xref: /openbmc/qemu/block/nvme.c (revision 988fa103)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/module.h"
21 #include "qemu/cutils.h"
22 #include "qemu/option.h"
23 #include "qemu/vfio-helpers.h"
24 #include "block/block_int.h"
25 #include "trace.h"
26 
27 #include "block/nvme.h"
28 
29 #define NVME_SQ_ENTRY_BYTES 64
30 #define NVME_CQ_ENTRY_BYTES 16
31 #define NVME_QUEUE_SIZE 128
32 #define NVME_BAR_SIZE 8192
33 
34 typedef struct {
35     int32_t  head, tail;
36     uint8_t  *queue;
37     uint64_t iova;
38     /* Hardware MMIO register */
39     volatile uint32_t *doorbell;
40 } NVMeQueue;
41 
42 typedef struct {
43     BlockCompletionFunc *cb;
44     void *opaque;
45     int cid;
46     void *prp_list_page;
47     uint64_t prp_list_iova;
48     bool busy;
49 } NVMeRequest;
50 
51 typedef struct {
52     CoQueue     free_req_queue;
53     QemuMutex   lock;
54 
55     /* Fields protected by BQL */
56     int         index;
57     uint8_t     *prp_list_pages;
58 
59     /* Fields protected by @lock */
60     NVMeQueue   sq, cq;
61     int         cq_phase;
62     NVMeRequest reqs[NVME_QUEUE_SIZE];
63     bool        busy;
64     int         need_kick;
65     int         inflight;
66 } NVMeQueuePair;
67 
68 /* Memory mapped registers */
69 typedef volatile struct {
70     uint64_t cap;
71     uint32_t vs;
72     uint32_t intms;
73     uint32_t intmc;
74     uint32_t cc;
75     uint32_t reserved0;
76     uint32_t csts;
77     uint32_t nssr;
78     uint32_t aqa;
79     uint64_t asq;
80     uint64_t acq;
81     uint32_t cmbloc;
82     uint32_t cmbsz;
83     uint8_t  reserved1[0xec0];
84     uint8_t  cmd_set_specfic[0x100];
85     uint32_t doorbells[];
86 } NVMeRegs;
87 
88 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
89 
90 typedef struct {
91     AioContext *aio_context;
92     QEMUVFIOState *vfio;
93     NVMeRegs *regs;
94     /* The submission/completion queue pairs.
95      * [0]: admin queue.
96      * [1..]: io queues.
97      */
98     NVMeQueuePair **queues;
99     int nr_queues;
100     size_t page_size;
101     /* How many uint32_t elements does each doorbell entry take. */
102     size_t doorbell_scale;
103     bool write_cache_supported;
104     EventNotifier irq_notifier;
105 
106     uint64_t nsze; /* Namespace size reported by identify command */
107     int nsid;      /* The namespace id to read/write data. */
108     int blkshift;
109 
110     uint64_t max_transfer;
111     bool plugged;
112 
113     CoMutex dma_map_lock;
114     CoQueue dma_flush_queue;
115 
116     /* Total size of mapped qiov, accessed under dma_map_lock */
117     int dma_map_count;
118 
119     /* PCI address (required for nvme_refresh_filename()) */
120     char *device;
121 } BDRVNVMeState;
122 
123 #define NVME_BLOCK_OPT_DEVICE "device"
124 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
125 
126 static QemuOptsList runtime_opts = {
127     .name = "nvme",
128     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
129     .desc = {
130         {
131             .name = NVME_BLOCK_OPT_DEVICE,
132             .type = QEMU_OPT_STRING,
133             .help = "NVMe PCI device address",
134         },
135         {
136             .name = NVME_BLOCK_OPT_NAMESPACE,
137             .type = QEMU_OPT_NUMBER,
138             .help = "NVMe namespace",
139         },
140         { /* end of list */ }
141     },
142 };
143 
144 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
145                             int nentries, int entry_bytes, Error **errp)
146 {
147     BDRVNVMeState *s = bs->opaque;
148     size_t bytes;
149     int r;
150 
151     bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
152     q->head = q->tail = 0;
153     q->queue = qemu_try_blockalign0(bs, bytes);
154 
155     if (!q->queue) {
156         error_setg(errp, "Cannot allocate queue");
157         return;
158     }
159     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
160     if (r) {
161         error_setg(errp, "Cannot map queue");
162     }
163 }
164 
165 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
166 {
167     qemu_vfree(q->prp_list_pages);
168     qemu_vfree(q->sq.queue);
169     qemu_vfree(q->cq.queue);
170     qemu_mutex_destroy(&q->lock);
171     g_free(q);
172 }
173 
174 static void nvme_free_req_queue_cb(void *opaque)
175 {
176     NVMeQueuePair *q = opaque;
177 
178     qemu_mutex_lock(&q->lock);
179     while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
180         /* Retry all pending requests */
181     }
182     qemu_mutex_unlock(&q->lock);
183 }
184 
185 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
186                                              int idx, int size,
187                                              Error **errp)
188 {
189     int i, r;
190     BDRVNVMeState *s = bs->opaque;
191     Error *local_err = NULL;
192     NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
193     uint64_t prp_list_iova;
194 
195     qemu_mutex_init(&q->lock);
196     q->index = idx;
197     qemu_co_queue_init(&q->free_req_queue);
198     q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
199     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
200                           s->page_size * NVME_QUEUE_SIZE,
201                           false, &prp_list_iova);
202     if (r) {
203         goto fail;
204     }
205     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
206         NVMeRequest *req = &q->reqs[i];
207         req->cid = i + 1;
208         req->prp_list_page = q->prp_list_pages + i * s->page_size;
209         req->prp_list_iova = prp_list_iova + i * s->page_size;
210     }
211     nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
212     if (local_err) {
213         error_propagate(errp, local_err);
214         goto fail;
215     }
216     q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
217 
218     nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
219     if (local_err) {
220         error_propagate(errp, local_err);
221         goto fail;
222     }
223     q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
224 
225     return q;
226 fail:
227     nvme_free_queue_pair(bs, q);
228     return NULL;
229 }
230 
231 /* With q->lock */
232 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
233 {
234     if (s->plugged || !q->need_kick) {
235         return;
236     }
237     trace_nvme_kick(s, q->index);
238     assert(!(q->sq.tail & 0xFF00));
239     /* Fence the write to submission queue entry before notifying the device. */
240     smp_wmb();
241     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
242     q->inflight += q->need_kick;
243     q->need_kick = 0;
244 }
245 
246 /* Find a free request element if any, otherwise:
247  * a) if in coroutine context, try to wait for one to become available;
248  * b) if not in coroutine, return NULL;
249  */
250 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
251 {
252     int i;
253     NVMeRequest *req = NULL;
254 
255     qemu_mutex_lock(&q->lock);
256     while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
257         /* We have to leave one slot empty as that is the full queue case (head
258          * == tail + 1). */
259         if (qemu_in_coroutine()) {
260             trace_nvme_free_req_queue_wait(q);
261             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
262         } else {
263             qemu_mutex_unlock(&q->lock);
264             return NULL;
265         }
266     }
267     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
268         if (!q->reqs[i].busy) {
269             q->reqs[i].busy = true;
270             req = &q->reqs[i];
271             break;
272         }
273     }
274     /* We have checked inflight and need_kick while holding q->lock, so one
275      * free req must be available. */
276     assert(req);
277     qemu_mutex_unlock(&q->lock);
278     return req;
279 }
280 
281 static inline int nvme_translate_error(const NvmeCqe *c)
282 {
283     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
284     if (status) {
285         trace_nvme_error(le32_to_cpu(c->result),
286                          le16_to_cpu(c->sq_head),
287                          le16_to_cpu(c->sq_id),
288                          le16_to_cpu(c->cid),
289                          le16_to_cpu(status));
290     }
291     switch (status) {
292     case 0:
293         return 0;
294     case 1:
295         return -ENOSYS;
296     case 2:
297         return -EINVAL;
298     default:
299         return -EIO;
300     }
301 }
302 
303 /* With q->lock */
304 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
305 {
306     bool progress = false;
307     NVMeRequest *preq;
308     NVMeRequest req;
309     NvmeCqe *c;
310 
311     trace_nvme_process_completion(s, q->index, q->inflight);
312     if (q->busy || s->plugged) {
313         trace_nvme_process_completion_queue_busy(s, q->index);
314         return false;
315     }
316     q->busy = true;
317     assert(q->inflight >= 0);
318     while (q->inflight) {
319         int16_t cid;
320         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
321         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
322             break;
323         }
324         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
325         if (!q->cq.head) {
326             q->cq_phase = !q->cq_phase;
327         }
328         cid = le16_to_cpu(c->cid);
329         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
330             fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
331                     cid);
332             continue;
333         }
334         assert(cid <= NVME_QUEUE_SIZE);
335         trace_nvme_complete_command(s, q->index, cid);
336         preq = &q->reqs[cid - 1];
337         req = *preq;
338         assert(req.cid == cid);
339         assert(req.cb);
340         preq->busy = false;
341         preq->cb = preq->opaque = NULL;
342         qemu_mutex_unlock(&q->lock);
343         req.cb(req.opaque, nvme_translate_error(c));
344         qemu_mutex_lock(&q->lock);
345         q->inflight--;
346         progress = true;
347     }
348     if (progress) {
349         /* Notify the device so it can post more completions. */
350         smp_mb_release();
351         *q->cq.doorbell = cpu_to_le32(q->cq.head);
352         if (!qemu_co_queue_empty(&q->free_req_queue)) {
353             aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
354         }
355     }
356     q->busy = false;
357     return progress;
358 }
359 
360 static void nvme_trace_command(const NvmeCmd *cmd)
361 {
362     int i;
363 
364     for (i = 0; i < 8; ++i) {
365         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
366         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
367                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
368     }
369 }
370 
371 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
372                                 NVMeRequest *req,
373                                 NvmeCmd *cmd, BlockCompletionFunc cb,
374                                 void *opaque)
375 {
376     assert(!req->cb);
377     req->cb = cb;
378     req->opaque = opaque;
379     cmd->cid = cpu_to_le32(req->cid);
380 
381     trace_nvme_submit_command(s, q->index, req->cid);
382     nvme_trace_command(cmd);
383     qemu_mutex_lock(&q->lock);
384     memcpy((uint8_t *)q->sq.queue +
385            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
386     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
387     q->need_kick++;
388     nvme_kick(s, q);
389     nvme_process_completion(s, q);
390     qemu_mutex_unlock(&q->lock);
391 }
392 
393 static void nvme_cmd_sync_cb(void *opaque, int ret)
394 {
395     int *pret = opaque;
396     *pret = ret;
397     aio_wait_kick();
398 }
399 
400 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
401                          NvmeCmd *cmd)
402 {
403     NVMeRequest *req;
404     BDRVNVMeState *s = bs->opaque;
405     int ret = -EINPROGRESS;
406     req = nvme_get_free_req(q);
407     if (!req) {
408         return -EBUSY;
409     }
410     nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
411 
412     BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
413     return ret;
414 }
415 
416 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
417 {
418     BDRVNVMeState *s = bs->opaque;
419     NvmeIdCtrl *idctrl;
420     NvmeIdNs *idns;
421     NvmeLBAF *lbaf;
422     uint8_t *resp;
423     int r;
424     uint64_t iova;
425     NvmeCmd cmd = {
426         .opcode = NVME_ADM_CMD_IDENTIFY,
427         .cdw10 = cpu_to_le32(0x1),
428     };
429 
430     resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
431     if (!resp) {
432         error_setg(errp, "Cannot allocate buffer for identify response");
433         goto out;
434     }
435     idctrl = (NvmeIdCtrl *)resp;
436     idns = (NvmeIdNs *)resp;
437     r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
438     if (r) {
439         error_setg(errp, "Cannot map buffer for DMA");
440         goto out;
441     }
442     cmd.prp1 = cpu_to_le64(iova);
443 
444     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
445         error_setg(errp, "Failed to identify controller");
446         goto out;
447     }
448 
449     if (le32_to_cpu(idctrl->nn) < namespace) {
450         error_setg(errp, "Invalid namespace");
451         goto out;
452     }
453     s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
454     s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
455     /* For now the page list buffer per command is one page, to hold at most
456      * s->page_size / sizeof(uint64_t) entries. */
457     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
458                           s->page_size / sizeof(uint64_t) * s->page_size);
459 
460     memset(resp, 0, 4096);
461 
462     cmd.cdw10 = 0;
463     cmd.nsid = cpu_to_le32(namespace);
464     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
465         error_setg(errp, "Failed to identify namespace");
466         goto out;
467     }
468 
469     s->nsze = le64_to_cpu(idns->nsze);
470     lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
471 
472     if (lbaf->ms) {
473         error_setg(errp, "Namespaces with metadata are not yet supported");
474         goto out;
475     }
476 
477     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
478         (1 << lbaf->ds) > s->page_size)
479     {
480         error_setg(errp, "Namespace has unsupported block size (2^%d)",
481                    lbaf->ds);
482         goto out;
483     }
484 
485     s->blkshift = lbaf->ds;
486 out:
487     qemu_vfio_dma_unmap(s->vfio, resp);
488     qemu_vfree(resp);
489 }
490 
491 static bool nvme_poll_queues(BDRVNVMeState *s)
492 {
493     bool progress = false;
494     int i;
495 
496     for (i = 0; i < s->nr_queues; i++) {
497         NVMeQueuePair *q = s->queues[i];
498         qemu_mutex_lock(&q->lock);
499         while (nvme_process_completion(s, q)) {
500             /* Keep polling */
501             progress = true;
502         }
503         qemu_mutex_unlock(&q->lock);
504     }
505     return progress;
506 }
507 
508 static void nvme_handle_event(EventNotifier *n)
509 {
510     BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
511 
512     trace_nvme_handle_event(s);
513     event_notifier_test_and_clear(n);
514     nvme_poll_queues(s);
515 }
516 
517 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
518 {
519     BDRVNVMeState *s = bs->opaque;
520     int n = s->nr_queues;
521     NVMeQueuePair *q;
522     NvmeCmd cmd;
523     int queue_size = NVME_QUEUE_SIZE;
524 
525     q = nvme_create_queue_pair(bs, n, queue_size, errp);
526     if (!q) {
527         return false;
528     }
529     cmd = (NvmeCmd) {
530         .opcode = NVME_ADM_CMD_CREATE_CQ,
531         .prp1 = cpu_to_le64(q->cq.iova),
532         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
533         .cdw11 = cpu_to_le32(0x3),
534     };
535     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
536         error_setg(errp, "Failed to create io queue [%d]", n);
537         nvme_free_queue_pair(bs, q);
538         return false;
539     }
540     cmd = (NvmeCmd) {
541         .opcode = NVME_ADM_CMD_CREATE_SQ,
542         .prp1 = cpu_to_le64(q->sq.iova),
543         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
544         .cdw11 = cpu_to_le32(0x1 | (n << 16)),
545     };
546     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
547         error_setg(errp, "Failed to create io queue [%d]", n);
548         nvme_free_queue_pair(bs, q);
549         return false;
550     }
551     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
552     s->queues[n] = q;
553     s->nr_queues++;
554     return true;
555 }
556 
557 static bool nvme_poll_cb(void *opaque)
558 {
559     EventNotifier *e = opaque;
560     BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
561     bool progress = false;
562 
563     trace_nvme_poll_cb(s);
564     progress = nvme_poll_queues(s);
565     return progress;
566 }
567 
568 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
569                      Error **errp)
570 {
571     BDRVNVMeState *s = bs->opaque;
572     int ret;
573     uint64_t cap;
574     uint64_t timeout_ms;
575     uint64_t deadline, now;
576     Error *local_err = NULL;
577 
578     qemu_co_mutex_init(&s->dma_map_lock);
579     qemu_co_queue_init(&s->dma_flush_queue);
580     s->device = g_strdup(device);
581     s->nsid = namespace;
582     s->aio_context = bdrv_get_aio_context(bs);
583     ret = event_notifier_init(&s->irq_notifier, 0);
584     if (ret) {
585         error_setg(errp, "Failed to init event notifier");
586         return ret;
587     }
588 
589     s->vfio = qemu_vfio_open_pci(device, errp);
590     if (!s->vfio) {
591         ret = -EINVAL;
592         goto out;
593     }
594 
595     s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
596     if (!s->regs) {
597         ret = -EINVAL;
598         goto out;
599     }
600 
601     /* Perform initialize sequence as described in NVMe spec "7.6.1
602      * Initialization". */
603 
604     cap = le64_to_cpu(s->regs->cap);
605     if (!(cap & (1ULL << 37))) {
606         error_setg(errp, "Device doesn't support NVMe command set");
607         ret = -EINVAL;
608         goto out;
609     }
610 
611     s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
612     s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
613     bs->bl.opt_mem_alignment = s->page_size;
614     timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
615 
616     /* Reset device to get a clean state. */
617     s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
618     /* Wait for CSTS.RDY = 0. */
619     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
620     while (le32_to_cpu(s->regs->csts) & 0x1) {
621         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
622             error_setg(errp, "Timeout while waiting for device to reset (%"
623                              PRId64 " ms)",
624                        timeout_ms);
625             ret = -ETIMEDOUT;
626             goto out;
627         }
628     }
629 
630     /* Set up admin queue. */
631     s->queues = g_new(NVMeQueuePair *, 1);
632     s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
633     if (!s->queues[0]) {
634         ret = -EINVAL;
635         goto out;
636     }
637     s->nr_queues = 1;
638     QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
639     s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
640     s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
641     s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
642 
643     /* After setting up all control registers we can enable device now. */
644     s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
645                               (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
646                               0x1);
647     /* Wait for CSTS.RDY = 1. */
648     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
649     deadline = now + timeout_ms * 1000000;
650     while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
651         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
652             error_setg(errp, "Timeout while waiting for device to start (%"
653                              PRId64 " ms)",
654                        timeout_ms);
655             ret = -ETIMEDOUT;
656             goto out;
657         }
658     }
659 
660     ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
661                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
662     if (ret) {
663         goto out;
664     }
665     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
666                            false, nvme_handle_event, nvme_poll_cb);
667 
668     nvme_identify(bs, namespace, &local_err);
669     if (local_err) {
670         error_propagate(errp, local_err);
671         ret = -EIO;
672         goto out;
673     }
674 
675     /* Set up command queues. */
676     if (!nvme_add_io_queue(bs, errp)) {
677         ret = -EIO;
678     }
679 out:
680     /* Cleaning up is done in nvme_file_open() upon error. */
681     return ret;
682 }
683 
684 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
685  *
686  *     nvme://0000:44:00.0/1
687  *
688  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
689  * is the PCI address, and the last part is the namespace number starting from
690  * 1 according to the NVMe spec. */
691 static void nvme_parse_filename(const char *filename, QDict *options,
692                                 Error **errp)
693 {
694     int pref = strlen("nvme://");
695 
696     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
697         const char *tmp = filename + pref;
698         char *device;
699         const char *namespace;
700         unsigned long ns;
701         const char *slash = strchr(tmp, '/');
702         if (!slash) {
703             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
704             return;
705         }
706         device = g_strndup(tmp, slash - tmp);
707         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
708         g_free(device);
709         namespace = slash + 1;
710         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
711             error_setg(errp, "Invalid namespace '%s', positive number expected",
712                        namespace);
713             return;
714         }
715         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
716                       *namespace ? namespace : "1");
717     }
718 }
719 
720 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
721                                            Error **errp)
722 {
723     int ret;
724     BDRVNVMeState *s = bs->opaque;
725     NvmeCmd cmd = {
726         .opcode = NVME_ADM_CMD_SET_FEATURES,
727         .nsid = cpu_to_le32(s->nsid),
728         .cdw10 = cpu_to_le32(0x06),
729         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
730     };
731 
732     ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
733     if (ret) {
734         error_setg(errp, "Failed to configure NVMe write cache");
735     }
736     return ret;
737 }
738 
739 static void nvme_close(BlockDriverState *bs)
740 {
741     int i;
742     BDRVNVMeState *s = bs->opaque;
743 
744     for (i = 0; i < s->nr_queues; ++i) {
745         nvme_free_queue_pair(bs, s->queues[i]);
746     }
747     g_free(s->queues);
748     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
749                            false, NULL, NULL);
750     event_notifier_cleanup(&s->irq_notifier);
751     qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
752     qemu_vfio_close(s->vfio);
753 
754     g_free(s->device);
755 }
756 
757 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
758                           Error **errp)
759 {
760     const char *device;
761     QemuOpts *opts;
762     int namespace;
763     int ret;
764     BDRVNVMeState *s = bs->opaque;
765 
766     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
767     qemu_opts_absorb_qdict(opts, options, &error_abort);
768     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
769     if (!device) {
770         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
771         qemu_opts_del(opts);
772         return -EINVAL;
773     }
774 
775     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
776     ret = nvme_init(bs, device, namespace, errp);
777     qemu_opts_del(opts);
778     if (ret) {
779         goto fail;
780     }
781     if (flags & BDRV_O_NOCACHE) {
782         if (!s->write_cache_supported) {
783             error_setg(errp,
784                        "NVMe controller doesn't support write cache configuration");
785             ret = -EINVAL;
786         } else {
787             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
788                                                   errp);
789         }
790         if (ret) {
791             goto fail;
792         }
793     }
794     bs->supported_write_flags = BDRV_REQ_FUA;
795     return 0;
796 fail:
797     nvme_close(bs);
798     return ret;
799 }
800 
801 static int64_t nvme_getlength(BlockDriverState *bs)
802 {
803     BDRVNVMeState *s = bs->opaque;
804     return s->nsze << s->blkshift;
805 }
806 
807 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
808 {
809     BDRVNVMeState *s = bs->opaque;
810     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
811     return UINT32_C(1) << s->blkshift;
812 }
813 
814 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
815 {
816     uint32_t blocksize = nvme_get_blocksize(bs);
817     bsz->phys = blocksize;
818     bsz->log = blocksize;
819     return 0;
820 }
821 
822 /* Called with s->dma_map_lock */
823 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
824                                             QEMUIOVector *qiov)
825 {
826     int r = 0;
827     BDRVNVMeState *s = bs->opaque;
828 
829     s->dma_map_count -= qiov->size;
830     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
831         r = qemu_vfio_dma_reset_temporary(s->vfio);
832         if (!r) {
833             qemu_co_queue_restart_all(&s->dma_flush_queue);
834         }
835     }
836     return r;
837 }
838 
839 /* Called with s->dma_map_lock */
840 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
841                                           NVMeRequest *req, QEMUIOVector *qiov)
842 {
843     BDRVNVMeState *s = bs->opaque;
844     uint64_t *pagelist = req->prp_list_page;
845     int i, j, r;
846     int entries = 0;
847 
848     assert(qiov->size);
849     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
850     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
851     for (i = 0; i < qiov->niov; ++i) {
852         bool retry = true;
853         uint64_t iova;
854 try_map:
855         r = qemu_vfio_dma_map(s->vfio,
856                               qiov->iov[i].iov_base,
857                               qiov->iov[i].iov_len,
858                               true, &iova);
859         if (r == -ENOMEM && retry) {
860             retry = false;
861             trace_nvme_dma_flush_queue_wait(s);
862             if (s->dma_map_count) {
863                 trace_nvme_dma_map_flush(s);
864                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
865             } else {
866                 r = qemu_vfio_dma_reset_temporary(s->vfio);
867                 if (r) {
868                     goto fail;
869                 }
870             }
871             goto try_map;
872         }
873         if (r) {
874             goto fail;
875         }
876 
877         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
878             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
879         }
880         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
881                                     qiov->iov[i].iov_len / s->page_size);
882     }
883 
884     s->dma_map_count += qiov->size;
885 
886     assert(entries <= s->page_size / sizeof(uint64_t));
887     switch (entries) {
888     case 0:
889         abort();
890     case 1:
891         cmd->prp1 = pagelist[0];
892         cmd->prp2 = 0;
893         break;
894     case 2:
895         cmd->prp1 = pagelist[0];
896         cmd->prp2 = pagelist[1];
897         break;
898     default:
899         cmd->prp1 = pagelist[0];
900         cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
901         break;
902     }
903     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
904     for (i = 0; i < entries; ++i) {
905         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
906     }
907     return 0;
908 fail:
909     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
910      * increment s->dma_map_count. This is okay for fixed mapping memory areas
911      * because they are already mapped before calling this function; for
912      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
913      * calling qemu_vfio_dma_reset_temporary when necessary. */
914     return r;
915 }
916 
917 typedef struct {
918     Coroutine *co;
919     int ret;
920     AioContext *ctx;
921 } NVMeCoData;
922 
923 static void nvme_rw_cb_bh(void *opaque)
924 {
925     NVMeCoData *data = opaque;
926     qemu_coroutine_enter(data->co);
927 }
928 
929 static void nvme_rw_cb(void *opaque, int ret)
930 {
931     NVMeCoData *data = opaque;
932     data->ret = ret;
933     if (!data->co) {
934         /* The rw coroutine hasn't yielded, don't try to enter. */
935         return;
936     }
937     aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
938 }
939 
940 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
941                                             uint64_t offset, uint64_t bytes,
942                                             QEMUIOVector *qiov,
943                                             bool is_write,
944                                             int flags)
945 {
946     int r;
947     BDRVNVMeState *s = bs->opaque;
948     NVMeQueuePair *ioq = s->queues[1];
949     NVMeRequest *req;
950 
951     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
952                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
953     NvmeCmd cmd = {
954         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
955         .nsid = cpu_to_le32(s->nsid),
956         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
957         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
958         .cdw12 = cpu_to_le32(cdw12),
959     };
960     NVMeCoData data = {
961         .ctx = bdrv_get_aio_context(bs),
962         .ret = -EINPROGRESS,
963     };
964 
965     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
966     assert(s->nr_queues > 1);
967     req = nvme_get_free_req(ioq);
968     assert(req);
969 
970     qemu_co_mutex_lock(&s->dma_map_lock);
971     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
972     qemu_co_mutex_unlock(&s->dma_map_lock);
973     if (r) {
974         req->busy = false;
975         return r;
976     }
977     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
978 
979     data.co = qemu_coroutine_self();
980     while (data.ret == -EINPROGRESS) {
981         qemu_coroutine_yield();
982     }
983 
984     qemu_co_mutex_lock(&s->dma_map_lock);
985     r = nvme_cmd_unmap_qiov(bs, qiov);
986     qemu_co_mutex_unlock(&s->dma_map_lock);
987     if (r) {
988         return r;
989     }
990 
991     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
992     return data.ret;
993 }
994 
995 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
996                                      const QEMUIOVector *qiov)
997 {
998     int i;
999     BDRVNVMeState *s = bs->opaque;
1000 
1001     for (i = 0; i < qiov->niov; ++i) {
1002         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1003             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1004             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1005                                       qiov->iov[i].iov_len, s->page_size);
1006             return false;
1007         }
1008     }
1009     return true;
1010 }
1011 
1012 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1013                        QEMUIOVector *qiov, bool is_write, int flags)
1014 {
1015     BDRVNVMeState *s = bs->opaque;
1016     int r;
1017     uint8_t *buf = NULL;
1018     QEMUIOVector local_qiov;
1019 
1020     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1021     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1022     assert(bytes <= s->max_transfer);
1023     if (nvme_qiov_aligned(bs, qiov)) {
1024         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1025     }
1026     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1027     buf = qemu_try_blockalign(bs, bytes);
1028 
1029     if (!buf) {
1030         return -ENOMEM;
1031     }
1032     qemu_iovec_init(&local_qiov, 1);
1033     if (is_write) {
1034         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1035     }
1036     qemu_iovec_add(&local_qiov, buf, bytes);
1037     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1038     qemu_iovec_destroy(&local_qiov);
1039     if (!r && !is_write) {
1040         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1041     }
1042     qemu_vfree(buf);
1043     return r;
1044 }
1045 
1046 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1047                                        uint64_t offset, uint64_t bytes,
1048                                        QEMUIOVector *qiov, int flags)
1049 {
1050     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1051 }
1052 
1053 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1054                                         uint64_t offset, uint64_t bytes,
1055                                         QEMUIOVector *qiov, int flags)
1056 {
1057     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1058 }
1059 
1060 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1061 {
1062     BDRVNVMeState *s = bs->opaque;
1063     NVMeQueuePair *ioq = s->queues[1];
1064     NVMeRequest *req;
1065     NvmeCmd cmd = {
1066         .opcode = NVME_CMD_FLUSH,
1067         .nsid = cpu_to_le32(s->nsid),
1068     };
1069     NVMeCoData data = {
1070         .ctx = bdrv_get_aio_context(bs),
1071         .ret = -EINPROGRESS,
1072     };
1073 
1074     assert(s->nr_queues > 1);
1075     req = nvme_get_free_req(ioq);
1076     assert(req);
1077     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1078 
1079     data.co = qemu_coroutine_self();
1080     if (data.ret == -EINPROGRESS) {
1081         qemu_coroutine_yield();
1082     }
1083 
1084     return data.ret;
1085 }
1086 
1087 
1088 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1089                                BlockReopenQueue *queue, Error **errp)
1090 {
1091     return 0;
1092 }
1093 
1094 static void nvme_refresh_filename(BlockDriverState *bs)
1095 {
1096     BDRVNVMeState *s = bs->opaque;
1097 
1098     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1099              s->device, s->nsid);
1100 }
1101 
1102 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1103 {
1104     BDRVNVMeState *s = bs->opaque;
1105 
1106     bs->bl.opt_mem_alignment = s->page_size;
1107     bs->bl.request_alignment = s->page_size;
1108     bs->bl.max_transfer = s->max_transfer;
1109 }
1110 
1111 static void nvme_detach_aio_context(BlockDriverState *bs)
1112 {
1113     BDRVNVMeState *s = bs->opaque;
1114 
1115     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1116                            false, NULL, NULL);
1117 }
1118 
1119 static void nvme_attach_aio_context(BlockDriverState *bs,
1120                                     AioContext *new_context)
1121 {
1122     BDRVNVMeState *s = bs->opaque;
1123 
1124     s->aio_context = new_context;
1125     aio_set_event_notifier(new_context, &s->irq_notifier,
1126                            false, nvme_handle_event, nvme_poll_cb);
1127 }
1128 
1129 static void nvme_aio_plug(BlockDriverState *bs)
1130 {
1131     BDRVNVMeState *s = bs->opaque;
1132     assert(!s->plugged);
1133     s->plugged = true;
1134 }
1135 
1136 static void nvme_aio_unplug(BlockDriverState *bs)
1137 {
1138     int i;
1139     BDRVNVMeState *s = bs->opaque;
1140     assert(s->plugged);
1141     s->plugged = false;
1142     for (i = 1; i < s->nr_queues; i++) {
1143         NVMeQueuePair *q = s->queues[i];
1144         qemu_mutex_lock(&q->lock);
1145         nvme_kick(s, q);
1146         nvme_process_completion(s, q);
1147         qemu_mutex_unlock(&q->lock);
1148     }
1149 }
1150 
1151 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1152 {
1153     int ret;
1154     BDRVNVMeState *s = bs->opaque;
1155 
1156     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1157     if (ret) {
1158         /* FIXME: we may run out of IOVA addresses after repeated
1159          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1160          * doesn't reclaim addresses for fixed mappings. */
1161         error_report("nvme_register_buf failed: %s", strerror(-ret));
1162     }
1163 }
1164 
1165 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1166 {
1167     BDRVNVMeState *s = bs->opaque;
1168 
1169     qemu_vfio_dma_unmap(s->vfio, host);
1170 }
1171 
1172 static const char *const nvme_strong_runtime_opts[] = {
1173     NVME_BLOCK_OPT_DEVICE,
1174     NVME_BLOCK_OPT_NAMESPACE,
1175 
1176     NULL
1177 };
1178 
1179 static BlockDriver bdrv_nvme = {
1180     .format_name              = "nvme",
1181     .protocol_name            = "nvme",
1182     .instance_size            = sizeof(BDRVNVMeState),
1183 
1184     .bdrv_parse_filename      = nvme_parse_filename,
1185     .bdrv_file_open           = nvme_file_open,
1186     .bdrv_close               = nvme_close,
1187     .bdrv_getlength           = nvme_getlength,
1188     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1189 
1190     .bdrv_co_preadv           = nvme_co_preadv,
1191     .bdrv_co_pwritev          = nvme_co_pwritev,
1192     .bdrv_co_flush_to_disk    = nvme_co_flush,
1193     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1194 
1195     .bdrv_refresh_filename    = nvme_refresh_filename,
1196     .bdrv_refresh_limits      = nvme_refresh_limits,
1197     .strong_runtime_opts      = nvme_strong_runtime_opts,
1198 
1199     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1200     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1201 
1202     .bdrv_io_plug             = nvme_aio_plug,
1203     .bdrv_io_unplug           = nvme_aio_unplug,
1204 
1205     .bdrv_register_buf        = nvme_register_buf,
1206     .bdrv_unregister_buf      = nvme_unregister_buf,
1207 };
1208 
1209 static void bdrv_nvme_init(void)
1210 {
1211     bdrv_register(&bdrv_nvme);
1212 }
1213 
1214 block_init(bdrv_nvme_init);
1215