xref: /openbmc/qemu/block/nvme.c (revision 806f71ee)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/module.h"
23 #include "qemu/cutils.h"
24 #include "qemu/option.h"
25 #include "qemu/memalign.h"
26 #include "qemu/vfio-helpers.h"
27 #include "block/block-io.h"
28 #include "block/block_int.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/replay.h"
31 #include "trace.h"
32 
33 #include "block/nvme.h"
34 
35 #define NVME_SQ_ENTRY_BYTES 64
36 #define NVME_CQ_ENTRY_BYTES 16
37 #define NVME_QUEUE_SIZE 128
38 #define NVME_DOORBELL_SIZE 4096
39 
40 /*
41  * We have to leave one slot empty as that is the full queue case where
42  * head == tail + 1.
43  */
44 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
45 
46 typedef struct BDRVNVMeState BDRVNVMeState;
47 
48 /* Same index is used for queues and IRQs */
49 #define INDEX_ADMIN     0
50 #define INDEX_IO(n)     (1 + n)
51 
52 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
53 enum {
54     MSIX_SHARED_IRQ_IDX = 0,
55     MSIX_IRQ_COUNT = 1
56 };
57 
58 typedef struct {
59     int32_t  head, tail;
60     uint8_t  *queue;
61     uint64_t iova;
62     /* Hardware MMIO register */
63     volatile uint32_t *doorbell;
64 } NVMeQueue;
65 
66 typedef struct {
67     BlockCompletionFunc *cb;
68     void *opaque;
69     int cid;
70     void *prp_list_page;
71     uint64_t prp_list_iova;
72     int free_req_next; /* q->reqs[] index of next free req */
73 } NVMeRequest;
74 
75 typedef struct {
76     QemuMutex   lock;
77 
78     /* Read from I/O code path, initialized under BQL */
79     BDRVNVMeState   *s;
80     int             index;
81 
82     /* Fields protected by BQL */
83     uint8_t     *prp_list_pages;
84 
85     /* Fields protected by @lock */
86     CoQueue     free_req_queue;
87     NVMeQueue   sq, cq;
88     int         cq_phase;
89     int         free_req_head;
90     NVMeRequest reqs[NVME_NUM_REQS];
91     int         need_kick;
92     int         inflight;
93 
94     /* Thread-safe, no lock necessary */
95     QEMUBH      *completion_bh;
96 } NVMeQueuePair;
97 
98 struct BDRVNVMeState {
99     AioContext *aio_context;
100     QEMUVFIOState *vfio;
101     void *bar0_wo_map;
102     /* Memory mapped registers */
103     volatile struct {
104         uint32_t sq_tail;
105         uint32_t cq_head;
106     } *doorbells;
107     /* The submission/completion queue pairs.
108      * [0]: admin queue.
109      * [1..]: io queues.
110      */
111     NVMeQueuePair **queues;
112     unsigned queue_count;
113     size_t page_size;
114     /* How many uint32_t elements does each doorbell entry take. */
115     size_t doorbell_scale;
116     bool write_cache_supported;
117     EventNotifier irq_notifier[MSIX_IRQ_COUNT];
118 
119     uint64_t nsze; /* Namespace size reported by identify command */
120     int nsid;      /* The namespace id to read/write data. */
121     int blkshift;
122 
123     uint64_t max_transfer;
124 
125     bool supports_write_zeroes;
126     bool supports_discard;
127 
128     CoMutex dma_map_lock;
129     CoQueue dma_flush_queue;
130 
131     /* Total size of mapped qiov, accessed under dma_map_lock */
132     int dma_map_count;
133 
134     /* PCI address (required for nvme_refresh_filename()) */
135     char *device;
136 
137     struct {
138         uint64_t completion_errors;
139         uint64_t aligned_accesses;
140         uint64_t unaligned_accesses;
141     } stats;
142 };
143 
144 #define NVME_BLOCK_OPT_DEVICE "device"
145 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
146 
147 static void nvme_process_completion_bh(void *opaque);
148 
149 static QemuOptsList runtime_opts = {
150     .name = "nvme",
151     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
152     .desc = {
153         {
154             .name = NVME_BLOCK_OPT_DEVICE,
155             .type = QEMU_OPT_STRING,
156             .help = "NVMe PCI device address",
157         },
158         {
159             .name = NVME_BLOCK_OPT_NAMESPACE,
160             .type = QEMU_OPT_NUMBER,
161             .help = "NVMe namespace",
162         },
163         { /* end of list */ }
164     },
165 };
166 
167 /* Returns true on success, false on failure. */
168 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
169                             unsigned nentries, size_t entry_bytes, Error **errp)
170 {
171     size_t bytes;
172     int r;
173 
174     bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
175     q->head = q->tail = 0;
176     q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
177     if (!q->queue) {
178         error_setg(errp, "Cannot allocate queue");
179         return false;
180     }
181     memset(q->queue, 0, bytes);
182     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
183     if (r) {
184         error_prepend(errp, "Cannot map queue: ");
185     }
186     return r == 0;
187 }
188 
189 static void nvme_free_queue(NVMeQueue *q)
190 {
191     qemu_vfree(q->queue);
192 }
193 
194 static void nvme_free_queue_pair(NVMeQueuePair *q)
195 {
196     trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
197     if (q->completion_bh) {
198         qemu_bh_delete(q->completion_bh);
199     }
200     nvme_free_queue(&q->sq);
201     nvme_free_queue(&q->cq);
202     qemu_vfree(q->prp_list_pages);
203     qemu_mutex_destroy(&q->lock);
204     g_free(q);
205 }
206 
207 static void nvme_free_req_queue_cb(void *opaque)
208 {
209     NVMeQueuePair *q = opaque;
210 
211     qemu_mutex_lock(&q->lock);
212     while (q->free_req_head != -1 &&
213            qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
214         /* Retry waiting requests */
215     }
216     qemu_mutex_unlock(&q->lock);
217 }
218 
219 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
220                                              AioContext *aio_context,
221                                              unsigned idx, size_t size,
222                                              Error **errp)
223 {
224     int i, r;
225     NVMeQueuePair *q;
226     uint64_t prp_list_iova;
227     size_t bytes;
228 
229     q = g_try_new0(NVMeQueuePair, 1);
230     if (!q) {
231         error_setg(errp, "Cannot allocate queue pair");
232         return NULL;
233     }
234     trace_nvme_create_queue_pair(idx, q, size, aio_context,
235                                  event_notifier_get_fd(s->irq_notifier));
236     bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
237                           qemu_real_host_page_size());
238     q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
239     if (!q->prp_list_pages) {
240         error_setg(errp, "Cannot allocate PRP page list");
241         goto fail;
242     }
243     memset(q->prp_list_pages, 0, bytes);
244     qemu_mutex_init(&q->lock);
245     q->s = s;
246     q->index = idx;
247     qemu_co_queue_init(&q->free_req_queue);
248     q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
249     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
250                           false, &prp_list_iova, errp);
251     if (r) {
252         error_prepend(errp, "Cannot map buffer for DMA: ");
253         goto fail;
254     }
255     q->free_req_head = -1;
256     for (i = 0; i < NVME_NUM_REQS; i++) {
257         NVMeRequest *req = &q->reqs[i];
258         req->cid = i + 1;
259         req->free_req_next = q->free_req_head;
260         q->free_req_head = i;
261         req->prp_list_page = q->prp_list_pages + i * s->page_size;
262         req->prp_list_iova = prp_list_iova + i * s->page_size;
263     }
264 
265     if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
266         goto fail;
267     }
268     q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
269 
270     if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
271         goto fail;
272     }
273     q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
274 
275     return q;
276 fail:
277     nvme_free_queue_pair(q);
278     return NULL;
279 }
280 
281 /* With q->lock */
282 static void nvme_kick(NVMeQueuePair *q)
283 {
284     BDRVNVMeState *s = q->s;
285 
286     if (!q->need_kick) {
287         return;
288     }
289     trace_nvme_kick(s, q->index);
290     assert(!(q->sq.tail & 0xFF00));
291     /* Fence the write to submission queue entry before notifying the device. */
292     smp_wmb();
293     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
294     q->inflight += q->need_kick;
295     q->need_kick = 0;
296 }
297 
298 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
299 {
300     NVMeRequest *req;
301 
302     req = &q->reqs[q->free_req_head];
303     q->free_req_head = req->free_req_next;
304     req->free_req_next = -1;
305     return req;
306 }
307 
308 /* Return a free request element if any, otherwise return NULL.  */
309 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
310 {
311     QEMU_LOCK_GUARD(&q->lock);
312     if (q->free_req_head == -1) {
313         return NULL;
314     }
315     return nvme_get_free_req_nofail_locked(q);
316 }
317 
318 /*
319  * Wait for a free request to become available if necessary, then
320  * return it.
321  */
322 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
323 {
324     QEMU_LOCK_GUARD(&q->lock);
325 
326     while (q->free_req_head == -1) {
327         trace_nvme_free_req_queue_wait(q->s, q->index);
328         qemu_co_queue_wait(&q->free_req_queue, &q->lock);
329     }
330 
331     return nvme_get_free_req_nofail_locked(q);
332 }
333 
334 /* With q->lock */
335 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
336 {
337     req->free_req_next = q->free_req_head;
338     q->free_req_head = req - q->reqs;
339 }
340 
341 /* With q->lock */
342 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
343 {
344     if (!qemu_co_queue_empty(&q->free_req_queue)) {
345         replay_bh_schedule_oneshot_event(q->s->aio_context,
346                 nvme_free_req_queue_cb, q);
347     }
348 }
349 
350 /* Insert a request in the freelist and wake waiters */
351 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
352 {
353     qemu_mutex_lock(&q->lock);
354     nvme_put_free_req_locked(q, req);
355     nvme_wake_free_req_locked(q);
356     qemu_mutex_unlock(&q->lock);
357 }
358 
359 static inline int nvme_translate_error(const NvmeCqe *c)
360 {
361     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
362     if (status) {
363         trace_nvme_error(le32_to_cpu(c->result),
364                          le16_to_cpu(c->sq_head),
365                          le16_to_cpu(c->sq_id),
366                          le16_to_cpu(c->cid),
367                          le16_to_cpu(status));
368     }
369     switch (status) {
370     case 0:
371         return 0;
372     case 1:
373         return -ENOSYS;
374     case 2:
375         return -EINVAL;
376     default:
377         return -EIO;
378     }
379 }
380 
381 /* With q->lock */
382 static bool nvme_process_completion(NVMeQueuePair *q)
383 {
384     BDRVNVMeState *s = q->s;
385     bool progress = false;
386     NVMeRequest *preq;
387     NVMeRequest req;
388     NvmeCqe *c;
389 
390     trace_nvme_process_completion(s, q->index, q->inflight);
391 
392     /*
393      * Support re-entrancy when a request cb() function invokes aio_poll().
394      * Pending completions must be visible to aio_poll() so that a cb()
395      * function can wait for the completion of another request.
396      *
397      * The aio_poll() loop will execute our BH and we'll resume completion
398      * processing there.
399      */
400     qemu_bh_schedule(q->completion_bh);
401 
402     assert(q->inflight >= 0);
403     while (q->inflight) {
404         int ret;
405         int16_t cid;
406 
407         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
408         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
409             break;
410         }
411         ret = nvme_translate_error(c);
412         if (ret) {
413             s->stats.completion_errors++;
414         }
415         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
416         if (!q->cq.head) {
417             q->cq_phase = !q->cq_phase;
418         }
419         cid = le16_to_cpu(c->cid);
420         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
421             warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
422                         "queue size: %u", cid, NVME_QUEUE_SIZE);
423             continue;
424         }
425         trace_nvme_complete_command(s, q->index, cid);
426         preq = &q->reqs[cid - 1];
427         req = *preq;
428         assert(req.cid == cid);
429         assert(req.cb);
430         nvme_put_free_req_locked(q, preq);
431         preq->cb = preq->opaque = NULL;
432         q->inflight--;
433         qemu_mutex_unlock(&q->lock);
434         req.cb(req.opaque, ret);
435         qemu_mutex_lock(&q->lock);
436         progress = true;
437     }
438     if (progress) {
439         /* Notify the device so it can post more completions. */
440         smp_mb_release();
441         *q->cq.doorbell = cpu_to_le32(q->cq.head);
442         nvme_wake_free_req_locked(q);
443     }
444 
445     qemu_bh_cancel(q->completion_bh);
446 
447     return progress;
448 }
449 
450 static void nvme_process_completion_bh(void *opaque)
451 {
452     NVMeQueuePair *q = opaque;
453 
454     /*
455      * We're being invoked because a nvme_process_completion() cb() function
456      * called aio_poll(). The callback may be waiting for further completions
457      * so notify the device that it has space to fill in more completions now.
458      */
459     smp_mb_release();
460     *q->cq.doorbell = cpu_to_le32(q->cq.head);
461     nvme_wake_free_req_locked(q);
462 
463     nvme_process_completion(q);
464 }
465 
466 static void nvme_trace_command(const NvmeCmd *cmd)
467 {
468     int i;
469 
470     if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
471         return;
472     }
473     for (i = 0; i < 8; ++i) {
474         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
475         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
476                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
477     }
478 }
479 
480 static void nvme_deferred_fn(void *opaque)
481 {
482     NVMeQueuePair *q = opaque;
483 
484     QEMU_LOCK_GUARD(&q->lock);
485     nvme_kick(q);
486     nvme_process_completion(q);
487 }
488 
489 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
490                                 NvmeCmd *cmd, BlockCompletionFunc cb,
491                                 void *opaque)
492 {
493     assert(!req->cb);
494     req->cb = cb;
495     req->opaque = opaque;
496     cmd->cid = cpu_to_le16(req->cid);
497 
498     trace_nvme_submit_command(q->s, q->index, req->cid);
499     nvme_trace_command(cmd);
500     qemu_mutex_lock(&q->lock);
501     memcpy((uint8_t *)q->sq.queue +
502            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
503     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
504     q->need_kick++;
505     qemu_mutex_unlock(&q->lock);
506 
507     defer_call(nvme_deferred_fn, q);
508 }
509 
510 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
511 {
512     int *pret = opaque;
513     *pret = ret;
514     aio_wait_kick();
515 }
516 
517 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
518 {
519     BDRVNVMeState *s = bs->opaque;
520     NVMeQueuePair *q = s->queues[INDEX_ADMIN];
521     AioContext *aio_context = bdrv_get_aio_context(bs);
522     NVMeRequest *req;
523     int ret = -EINPROGRESS;
524     req = nvme_get_free_req_nowait(q);
525     if (!req) {
526         return -EBUSY;
527     }
528     nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
529 
530     AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
531     return ret;
532 }
533 
534 /* Returns true on success, false on failure. */
535 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
536 {
537     BDRVNVMeState *s = bs->opaque;
538     bool ret = false;
539     QEMU_AUTO_VFREE union {
540         NvmeIdCtrl ctrl;
541         NvmeIdNs ns;
542     } *id = NULL;
543     NvmeLBAF *lbaf;
544     uint16_t oncs;
545     int r;
546     uint64_t iova;
547     NvmeCmd cmd = {
548         .opcode = NVME_ADM_CMD_IDENTIFY,
549         .cdw10 = cpu_to_le32(0x1),
550     };
551     size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
552 
553     id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
554     if (!id) {
555         error_setg(errp, "Cannot allocate buffer for identify response");
556         goto out;
557     }
558     r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
559     if (r) {
560         error_prepend(errp, "Cannot map buffer for DMA: ");
561         goto out;
562     }
563 
564     memset(id, 0, id_size);
565     cmd.dptr.prp1 = cpu_to_le64(iova);
566     if (nvme_admin_cmd_sync(bs, &cmd)) {
567         error_setg(errp, "Failed to identify controller");
568         goto out;
569     }
570 
571     if (le32_to_cpu(id->ctrl.nn) < namespace) {
572         error_setg(errp, "Invalid namespace");
573         goto out;
574     }
575     s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
576     s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
577     /* For now the page list buffer per command is one page, to hold at most
578      * s->page_size / sizeof(uint64_t) entries. */
579     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
580                           s->page_size / sizeof(uint64_t) * s->page_size);
581 
582     oncs = le16_to_cpu(id->ctrl.oncs);
583     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
584     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
585 
586     memset(id, 0, id_size);
587     cmd.cdw10 = 0;
588     cmd.nsid = cpu_to_le32(namespace);
589     if (nvme_admin_cmd_sync(bs, &cmd)) {
590         error_setg(errp, "Failed to identify namespace");
591         goto out;
592     }
593 
594     s->nsze = le64_to_cpu(id->ns.nsze);
595     lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
596 
597     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
598             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
599                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
600         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
601     }
602 
603     if (lbaf->ms) {
604         error_setg(errp, "Namespaces with metadata are not yet supported");
605         goto out;
606     }
607 
608     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
609         (1 << lbaf->ds) > s->page_size)
610     {
611         error_setg(errp, "Namespace has unsupported block size (2^%d)",
612                    lbaf->ds);
613         goto out;
614     }
615 
616     ret = true;
617     s->blkshift = lbaf->ds;
618 out:
619     qemu_vfio_dma_unmap(s->vfio, id);
620 
621     return ret;
622 }
623 
624 static void nvme_poll_queue(NVMeQueuePair *q)
625 {
626     const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
627     NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
628 
629     trace_nvme_poll_queue(q->s, q->index);
630     /*
631      * Do an early check for completions. q->lock isn't needed because
632      * nvme_process_completion() only runs in the event loop thread and
633      * cannot race with itself.
634      */
635     if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
636         return;
637     }
638 
639     qemu_mutex_lock(&q->lock);
640     while (nvme_process_completion(q)) {
641         /* Keep polling */
642     }
643     qemu_mutex_unlock(&q->lock);
644 }
645 
646 static void nvme_poll_queues(BDRVNVMeState *s)
647 {
648     int i;
649 
650     for (i = 0; i < s->queue_count; i++) {
651         nvme_poll_queue(s->queues[i]);
652     }
653 }
654 
655 static void nvme_handle_event(EventNotifier *n)
656 {
657     BDRVNVMeState *s = container_of(n, BDRVNVMeState,
658                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
659 
660     trace_nvme_handle_event(s);
661     event_notifier_test_and_clear(n);
662     nvme_poll_queues(s);
663 }
664 
665 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
666 {
667     BDRVNVMeState *s = bs->opaque;
668     unsigned n = s->queue_count;
669     NVMeQueuePair *q;
670     NvmeCmd cmd;
671     unsigned queue_size = NVME_QUEUE_SIZE;
672 
673     assert(n <= UINT16_MAX);
674     q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
675                                n, queue_size, errp);
676     if (!q) {
677         return false;
678     }
679     cmd = (NvmeCmd) {
680         .opcode = NVME_ADM_CMD_CREATE_CQ,
681         .dptr.prp1 = cpu_to_le64(q->cq.iova),
682         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
683         .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
684     };
685     if (nvme_admin_cmd_sync(bs, &cmd)) {
686         error_setg(errp, "Failed to create CQ io queue [%u]", n);
687         goto out_error;
688     }
689     cmd = (NvmeCmd) {
690         .opcode = NVME_ADM_CMD_CREATE_SQ,
691         .dptr.prp1 = cpu_to_le64(q->sq.iova),
692         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
693         .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
694     };
695     if (nvme_admin_cmd_sync(bs, &cmd)) {
696         error_setg(errp, "Failed to create SQ io queue [%u]", n);
697         goto out_error;
698     }
699     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
700     s->queues[n] = q;
701     s->queue_count++;
702     return true;
703 out_error:
704     nvme_free_queue_pair(q);
705     return false;
706 }
707 
708 static bool nvme_poll_cb(void *opaque)
709 {
710     EventNotifier *e = opaque;
711     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
712                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
713     int i;
714 
715     for (i = 0; i < s->queue_count; i++) {
716         NVMeQueuePair *q = s->queues[i];
717         const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
718         NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
719 
720         /*
721          * q->lock isn't needed because nvme_process_completion() only runs in
722          * the event loop thread and cannot race with itself.
723          */
724         if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
725             return true;
726         }
727     }
728     return false;
729 }
730 
731 static void nvme_poll_ready(EventNotifier *e)
732 {
733     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
734                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
735 
736     nvme_poll_queues(s);
737 }
738 
739 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
740                      Error **errp)
741 {
742     BDRVNVMeState *s = bs->opaque;
743     NVMeQueuePair *q;
744     AioContext *aio_context = bdrv_get_aio_context(bs);
745     int ret;
746     uint64_t cap;
747     uint32_t ver;
748     uint64_t timeout_ms;
749     uint64_t deadline, now;
750     volatile NvmeBar *regs = NULL;
751 
752     qemu_co_mutex_init(&s->dma_map_lock);
753     qemu_co_queue_init(&s->dma_flush_queue);
754     s->device = g_strdup(device);
755     s->nsid = namespace;
756     s->aio_context = bdrv_get_aio_context(bs);
757     ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
758     if (ret) {
759         error_setg(errp, "Failed to init event notifier");
760         return ret;
761     }
762 
763     s->vfio = qemu_vfio_open_pci(device, errp);
764     if (!s->vfio) {
765         ret = -EINVAL;
766         goto out;
767     }
768 
769     regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
770                                  PROT_READ | PROT_WRITE, errp);
771     if (!regs) {
772         ret = -EINVAL;
773         goto out;
774     }
775     /* Perform initialize sequence as described in NVMe spec "7.6.1
776      * Initialization". */
777 
778     cap = le64_to_cpu(regs->cap);
779     trace_nvme_controller_capability_raw(cap);
780     trace_nvme_controller_capability("Maximum Queue Entries Supported",
781                                      1 + NVME_CAP_MQES(cap));
782     trace_nvme_controller_capability("Contiguous Queues Required",
783                                      NVME_CAP_CQR(cap));
784     trace_nvme_controller_capability("Doorbell Stride",
785                                      1 << (2 + NVME_CAP_DSTRD(cap)));
786     trace_nvme_controller_capability("Subsystem Reset Supported",
787                                      NVME_CAP_NSSRS(cap));
788     trace_nvme_controller_capability("Memory Page Size Minimum",
789                                      1 << (12 + NVME_CAP_MPSMIN(cap)));
790     trace_nvme_controller_capability("Memory Page Size Maximum",
791                                      1 << (12 + NVME_CAP_MPSMAX(cap)));
792     if (!NVME_CAP_CSS(cap)) {
793         error_setg(errp, "Device doesn't support NVMe command set");
794         ret = -EINVAL;
795         goto out;
796     }
797 
798     s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
799     s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
800     bs->bl.opt_mem_alignment = s->page_size;
801     bs->bl.request_alignment = s->page_size;
802     timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
803 
804     ver = le32_to_cpu(regs->vs);
805     trace_nvme_controller_spec_version(extract32(ver, 16, 16),
806                                        extract32(ver, 8, 8),
807                                        extract32(ver, 0, 8));
808 
809     /* Reset device to get a clean state. */
810     regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
811     /* Wait for CSTS.RDY = 0. */
812     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
813     while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
814         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
815             error_setg(errp, "Timeout while waiting for device to reset (%"
816                              PRId64 " ms)",
817                        timeout_ms);
818             ret = -ETIMEDOUT;
819             goto out;
820         }
821     }
822 
823     s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
824                                            sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
825                                            PROT_WRITE, errp);
826     s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
827     if (!s->doorbells) {
828         ret = -EINVAL;
829         goto out;
830     }
831 
832     /* Set up admin queue. */
833     s->queues = g_new(NVMeQueuePair *, 1);
834     q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
835     if (!q) {
836         ret = -EINVAL;
837         goto out;
838     }
839     s->queues[INDEX_ADMIN] = q;
840     s->queue_count = 1;
841     QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
842     regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
843                             ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
844     regs->asq = cpu_to_le64(q->sq.iova);
845     regs->acq = cpu_to_le64(q->cq.iova);
846 
847     /* After setting up all control registers we can enable device now. */
848     regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
849                            (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
850                            CC_EN_MASK);
851     /* Wait for CSTS.RDY = 1. */
852     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
853     deadline = now + timeout_ms * SCALE_MS;
854     while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
855         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
856             error_setg(errp, "Timeout while waiting for device to start (%"
857                              PRId64 " ms)",
858                        timeout_ms);
859             ret = -ETIMEDOUT;
860             goto out;
861         }
862     }
863 
864     ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
865                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
866     if (ret) {
867         goto out;
868     }
869     aio_set_event_notifier(bdrv_get_aio_context(bs),
870                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
871                            nvme_handle_event, nvme_poll_cb,
872                            nvme_poll_ready);
873 
874     if (!nvme_identify(bs, namespace, errp)) {
875         ret = -EIO;
876         goto out;
877     }
878 
879     /* Set up command queues. */
880     if (!nvme_add_io_queue(bs, errp)) {
881         ret = -EIO;
882     }
883 out:
884     if (regs) {
885         qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
886     }
887 
888     /* Cleaning up is done in nvme_file_open() upon error. */
889     return ret;
890 }
891 
892 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
893  *
894  *     nvme://0000:44:00.0/1
895  *
896  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
897  * is the PCI address, and the last part is the namespace number starting from
898  * 1 according to the NVMe spec. */
899 static void nvme_parse_filename(const char *filename, QDict *options,
900                                 Error **errp)
901 {
902     int pref = strlen("nvme://");
903 
904     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
905         const char *tmp = filename + pref;
906         char *device;
907         const char *namespace;
908         unsigned long ns;
909         const char *slash = strchr(tmp, '/');
910         if (!slash) {
911             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
912             return;
913         }
914         device = g_strndup(tmp, slash - tmp);
915         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
916         g_free(device);
917         namespace = slash + 1;
918         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
919             error_setg(errp, "Invalid namespace '%s', positive number expected",
920                        namespace);
921             return;
922         }
923         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
924                       *namespace ? namespace : "1");
925     }
926 }
927 
928 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
929                                            Error **errp)
930 {
931     int ret;
932     BDRVNVMeState *s = bs->opaque;
933     NvmeCmd cmd = {
934         .opcode = NVME_ADM_CMD_SET_FEATURES,
935         .nsid = cpu_to_le32(s->nsid),
936         .cdw10 = cpu_to_le32(0x06),
937         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
938     };
939 
940     ret = nvme_admin_cmd_sync(bs, &cmd);
941     if (ret) {
942         error_setg(errp, "Failed to configure NVMe write cache");
943     }
944     return ret;
945 }
946 
947 static void nvme_close(BlockDriverState *bs)
948 {
949     BDRVNVMeState *s = bs->opaque;
950 
951     for (unsigned i = 0; i < s->queue_count; ++i) {
952         nvme_free_queue_pair(s->queues[i]);
953     }
954     g_free(s->queues);
955     aio_set_event_notifier(bdrv_get_aio_context(bs),
956                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
957                            NULL, NULL, NULL);
958     event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
959     qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
960                             0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
961     qemu_vfio_close(s->vfio);
962 
963     g_free(s->device);
964 }
965 
966 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
967                           Error **errp)
968 {
969     const char *device;
970     QemuOpts *opts;
971     int namespace;
972     int ret;
973     BDRVNVMeState *s = bs->opaque;
974 
975     bs->supported_write_flags = BDRV_REQ_FUA;
976 
977     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
978     qemu_opts_absorb_qdict(opts, options, &error_abort);
979     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
980     if (!device) {
981         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
982         qemu_opts_del(opts);
983         return -EINVAL;
984     }
985 
986     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
987     ret = nvme_init(bs, device, namespace, errp);
988     qemu_opts_del(opts);
989     if (ret) {
990         goto fail;
991     }
992     if (flags & BDRV_O_NOCACHE) {
993         if (!s->write_cache_supported) {
994             error_setg(errp,
995                        "NVMe controller doesn't support write cache configuration");
996             ret = -EINVAL;
997         } else {
998             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
999                                                   errp);
1000         }
1001         if (ret) {
1002             goto fail;
1003         }
1004     }
1005     return 0;
1006 fail:
1007     nvme_close(bs);
1008     return ret;
1009 }
1010 
1011 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1012 {
1013     BDRVNVMeState *s = bs->opaque;
1014     return s->nsze << s->blkshift;
1015 }
1016 
1017 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1018 {
1019     BDRVNVMeState *s = bs->opaque;
1020     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1021     return UINT32_C(1) << s->blkshift;
1022 }
1023 
1024 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1025 {
1026     uint32_t blocksize = nvme_get_blocksize(bs);
1027     bsz->phys = blocksize;
1028     bsz->log = blocksize;
1029     return 0;
1030 }
1031 
1032 /* Called with s->dma_map_lock */
1033 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1034                                             QEMUIOVector *qiov)
1035 {
1036     int r = 0;
1037     BDRVNVMeState *s = bs->opaque;
1038 
1039     s->dma_map_count -= qiov->size;
1040     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1041         r = qemu_vfio_dma_reset_temporary(s->vfio);
1042         if (!r) {
1043             qemu_co_queue_restart_all(&s->dma_flush_queue);
1044         }
1045     }
1046     return r;
1047 }
1048 
1049 /* Called with s->dma_map_lock */
1050 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1051                                           NVMeRequest *req, QEMUIOVector *qiov)
1052 {
1053     BDRVNVMeState *s = bs->opaque;
1054     uint64_t *pagelist = req->prp_list_page;
1055     int i, j, r;
1056     int entries = 0;
1057     Error *local_err = NULL, **errp = NULL;
1058 
1059     assert(qiov->size);
1060     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1061     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1062     for (i = 0; i < qiov->niov; ++i) {
1063         bool retry = true;
1064         uint64_t iova;
1065         size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1066                                    qemu_real_host_page_size());
1067 try_map:
1068         r = qemu_vfio_dma_map(s->vfio,
1069                               qiov->iov[i].iov_base,
1070                               len, true, &iova, errp);
1071         if (r == -ENOSPC) {
1072             /*
1073              * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1074              * ioctl returns -ENOSPC to signal the user exhausted the DMA
1075              * mappings available for a container since Linux kernel commit
1076              * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1077              * April 2019, see CVE-2019-3882).
1078              *
1079              * This block driver already handles this error path by checking
1080              * for the -ENOMEM error, so we directly replace -ENOSPC by
1081              * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1082              * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1083              * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1084              * to add more storage to the blockdev. Not something we can do
1085              * easily with an IOMMU :)
1086              */
1087             r = -ENOMEM;
1088         }
1089         if (r == -ENOMEM && retry) {
1090             /*
1091              * We exhausted the DMA mappings available for our container:
1092              * recycle the volatile IOVA mappings.
1093              */
1094             retry = false;
1095             trace_nvme_dma_flush_queue_wait(s);
1096             if (s->dma_map_count) {
1097                 trace_nvme_dma_map_flush(s);
1098                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1099             } else {
1100                 r = qemu_vfio_dma_reset_temporary(s->vfio);
1101                 if (r) {
1102                     goto fail;
1103                 }
1104             }
1105             errp = &local_err;
1106 
1107             goto try_map;
1108         }
1109         if (r) {
1110             goto fail;
1111         }
1112 
1113         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1114             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1115         }
1116         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1117                                     qiov->iov[i].iov_len / s->page_size);
1118     }
1119 
1120     s->dma_map_count += qiov->size;
1121 
1122     assert(entries <= s->page_size / sizeof(uint64_t));
1123     switch (entries) {
1124     case 0:
1125         abort();
1126     case 1:
1127         cmd->dptr.prp1 = pagelist[0];
1128         cmd->dptr.prp2 = 0;
1129         break;
1130     case 2:
1131         cmd->dptr.prp1 = pagelist[0];
1132         cmd->dptr.prp2 = pagelist[1];
1133         break;
1134     default:
1135         cmd->dptr.prp1 = pagelist[0];
1136         cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1137         break;
1138     }
1139     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1140     for (i = 0; i < entries; ++i) {
1141         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1142     }
1143     return 0;
1144 fail:
1145     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1146      * increment s->dma_map_count. This is okay for fixed mapping memory areas
1147      * because they are already mapped before calling this function; for
1148      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1149      * calling qemu_vfio_dma_reset_temporary when necessary. */
1150     if (local_err) {
1151         error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1152     }
1153     return r;
1154 }
1155 
1156 typedef struct {
1157     Coroutine *co;
1158     int ret;
1159     AioContext *ctx;
1160 } NVMeCoData;
1161 
1162 static void nvme_rw_cb_bh(void *opaque)
1163 {
1164     NVMeCoData *data = opaque;
1165     qemu_coroutine_enter(data->co);
1166 }
1167 
1168 static void nvme_rw_cb(void *opaque, int ret)
1169 {
1170     NVMeCoData *data = opaque;
1171     data->ret = ret;
1172     if (!data->co) {
1173         /* The rw coroutine hasn't yielded, don't try to enter. */
1174         return;
1175     }
1176     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1177 }
1178 
1179 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1180                                             uint64_t offset, uint64_t bytes,
1181                                             QEMUIOVector *qiov,
1182                                             bool is_write,
1183                                             int flags)
1184 {
1185     int r;
1186     BDRVNVMeState *s = bs->opaque;
1187     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1188     NVMeRequest *req;
1189 
1190     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1191                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1192     NvmeCmd cmd = {
1193         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1194         .nsid = cpu_to_le32(s->nsid),
1195         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1196         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1197         .cdw12 = cpu_to_le32(cdw12),
1198     };
1199     NVMeCoData data = {
1200         .ctx = bdrv_get_aio_context(bs),
1201         .ret = -EINPROGRESS,
1202     };
1203 
1204     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1205     assert(s->queue_count > 1);
1206     req = nvme_get_free_req(ioq);
1207     assert(req);
1208 
1209     qemu_co_mutex_lock(&s->dma_map_lock);
1210     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1211     qemu_co_mutex_unlock(&s->dma_map_lock);
1212     if (r) {
1213         nvme_put_free_req_and_wake(ioq, req);
1214         return r;
1215     }
1216     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1217 
1218     data.co = qemu_coroutine_self();
1219     while (data.ret == -EINPROGRESS) {
1220         qemu_coroutine_yield();
1221     }
1222 
1223     qemu_co_mutex_lock(&s->dma_map_lock);
1224     r = nvme_cmd_unmap_qiov(bs, qiov);
1225     qemu_co_mutex_unlock(&s->dma_map_lock);
1226     if (r) {
1227         return r;
1228     }
1229 
1230     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1231     return data.ret;
1232 }
1233 
1234 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1235                                      const QEMUIOVector *qiov)
1236 {
1237     int i;
1238     BDRVNVMeState *s = bs->opaque;
1239 
1240     for (i = 0; i < qiov->niov; ++i) {
1241         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1242                                  qemu_real_host_page_size()) ||
1243             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1244             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1245                                       qiov->iov[i].iov_len, s->page_size);
1246             return false;
1247         }
1248     }
1249     return true;
1250 }
1251 
1252 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1253                                     uint64_t offset, uint64_t bytes,
1254                                     QEMUIOVector *qiov, bool is_write,
1255                                     int flags)
1256 {
1257     BDRVNVMeState *s = bs->opaque;
1258     int r;
1259     QEMU_AUTO_VFREE uint8_t *buf = NULL;
1260     QEMUIOVector local_qiov;
1261     size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1262     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1263     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1264     assert(bytes <= s->max_transfer);
1265     if (nvme_qiov_aligned(bs, qiov)) {
1266         s->stats.aligned_accesses++;
1267         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1268     }
1269     s->stats.unaligned_accesses++;
1270     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1271     buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1272 
1273     if (!buf) {
1274         return -ENOMEM;
1275     }
1276     qemu_iovec_init(&local_qiov, 1);
1277     if (is_write) {
1278         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1279     }
1280     qemu_iovec_add(&local_qiov, buf, bytes);
1281     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1282     qemu_iovec_destroy(&local_qiov);
1283     if (!r && !is_write) {
1284         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1285     }
1286     return r;
1287 }
1288 
1289 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1290                                        int64_t offset, int64_t bytes,
1291                                        QEMUIOVector *qiov,
1292                                        BdrvRequestFlags flags)
1293 {
1294     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1295 }
1296 
1297 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1298                                         int64_t offset, int64_t bytes,
1299                                         QEMUIOVector *qiov,
1300                                         BdrvRequestFlags flags)
1301 {
1302     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1303 }
1304 
1305 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1306 {
1307     BDRVNVMeState *s = bs->opaque;
1308     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1309     NVMeRequest *req;
1310     NvmeCmd cmd = {
1311         .opcode = NVME_CMD_FLUSH,
1312         .nsid = cpu_to_le32(s->nsid),
1313     };
1314     NVMeCoData data = {
1315         .ctx = bdrv_get_aio_context(bs),
1316         .ret = -EINPROGRESS,
1317     };
1318 
1319     assert(s->queue_count > 1);
1320     req = nvme_get_free_req(ioq);
1321     assert(req);
1322     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1323 
1324     data.co = qemu_coroutine_self();
1325     if (data.ret == -EINPROGRESS) {
1326         qemu_coroutine_yield();
1327     }
1328 
1329     return data.ret;
1330 }
1331 
1332 
1333 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1334                                               int64_t offset,
1335                                               int64_t bytes,
1336                                               BdrvRequestFlags flags)
1337 {
1338     BDRVNVMeState *s = bs->opaque;
1339     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1340     NVMeRequest *req;
1341     uint32_t cdw12;
1342 
1343     if (!s->supports_write_zeroes) {
1344         return -ENOTSUP;
1345     }
1346 
1347     if (bytes == 0) {
1348         return 0;
1349     }
1350 
1351     cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1352     /*
1353      * We should not lose information. pwrite_zeroes_alignment and
1354      * max_pwrite_zeroes guarantees it.
1355      */
1356     assert(((cdw12 + 1) << s->blkshift) == bytes);
1357 
1358     NvmeCmd cmd = {
1359         .opcode = NVME_CMD_WRITE_ZEROES,
1360         .nsid = cpu_to_le32(s->nsid),
1361         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1362         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1363     };
1364 
1365     NVMeCoData data = {
1366         .ctx = bdrv_get_aio_context(bs),
1367         .ret = -EINPROGRESS,
1368     };
1369 
1370     if (flags & BDRV_REQ_MAY_UNMAP) {
1371         cdw12 |= (1 << 25);
1372     }
1373 
1374     if (flags & BDRV_REQ_FUA) {
1375         cdw12 |= (1 << 30);
1376     }
1377 
1378     cmd.cdw12 = cpu_to_le32(cdw12);
1379 
1380     trace_nvme_write_zeroes(s, offset, bytes, flags);
1381     assert(s->queue_count > 1);
1382     req = nvme_get_free_req(ioq);
1383     assert(req);
1384 
1385     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1386 
1387     data.co = qemu_coroutine_self();
1388     while (data.ret == -EINPROGRESS) {
1389         qemu_coroutine_yield();
1390     }
1391 
1392     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1393     return data.ret;
1394 }
1395 
1396 
1397 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1398                                          int64_t offset,
1399                                          int64_t bytes)
1400 {
1401     BDRVNVMeState *s = bs->opaque;
1402     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1403     NVMeRequest *req;
1404     QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1405     QEMUIOVector local_qiov;
1406     int ret;
1407 
1408     NvmeCmd cmd = {
1409         .opcode = NVME_CMD_DSM,
1410         .nsid = cpu_to_le32(s->nsid),
1411         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1412         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1413     };
1414 
1415     NVMeCoData data = {
1416         .ctx = bdrv_get_aio_context(bs),
1417         .ret = -EINPROGRESS,
1418     };
1419 
1420     if (!s->supports_discard) {
1421         return -ENOTSUP;
1422     }
1423 
1424     assert(s->queue_count > 1);
1425 
1426     /*
1427      * Filling the @buf requires @offset and @bytes to satisfy restrictions
1428      * defined in nvme_refresh_limits().
1429      */
1430     assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1431     assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1432     assert((bytes >> s->blkshift) <= UINT32_MAX);
1433 
1434     buf = qemu_try_memalign(s->page_size, s->page_size);
1435     if (!buf) {
1436         return -ENOMEM;
1437     }
1438     memset(buf, 0, s->page_size);
1439     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1440     buf->slba = cpu_to_le64(offset >> s->blkshift);
1441     buf->cattr = 0;
1442 
1443     qemu_iovec_init(&local_qiov, 1);
1444     qemu_iovec_add(&local_qiov, buf, 4096);
1445 
1446     req = nvme_get_free_req(ioq);
1447     assert(req);
1448 
1449     qemu_co_mutex_lock(&s->dma_map_lock);
1450     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1451     qemu_co_mutex_unlock(&s->dma_map_lock);
1452 
1453     if (ret) {
1454         nvme_put_free_req_and_wake(ioq, req);
1455         goto out;
1456     }
1457 
1458     trace_nvme_dsm(s, offset, bytes);
1459 
1460     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1461 
1462     data.co = qemu_coroutine_self();
1463     while (data.ret == -EINPROGRESS) {
1464         qemu_coroutine_yield();
1465     }
1466 
1467     qemu_co_mutex_lock(&s->dma_map_lock);
1468     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1469     qemu_co_mutex_unlock(&s->dma_map_lock);
1470 
1471     if (ret) {
1472         goto out;
1473     }
1474 
1475     ret = data.ret;
1476     trace_nvme_dsm_done(s, offset, bytes, ret);
1477 out:
1478     qemu_iovec_destroy(&local_qiov);
1479     return ret;
1480 
1481 }
1482 
1483 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1484                                          bool exact, PreallocMode prealloc,
1485                                          BdrvRequestFlags flags, Error **errp)
1486 {
1487     int64_t cur_length;
1488 
1489     if (prealloc != PREALLOC_MODE_OFF) {
1490         error_setg(errp, "Unsupported preallocation mode '%s'",
1491                    PreallocMode_str(prealloc));
1492         return -ENOTSUP;
1493     }
1494 
1495     cur_length = nvme_co_getlength(bs);
1496     if (offset != cur_length && exact) {
1497         error_setg(errp, "Cannot resize NVMe devices");
1498         return -ENOTSUP;
1499     } else if (offset > cur_length) {
1500         error_setg(errp, "Cannot grow NVMe devices");
1501         return -EINVAL;
1502     }
1503 
1504     return 0;
1505 }
1506 
1507 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1508                                BlockReopenQueue *queue, Error **errp)
1509 {
1510     return 0;
1511 }
1512 
1513 static void nvme_refresh_filename(BlockDriverState *bs)
1514 {
1515     BDRVNVMeState *s = bs->opaque;
1516 
1517     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1518              s->device, s->nsid);
1519 }
1520 
1521 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1522 {
1523     BDRVNVMeState *s = bs->opaque;
1524 
1525     bs->bl.opt_mem_alignment = s->page_size;
1526     bs->bl.request_alignment = s->page_size;
1527     bs->bl.max_transfer = s->max_transfer;
1528 
1529     /*
1530      * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1531      * at most 0xFFFF
1532      */
1533     bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1534     bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1535                                          1UL << s->blkshift);
1536 
1537     bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1538     bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1539                                     1UL << s->blkshift);
1540 }
1541 
1542 static void nvme_detach_aio_context(BlockDriverState *bs)
1543 {
1544     BDRVNVMeState *s = bs->opaque;
1545 
1546     for (unsigned i = 0; i < s->queue_count; i++) {
1547         NVMeQueuePair *q = s->queues[i];
1548 
1549         qemu_bh_delete(q->completion_bh);
1550         q->completion_bh = NULL;
1551     }
1552 
1553     aio_set_event_notifier(bdrv_get_aio_context(bs),
1554                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1555                            NULL, NULL, NULL);
1556 }
1557 
1558 static void nvme_attach_aio_context(BlockDriverState *bs,
1559                                     AioContext *new_context)
1560 {
1561     BDRVNVMeState *s = bs->opaque;
1562 
1563     s->aio_context = new_context;
1564     aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1565                            nvme_handle_event, nvme_poll_cb,
1566                            nvme_poll_ready);
1567 
1568     for (unsigned i = 0; i < s->queue_count; i++) {
1569         NVMeQueuePair *q = s->queues[i];
1570 
1571         q->completion_bh =
1572             aio_bh_new(new_context, nvme_process_completion_bh, q);
1573     }
1574 }
1575 
1576 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1577                               Error **errp)
1578 {
1579     int ret;
1580     BDRVNVMeState *s = bs->opaque;
1581 
1582     /*
1583      * FIXME: we may run out of IOVA addresses after repeated
1584      * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1585      * doesn't reclaim addresses for fixed mappings.
1586      */
1587     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1588     return ret == 0;
1589 }
1590 
1591 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1592 {
1593     BDRVNVMeState *s = bs->opaque;
1594 
1595     qemu_vfio_dma_unmap(s->vfio, host);
1596 }
1597 
1598 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1599 {
1600     BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1601     BDRVNVMeState *s = bs->opaque;
1602 
1603     stats->driver = BLOCKDEV_DRIVER_NVME;
1604     stats->u.nvme = (BlockStatsSpecificNvme) {
1605         .completion_errors = s->stats.completion_errors,
1606         .aligned_accesses = s->stats.aligned_accesses,
1607         .unaligned_accesses = s->stats.unaligned_accesses,
1608     };
1609 
1610     return stats;
1611 }
1612 
1613 static const char *const nvme_strong_runtime_opts[] = {
1614     NVME_BLOCK_OPT_DEVICE,
1615     NVME_BLOCK_OPT_NAMESPACE,
1616 
1617     NULL
1618 };
1619 
1620 static BlockDriver bdrv_nvme = {
1621     .format_name              = "nvme",
1622     .protocol_name            = "nvme",
1623     .instance_size            = sizeof(BDRVNVMeState),
1624 
1625     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1626     .create_opts              = &bdrv_create_opts_simple,
1627 
1628     .bdrv_parse_filename      = nvme_parse_filename,
1629     .bdrv_file_open           = nvme_file_open,
1630     .bdrv_close               = nvme_close,
1631     .bdrv_co_getlength        = nvme_co_getlength,
1632     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1633     .bdrv_co_truncate         = nvme_co_truncate,
1634 
1635     .bdrv_co_preadv           = nvme_co_preadv,
1636     .bdrv_co_pwritev          = nvme_co_pwritev,
1637 
1638     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1639     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1640 
1641     .bdrv_co_flush_to_disk    = nvme_co_flush,
1642     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1643 
1644     .bdrv_refresh_filename    = nvme_refresh_filename,
1645     .bdrv_refresh_limits      = nvme_refresh_limits,
1646     .strong_runtime_opts      = nvme_strong_runtime_opts,
1647     .bdrv_get_specific_stats  = nvme_get_specific_stats,
1648 
1649     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1650     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1651 
1652     .bdrv_register_buf        = nvme_register_buf,
1653     .bdrv_unregister_buf      = nvme_unregister_buf,
1654 };
1655 
1656 static void bdrv_nvme_init(void)
1657 {
1658     bdrv_register(&bdrv_nvme);
1659 }
1660 
1661 block_init(bdrv_nvme_init);
1662