400 1401 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs, 1402 int64_t offset, 1403 int64_t bytes) 1404 { 1405 BDRVNVMeState *s = bs->opaque; 1406 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1407 NVMeRequest *req; 1408 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL; 1409 QEMUIOVector local_qiov; 1410 int ret; 1411 1412 NvmeCmd cmd = { 1413 .opcode = NVME_CMD_DSM, 1414 .nsid = cpu_to_le32(s->nsid), 1415 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/ 1416 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/ 1417 }; 1418 1419 NVMeCoData data = { 1420 .ctx = bdrv_get_aio_context(bs), 1421 .ret = -EINPROGRESS, 1422 }; 1423 1424 if (!s->supports_discard) { 1425 return -ENOTSUP; 1426 } 1427 1428 assert(s->queue_count > 1); 1429 1430 /* 1431 * Filling the @buf requires @offset and @bytes to satisfy restrictions 1432 * defined in nvme_refresh_limits(). 1433 */ 1434 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift)); 1435 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift)); 1436 assert((bytes >> s->blkshift) <= UINT32_MAX); 1437 1438 buf = qemu_try_memalign(s->page_size, s->page_size); 1439 if (!buf) { 1440 return -ENOMEM; 1441 } 1442 memset(buf, 0, s->page_size); 1443 buf->nlb = cpu_to_le32(bytes >> s->blkshift); 1444 buf->slba = cpu_to_le64(offset >> s->blkshift); 1445 buf->cattr = 0; 1446 1447 qemu_iovec_init(&local_qiov, 1); 1448 qemu_iovec_add(&local_qiov, buf, 4096); 1449 1450 req = nvme_get_free_req(ioq); 1451 assert(req); 1452 1453 qemu_co_mutex_lock(&s->dma_map_lock); 1454 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov); 1455 qemu_co_mutex_unlock(&s->dma_map_lock); 1456 1457 if (ret) { 1458 nvme_put_free_req_and_wake(ioq, req); 1459 goto out; 1460 } 1461 1462 trace_nvme_dsm(s, offset, bytes); 1463 1464 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1465 1466 data.co = qemu_coroutine_self(); 1467 while (data.ret == -EINPROGRESS) { 1468 qemu_coroutine_yield(); 1469 } 1470 1471 qemu_co_mutex_lock(&s->dma_map_lock); 1472 ret = nvme_cmd_unmap_qiov(bs, &local_qiov); 1473 qemu_co_mutex_unlock(&s->dma_map_lock); 1474 1475 if (ret) { 1476 goto out; 1477 } 1478 1479 ret = data.ret; 1480 trace_nvme_dsm_done(s, offset, bytes, ret); 1481 out: 1482 qemu_iovec_destroy(&local_qiov); 1483 return ret; 1484 1485 } 1486 1487 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset, 1488 bool exact, PreallocMode prealloc, 1489 BdrvRequestFlags flags, Error **errp) 1490 { 1491 int64_t cur_length; 1492 1493 if (prealloc != PREALLOC_MODE_OFF) { 1494 error_setg(errp, "Unsupported preallocation mode '%s'", 1495 PreallocMode_str(prealloc)); 1496 return -ENOTSUP; 1497 } 1498 1499 cur_length = nvme_co_getlength(bs); 1500 if (offset != cur_length && exact) { 1501 error_setg(errp, "Cannot resize NVMe devices"); 1502 return -ENOTSUP; 1503 } else if (offset > cur_length) { 1504 error_setg(errp, "Cannot grow NVMe devices"); 1505 return -EINVAL; 1506 } 1507 1508 return 0; 1509 } 1510 1511 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1512 BlockReopenQueue *queue, Error **errp) 1513 { 1514 return 0; 1515 } 1516 1517 static void nvme_refresh_filename(BlockDriverState *bs) 1518 { 1519 BDRVNVMeState *s = bs->opaque; 1520 1521 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", 1522 s->device, s->nsid); 1523 } 1524 1525 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1526 { 1527 BDRVNVMeState *s = bs->opaque; 1528 1529 bs->bl.opt_mem_alignment = s->page_size; 1530 bs->bl.request_alignment = s->page_size; 1531 bs->bl.max_transfer = s->max_transfer; 1532 1533 /* 1534 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get 1535 * at most 0xFFFF 1536 */ 1537 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16); 1538 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment, 1539 1UL << s->blkshift); 1540 1541 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift; 1542 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment, 1543 1UL << s->blkshift); 1544 } 1545 1546 static void nvme_detach_aio_context(BlockDriverState *bs) 1547 { 1548 BDRVNVMeState *s = bs->opaque; 1549 1550 for (unsigned i = 0; i < s->queue_count; i++) { 1551 NVMeQueuePair *q = s->queues[i]; 1552 1553 qemu_bh_delete(q->completion_bh); 1554 q->completion_bh = NULL; 1555 } 1556 1557 aio_set_event_notifier(bdrv_get_aio_context(bs), 1558 &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 1559 NULL, NULL, NULL); 1560 } 1561 1562 static void nvme_attach_aio_context(BlockDriverState *bs, 1563 AioContext *new_context) 1564 { 1565 BDRVNVMeState *s = bs->opaque; 1566 1567 s->aio_context = new_context; 1568 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 1569 nvme_handle_event, nvme_poll_cb, 1570 nvme_poll_ready); 1571 1572 for (unsigned i = 0; i < s->queue_count; i++) { 1573 NVMeQueuePair *q = s->queues[i]; 1574 1575 q->completion_bh = 1576 aio_bh_new(new_context, nvme_process_completion_bh, q); 1577 } 1578 } 1579 1580 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size, 1581 Error **errp) 1582 { 1583 int ret; 1584 BDRVNVMeState *s = bs->opaque; 1585 1586 /* 1587 * FIXME: we may run out of IOVA addresses after repeated 1588 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1589 * doesn't reclaim addresses for fixed mappings. 1590 */ 1591 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp); 1592 return ret == 0; 1593 } 1594 1595 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size) 1596 { 1597 BDRVNVMeState *s = bs->opaque; 1598 1599 qemu_vfio_dma_unmap(s->vfio, host); 1600 } 1601 1602 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs) 1603 { 1604 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1); 1605 BDRVNVMeState *s = bs->opaque; 1606 1607 stats->driver = BLOCKDEV_DRIVER_NVME; 1608 stats->u.nvme = (BlockStatsSpecificNvme) { 1609 .completion_errors = s->stats.completion_errors, 1610 .aligned_accesses = s->stats.aligned_accesses, 1611 .unaligned_accesses = s->stats.unaligned_accesses, 1612 }; 1613 1614 return stats; 1615 } 1616 1617 static const char *const nvme_strong_runtime_opts[] = { 1618 NVME_BLOCK_OPT_DEVICE, 1619 NVME_BLOCK_OPT_NAMESPACE, 1620 1621 NULL 1622 }; 1623 1624 static BlockDriver bdrv_nvme = { 1625 .format_name = "nvme", 1626 .protocol_name = "nvme", 1627 .instance_size = sizeof(BDRVNVMeState), 1628 1629 .bdrv_co_create_opts = bdrv_co_create_opts_simple, 1630 .create_opts = &bdrv_create_opts_simple, 1631 1632 .bdrv_parse_filename = nvme_parse_filename, 1633 .bdrv_file_open = nvme_file_open, 1634 .bdrv_close = nvme_close, 1635 .bdrv_co_getlength = nvme_co_getlength, 1636 .bdrv_probe_blocksizes = nvme_probe_blocksizes, 1637 .bdrv_co_truncate = nvme_co_truncate, 1638 1639 .bdrv_co_preadv = nvme_co_preadv, 1640 .bdrv_co_pwritev = nvme_co_pwritev, 1641 1642 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes, 1643 .bdrv_co_pdiscard = nvme_co_pdiscard, 1644 1645 .bdrv_co_flush_to_disk = nvme_co_flush, 1646 .bdrv_reopen_prepare = nvme_reopen_prepare, 1647 1648 .bdrv_refresh_filename = nvme_refresh_filename, 1649 .bdrv_refresh_limits = nvme_refresh_limits, 1650 .strong_runtime_opts = nvme_strong_runtime_opts, 1651 .bdrv_get_specific_stats = nvme_get_specific_stats, 1652 1653 .bdrv_detach_aio_context = nvme_detach_aio_context, 1654 .bdrv_attach_aio_context = nvme_attach_aio_context, 1655 1656 .bdrv_register_buf = nvme_register_buf, 1657 .bdrv_unregister_buf = nvme_unregister_buf, 1658 }; 1659 1660 static void bdrv_nvme_init(void) 1661 { 1662 bdrv_register(&bdrv_nvme); 1663 } 1664 1665 block_init(bdrv_nvme_init); 1666