xref: /openbmc/qemu/block/nvme.c (revision 91654e61)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28 
29 #include "block/nvme.h"
30 
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
35 
36 /*
37  * We have to leave one slot empty as that is the full queue case where
38  * head == tail + 1.
39  */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41 
42 typedef struct BDRVNVMeState BDRVNVMeState;
43 
44 /* Same index is used for queues and IRQs */
45 #define INDEX_ADMIN     0
46 #define INDEX_IO(n)     (1 + n)
47 
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
49 enum {
50     MSIX_SHARED_IRQ_IDX = 0,
51     MSIX_IRQ_COUNT = 1
52 };
53 
54 typedef struct {
55     int32_t  head, tail;
56     uint8_t  *queue;
57     uint64_t iova;
58     /* Hardware MMIO register */
59     volatile uint32_t *doorbell;
60 } NVMeQueue;
61 
62 typedef struct {
63     BlockCompletionFunc *cb;
64     void *opaque;
65     int cid;
66     void *prp_list_page;
67     uint64_t prp_list_iova;
68     int free_req_next; /* q->reqs[] index of next free req */
69 } NVMeRequest;
70 
71 typedef struct {
72     QemuMutex   lock;
73 
74     /* Read from I/O code path, initialized under BQL */
75     BDRVNVMeState   *s;
76     int             index;
77 
78     /* Fields protected by BQL */
79     uint8_t     *prp_list_pages;
80 
81     /* Fields protected by @lock */
82     CoQueue     free_req_queue;
83     NVMeQueue   sq, cq;
84     int         cq_phase;
85     int         free_req_head;
86     NVMeRequest reqs[NVME_NUM_REQS];
87     int         need_kick;
88     int         inflight;
89 
90     /* Thread-safe, no lock necessary */
91     QEMUBH      *completion_bh;
92 } NVMeQueuePair;
93 
94 struct BDRVNVMeState {
95     AioContext *aio_context;
96     QEMUVFIOState *vfio;
97     void *bar0_wo_map;
98     /* Memory mapped registers */
99     volatile struct {
100         uint32_t sq_tail;
101         uint32_t cq_head;
102     } *doorbells;
103     /* The submission/completion queue pairs.
104      * [0]: admin queue.
105      * [1..]: io queues.
106      */
107     NVMeQueuePair **queues;
108     unsigned queue_count;
109     size_t page_size;
110     /* How many uint32_t elements does each doorbell entry take. */
111     size_t doorbell_scale;
112     bool write_cache_supported;
113     EventNotifier irq_notifier[MSIX_IRQ_COUNT];
114 
115     uint64_t nsze; /* Namespace size reported by identify command */
116     int nsid;      /* The namespace id to read/write data. */
117     int blkshift;
118 
119     uint64_t max_transfer;
120     bool plugged;
121 
122     bool supports_write_zeroes;
123     bool supports_discard;
124 
125     CoMutex dma_map_lock;
126     CoQueue dma_flush_queue;
127 
128     /* Total size of mapped qiov, accessed under dma_map_lock */
129     int dma_map_count;
130 
131     /* PCI address (required for nvme_refresh_filename()) */
132     char *device;
133 
134     struct {
135         uint64_t completion_errors;
136         uint64_t aligned_accesses;
137         uint64_t unaligned_accesses;
138     } stats;
139 };
140 
141 #define NVME_BLOCK_OPT_DEVICE "device"
142 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
143 
144 static void nvme_process_completion_bh(void *opaque);
145 
146 static QemuOptsList runtime_opts = {
147     .name = "nvme",
148     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
149     .desc = {
150         {
151             .name = NVME_BLOCK_OPT_DEVICE,
152             .type = QEMU_OPT_STRING,
153             .help = "NVMe PCI device address",
154         },
155         {
156             .name = NVME_BLOCK_OPT_NAMESPACE,
157             .type = QEMU_OPT_NUMBER,
158             .help = "NVMe namespace",
159         },
160         { /* end of list */ }
161     },
162 };
163 
164 /* Returns true on success, false on failure. */
165 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
166                             unsigned nentries, size_t entry_bytes, Error **errp)
167 {
168     size_t bytes;
169     int r;
170 
171     bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
172     q->head = q->tail = 0;
173     q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
174     if (!q->queue) {
175         error_setg(errp, "Cannot allocate queue");
176         return false;
177     }
178     memset(q->queue, 0, bytes);
179     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
180     if (r) {
181         error_prepend(errp, "Cannot map queue: ");
182     }
183     return r == 0;
184 }
185 
186 static void nvme_free_queue(NVMeQueue *q)
187 {
188     qemu_vfree(q->queue);
189 }
190 
191 static void nvme_free_queue_pair(NVMeQueuePair *q)
192 {
193     trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
194     if (q->completion_bh) {
195         qemu_bh_delete(q->completion_bh);
196     }
197     nvme_free_queue(&q->sq);
198     nvme_free_queue(&q->cq);
199     qemu_vfree(q->prp_list_pages);
200     qemu_mutex_destroy(&q->lock);
201     g_free(q);
202 }
203 
204 static void nvme_free_req_queue_cb(void *opaque)
205 {
206     NVMeQueuePair *q = opaque;
207 
208     qemu_mutex_lock(&q->lock);
209     while (q->free_req_head != -1 &&
210            qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
211         /* Retry waiting requests */
212     }
213     qemu_mutex_unlock(&q->lock);
214 }
215 
216 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
217                                              AioContext *aio_context,
218                                              unsigned idx, size_t size,
219                                              Error **errp)
220 {
221     int i, r;
222     NVMeQueuePair *q;
223     uint64_t prp_list_iova;
224     size_t bytes;
225 
226     q = g_try_new0(NVMeQueuePair, 1);
227     if (!q) {
228         error_setg(errp, "Cannot allocate queue pair");
229         return NULL;
230     }
231     trace_nvme_create_queue_pair(idx, q, size, aio_context,
232                                  event_notifier_get_fd(s->irq_notifier));
233     bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
234                           qemu_real_host_page_size);
235     q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
236     if (!q->prp_list_pages) {
237         error_setg(errp, "Cannot allocate PRP page list");
238         goto fail;
239     }
240     memset(q->prp_list_pages, 0, bytes);
241     qemu_mutex_init(&q->lock);
242     q->s = s;
243     q->index = idx;
244     qemu_co_queue_init(&q->free_req_queue);
245     q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
246     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
247                           false, &prp_list_iova, errp);
248     if (r) {
249         error_prepend(errp, "Cannot map buffer for DMA: ");
250         goto fail;
251     }
252     q->free_req_head = -1;
253     for (i = 0; i < NVME_NUM_REQS; i++) {
254         NVMeRequest *req = &q->reqs[i];
255         req->cid = i + 1;
256         req->free_req_next = q->free_req_head;
257         q->free_req_head = i;
258         req->prp_list_page = q->prp_list_pages + i * s->page_size;
259         req->prp_list_iova = prp_list_iova + i * s->page_size;
260     }
261 
262     if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
263         goto fail;
264     }
265     q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
266 
267     if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
268         goto fail;
269     }
270     q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
271 
272     return q;
273 fail:
274     nvme_free_queue_pair(q);
275     return NULL;
276 }
277 
278 /* With q->lock */
279 static void nvme_kick(NVMeQueuePair *q)
280 {
281     BDRVNVMeState *s = q->s;
282 
283     if (s->plugged || !q->need_kick) {
284         return;
285     }
286     trace_nvme_kick(s, q->index);
287     assert(!(q->sq.tail & 0xFF00));
288     /* Fence the write to submission queue entry before notifying the device. */
289     smp_wmb();
290     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
291     q->inflight += q->need_kick;
292     q->need_kick = 0;
293 }
294 
295 /* Find a free request element if any, otherwise:
296  * a) if in coroutine context, try to wait for one to become available;
297  * b) if not in coroutine, return NULL;
298  */
299 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
300 {
301     NVMeRequest *req;
302 
303     qemu_mutex_lock(&q->lock);
304 
305     while (q->free_req_head == -1) {
306         if (qemu_in_coroutine()) {
307             trace_nvme_free_req_queue_wait(q->s, q->index);
308             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
309         } else {
310             qemu_mutex_unlock(&q->lock);
311             return NULL;
312         }
313     }
314 
315     req = &q->reqs[q->free_req_head];
316     q->free_req_head = req->free_req_next;
317     req->free_req_next = -1;
318 
319     qemu_mutex_unlock(&q->lock);
320     return req;
321 }
322 
323 /* With q->lock */
324 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
325 {
326     req->free_req_next = q->free_req_head;
327     q->free_req_head = req - q->reqs;
328 }
329 
330 /* With q->lock */
331 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
332 {
333     if (!qemu_co_queue_empty(&q->free_req_queue)) {
334         replay_bh_schedule_oneshot_event(q->s->aio_context,
335                 nvme_free_req_queue_cb, q);
336     }
337 }
338 
339 /* Insert a request in the freelist and wake waiters */
340 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
341 {
342     qemu_mutex_lock(&q->lock);
343     nvme_put_free_req_locked(q, req);
344     nvme_wake_free_req_locked(q);
345     qemu_mutex_unlock(&q->lock);
346 }
347 
348 static inline int nvme_translate_error(const NvmeCqe *c)
349 {
350     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
351     if (status) {
352         trace_nvme_error(le32_to_cpu(c->result),
353                          le16_to_cpu(c->sq_head),
354                          le16_to_cpu(c->sq_id),
355                          le16_to_cpu(c->cid),
356                          le16_to_cpu(status));
357     }
358     switch (status) {
359     case 0:
360         return 0;
361     case 1:
362         return -ENOSYS;
363     case 2:
364         return -EINVAL;
365     default:
366         return -EIO;
367     }
368 }
369 
370 /* With q->lock */
371 static bool nvme_process_completion(NVMeQueuePair *q)
372 {
373     BDRVNVMeState *s = q->s;
374     bool progress = false;
375     NVMeRequest *preq;
376     NVMeRequest req;
377     NvmeCqe *c;
378 
379     trace_nvme_process_completion(s, q->index, q->inflight);
380     if (s->plugged) {
381         trace_nvme_process_completion_queue_plugged(s, q->index);
382         return false;
383     }
384 
385     /*
386      * Support re-entrancy when a request cb() function invokes aio_poll().
387      * Pending completions must be visible to aio_poll() so that a cb()
388      * function can wait for the completion of another request.
389      *
390      * The aio_poll() loop will execute our BH and we'll resume completion
391      * processing there.
392      */
393     qemu_bh_schedule(q->completion_bh);
394 
395     assert(q->inflight >= 0);
396     while (q->inflight) {
397         int ret;
398         int16_t cid;
399 
400         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
401         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
402             break;
403         }
404         ret = nvme_translate_error(c);
405         if (ret) {
406             s->stats.completion_errors++;
407         }
408         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
409         if (!q->cq.head) {
410             q->cq_phase = !q->cq_phase;
411         }
412         cid = le16_to_cpu(c->cid);
413         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
414             warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
415                         "queue size: %u", cid, NVME_QUEUE_SIZE);
416             continue;
417         }
418         trace_nvme_complete_command(s, q->index, cid);
419         preq = &q->reqs[cid - 1];
420         req = *preq;
421         assert(req.cid == cid);
422         assert(req.cb);
423         nvme_put_free_req_locked(q, preq);
424         preq->cb = preq->opaque = NULL;
425         q->inflight--;
426         qemu_mutex_unlock(&q->lock);
427         req.cb(req.opaque, ret);
428         qemu_mutex_lock(&q->lock);
429         progress = true;
430     }
431     if (progress) {
432         /* Notify the device so it can post more completions. */
433         smp_mb_release();
434         *q->cq.doorbell = cpu_to_le32(q->cq.head);
435         nvme_wake_free_req_locked(q);
436     }
437 
438     qemu_bh_cancel(q->completion_bh);
439 
440     return progress;
441 }
442 
443 static void nvme_process_completion_bh(void *opaque)
444 {
445     NVMeQueuePair *q = opaque;
446 
447     /*
448      * We're being invoked because a nvme_process_completion() cb() function
449      * called aio_poll(). The callback may be waiting for further completions
450      * so notify the device that it has space to fill in more completions now.
451      */
452     smp_mb_release();
453     *q->cq.doorbell = cpu_to_le32(q->cq.head);
454     nvme_wake_free_req_locked(q);
455 
456     nvme_process_completion(q);
457 }
458 
459 static void nvme_trace_command(const NvmeCmd *cmd)
460 {
461     int i;
462 
463     if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
464         return;
465     }
466     for (i = 0; i < 8; ++i) {
467         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
468         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
469                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
470     }
471 }
472 
473 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
474                                 NvmeCmd *cmd, BlockCompletionFunc cb,
475                                 void *opaque)
476 {
477     assert(!req->cb);
478     req->cb = cb;
479     req->opaque = opaque;
480     cmd->cid = cpu_to_le16(req->cid);
481 
482     trace_nvme_submit_command(q->s, q->index, req->cid);
483     nvme_trace_command(cmd);
484     qemu_mutex_lock(&q->lock);
485     memcpy((uint8_t *)q->sq.queue +
486            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
487     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
488     q->need_kick++;
489     nvme_kick(q);
490     nvme_process_completion(q);
491     qemu_mutex_unlock(&q->lock);
492 }
493 
494 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
495 {
496     int *pret = opaque;
497     *pret = ret;
498     aio_wait_kick();
499 }
500 
501 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
502 {
503     BDRVNVMeState *s = bs->opaque;
504     NVMeQueuePair *q = s->queues[INDEX_ADMIN];
505     AioContext *aio_context = bdrv_get_aio_context(bs);
506     NVMeRequest *req;
507     int ret = -EINPROGRESS;
508     req = nvme_get_free_req(q);
509     if (!req) {
510         return -EBUSY;
511     }
512     nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
513 
514     AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
515     return ret;
516 }
517 
518 /* Returns true on success, false on failure. */
519 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
520 {
521     BDRVNVMeState *s = bs->opaque;
522     bool ret = false;
523     QEMU_AUTO_VFREE union {
524         NvmeIdCtrl ctrl;
525         NvmeIdNs ns;
526     } *id = NULL;
527     NvmeLBAF *lbaf;
528     uint16_t oncs;
529     int r;
530     uint64_t iova;
531     NvmeCmd cmd = {
532         .opcode = NVME_ADM_CMD_IDENTIFY,
533         .cdw10 = cpu_to_le32(0x1),
534     };
535     size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
536 
537     id = qemu_try_memalign(qemu_real_host_page_size, id_size);
538     if (!id) {
539         error_setg(errp, "Cannot allocate buffer for identify response");
540         goto out;
541     }
542     r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
543     if (r) {
544         error_prepend(errp, "Cannot map buffer for DMA: ");
545         goto out;
546     }
547 
548     memset(id, 0, id_size);
549     cmd.dptr.prp1 = cpu_to_le64(iova);
550     if (nvme_admin_cmd_sync(bs, &cmd)) {
551         error_setg(errp, "Failed to identify controller");
552         goto out;
553     }
554 
555     if (le32_to_cpu(id->ctrl.nn) < namespace) {
556         error_setg(errp, "Invalid namespace");
557         goto out;
558     }
559     s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
560     s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
561     /* For now the page list buffer per command is one page, to hold at most
562      * s->page_size / sizeof(uint64_t) entries. */
563     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
564                           s->page_size / sizeof(uint64_t) * s->page_size);
565 
566     oncs = le16_to_cpu(id->ctrl.oncs);
567     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
568     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
569 
570     memset(id, 0, id_size);
571     cmd.cdw10 = 0;
572     cmd.nsid = cpu_to_le32(namespace);
573     if (nvme_admin_cmd_sync(bs, &cmd)) {
574         error_setg(errp, "Failed to identify namespace");
575         goto out;
576     }
577 
578     s->nsze = le64_to_cpu(id->ns.nsze);
579     lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
580 
581     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
582             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
583                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
584         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
585     }
586 
587     if (lbaf->ms) {
588         error_setg(errp, "Namespaces with metadata are not yet supported");
589         goto out;
590     }
591 
592     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
593         (1 << lbaf->ds) > s->page_size)
594     {
595         error_setg(errp, "Namespace has unsupported block size (2^%d)",
596                    lbaf->ds);
597         goto out;
598     }
599 
600     ret = true;
601     s->blkshift = lbaf->ds;
602 out:
603     qemu_vfio_dma_unmap(s->vfio, id);
604 
605     return ret;
606 }
607 
608 static void nvme_poll_queue(NVMeQueuePair *q)
609 {
610     const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
611     NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
612 
613     trace_nvme_poll_queue(q->s, q->index);
614     /*
615      * Do an early check for completions. q->lock isn't needed because
616      * nvme_process_completion() only runs in the event loop thread and
617      * cannot race with itself.
618      */
619     if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
620         return;
621     }
622 
623     qemu_mutex_lock(&q->lock);
624     while (nvme_process_completion(q)) {
625         /* Keep polling */
626     }
627     qemu_mutex_unlock(&q->lock);
628 }
629 
630 static void nvme_poll_queues(BDRVNVMeState *s)
631 {
632     int i;
633 
634     for (i = 0; i < s->queue_count; i++) {
635         nvme_poll_queue(s->queues[i]);
636     }
637 }
638 
639 static void nvme_handle_event(EventNotifier *n)
640 {
641     BDRVNVMeState *s = container_of(n, BDRVNVMeState,
642                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
643 
644     trace_nvme_handle_event(s);
645     event_notifier_test_and_clear(n);
646     nvme_poll_queues(s);
647 }
648 
649 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
650 {
651     BDRVNVMeState *s = bs->opaque;
652     unsigned n = s->queue_count;
653     NVMeQueuePair *q;
654     NvmeCmd cmd;
655     unsigned queue_size = NVME_QUEUE_SIZE;
656 
657     assert(n <= UINT16_MAX);
658     q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
659                                n, queue_size, errp);
660     if (!q) {
661         return false;
662     }
663     cmd = (NvmeCmd) {
664         .opcode = NVME_ADM_CMD_CREATE_CQ,
665         .dptr.prp1 = cpu_to_le64(q->cq.iova),
666         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
667         .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
668     };
669     if (nvme_admin_cmd_sync(bs, &cmd)) {
670         error_setg(errp, "Failed to create CQ io queue [%u]", n);
671         goto out_error;
672     }
673     cmd = (NvmeCmd) {
674         .opcode = NVME_ADM_CMD_CREATE_SQ,
675         .dptr.prp1 = cpu_to_le64(q->sq.iova),
676         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
677         .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
678     };
679     if (nvme_admin_cmd_sync(bs, &cmd)) {
680         error_setg(errp, "Failed to create SQ io queue [%u]", n);
681         goto out_error;
682     }
683     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
684     s->queues[n] = q;
685     s->queue_count++;
686     return true;
687 out_error:
688     nvme_free_queue_pair(q);
689     return false;
690 }
691 
692 static bool nvme_poll_cb(void *opaque)
693 {
694     EventNotifier *e = opaque;
695     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
696                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
697     int i;
698 
699     for (i = 0; i < s->queue_count; i++) {
700         NVMeQueuePair *q = s->queues[i];
701         const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
702         NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
703 
704         /*
705          * q->lock isn't needed because nvme_process_completion() only runs in
706          * the event loop thread and cannot race with itself.
707          */
708         if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
709             return true;
710         }
711     }
712     return false;
713 }
714 
715 static void nvme_poll_ready(EventNotifier *e)
716 {
717     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
718                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
719 
720     nvme_poll_queues(s);
721 }
722 
723 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
724                      Error **errp)
725 {
726     BDRVNVMeState *s = bs->opaque;
727     NVMeQueuePair *q;
728     AioContext *aio_context = bdrv_get_aio_context(bs);
729     int ret;
730     uint64_t cap;
731     uint32_t ver;
732     uint64_t timeout_ms;
733     uint64_t deadline, now;
734     volatile NvmeBar *regs = NULL;
735 
736     qemu_co_mutex_init(&s->dma_map_lock);
737     qemu_co_queue_init(&s->dma_flush_queue);
738     s->device = g_strdup(device);
739     s->nsid = namespace;
740     s->aio_context = bdrv_get_aio_context(bs);
741     ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
742     if (ret) {
743         error_setg(errp, "Failed to init event notifier");
744         return ret;
745     }
746 
747     s->vfio = qemu_vfio_open_pci(device, errp);
748     if (!s->vfio) {
749         ret = -EINVAL;
750         goto out;
751     }
752 
753     regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
754                                  PROT_READ | PROT_WRITE, errp);
755     if (!regs) {
756         ret = -EINVAL;
757         goto out;
758     }
759     /* Perform initialize sequence as described in NVMe spec "7.6.1
760      * Initialization". */
761 
762     cap = le64_to_cpu(regs->cap);
763     trace_nvme_controller_capability_raw(cap);
764     trace_nvme_controller_capability("Maximum Queue Entries Supported",
765                                      1 + NVME_CAP_MQES(cap));
766     trace_nvme_controller_capability("Contiguous Queues Required",
767                                      NVME_CAP_CQR(cap));
768     trace_nvme_controller_capability("Doorbell Stride",
769                                      1 << (2 + NVME_CAP_DSTRD(cap)));
770     trace_nvme_controller_capability("Subsystem Reset Supported",
771                                      NVME_CAP_NSSRS(cap));
772     trace_nvme_controller_capability("Memory Page Size Minimum",
773                                      1 << (12 + NVME_CAP_MPSMIN(cap)));
774     trace_nvme_controller_capability("Memory Page Size Maximum",
775                                      1 << (12 + NVME_CAP_MPSMAX(cap)));
776     if (!NVME_CAP_CSS(cap)) {
777         error_setg(errp, "Device doesn't support NVMe command set");
778         ret = -EINVAL;
779         goto out;
780     }
781 
782     s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
783     s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
784     bs->bl.opt_mem_alignment = s->page_size;
785     bs->bl.request_alignment = s->page_size;
786     timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
787 
788     ver = le32_to_cpu(regs->vs);
789     trace_nvme_controller_spec_version(extract32(ver, 16, 16),
790                                        extract32(ver, 8, 8),
791                                        extract32(ver, 0, 8));
792 
793     /* Reset device to get a clean state. */
794     regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
795     /* Wait for CSTS.RDY = 0. */
796     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
797     while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
798         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
799             error_setg(errp, "Timeout while waiting for device to reset (%"
800                              PRId64 " ms)",
801                        timeout_ms);
802             ret = -ETIMEDOUT;
803             goto out;
804         }
805     }
806 
807     s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
808                                            sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
809                                            PROT_WRITE, errp);
810     s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
811     if (!s->doorbells) {
812         ret = -EINVAL;
813         goto out;
814     }
815 
816     /* Set up admin queue. */
817     s->queues = g_new(NVMeQueuePair *, 1);
818     q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
819     if (!q) {
820         ret = -EINVAL;
821         goto out;
822     }
823     s->queues[INDEX_ADMIN] = q;
824     s->queue_count = 1;
825     QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
826     regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
827                             ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
828     regs->asq = cpu_to_le64(q->sq.iova);
829     regs->acq = cpu_to_le64(q->cq.iova);
830 
831     /* After setting up all control registers we can enable device now. */
832     regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
833                            (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
834                            CC_EN_MASK);
835     /* Wait for CSTS.RDY = 1. */
836     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
837     deadline = now + timeout_ms * SCALE_MS;
838     while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
839         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
840             error_setg(errp, "Timeout while waiting for device to start (%"
841                              PRId64 " ms)",
842                        timeout_ms);
843             ret = -ETIMEDOUT;
844             goto out;
845         }
846     }
847 
848     ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
849                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
850     if (ret) {
851         goto out;
852     }
853     aio_set_event_notifier(bdrv_get_aio_context(bs),
854                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
855                            false, nvme_handle_event, nvme_poll_cb,
856                            nvme_poll_ready);
857 
858     if (!nvme_identify(bs, namespace, errp)) {
859         ret = -EIO;
860         goto out;
861     }
862 
863     /* Set up command queues. */
864     if (!nvme_add_io_queue(bs, errp)) {
865         ret = -EIO;
866     }
867 out:
868     if (regs) {
869         qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
870     }
871 
872     /* Cleaning up is done in nvme_file_open() upon error. */
873     return ret;
874 }
875 
876 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
877  *
878  *     nvme://0000:44:00.0/1
879  *
880  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
881  * is the PCI address, and the last part is the namespace number starting from
882  * 1 according to the NVMe spec. */
883 static void nvme_parse_filename(const char *filename, QDict *options,
884                                 Error **errp)
885 {
886     int pref = strlen("nvme://");
887 
888     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
889         const char *tmp = filename + pref;
890         char *device;
891         const char *namespace;
892         unsigned long ns;
893         const char *slash = strchr(tmp, '/');
894         if (!slash) {
895             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
896             return;
897         }
898         device = g_strndup(tmp, slash - tmp);
899         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
900         g_free(device);
901         namespace = slash + 1;
902         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
903             error_setg(errp, "Invalid namespace '%s', positive number expected",
904                        namespace);
905             return;
906         }
907         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
908                       *namespace ? namespace : "1");
909     }
910 }
911 
912 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
913                                            Error **errp)
914 {
915     int ret;
916     BDRVNVMeState *s = bs->opaque;
917     NvmeCmd cmd = {
918         .opcode = NVME_ADM_CMD_SET_FEATURES,
919         .nsid = cpu_to_le32(s->nsid),
920         .cdw10 = cpu_to_le32(0x06),
921         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
922     };
923 
924     ret = nvme_admin_cmd_sync(bs, &cmd);
925     if (ret) {
926         error_setg(errp, "Failed to configure NVMe write cache");
927     }
928     return ret;
929 }
930 
931 static void nvme_close(BlockDriverState *bs)
932 {
933     BDRVNVMeState *s = bs->opaque;
934 
935     for (unsigned i = 0; i < s->queue_count; ++i) {
936         nvme_free_queue_pair(s->queues[i]);
937     }
938     g_free(s->queues);
939     aio_set_event_notifier(bdrv_get_aio_context(bs),
940                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
941                            false, NULL, NULL, NULL);
942     event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
943     qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
944                             0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
945     qemu_vfio_close(s->vfio);
946 
947     g_free(s->device);
948 }
949 
950 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
951                           Error **errp)
952 {
953     const char *device;
954     QemuOpts *opts;
955     int namespace;
956     int ret;
957     BDRVNVMeState *s = bs->opaque;
958 
959     bs->supported_write_flags = BDRV_REQ_FUA;
960 
961     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
962     qemu_opts_absorb_qdict(opts, options, &error_abort);
963     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
964     if (!device) {
965         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
966         qemu_opts_del(opts);
967         return -EINVAL;
968     }
969 
970     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
971     ret = nvme_init(bs, device, namespace, errp);
972     qemu_opts_del(opts);
973     if (ret) {
974         goto fail;
975     }
976     if (flags & BDRV_O_NOCACHE) {
977         if (!s->write_cache_supported) {
978             error_setg(errp,
979                        "NVMe controller doesn't support write cache configuration");
980             ret = -EINVAL;
981         } else {
982             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
983                                                   errp);
984         }
985         if (ret) {
986             goto fail;
987         }
988     }
989     return 0;
990 fail:
991     nvme_close(bs);
992     return ret;
993 }
994 
995 static int64_t nvme_getlength(BlockDriverState *bs)
996 {
997     BDRVNVMeState *s = bs->opaque;
998     return s->nsze << s->blkshift;
999 }
1000 
1001 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1002 {
1003     BDRVNVMeState *s = bs->opaque;
1004     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1005     return UINT32_C(1) << s->blkshift;
1006 }
1007 
1008 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1009 {
1010     uint32_t blocksize = nvme_get_blocksize(bs);
1011     bsz->phys = blocksize;
1012     bsz->log = blocksize;
1013     return 0;
1014 }
1015 
1016 /* Called with s->dma_map_lock */
1017 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1018                                             QEMUIOVector *qiov)
1019 {
1020     int r = 0;
1021     BDRVNVMeState *s = bs->opaque;
1022 
1023     s->dma_map_count -= qiov->size;
1024     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1025         r = qemu_vfio_dma_reset_temporary(s->vfio);
1026         if (!r) {
1027             qemu_co_queue_restart_all(&s->dma_flush_queue);
1028         }
1029     }
1030     return r;
1031 }
1032 
1033 /* Called with s->dma_map_lock */
1034 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1035                                           NVMeRequest *req, QEMUIOVector *qiov)
1036 {
1037     BDRVNVMeState *s = bs->opaque;
1038     uint64_t *pagelist = req->prp_list_page;
1039     int i, j, r;
1040     int entries = 0;
1041     Error *local_err = NULL, **errp = NULL;
1042 
1043     assert(qiov->size);
1044     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1045     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1046     for (i = 0; i < qiov->niov; ++i) {
1047         bool retry = true;
1048         uint64_t iova;
1049         size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1050                                    qemu_real_host_page_size);
1051 try_map:
1052         r = qemu_vfio_dma_map(s->vfio,
1053                               qiov->iov[i].iov_base,
1054                               len, true, &iova, errp);
1055         if (r == -ENOSPC) {
1056             /*
1057              * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1058              * ioctl returns -ENOSPC to signal the user exhausted the DMA
1059              * mappings available for a container since Linux kernel commit
1060              * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1061              * April 2019, see CVE-2019-3882).
1062              *
1063              * This block driver already handles this error path by checking
1064              * for the -ENOMEM error, so we directly replace -ENOSPC by
1065              * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1066              * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1067              * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1068              * to add more storage to the blockdev. Not something we can do
1069              * easily with an IOMMU :)
1070              */
1071             r = -ENOMEM;
1072         }
1073         if (r == -ENOMEM && retry) {
1074             /*
1075              * We exhausted the DMA mappings available for our container:
1076              * recycle the volatile IOVA mappings.
1077              */
1078             retry = false;
1079             trace_nvme_dma_flush_queue_wait(s);
1080             if (s->dma_map_count) {
1081                 trace_nvme_dma_map_flush(s);
1082                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1083             } else {
1084                 r = qemu_vfio_dma_reset_temporary(s->vfio);
1085                 if (r) {
1086                     goto fail;
1087                 }
1088             }
1089             errp = &local_err;
1090 
1091             goto try_map;
1092         }
1093         if (r) {
1094             goto fail;
1095         }
1096 
1097         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1098             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1099         }
1100         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1101                                     qiov->iov[i].iov_len / s->page_size);
1102     }
1103 
1104     s->dma_map_count += qiov->size;
1105 
1106     assert(entries <= s->page_size / sizeof(uint64_t));
1107     switch (entries) {
1108     case 0:
1109         abort();
1110     case 1:
1111         cmd->dptr.prp1 = pagelist[0];
1112         cmd->dptr.prp2 = 0;
1113         break;
1114     case 2:
1115         cmd->dptr.prp1 = pagelist[0];
1116         cmd->dptr.prp2 = pagelist[1];
1117         break;
1118     default:
1119         cmd->dptr.prp1 = pagelist[0];
1120         cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1121         break;
1122     }
1123     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1124     for (i = 0; i < entries; ++i) {
1125         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1126     }
1127     return 0;
1128 fail:
1129     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1130      * increment s->dma_map_count. This is okay for fixed mapping memory areas
1131      * because they are already mapped before calling this function; for
1132      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1133      * calling qemu_vfio_dma_reset_temporary when necessary. */
1134     if (local_err) {
1135         error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1136     }
1137     return r;
1138 }
1139 
1140 typedef struct {
1141     Coroutine *co;
1142     int ret;
1143     AioContext *ctx;
1144 } NVMeCoData;
1145 
1146 static void nvme_rw_cb_bh(void *opaque)
1147 {
1148     NVMeCoData *data = opaque;
1149     qemu_coroutine_enter(data->co);
1150 }
1151 
1152 static void nvme_rw_cb(void *opaque, int ret)
1153 {
1154     NVMeCoData *data = opaque;
1155     data->ret = ret;
1156     if (!data->co) {
1157         /* The rw coroutine hasn't yielded, don't try to enter. */
1158         return;
1159     }
1160     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1161 }
1162 
1163 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1164                                             uint64_t offset, uint64_t bytes,
1165                                             QEMUIOVector *qiov,
1166                                             bool is_write,
1167                                             int flags)
1168 {
1169     int r;
1170     BDRVNVMeState *s = bs->opaque;
1171     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1172     NVMeRequest *req;
1173 
1174     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1175                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1176     NvmeCmd cmd = {
1177         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1178         .nsid = cpu_to_le32(s->nsid),
1179         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1180         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1181         .cdw12 = cpu_to_le32(cdw12),
1182     };
1183     NVMeCoData data = {
1184         .ctx = bdrv_get_aio_context(bs),
1185         .ret = -EINPROGRESS,
1186     };
1187 
1188     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1189     assert(s->queue_count > 1);
1190     req = nvme_get_free_req(ioq);
1191     assert(req);
1192 
1193     qemu_co_mutex_lock(&s->dma_map_lock);
1194     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1195     qemu_co_mutex_unlock(&s->dma_map_lock);
1196     if (r) {
1197         nvme_put_free_req_and_wake(ioq, req);
1198         return r;
1199     }
1200     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1201 
1202     data.co = qemu_coroutine_self();
1203     while (data.ret == -EINPROGRESS) {
1204         qemu_coroutine_yield();
1205     }
1206 
1207     qemu_co_mutex_lock(&s->dma_map_lock);
1208     r = nvme_cmd_unmap_qiov(bs, qiov);
1209     qemu_co_mutex_unlock(&s->dma_map_lock);
1210     if (r) {
1211         return r;
1212     }
1213 
1214     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1215     return data.ret;
1216 }
1217 
1218 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1219                                      const QEMUIOVector *qiov)
1220 {
1221     int i;
1222     BDRVNVMeState *s = bs->opaque;
1223 
1224     for (i = 0; i < qiov->niov; ++i) {
1225         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1226                                  qemu_real_host_page_size) ||
1227             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1228             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1229                                       qiov->iov[i].iov_len, s->page_size);
1230             return false;
1231         }
1232     }
1233     return true;
1234 }
1235 
1236 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1237                        QEMUIOVector *qiov, bool is_write, int flags)
1238 {
1239     BDRVNVMeState *s = bs->opaque;
1240     int r;
1241     QEMU_AUTO_VFREE uint8_t *buf = NULL;
1242     QEMUIOVector local_qiov;
1243     size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1244     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1245     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1246     assert(bytes <= s->max_transfer);
1247     if (nvme_qiov_aligned(bs, qiov)) {
1248         s->stats.aligned_accesses++;
1249         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1250     }
1251     s->stats.unaligned_accesses++;
1252     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1253     buf = qemu_try_memalign(qemu_real_host_page_size, len);
1254 
1255     if (!buf) {
1256         return -ENOMEM;
1257     }
1258     qemu_iovec_init(&local_qiov, 1);
1259     if (is_write) {
1260         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1261     }
1262     qemu_iovec_add(&local_qiov, buf, bytes);
1263     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1264     qemu_iovec_destroy(&local_qiov);
1265     if (!r && !is_write) {
1266         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1267     }
1268     return r;
1269 }
1270 
1271 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1272                                        int64_t offset, int64_t bytes,
1273                                        QEMUIOVector *qiov,
1274                                        BdrvRequestFlags flags)
1275 {
1276     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1277 }
1278 
1279 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1280                                         int64_t offset, int64_t bytes,
1281                                         QEMUIOVector *qiov,
1282                                         BdrvRequestFlags flags)
1283 {
1284     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1285 }
1286 
1287 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1288 {
1289     BDRVNVMeState *s = bs->opaque;
1290     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1291     NVMeRequest *req;
1292     NvmeCmd cmd = {
1293         .opcode = NVME_CMD_FLUSH,
1294         .nsid = cpu_to_le32(s->nsid),
1295     };
1296     NVMeCoData data = {
1297         .ctx = bdrv_get_aio_context(bs),
1298         .ret = -EINPROGRESS,
1299     };
1300 
1301     assert(s->queue_count > 1);
1302     req = nvme_get_free_req(ioq);
1303     assert(req);
1304     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1305 
1306     data.co = qemu_coroutine_self();
1307     if (data.ret == -EINPROGRESS) {
1308         qemu_coroutine_yield();
1309     }
1310 
1311     return data.ret;
1312 }
1313 
1314 
1315 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1316                                               int64_t offset,
1317                                               int64_t bytes,
1318                                               BdrvRequestFlags flags)
1319 {
1320     BDRVNVMeState *s = bs->opaque;
1321     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1322     NVMeRequest *req;
1323     uint32_t cdw12;
1324 
1325     if (!s->supports_write_zeroes) {
1326         return -ENOTSUP;
1327     }
1328 
1329     if (bytes == 0) {
1330         return 0;
1331     }
1332 
1333     cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1334     /*
1335      * We should not lose information. pwrite_zeroes_alignment and
1336      * max_pwrite_zeroes guarantees it.
1337      */
1338     assert(((cdw12 + 1) << s->blkshift) == bytes);
1339 
1340     NvmeCmd cmd = {
1341         .opcode = NVME_CMD_WRITE_ZEROES,
1342         .nsid = cpu_to_le32(s->nsid),
1343         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1344         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1345     };
1346 
1347     NVMeCoData data = {
1348         .ctx = bdrv_get_aio_context(bs),
1349         .ret = -EINPROGRESS,
1350     };
1351 
1352     if (flags & BDRV_REQ_MAY_UNMAP) {
1353         cdw12 |= (1 << 25);
1354     }
1355 
1356     if (flags & BDRV_REQ_FUA) {
1357         cdw12 |= (1 << 30);
1358     }
1359 
1360     cmd.cdw12 = cpu_to_le32(cdw12);
1361 
1362     trace_nvme_write_zeroes(s, offset, bytes, flags);
1363     assert(s->queue_count > 1);
1364     req = nvme_get_free_req(ioq);
1365     assert(req);
1366 
1367     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1368 
1369     data.co = qemu_coroutine_self();
1370     while (data.ret == -EINPROGRESS) {
1371         qemu_coroutine_yield();
1372     }
1373 
1374     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1375     return data.ret;
1376 }
1377 
1378 
1379 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1380                                          int64_t offset,
1381                                          int64_t bytes)
1382 {
1383     BDRVNVMeState *s = bs->opaque;
1384     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1385     NVMeRequest *req;
1386     QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1387     QEMUIOVector local_qiov;
1388     int ret;
1389 
1390     NvmeCmd cmd = {
1391         .opcode = NVME_CMD_DSM,
1392         .nsid = cpu_to_le32(s->nsid),
1393         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1394         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1395     };
1396 
1397     NVMeCoData data = {
1398         .ctx = bdrv_get_aio_context(bs),
1399         .ret = -EINPROGRESS,
1400     };
1401 
1402     if (!s->supports_discard) {
1403         return -ENOTSUP;
1404     }
1405 
1406     assert(s->queue_count > 1);
1407 
1408     /*
1409      * Filling the @buf requires @offset and @bytes to satisfy restrictions
1410      * defined in nvme_refresh_limits().
1411      */
1412     assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1413     assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1414     assert((bytes >> s->blkshift) <= UINT32_MAX);
1415 
1416     buf = qemu_try_memalign(s->page_size, s->page_size);
1417     if (!buf) {
1418         return -ENOMEM;
1419     }
1420     memset(buf, 0, s->page_size);
1421     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1422     buf->slba = cpu_to_le64(offset >> s->blkshift);
1423     buf->cattr = 0;
1424 
1425     qemu_iovec_init(&local_qiov, 1);
1426     qemu_iovec_add(&local_qiov, buf, 4096);
1427 
1428     req = nvme_get_free_req(ioq);
1429     assert(req);
1430 
1431     qemu_co_mutex_lock(&s->dma_map_lock);
1432     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1433     qemu_co_mutex_unlock(&s->dma_map_lock);
1434 
1435     if (ret) {
1436         nvme_put_free_req_and_wake(ioq, req);
1437         goto out;
1438     }
1439 
1440     trace_nvme_dsm(s, offset, bytes);
1441 
1442     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1443 
1444     data.co = qemu_coroutine_self();
1445     while (data.ret == -EINPROGRESS) {
1446         qemu_coroutine_yield();
1447     }
1448 
1449     qemu_co_mutex_lock(&s->dma_map_lock);
1450     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1451     qemu_co_mutex_unlock(&s->dma_map_lock);
1452 
1453     if (ret) {
1454         goto out;
1455     }
1456 
1457     ret = data.ret;
1458     trace_nvme_dsm_done(s, offset, bytes, ret);
1459 out:
1460     qemu_iovec_destroy(&local_qiov);
1461     return ret;
1462 
1463 }
1464 
1465 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1466                                          bool exact, PreallocMode prealloc,
1467                                          BdrvRequestFlags flags, Error **errp)
1468 {
1469     int64_t cur_length;
1470 
1471     if (prealloc != PREALLOC_MODE_OFF) {
1472         error_setg(errp, "Unsupported preallocation mode '%s'",
1473                    PreallocMode_str(prealloc));
1474         return -ENOTSUP;
1475     }
1476 
1477     cur_length = nvme_getlength(bs);
1478     if (offset != cur_length && exact) {
1479         error_setg(errp, "Cannot resize NVMe devices");
1480         return -ENOTSUP;
1481     } else if (offset > cur_length) {
1482         error_setg(errp, "Cannot grow NVMe devices");
1483         return -EINVAL;
1484     }
1485 
1486     return 0;
1487 }
1488 
1489 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1490                                BlockReopenQueue *queue, Error **errp)
1491 {
1492     return 0;
1493 }
1494 
1495 static void nvme_refresh_filename(BlockDriverState *bs)
1496 {
1497     BDRVNVMeState *s = bs->opaque;
1498 
1499     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1500              s->device, s->nsid);
1501 }
1502 
1503 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1504 {
1505     BDRVNVMeState *s = bs->opaque;
1506 
1507     bs->bl.opt_mem_alignment = s->page_size;
1508     bs->bl.request_alignment = s->page_size;
1509     bs->bl.max_transfer = s->max_transfer;
1510 
1511     /*
1512      * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1513      * at most 0xFFFF
1514      */
1515     bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1516     bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1517                                          1UL << s->blkshift);
1518 
1519     bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1520     bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1521                                     1UL << s->blkshift);
1522 }
1523 
1524 static void nvme_detach_aio_context(BlockDriverState *bs)
1525 {
1526     BDRVNVMeState *s = bs->opaque;
1527 
1528     for (unsigned i = 0; i < s->queue_count; i++) {
1529         NVMeQueuePair *q = s->queues[i];
1530 
1531         qemu_bh_delete(q->completion_bh);
1532         q->completion_bh = NULL;
1533     }
1534 
1535     aio_set_event_notifier(bdrv_get_aio_context(bs),
1536                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1537                            false, NULL, NULL, NULL);
1538 }
1539 
1540 static void nvme_attach_aio_context(BlockDriverState *bs,
1541                                     AioContext *new_context)
1542 {
1543     BDRVNVMeState *s = bs->opaque;
1544 
1545     s->aio_context = new_context;
1546     aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1547                            false, nvme_handle_event, nvme_poll_cb,
1548                            nvme_poll_ready);
1549 
1550     for (unsigned i = 0; i < s->queue_count; i++) {
1551         NVMeQueuePair *q = s->queues[i];
1552 
1553         q->completion_bh =
1554             aio_bh_new(new_context, nvme_process_completion_bh, q);
1555     }
1556 }
1557 
1558 static void nvme_aio_plug(BlockDriverState *bs)
1559 {
1560     BDRVNVMeState *s = bs->opaque;
1561     assert(!s->plugged);
1562     s->plugged = true;
1563 }
1564 
1565 static void nvme_aio_unplug(BlockDriverState *bs)
1566 {
1567     BDRVNVMeState *s = bs->opaque;
1568     assert(s->plugged);
1569     s->plugged = false;
1570     for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1571         NVMeQueuePair *q = s->queues[i];
1572         qemu_mutex_lock(&q->lock);
1573         nvme_kick(q);
1574         nvme_process_completion(q);
1575         qemu_mutex_unlock(&q->lock);
1576     }
1577 }
1578 
1579 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1580 {
1581     int ret;
1582     Error *local_err = NULL;
1583     BDRVNVMeState *s = bs->opaque;
1584 
1585     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
1586     if (ret) {
1587         /* FIXME: we may run out of IOVA addresses after repeated
1588          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1589          * doesn't reclaim addresses for fixed mappings. */
1590         error_reportf_err(local_err, "nvme_register_buf failed: ");
1591     }
1592 }
1593 
1594 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1595 {
1596     BDRVNVMeState *s = bs->opaque;
1597 
1598     qemu_vfio_dma_unmap(s->vfio, host);
1599 }
1600 
1601 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1602 {
1603     BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1604     BDRVNVMeState *s = bs->opaque;
1605 
1606     stats->driver = BLOCKDEV_DRIVER_NVME;
1607     stats->u.nvme = (BlockStatsSpecificNvme) {
1608         .completion_errors = s->stats.completion_errors,
1609         .aligned_accesses = s->stats.aligned_accesses,
1610         .unaligned_accesses = s->stats.unaligned_accesses,
1611     };
1612 
1613     return stats;
1614 }
1615 
1616 static const char *const nvme_strong_runtime_opts[] = {
1617     NVME_BLOCK_OPT_DEVICE,
1618     NVME_BLOCK_OPT_NAMESPACE,
1619 
1620     NULL
1621 };
1622 
1623 static BlockDriver bdrv_nvme = {
1624     .format_name              = "nvme",
1625     .protocol_name            = "nvme",
1626     .instance_size            = sizeof(BDRVNVMeState),
1627 
1628     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1629     .create_opts              = &bdrv_create_opts_simple,
1630 
1631     .bdrv_parse_filename      = nvme_parse_filename,
1632     .bdrv_file_open           = nvme_file_open,
1633     .bdrv_close               = nvme_close,
1634     .bdrv_getlength           = nvme_getlength,
1635     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1636     .bdrv_co_truncate         = nvme_co_truncate,
1637 
1638     .bdrv_co_preadv           = nvme_co_preadv,
1639     .bdrv_co_pwritev          = nvme_co_pwritev,
1640 
1641     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1642     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1643 
1644     .bdrv_co_flush_to_disk    = nvme_co_flush,
1645     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1646 
1647     .bdrv_refresh_filename    = nvme_refresh_filename,
1648     .bdrv_refresh_limits      = nvme_refresh_limits,
1649     .strong_runtime_opts      = nvme_strong_runtime_opts,
1650     .bdrv_get_specific_stats  = nvme_get_specific_stats,
1651 
1652     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1653     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1654 
1655     .bdrv_io_plug             = nvme_aio_plug,
1656     .bdrv_io_unplug           = nvme_aio_unplug,
1657 
1658     .bdrv_register_buf        = nvme_register_buf,
1659     .bdrv_unregister_buf      = nvme_unregister_buf,
1660 };
1661 
1662 static void bdrv_nvme_init(void)
1663 {
1664     bdrv_register(&bdrv_nvme);
1665 }
1666 
1667 block_init(bdrv_nvme_init);
1668