xref: /openbmc/qemu/block/nvme.c (revision 89aafcf2)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/memalign.h"
25 #include "qemu/vfio-helpers.h"
26 #include "block/block-io.h"
27 #include "block/block_int.h"
28 #include "sysemu/replay.h"
29 #include "trace.h"
30 
31 #include "block/nvme.h"
32 
33 #define NVME_SQ_ENTRY_BYTES 64
34 #define NVME_CQ_ENTRY_BYTES 16
35 #define NVME_QUEUE_SIZE 128
36 #define NVME_DOORBELL_SIZE 4096
37 
38 /*
39  * We have to leave one slot empty as that is the full queue case where
40  * head == tail + 1.
41  */
42 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
43 
44 typedef struct BDRVNVMeState BDRVNVMeState;
45 
46 /* Same index is used for queues and IRQs */
47 #define INDEX_ADMIN     0
48 #define INDEX_IO(n)     (1 + n)
49 
50 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
51 enum {
52     MSIX_SHARED_IRQ_IDX = 0,
53     MSIX_IRQ_COUNT = 1
54 };
55 
56 typedef struct {
57     int32_t  head, tail;
58     uint8_t  *queue;
59     uint64_t iova;
60     /* Hardware MMIO register */
61     volatile uint32_t *doorbell;
62 } NVMeQueue;
63 
64 typedef struct {
65     BlockCompletionFunc *cb;
66     void *opaque;
67     int cid;
68     void *prp_list_page;
69     uint64_t prp_list_iova;
70     int free_req_next; /* q->reqs[] index of next free req */
71 } NVMeRequest;
72 
73 typedef struct {
74     QemuMutex   lock;
75 
76     /* Read from I/O code path, initialized under BQL */
77     BDRVNVMeState   *s;
78     int             index;
79 
80     /* Fields protected by BQL */
81     uint8_t     *prp_list_pages;
82 
83     /* Fields protected by @lock */
84     CoQueue     free_req_queue;
85     NVMeQueue   sq, cq;
86     int         cq_phase;
87     int         free_req_head;
88     NVMeRequest reqs[NVME_NUM_REQS];
89     int         need_kick;
90     int         inflight;
91 
92     /* Thread-safe, no lock necessary */
93     QEMUBH      *completion_bh;
94 } NVMeQueuePair;
95 
96 struct BDRVNVMeState {
97     AioContext *aio_context;
98     QEMUVFIOState *vfio;
99     void *bar0_wo_map;
100     /* Memory mapped registers */
101     volatile struct {
102         uint32_t sq_tail;
103         uint32_t cq_head;
104     } *doorbells;
105     /* The submission/completion queue pairs.
106      * [0]: admin queue.
107      * [1..]: io queues.
108      */
109     NVMeQueuePair **queues;
110     unsigned queue_count;
111     size_t page_size;
112     /* How many uint32_t elements does each doorbell entry take. */
113     size_t doorbell_scale;
114     bool write_cache_supported;
115     EventNotifier irq_notifier[MSIX_IRQ_COUNT];
116 
117     uint64_t nsze; /* Namespace size reported by identify command */
118     int nsid;      /* The namespace id to read/write data. */
119     int blkshift;
120 
121     uint64_t max_transfer;
122     bool plugged;
123 
124     bool supports_write_zeroes;
125     bool supports_discard;
126 
127     CoMutex dma_map_lock;
128     CoQueue dma_flush_queue;
129 
130     /* Total size of mapped qiov, accessed under dma_map_lock */
131     int dma_map_count;
132 
133     /* PCI address (required for nvme_refresh_filename()) */
134     char *device;
135 
136     struct {
137         uint64_t completion_errors;
138         uint64_t aligned_accesses;
139         uint64_t unaligned_accesses;
140     } stats;
141 };
142 
143 #define NVME_BLOCK_OPT_DEVICE "device"
144 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
145 
146 static void nvme_process_completion_bh(void *opaque);
147 
148 static QemuOptsList runtime_opts = {
149     .name = "nvme",
150     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
151     .desc = {
152         {
153             .name = NVME_BLOCK_OPT_DEVICE,
154             .type = QEMU_OPT_STRING,
155             .help = "NVMe PCI device address",
156         },
157         {
158             .name = NVME_BLOCK_OPT_NAMESPACE,
159             .type = QEMU_OPT_NUMBER,
160             .help = "NVMe namespace",
161         },
162         { /* end of list */ }
163     },
164 };
165 
166 /* Returns true on success, false on failure. */
167 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
168                             unsigned nentries, size_t entry_bytes, Error **errp)
169 {
170     size_t bytes;
171     int r;
172 
173     bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
174     q->head = q->tail = 0;
175     q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
176     if (!q->queue) {
177         error_setg(errp, "Cannot allocate queue");
178         return false;
179     }
180     memset(q->queue, 0, bytes);
181     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
182     if (r) {
183         error_prepend(errp, "Cannot map queue: ");
184     }
185     return r == 0;
186 }
187 
188 static void nvme_free_queue(NVMeQueue *q)
189 {
190     qemu_vfree(q->queue);
191 }
192 
193 static void nvme_free_queue_pair(NVMeQueuePair *q)
194 {
195     trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
196     if (q->completion_bh) {
197         qemu_bh_delete(q->completion_bh);
198     }
199     nvme_free_queue(&q->sq);
200     nvme_free_queue(&q->cq);
201     qemu_vfree(q->prp_list_pages);
202     qemu_mutex_destroy(&q->lock);
203     g_free(q);
204 }
205 
206 static void nvme_free_req_queue_cb(void *opaque)
207 {
208     NVMeQueuePair *q = opaque;
209 
210     qemu_mutex_lock(&q->lock);
211     while (q->free_req_head != -1 &&
212            qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
213         /* Retry waiting requests */
214     }
215     qemu_mutex_unlock(&q->lock);
216 }
217 
218 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
219                                              AioContext *aio_context,
220                                              unsigned idx, size_t size,
221                                              Error **errp)
222 {
223     int i, r;
224     NVMeQueuePair *q;
225     uint64_t prp_list_iova;
226     size_t bytes;
227 
228     q = g_try_new0(NVMeQueuePair, 1);
229     if (!q) {
230         error_setg(errp, "Cannot allocate queue pair");
231         return NULL;
232     }
233     trace_nvme_create_queue_pair(idx, q, size, aio_context,
234                                  event_notifier_get_fd(s->irq_notifier));
235     bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
236                           qemu_real_host_page_size());
237     q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
238     if (!q->prp_list_pages) {
239         error_setg(errp, "Cannot allocate PRP page list");
240         goto fail;
241     }
242     memset(q->prp_list_pages, 0, bytes);
243     qemu_mutex_init(&q->lock);
244     q->s = s;
245     q->index = idx;
246     qemu_co_queue_init(&q->free_req_queue);
247     q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
248     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
249                           false, &prp_list_iova, errp);
250     if (r) {
251         error_prepend(errp, "Cannot map buffer for DMA: ");
252         goto fail;
253     }
254     q->free_req_head = -1;
255     for (i = 0; i < NVME_NUM_REQS; i++) {
256         NVMeRequest *req = &q->reqs[i];
257         req->cid = i + 1;
258         req->free_req_next = q->free_req_head;
259         q->free_req_head = i;
260         req->prp_list_page = q->prp_list_pages + i * s->page_size;
261         req->prp_list_iova = prp_list_iova + i * s->page_size;
262     }
263 
264     if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
265         goto fail;
266     }
267     q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
268 
269     if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
270         goto fail;
271     }
272     q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
273 
274     return q;
275 fail:
276     nvme_free_queue_pair(q);
277     return NULL;
278 }
279 
280 /* With q->lock */
281 static void nvme_kick(NVMeQueuePair *q)
282 {
283     BDRVNVMeState *s = q->s;
284 
285     if (s->plugged || !q->need_kick) {
286         return;
287     }
288     trace_nvme_kick(s, q->index);
289     assert(!(q->sq.tail & 0xFF00));
290     /* Fence the write to submission queue entry before notifying the device. */
291     smp_wmb();
292     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
293     q->inflight += q->need_kick;
294     q->need_kick = 0;
295 }
296 
297 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
298 {
299     NVMeRequest *req;
300 
301     req = &q->reqs[q->free_req_head];
302     q->free_req_head = req->free_req_next;
303     req->free_req_next = -1;
304     return req;
305 }
306 
307 /* Return a free request element if any, otherwise return NULL.  */
308 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
309 {
310     QEMU_LOCK_GUARD(&q->lock);
311     if (q->free_req_head == -1) {
312         return NULL;
313     }
314     return nvme_get_free_req_nofail_locked(q);
315 }
316 
317 /*
318  * Wait for a free request to become available if necessary, then
319  * return it.
320  */
321 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
322 {
323     QEMU_LOCK_GUARD(&q->lock);
324 
325     while (q->free_req_head == -1) {
326         trace_nvme_free_req_queue_wait(q->s, q->index);
327         qemu_co_queue_wait(&q->free_req_queue, &q->lock);
328     }
329 
330     return nvme_get_free_req_nofail_locked(q);
331 }
332 
333 /* With q->lock */
334 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
335 {
336     req->free_req_next = q->free_req_head;
337     q->free_req_head = req - q->reqs;
338 }
339 
340 /* With q->lock */
341 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
342 {
343     if (!qemu_co_queue_empty(&q->free_req_queue)) {
344         replay_bh_schedule_oneshot_event(q->s->aio_context,
345                 nvme_free_req_queue_cb, q);
346     }
347 }
348 
349 /* Insert a request in the freelist and wake waiters */
350 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
351 {
352     qemu_mutex_lock(&q->lock);
353     nvme_put_free_req_locked(q, req);
354     nvme_wake_free_req_locked(q);
355     qemu_mutex_unlock(&q->lock);
356 }
357 
358 static inline int nvme_translate_error(const NvmeCqe *c)
359 {
360     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
361     if (status) {
362         trace_nvme_error(le32_to_cpu(c->result),
363                          le16_to_cpu(c->sq_head),
364                          le16_to_cpu(c->sq_id),
365                          le16_to_cpu(c->cid),
366                          le16_to_cpu(status));
367     }
368     switch (status) {
369     case 0:
370         return 0;
371     case 1:
372         return -ENOSYS;
373     case 2:
374         return -EINVAL;
375     default:
376         return -EIO;
377     }
378 }
379 
380 /* With q->lock */
381 static bool nvme_process_completion(NVMeQueuePair *q)
382 {
383     BDRVNVMeState *s = q->s;
384     bool progress = false;
385     NVMeRequest *preq;
386     NVMeRequest req;
387     NvmeCqe *c;
388 
389     trace_nvme_process_completion(s, q->index, q->inflight);
390     if (s->plugged) {
391         trace_nvme_process_completion_queue_plugged(s, q->index);
392         return false;
393     }
394 
395     /*
396      * Support re-entrancy when a request cb() function invokes aio_poll().
397      * Pending completions must be visible to aio_poll() so that a cb()
398      * function can wait for the completion of another request.
399      *
400      * The aio_poll() loop will execute our BH and we'll resume completion
401      * processing there.
402      */
403     qemu_bh_schedule(q->completion_bh);
404 
405     assert(q->inflight >= 0);
406     while (q->inflight) {
407         int ret;
408         int16_t cid;
409 
410         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
411         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
412             break;
413         }
414         ret = nvme_translate_error(c);
415         if (ret) {
416             s->stats.completion_errors++;
417         }
418         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
419         if (!q->cq.head) {
420             q->cq_phase = !q->cq_phase;
421         }
422         cid = le16_to_cpu(c->cid);
423         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
424             warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
425                         "queue size: %u", cid, NVME_QUEUE_SIZE);
426             continue;
427         }
428         trace_nvme_complete_command(s, q->index, cid);
429         preq = &q->reqs[cid - 1];
430         req = *preq;
431         assert(req.cid == cid);
432         assert(req.cb);
433         nvme_put_free_req_locked(q, preq);
434         preq->cb = preq->opaque = NULL;
435         q->inflight--;
436         qemu_mutex_unlock(&q->lock);
437         req.cb(req.opaque, ret);
438         qemu_mutex_lock(&q->lock);
439         progress = true;
440     }
441     if (progress) {
442         /* Notify the device so it can post more completions. */
443         smp_mb_release();
444         *q->cq.doorbell = cpu_to_le32(q->cq.head);
445         nvme_wake_free_req_locked(q);
446     }
447 
448     qemu_bh_cancel(q->completion_bh);
449 
450     return progress;
451 }
452 
453 static void nvme_process_completion_bh(void *opaque)
454 {
455     NVMeQueuePair *q = opaque;
456 
457     /*
458      * We're being invoked because a nvme_process_completion() cb() function
459      * called aio_poll(). The callback may be waiting for further completions
460      * so notify the device that it has space to fill in more completions now.
461      */
462     smp_mb_release();
463     *q->cq.doorbell = cpu_to_le32(q->cq.head);
464     nvme_wake_free_req_locked(q);
465 
466     nvme_process_completion(q);
467 }
468 
469 static void nvme_trace_command(const NvmeCmd *cmd)
470 {
471     int i;
472 
473     if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
474         return;
475     }
476     for (i = 0; i < 8; ++i) {
477         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
478         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
479                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
480     }
481 }
482 
483 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
484                                 NvmeCmd *cmd, BlockCompletionFunc cb,
485                                 void *opaque)
486 {
487     assert(!req->cb);
488     req->cb = cb;
489     req->opaque = opaque;
490     cmd->cid = cpu_to_le16(req->cid);
491 
492     trace_nvme_submit_command(q->s, q->index, req->cid);
493     nvme_trace_command(cmd);
494     qemu_mutex_lock(&q->lock);
495     memcpy((uint8_t *)q->sq.queue +
496            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
497     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
498     q->need_kick++;
499     nvme_kick(q);
500     nvme_process_completion(q);
501     qemu_mutex_unlock(&q->lock);
502 }
503 
504 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
505 {
506     int *pret = opaque;
507     *pret = ret;
508     aio_wait_kick();
509 }
510 
511 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
512 {
513     BDRVNVMeState *s = bs->opaque;
514     NVMeQueuePair *q = s->queues[INDEX_ADMIN];
515     AioContext *aio_context = bdrv_get_aio_context(bs);
516     NVMeRequest *req;
517     int ret = -EINPROGRESS;
518     req = nvme_get_free_req_nowait(q);
519     if (!req) {
520         return -EBUSY;
521     }
522     nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
523 
524     AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
525     return ret;
526 }
527 
528 /* Returns true on success, false on failure. */
529 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
530 {
531     BDRVNVMeState *s = bs->opaque;
532     bool ret = false;
533     QEMU_AUTO_VFREE union {
534         NvmeIdCtrl ctrl;
535         NvmeIdNs ns;
536     } *id = NULL;
537     NvmeLBAF *lbaf;
538     uint16_t oncs;
539     int r;
540     uint64_t iova;
541     NvmeCmd cmd = {
542         .opcode = NVME_ADM_CMD_IDENTIFY,
543         .cdw10 = cpu_to_le32(0x1),
544     };
545     size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
546 
547     id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
548     if (!id) {
549         error_setg(errp, "Cannot allocate buffer for identify response");
550         goto out;
551     }
552     r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
553     if (r) {
554         error_prepend(errp, "Cannot map buffer for DMA: ");
555         goto out;
556     }
557 
558     memset(id, 0, id_size);
559     cmd.dptr.prp1 = cpu_to_le64(iova);
560     if (nvme_admin_cmd_sync(bs, &cmd)) {
561         error_setg(errp, "Failed to identify controller");
562         goto out;
563     }
564 
565     if (le32_to_cpu(id->ctrl.nn) < namespace) {
566         error_setg(errp, "Invalid namespace");
567         goto out;
568     }
569     s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
570     s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
571     /* For now the page list buffer per command is one page, to hold at most
572      * s->page_size / sizeof(uint64_t) entries. */
573     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
574                           s->page_size / sizeof(uint64_t) * s->page_size);
575 
576     oncs = le16_to_cpu(id->ctrl.oncs);
577     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
578     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
579 
580     memset(id, 0, id_size);
581     cmd.cdw10 = 0;
582     cmd.nsid = cpu_to_le32(namespace);
583     if (nvme_admin_cmd_sync(bs, &cmd)) {
584         error_setg(errp, "Failed to identify namespace");
585         goto out;
586     }
587 
588     s->nsze = le64_to_cpu(id->ns.nsze);
589     lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
590 
591     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
592             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
593                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
594         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
595     }
596 
597     if (lbaf->ms) {
598         error_setg(errp, "Namespaces with metadata are not yet supported");
599         goto out;
600     }
601 
602     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
603         (1 << lbaf->ds) > s->page_size)
604     {
605         error_setg(errp, "Namespace has unsupported block size (2^%d)",
606                    lbaf->ds);
607         goto out;
608     }
609 
610     ret = true;
611     s->blkshift = lbaf->ds;
612 out:
613     qemu_vfio_dma_unmap(s->vfio, id);
614 
615     return ret;
616 }
617 
618 static void nvme_poll_queue(NVMeQueuePair *q)
619 {
620     const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
621     NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
622 
623     trace_nvme_poll_queue(q->s, q->index);
624     /*
625      * Do an early check for completions. q->lock isn't needed because
626      * nvme_process_completion() only runs in the event loop thread and
627      * cannot race with itself.
628      */
629     if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
630         return;
631     }
632 
633     qemu_mutex_lock(&q->lock);
634     while (nvme_process_completion(q)) {
635         /* Keep polling */
636     }
637     qemu_mutex_unlock(&q->lock);
638 }
639 
640 static void nvme_poll_queues(BDRVNVMeState *s)
641 {
642     int i;
643 
644     for (i = 0; i < s->queue_count; i++) {
645         nvme_poll_queue(s->queues[i]);
646     }
647 }
648 
649 static void nvme_handle_event(EventNotifier *n)
650 {
651     BDRVNVMeState *s = container_of(n, BDRVNVMeState,
652                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
653 
654     trace_nvme_handle_event(s);
655     event_notifier_test_and_clear(n);
656     nvme_poll_queues(s);
657 }
658 
659 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
660 {
661     BDRVNVMeState *s = bs->opaque;
662     unsigned n = s->queue_count;
663     NVMeQueuePair *q;
664     NvmeCmd cmd;
665     unsigned queue_size = NVME_QUEUE_SIZE;
666 
667     assert(n <= UINT16_MAX);
668     q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
669                                n, queue_size, errp);
670     if (!q) {
671         return false;
672     }
673     cmd = (NvmeCmd) {
674         .opcode = NVME_ADM_CMD_CREATE_CQ,
675         .dptr.prp1 = cpu_to_le64(q->cq.iova),
676         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
677         .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
678     };
679     if (nvme_admin_cmd_sync(bs, &cmd)) {
680         error_setg(errp, "Failed to create CQ io queue [%u]", n);
681         goto out_error;
682     }
683     cmd = (NvmeCmd) {
684         .opcode = NVME_ADM_CMD_CREATE_SQ,
685         .dptr.prp1 = cpu_to_le64(q->sq.iova),
686         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
687         .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
688     };
689     if (nvme_admin_cmd_sync(bs, &cmd)) {
690         error_setg(errp, "Failed to create SQ io queue [%u]", n);
691         goto out_error;
692     }
693     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
694     s->queues[n] = q;
695     s->queue_count++;
696     return true;
697 out_error:
698     nvme_free_queue_pair(q);
699     return false;
700 }
701 
702 static bool nvme_poll_cb(void *opaque)
703 {
704     EventNotifier *e = opaque;
705     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
706                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
707     int i;
708 
709     for (i = 0; i < s->queue_count; i++) {
710         NVMeQueuePair *q = s->queues[i];
711         const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
712         NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
713 
714         /*
715          * q->lock isn't needed because nvme_process_completion() only runs in
716          * the event loop thread and cannot race with itself.
717          */
718         if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
719             return true;
720         }
721     }
722     return false;
723 }
724 
725 static void nvme_poll_ready(EventNotifier *e)
726 {
727     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
728                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
729 
730     nvme_poll_queues(s);
731 }
732 
733 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
734                      Error **errp)
735 {
736     BDRVNVMeState *s = bs->opaque;
737     NVMeQueuePair *q;
738     AioContext *aio_context = bdrv_get_aio_context(bs);
739     int ret;
740     uint64_t cap;
741     uint32_t ver;
742     uint64_t timeout_ms;
743     uint64_t deadline, now;
744     volatile NvmeBar *regs = NULL;
745 
746     qemu_co_mutex_init(&s->dma_map_lock);
747     qemu_co_queue_init(&s->dma_flush_queue);
748     s->device = g_strdup(device);
749     s->nsid = namespace;
750     s->aio_context = bdrv_get_aio_context(bs);
751     ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
752     if (ret) {
753         error_setg(errp, "Failed to init event notifier");
754         return ret;
755     }
756 
757     s->vfio = qemu_vfio_open_pci(device, errp);
758     if (!s->vfio) {
759         ret = -EINVAL;
760         goto out;
761     }
762 
763     regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
764                                  PROT_READ | PROT_WRITE, errp);
765     if (!regs) {
766         ret = -EINVAL;
767         goto out;
768     }
769     /* Perform initialize sequence as described in NVMe spec "7.6.1
770      * Initialization". */
771 
772     cap = le64_to_cpu(regs->cap);
773     trace_nvme_controller_capability_raw(cap);
774     trace_nvme_controller_capability("Maximum Queue Entries Supported",
775                                      1 + NVME_CAP_MQES(cap));
776     trace_nvme_controller_capability("Contiguous Queues Required",
777                                      NVME_CAP_CQR(cap));
778     trace_nvme_controller_capability("Doorbell Stride",
779                                      1 << (2 + NVME_CAP_DSTRD(cap)));
780     trace_nvme_controller_capability("Subsystem Reset Supported",
781                                      NVME_CAP_NSSRS(cap));
782     trace_nvme_controller_capability("Memory Page Size Minimum",
783                                      1 << (12 + NVME_CAP_MPSMIN(cap)));
784     trace_nvme_controller_capability("Memory Page Size Maximum",
785                                      1 << (12 + NVME_CAP_MPSMAX(cap)));
786     if (!NVME_CAP_CSS(cap)) {
787         error_setg(errp, "Device doesn't support NVMe command set");
788         ret = -EINVAL;
789         goto out;
790     }
791 
792     s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
793     s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
794     bs->bl.opt_mem_alignment = s->page_size;
795     bs->bl.request_alignment = s->page_size;
796     timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
797 
798     ver = le32_to_cpu(regs->vs);
799     trace_nvme_controller_spec_version(extract32(ver, 16, 16),
800                                        extract32(ver, 8, 8),
801                                        extract32(ver, 0, 8));
802 
803     /* Reset device to get a clean state. */
804     regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
805     /* Wait for CSTS.RDY = 0. */
806     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
807     while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
808         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
809             error_setg(errp, "Timeout while waiting for device to reset (%"
810                              PRId64 " ms)",
811                        timeout_ms);
812             ret = -ETIMEDOUT;
813             goto out;
814         }
815     }
816 
817     s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
818                                            sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
819                                            PROT_WRITE, errp);
820     s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
821     if (!s->doorbells) {
822         ret = -EINVAL;
823         goto out;
824     }
825 
826     /* Set up admin queue. */
827     s->queues = g_new(NVMeQueuePair *, 1);
828     q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
829     if (!q) {
830         ret = -EINVAL;
831         goto out;
832     }
833     s->queues[INDEX_ADMIN] = q;
834     s->queue_count = 1;
835     QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
836     regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
837                             ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
838     regs->asq = cpu_to_le64(q->sq.iova);
839     regs->acq = cpu_to_le64(q->cq.iova);
840 
841     /* After setting up all control registers we can enable device now. */
842     regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
843                            (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
844                            CC_EN_MASK);
845     /* Wait for CSTS.RDY = 1. */
846     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
847     deadline = now + timeout_ms * SCALE_MS;
848     while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
849         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
850             error_setg(errp, "Timeout while waiting for device to start (%"
851                              PRId64 " ms)",
852                        timeout_ms);
853             ret = -ETIMEDOUT;
854             goto out;
855         }
856     }
857 
858     ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
859                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
860     if (ret) {
861         goto out;
862     }
863     aio_set_event_notifier(bdrv_get_aio_context(bs),
864                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
865                            nvme_handle_event, nvme_poll_cb,
866                            nvme_poll_ready);
867 
868     if (!nvme_identify(bs, namespace, errp)) {
869         ret = -EIO;
870         goto out;
871     }
872 
873     /* Set up command queues. */
874     if (!nvme_add_io_queue(bs, errp)) {
875         ret = -EIO;
876     }
877 out:
878     if (regs) {
879         qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
880     }
881 
882     /* Cleaning up is done in nvme_file_open() upon error. */
883     return ret;
884 }
885 
886 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
887  *
888  *     nvme://0000:44:00.0/1
889  *
890  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
891  * is the PCI address, and the last part is the namespace number starting from
892  * 1 according to the NVMe spec. */
893 static void nvme_parse_filename(const char *filename, QDict *options,
894                                 Error **errp)
895 {
896     int pref = strlen("nvme://");
897 
898     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
899         const char *tmp = filename + pref;
900         char *device;
901         const char *namespace;
902         unsigned long ns;
903         const char *slash = strchr(tmp, '/');
904         if (!slash) {
905             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
906             return;
907         }
908         device = g_strndup(tmp, slash - tmp);
909         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
910         g_free(device);
911         namespace = slash + 1;
912         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
913             error_setg(errp, "Invalid namespace '%s', positive number expected",
914                        namespace);
915             return;
916         }
917         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
918                       *namespace ? namespace : "1");
919     }
920 }
921 
922 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
923                                            Error **errp)
924 {
925     int ret;
926     BDRVNVMeState *s = bs->opaque;
927     NvmeCmd cmd = {
928         .opcode = NVME_ADM_CMD_SET_FEATURES,
929         .nsid = cpu_to_le32(s->nsid),
930         .cdw10 = cpu_to_le32(0x06),
931         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
932     };
933 
934     ret = nvme_admin_cmd_sync(bs, &cmd);
935     if (ret) {
936         error_setg(errp, "Failed to configure NVMe write cache");
937     }
938     return ret;
939 }
940 
941 static void nvme_close(BlockDriverState *bs)
942 {
943     BDRVNVMeState *s = bs->opaque;
944 
945     for (unsigned i = 0; i < s->queue_count; ++i) {
946         nvme_free_queue_pair(s->queues[i]);
947     }
948     g_free(s->queues);
949     aio_set_event_notifier(bdrv_get_aio_context(bs),
950                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
951                            NULL, NULL, NULL);
952     event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
953     qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
954                             0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
955     qemu_vfio_close(s->vfio);
956 
957     g_free(s->device);
958 }
959 
960 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
961                           Error **errp)
962 {
963     const char *device;
964     QemuOpts *opts;
965     int namespace;
966     int ret;
967     BDRVNVMeState *s = bs->opaque;
968 
969     bs->supported_write_flags = BDRV_REQ_FUA;
970 
971     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
972     qemu_opts_absorb_qdict(opts, options, &error_abort);
973     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
974     if (!device) {
975         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
976         qemu_opts_del(opts);
977         return -EINVAL;
978     }
979 
980     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
981     ret = nvme_init(bs, device, namespace, errp);
982     qemu_opts_del(opts);
983     if (ret) {
984         goto fail;
985     }
986     if (flags & BDRV_O_NOCACHE) {
987         if (!s->write_cache_supported) {
988             error_setg(errp,
989                        "NVMe controller doesn't support write cache configuration");
990             ret = -EINVAL;
991         } else {
992             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
993                                                   errp);
994         }
995         if (ret) {
996             goto fail;
997         }
998     }
999     return 0;
1000 fail:
1001     nvme_close(bs);
1002     return ret;
1003 }
1004 
1005 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1006 {
1007     BDRVNVMeState *s = bs->opaque;
1008     return s->nsze << s->blkshift;
1009 }
1010 
1011 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1012 {
1013     BDRVNVMeState *s = bs->opaque;
1014     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1015     return UINT32_C(1) << s->blkshift;
1016 }
1017 
1018 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1019 {
1020     uint32_t blocksize = nvme_get_blocksize(bs);
1021     bsz->phys = blocksize;
1022     bsz->log = blocksize;
1023     return 0;
1024 }
1025 
1026 /* Called with s->dma_map_lock */
1027 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1028                                             QEMUIOVector *qiov)
1029 {
1030     int r = 0;
1031     BDRVNVMeState *s = bs->opaque;
1032 
1033     s->dma_map_count -= qiov->size;
1034     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1035         r = qemu_vfio_dma_reset_temporary(s->vfio);
1036         if (!r) {
1037             qemu_co_queue_restart_all(&s->dma_flush_queue);
1038         }
1039     }
1040     return r;
1041 }
1042 
1043 /* Called with s->dma_map_lock */
1044 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1045                                           NVMeRequest *req, QEMUIOVector *qiov)
1046 {
1047     BDRVNVMeState *s = bs->opaque;
1048     uint64_t *pagelist = req->prp_list_page;
1049     int i, j, r;
1050     int entries = 0;
1051     Error *local_err = NULL, **errp = NULL;
1052 
1053     assert(qiov->size);
1054     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1055     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1056     for (i = 0; i < qiov->niov; ++i) {
1057         bool retry = true;
1058         uint64_t iova;
1059         size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1060                                    qemu_real_host_page_size());
1061 try_map:
1062         r = qemu_vfio_dma_map(s->vfio,
1063                               qiov->iov[i].iov_base,
1064                               len, true, &iova, errp);
1065         if (r == -ENOSPC) {
1066             /*
1067              * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1068              * ioctl returns -ENOSPC to signal the user exhausted the DMA
1069              * mappings available for a container since Linux kernel commit
1070              * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1071              * April 2019, see CVE-2019-3882).
1072              *
1073              * This block driver already handles this error path by checking
1074              * for the -ENOMEM error, so we directly replace -ENOSPC by
1075              * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1076              * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1077              * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1078              * to add more storage to the blockdev. Not something we can do
1079              * easily with an IOMMU :)
1080              */
1081             r = -ENOMEM;
1082         }
1083         if (r == -ENOMEM && retry) {
1084             /*
1085              * We exhausted the DMA mappings available for our container:
1086              * recycle the volatile IOVA mappings.
1087              */
1088             retry = false;
1089             trace_nvme_dma_flush_queue_wait(s);
1090             if (s->dma_map_count) {
1091                 trace_nvme_dma_map_flush(s);
1092                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1093             } else {
1094                 r = qemu_vfio_dma_reset_temporary(s->vfio);
1095                 if (r) {
1096                     goto fail;
1097                 }
1098             }
1099             errp = &local_err;
1100 
1101             goto try_map;
1102         }
1103         if (r) {
1104             goto fail;
1105         }
1106 
1107         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1108             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1109         }
1110         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1111                                     qiov->iov[i].iov_len / s->page_size);
1112     }
1113 
1114     s->dma_map_count += qiov->size;
1115 
1116     assert(entries <= s->page_size / sizeof(uint64_t));
1117     switch (entries) {
1118     case 0:
1119         abort();
1120     case 1:
1121         cmd->dptr.prp1 = pagelist[0];
1122         cmd->dptr.prp2 = 0;
1123         break;
1124     case 2:
1125         cmd->dptr.prp1 = pagelist[0];
1126         cmd->dptr.prp2 = pagelist[1];
1127         break;
1128     default:
1129         cmd->dptr.prp1 = pagelist[0];
1130         cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1131         break;
1132     }
1133     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1134     for (i = 0; i < entries; ++i) {
1135         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1136     }
1137     return 0;
1138 fail:
1139     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1140      * increment s->dma_map_count. This is okay for fixed mapping memory areas
1141      * because they are already mapped before calling this function; for
1142      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1143      * calling qemu_vfio_dma_reset_temporary when necessary. */
1144     if (local_err) {
1145         error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1146     }
1147     return r;
1148 }
1149 
1150 typedef struct {
1151     Coroutine *co;
1152     int ret;
1153     AioContext *ctx;
1154 } NVMeCoData;
1155 
1156 static void nvme_rw_cb_bh(void *opaque)
1157 {
1158     NVMeCoData *data = opaque;
1159     qemu_coroutine_enter(data->co);
1160 }
1161 
1162 static void nvme_rw_cb(void *opaque, int ret)
1163 {
1164     NVMeCoData *data = opaque;
1165     data->ret = ret;
1166     if (!data->co) {
1167         /* The rw coroutine hasn't yielded, don't try to enter. */
1168         return;
1169     }
1170     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1171 }
1172 
1173 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1174                                             uint64_t offset, uint64_t bytes,
1175                                             QEMUIOVector *qiov,
1176                                             bool is_write,
1177                                             int flags)
1178 {
1179     int r;
1180     BDRVNVMeState *s = bs->opaque;
1181     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1182     NVMeRequest *req;
1183 
1184     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1185                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1186     NvmeCmd cmd = {
1187         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1188         .nsid = cpu_to_le32(s->nsid),
1189         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1190         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1191         .cdw12 = cpu_to_le32(cdw12),
1192     };
1193     NVMeCoData data = {
1194         .ctx = bdrv_get_aio_context(bs),
1195         .ret = -EINPROGRESS,
1196     };
1197 
1198     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1199     assert(s->queue_count > 1);
1200     req = nvme_get_free_req(ioq);
1201     assert(req);
1202 
1203     qemu_co_mutex_lock(&s->dma_map_lock);
1204     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1205     qemu_co_mutex_unlock(&s->dma_map_lock);
1206     if (r) {
1207         nvme_put_free_req_and_wake(ioq, req);
1208         return r;
1209     }
1210     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1211 
1212     data.co = qemu_coroutine_self();
1213     while (data.ret == -EINPROGRESS) {
1214         qemu_coroutine_yield();
1215     }
1216 
1217     qemu_co_mutex_lock(&s->dma_map_lock);
1218     r = nvme_cmd_unmap_qiov(bs, qiov);
1219     qemu_co_mutex_unlock(&s->dma_map_lock);
1220     if (r) {
1221         return r;
1222     }
1223 
1224     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1225     return data.ret;
1226 }
1227 
1228 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1229                                      const QEMUIOVector *qiov)
1230 {
1231     int i;
1232     BDRVNVMeState *s = bs->opaque;
1233 
1234     for (i = 0; i < qiov->niov; ++i) {
1235         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1236                                  qemu_real_host_page_size()) ||
1237             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1238             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1239                                       qiov->iov[i].iov_len, s->page_size);
1240             return false;
1241         }
1242     }
1243     return true;
1244 }
1245 
1246 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1247                                     uint64_t offset, uint64_t bytes,
1248                                     QEMUIOVector *qiov, bool is_write,
1249                                     int flags)
1250 {
1251     BDRVNVMeState *s = bs->opaque;
1252     int r;
1253     QEMU_AUTO_VFREE uint8_t *buf = NULL;
1254     QEMUIOVector local_qiov;
1255     size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1256     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1257     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1258     assert(bytes <= s->max_transfer);
1259     if (nvme_qiov_aligned(bs, qiov)) {
1260         s->stats.aligned_accesses++;
1261         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1262     }
1263     s->stats.unaligned_accesses++;
1264     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1265     buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1266 
1267     if (!buf) {
1268         return -ENOMEM;
1269     }
1270     qemu_iovec_init(&local_qiov, 1);
1271     if (is_write) {
1272         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1273     }
1274     qemu_iovec_add(&local_qiov, buf, bytes);
1275     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1276     qemu_iovec_destroy(&local_qiov);
1277     if (!r && !is_write) {
1278         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1279     }
1280     return r;
1281 }
1282 
1283 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1284                                        int64_t offset, int64_t bytes,
1285                                        QEMUIOVector *qiov,
1286                                        BdrvRequestFlags flags)
1287 {
1288     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1289 }
1290 
1291 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1292                                         int64_t offset, int64_t bytes,
1293                                         QEMUIOVector *qiov,
1294                                         BdrvRequestFlags flags)
1295 {
1296     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1297 }
1298 
1299 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1300 {
1301     BDRVNVMeState *s = bs->opaque;
1302     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1303     NVMeRequest *req;
1304     NvmeCmd cmd = {
1305         .opcode = NVME_CMD_FLUSH,
1306         .nsid = cpu_to_le32(s->nsid),
1307     };
1308     NVMeCoData data = {
1309         .ctx = bdrv_get_aio_context(bs),
1310         .ret = -EINPROGRESS,
1311     };
1312 
1313     assert(s->queue_count > 1);
1314     req = nvme_get_free_req(ioq);
1315     assert(req);
1316     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1317 
1318     data.co = qemu_coroutine_self();
1319     if (data.ret == -EINPROGRESS) {
1320         qemu_coroutine_yield();
1321     }
1322 
1323     return data.ret;
1324 }
1325 
1326 
1327 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1328                                               int64_t offset,
1329                                               int64_t bytes,
1330                                               BdrvRequestFlags flags)
1331 {
1332     BDRVNVMeState *s = bs->opaque;
1333     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1334     NVMeRequest *req;
1335     uint32_t cdw12;
1336 
1337     if (!s->supports_write_zeroes) {
1338         return -ENOTSUP;
1339     }
1340 
1341     if (bytes == 0) {
1342         return 0;
1343     }
1344 
1345     cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1346     /*
1347      * We should not lose information. pwrite_zeroes_alignment and
1348      * max_pwrite_zeroes guarantees it.
1349      */
1350     assert(((cdw12 + 1) << s->blkshift) == bytes);
1351 
1352     NvmeCmd cmd = {
1353         .opcode = NVME_CMD_WRITE_ZEROES,
1354         .nsid = cpu_to_le32(s->nsid),
1355         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1356         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1357     };
1358 
1359     NVMeCoData data = {
1360         .ctx = bdrv_get_aio_context(bs),
1361         .ret = -EINPROGRESS,
1362     };
1363 
1364     if (flags & BDRV_REQ_MAY_UNMAP) {
1365         cdw12 |= (1 << 25);
1366     }
1367 
1368     if (flags & BDRV_REQ_FUA) {
1369         cdw12 |= (1 << 30);
1370     }
1371 
1372     cmd.cdw12 = cpu_to_le32(cdw12);
1373 
1374     trace_nvme_write_zeroes(s, offset, bytes, flags);
1375     assert(s->queue_count > 1);
1376     req = nvme_get_free_req(ioq);
1377     assert(req);
1378 
1379     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1380 
1381     data.co = qemu_coroutine_self();
1382     while (data.ret == -EINPROGRESS) {
1383         qemu_coroutine_yield();
1384     }
1385 
1386     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1387     return data.ret;
1388 }
1389 
1390 
1391 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1392                                          int64_t offset,
1393                                          int64_t bytes)
1394 {
1395     BDRVNVMeState *s = bs->opaque;
1396     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1397     NVMeRequest *req;
1398     QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1399     QEMUIOVector local_qiov;
1400     int ret;
1401 
1402     NvmeCmd cmd = {
1403         .opcode = NVME_CMD_DSM,
1404         .nsid = cpu_to_le32(s->nsid),
1405         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1406         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1407     };
1408 
1409     NVMeCoData data = {
1410         .ctx = bdrv_get_aio_context(bs),
1411         .ret = -EINPROGRESS,
1412     };
1413 
1414     if (!s->supports_discard) {
1415         return -ENOTSUP;
1416     }
1417 
1418     assert(s->queue_count > 1);
1419 
1420     /*
1421      * Filling the @buf requires @offset and @bytes to satisfy restrictions
1422      * defined in nvme_refresh_limits().
1423      */
1424     assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1425     assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1426     assert((bytes >> s->blkshift) <= UINT32_MAX);
1427 
1428     buf = qemu_try_memalign(s->page_size, s->page_size);
1429     if (!buf) {
1430         return -ENOMEM;
1431     }
1432     memset(buf, 0, s->page_size);
1433     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1434     buf->slba = cpu_to_le64(offset >> s->blkshift);
1435     buf->cattr = 0;
1436 
1437     qemu_iovec_init(&local_qiov, 1);
1438     qemu_iovec_add(&local_qiov, buf, 4096);
1439 
1440     req = nvme_get_free_req(ioq);
1441     assert(req);
1442 
1443     qemu_co_mutex_lock(&s->dma_map_lock);
1444     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1445     qemu_co_mutex_unlock(&s->dma_map_lock);
1446 
1447     if (ret) {
1448         nvme_put_free_req_and_wake(ioq, req);
1449         goto out;
1450     }
1451 
1452     trace_nvme_dsm(s, offset, bytes);
1453 
1454     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1455 
1456     data.co = qemu_coroutine_self();
1457     while (data.ret == -EINPROGRESS) {
1458         qemu_coroutine_yield();
1459     }
1460 
1461     qemu_co_mutex_lock(&s->dma_map_lock);
1462     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1463     qemu_co_mutex_unlock(&s->dma_map_lock);
1464 
1465     if (ret) {
1466         goto out;
1467     }
1468 
1469     ret = data.ret;
1470     trace_nvme_dsm_done(s, offset, bytes, ret);
1471 out:
1472     qemu_iovec_destroy(&local_qiov);
1473     return ret;
1474 
1475 }
1476 
1477 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1478                                          bool exact, PreallocMode prealloc,
1479                                          BdrvRequestFlags flags, Error **errp)
1480 {
1481     int64_t cur_length;
1482 
1483     if (prealloc != PREALLOC_MODE_OFF) {
1484         error_setg(errp, "Unsupported preallocation mode '%s'",
1485                    PreallocMode_str(prealloc));
1486         return -ENOTSUP;
1487     }
1488 
1489     cur_length = nvme_co_getlength(bs);
1490     if (offset != cur_length && exact) {
1491         error_setg(errp, "Cannot resize NVMe devices");
1492         return -ENOTSUP;
1493     } else if (offset > cur_length) {
1494         error_setg(errp, "Cannot grow NVMe devices");
1495         return -EINVAL;
1496     }
1497 
1498     return 0;
1499 }
1500 
1501 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1502                                BlockReopenQueue *queue, Error **errp)
1503 {
1504     return 0;
1505 }
1506 
1507 static void nvme_refresh_filename(BlockDriverState *bs)
1508 {
1509     BDRVNVMeState *s = bs->opaque;
1510 
1511     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1512              s->device, s->nsid);
1513 }
1514 
1515 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1516 {
1517     BDRVNVMeState *s = bs->opaque;
1518 
1519     bs->bl.opt_mem_alignment = s->page_size;
1520     bs->bl.request_alignment = s->page_size;
1521     bs->bl.max_transfer = s->max_transfer;
1522 
1523     /*
1524      * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1525      * at most 0xFFFF
1526      */
1527     bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1528     bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1529                                          1UL << s->blkshift);
1530 
1531     bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1532     bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1533                                     1UL << s->blkshift);
1534 }
1535 
1536 static void nvme_detach_aio_context(BlockDriverState *bs)
1537 {
1538     BDRVNVMeState *s = bs->opaque;
1539 
1540     for (unsigned i = 0; i < s->queue_count; i++) {
1541         NVMeQueuePair *q = s->queues[i];
1542 
1543         qemu_bh_delete(q->completion_bh);
1544         q->completion_bh = NULL;
1545     }
1546 
1547     aio_set_event_notifier(bdrv_get_aio_context(bs),
1548                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1549                            NULL, NULL, NULL);
1550 }
1551 
1552 static void nvme_attach_aio_context(BlockDriverState *bs,
1553                                     AioContext *new_context)
1554 {
1555     BDRVNVMeState *s = bs->opaque;
1556 
1557     s->aio_context = new_context;
1558     aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1559                            nvme_handle_event, nvme_poll_cb,
1560                            nvme_poll_ready);
1561 
1562     for (unsigned i = 0; i < s->queue_count; i++) {
1563         NVMeQueuePair *q = s->queues[i];
1564 
1565         q->completion_bh =
1566             aio_bh_new(new_context, nvme_process_completion_bh, q);
1567     }
1568 }
1569 
1570 static void coroutine_fn nvme_co_io_plug(BlockDriverState *bs)
1571 {
1572     BDRVNVMeState *s = bs->opaque;
1573     assert(!s->plugged);
1574     s->plugged = true;
1575 }
1576 
1577 static void coroutine_fn nvme_co_io_unplug(BlockDriverState *bs)
1578 {
1579     BDRVNVMeState *s = bs->opaque;
1580     assert(s->plugged);
1581     s->plugged = false;
1582     for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1583         NVMeQueuePair *q = s->queues[i];
1584         qemu_mutex_lock(&q->lock);
1585         nvme_kick(q);
1586         nvme_process_completion(q);
1587         qemu_mutex_unlock(&q->lock);
1588     }
1589 }
1590 
1591 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1592                               Error **errp)
1593 {
1594     int ret;
1595     BDRVNVMeState *s = bs->opaque;
1596 
1597     /*
1598      * FIXME: we may run out of IOVA addresses after repeated
1599      * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1600      * doesn't reclaim addresses for fixed mappings.
1601      */
1602     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1603     return ret == 0;
1604 }
1605 
1606 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1607 {
1608     BDRVNVMeState *s = bs->opaque;
1609 
1610     qemu_vfio_dma_unmap(s->vfio, host);
1611 }
1612 
1613 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1614 {
1615     BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1616     BDRVNVMeState *s = bs->opaque;
1617 
1618     stats->driver = BLOCKDEV_DRIVER_NVME;
1619     stats->u.nvme = (BlockStatsSpecificNvme) {
1620         .completion_errors = s->stats.completion_errors,
1621         .aligned_accesses = s->stats.aligned_accesses,
1622         .unaligned_accesses = s->stats.unaligned_accesses,
1623     };
1624 
1625     return stats;
1626 }
1627 
1628 static const char *const nvme_strong_runtime_opts[] = {
1629     NVME_BLOCK_OPT_DEVICE,
1630     NVME_BLOCK_OPT_NAMESPACE,
1631 
1632     NULL
1633 };
1634 
1635 static BlockDriver bdrv_nvme = {
1636     .format_name              = "nvme",
1637     .protocol_name            = "nvme",
1638     .instance_size            = sizeof(BDRVNVMeState),
1639 
1640     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1641     .create_opts              = &bdrv_create_opts_simple,
1642 
1643     .bdrv_parse_filename      = nvme_parse_filename,
1644     .bdrv_file_open           = nvme_file_open,
1645     .bdrv_close               = nvme_close,
1646     .bdrv_co_getlength        = nvme_co_getlength,
1647     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1648     .bdrv_co_truncate         = nvme_co_truncate,
1649 
1650     .bdrv_co_preadv           = nvme_co_preadv,
1651     .bdrv_co_pwritev          = nvme_co_pwritev,
1652 
1653     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1654     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1655 
1656     .bdrv_co_flush_to_disk    = nvme_co_flush,
1657     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1658 
1659     .bdrv_refresh_filename    = nvme_refresh_filename,
1660     .bdrv_refresh_limits      = nvme_refresh_limits,
1661     .strong_runtime_opts      = nvme_strong_runtime_opts,
1662     .bdrv_get_specific_stats  = nvme_get_specific_stats,
1663 
1664     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1665     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1666 
1667     .bdrv_co_io_plug          = nvme_co_io_plug,
1668     .bdrv_co_io_unplug        = nvme_co_io_unplug,
1669 
1670     .bdrv_register_buf        = nvme_register_buf,
1671     .bdrv_unregister_buf      = nvme_unregister_buf,
1672 };
1673 
1674 static void bdrv_nvme_init(void)
1675 {
1676     bdrv_register(&bdrv_nvme);
1677 }
1678 
1679 block_init(bdrv_nvme_init);
1680