xref: /openbmc/qemu/block/nvme.c (revision 56c39a41adadfc567e1ac22089670bfde6b35365)
1  /*
2   * NVMe block driver based on vfio
3   *
4   * Copyright 2016 - 2018 Red Hat, Inc.
5   *
6   * Authors:
7   *   Fam Zheng <famz@redhat.com>
8   *   Paolo Bonzini <pbonzini@redhat.com>
9   *
10   * This work is licensed under the terms of the GNU GPL, version 2 or later.
11   * See the COPYING file in the top-level directory.
12   */
13  
14  #include "qemu/osdep.h"
15  #include <linux/vfio.h>
16  #include "qapi/error.h"
17  #include "qapi/qmp/qdict.h"
18  #include "qapi/qmp/qstring.h"
19  #include "qemu/error-report.h"
20  #include "qemu/main-loop.h"
21  #include "qemu/module.h"
22  #include "qemu/cutils.h"
23  #include "qemu/option.h"
24  #include "qemu/memalign.h"
25  #include "qemu/vfio-helpers.h"
26  #include "block/block-io.h"
27  #include "block/block_int.h"
28  #include "sysemu/block-backend.h"
29  #include "sysemu/replay.h"
30  #include "trace.h"
31  
32  #include "block/nvme.h"
33  
34  #define NVME_SQ_ENTRY_BYTES 64
35  #define NVME_CQ_ENTRY_BYTES 16
36  #define NVME_QUEUE_SIZE 128
37  #define NVME_DOORBELL_SIZE 4096
38  
39  /*
40   * We have to leave one slot empty as that is the full queue case where
41   * head == tail + 1.
42   */
43  #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
44  
45  typedef struct BDRVNVMeState BDRVNVMeState;
46  
47  /* Same index is used for queues and IRQs */
48  #define INDEX_ADMIN     0
49  #define INDEX_IO(n)     (1 + n)
50  
51  /* This driver shares a single MSIX IRQ for the admin and I/O queues */
52  enum {
53      MSIX_SHARED_IRQ_IDX = 0,
54      MSIX_IRQ_COUNT = 1
55  };
56  
57  typedef struct {
58      int32_t  head, tail;
59      uint8_t  *queue;
60      uint64_t iova;
61      /* Hardware MMIO register */
62      volatile uint32_t *doorbell;
63  } NVMeQueue;
64  
65  typedef struct {
66      BlockCompletionFunc *cb;
67      void *opaque;
68      int cid;
69      void *prp_list_page;
70      uint64_t prp_list_iova;
71      int free_req_next; /* q->reqs[] index of next free req */
72  } NVMeRequest;
73  
74  typedef struct {
75      QemuMutex   lock;
76  
77      /* Read from I/O code path, initialized under BQL */
78      BDRVNVMeState   *s;
79      int             index;
80  
81      /* Fields protected by BQL */
82      uint8_t     *prp_list_pages;
83  
84      /* Fields protected by @lock */
85      CoQueue     free_req_queue;
86      NVMeQueue   sq, cq;
87      int         cq_phase;
88      int         free_req_head;
89      NVMeRequest reqs[NVME_NUM_REQS];
90      int         need_kick;
91      int         inflight;
92  
93      /* Thread-safe, no lock necessary */
94      QEMUBH      *completion_bh;
95  } NVMeQueuePair;
96  
97  struct BDRVNVMeState {
98      AioContext *aio_context;
99      QEMUVFIOState *vfio;
100      void *bar0_wo_map;
101      /* Memory mapped registers */
102      volatile struct {
103          uint32_t sq_tail;
104          uint32_t cq_head;
105      } *doorbells;
106      /* The submission/completion queue pairs.
107       * [0]: admin queue.
108       * [1..]: io queues.
109       */
110      NVMeQueuePair **queues;
111      unsigned queue_count;
112      size_t page_size;
113      /* How many uint32_t elements does each doorbell entry take. */
114      size_t doorbell_scale;
115      bool write_cache_supported;
116      EventNotifier irq_notifier[MSIX_IRQ_COUNT];
117  
118      uint64_t nsze; /* Namespace size reported by identify command */
119      int nsid;      /* The namespace id to read/write data. */
120      int blkshift;
121  
122      uint64_t max_transfer;
123  
124      bool supports_write_zeroes;
125      bool supports_discard;
126  
127      CoMutex dma_map_lock;
128      CoQueue dma_flush_queue;
129  
130      /* Total size of mapped qiov, accessed under dma_map_lock */
131      int dma_map_count;
132  
133      /* PCI address (required for nvme_refresh_filename()) */
134      char *device;
135  
136      struct {
137          uint64_t completion_errors;
138          uint64_t aligned_accesses;
139          uint64_t unaligned_accesses;
140      } stats;
141  };
142  
143  #define NVME_BLOCK_OPT_DEVICE "device"
144  #define NVME_BLOCK_OPT_NAMESPACE "namespace"
145  
146  static void nvme_process_completion_bh(void *opaque);
147  
148  static QemuOptsList runtime_opts = {
149      .name = "nvme",
150      .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
151      .desc = {
152          {
153              .name = NVME_BLOCK_OPT_DEVICE,
154              .type = QEMU_OPT_STRING,
155              .help = "NVMe PCI device address",
156          },
157          {
158              .name = NVME_BLOCK_OPT_NAMESPACE,
159              .type = QEMU_OPT_NUMBER,
160              .help = "NVMe namespace",
161          },
162          { /* end of list */ }
163      },
164  };
165  
166  /* Returns true on success, false on failure. */
167  static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
168                              unsigned nentries, size_t entry_bytes, Error **errp)
169  {
170      size_t bytes;
171      int r;
172  
173      bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
174      q->head = q->tail = 0;
175      q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
176      if (!q->queue) {
177          error_setg(errp, "Cannot allocate queue");
178          return false;
179      }
180      memset(q->queue, 0, bytes);
181      r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
182      if (r) {
183          error_prepend(errp, "Cannot map queue: ");
184      }
185      return r == 0;
186  }
187  
188  static void nvme_free_queue(NVMeQueue *q)
189  {
190      qemu_vfree(q->queue);
191  }
192  
193  static void nvme_free_queue_pair(NVMeQueuePair *q)
194  {
195      trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
196      if (q->completion_bh) {
197          qemu_bh_delete(q->completion_bh);
198      }
199      nvme_free_queue(&q->sq);
200      nvme_free_queue(&q->cq);
201      qemu_vfree(q->prp_list_pages);
202      qemu_mutex_destroy(&q->lock);
203      g_free(q);
204  }
205  
206  static void nvme_free_req_queue_cb(void *opaque)
207  {
208      NVMeQueuePair *q = opaque;
209  
210      qemu_mutex_lock(&q->lock);
211      while (q->free_req_head != -1 &&
212             qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
213          /* Retry waiting requests */
214      }
215      qemu_mutex_unlock(&q->lock);
216  }
217  
218  static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
219                                               AioContext *aio_context,
220                                               unsigned idx, size_t size,
221                                               Error **errp)
222  {
223      int i, r;
224      NVMeQueuePair *q;
225      uint64_t prp_list_iova;
226      size_t bytes;
227  
228      q = g_try_new0(NVMeQueuePair, 1);
229      if (!q) {
230          error_setg(errp, "Cannot allocate queue pair");
231          return NULL;
232      }
233      trace_nvme_create_queue_pair(idx, q, size, aio_context,
234                                   event_notifier_get_fd(s->irq_notifier));
235      bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
236                            qemu_real_host_page_size());
237      q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
238      if (!q->prp_list_pages) {
239          error_setg(errp, "Cannot allocate PRP page list");
240          goto fail;
241      }
242      memset(q->prp_list_pages, 0, bytes);
243      qemu_mutex_init(&q->lock);
244      q->s = s;
245      q->index = idx;
246      qemu_co_queue_init(&q->free_req_queue);
247      q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
248      r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
249                            false, &prp_list_iova, errp);
250      if (r) {
251          error_prepend(errp, "Cannot map buffer for DMA: ");
252          goto fail;
253      }
254      q->free_req_head = -1;
255      for (i = 0; i < NVME_NUM_REQS; i++) {
256          NVMeRequest *req = &q->reqs[i];
257          req->cid = i + 1;
258          req->free_req_next = q->free_req_head;
259          q->free_req_head = i;
260          req->prp_list_page = q->prp_list_pages + i * s->page_size;
261          req->prp_list_iova = prp_list_iova + i * s->page_size;
262      }
263  
264      if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
265          goto fail;
266      }
267      q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
268  
269      if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
270          goto fail;
271      }
272      q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
273  
274      return q;
275  fail:
276      nvme_free_queue_pair(q);
277      return NULL;
278  }
279  
280  /* With q->lock */
281  static void nvme_kick(NVMeQueuePair *q)
282  {
283      BDRVNVMeState *s = q->s;
284  
285      if (!q->need_kick) {
286          return;
287      }
288      trace_nvme_kick(s, q->index);
289      assert(!(q->sq.tail & 0xFF00));
290      /* Fence the write to submission queue entry before notifying the device. */
291      smp_wmb();
292      *q->sq.doorbell = cpu_to_le32(q->sq.tail);
293      q->inflight += q->need_kick;
294      q->need_kick = 0;
295  }
296  
297  static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
298  {
299      NVMeRequest *req;
300  
301      req = &q->reqs[q->free_req_head];
302      q->free_req_head = req->free_req_next;
303      req->free_req_next = -1;
304      return req;
305  }
306  
307  /* Return a free request element if any, otherwise return NULL.  */
308  static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
309  {
310      QEMU_LOCK_GUARD(&q->lock);
311      if (q->free_req_head == -1) {
312          return NULL;
313      }
314      return nvme_get_free_req_nofail_locked(q);
315  }
316  
317  /*
318   * Wait for a free request to become available if necessary, then
319   * return it.
320   */
321  static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
322  {
323      QEMU_LOCK_GUARD(&q->lock);
324  
325      while (q->free_req_head == -1) {
326          trace_nvme_free_req_queue_wait(q->s, q->index);
327          qemu_co_queue_wait(&q->free_req_queue, &q->lock);
328      }
329  
330      return nvme_get_free_req_nofail_locked(q);
331  }
332  
333  /* With q->lock */
334  static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
335  {
336      req->free_req_next = q->free_req_head;
337      q->free_req_head = req - q->reqs;
338  }
339  
340  /* With q->lock */
341  static void nvme_wake_free_req_locked(NVMeQueuePair *q)
342  {
343      if (!qemu_co_queue_empty(&q->free_req_queue)) {
344          replay_bh_schedule_oneshot_event(q->s->aio_context,
345                  nvme_free_req_queue_cb, q);
346      }
347  }
348  
349  /* Insert a request in the freelist and wake waiters */
350  static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
351  {
352      qemu_mutex_lock(&q->lock);
353      nvme_put_free_req_locked(q, req);
354      nvme_wake_free_req_locked(q);
355      qemu_mutex_unlock(&q->lock);
356  }
357  
358  static inline int nvme_translate_error(const NvmeCqe *c)
359  {
360      uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
361      if (status) {
362          trace_nvme_error(le32_to_cpu(c->result),
363                           le16_to_cpu(c->sq_head),
364                           le16_to_cpu(c->sq_id),
365                           le16_to_cpu(c->cid),
366                           le16_to_cpu(status));
367      }
368      switch (status) {
369      case 0:
370          return 0;
371      case 1:
372          return -ENOSYS;
373      case 2:
374          return -EINVAL;
375      default:
376          return -EIO;
377      }
378  }
379  
380  /* With q->lock */
381  static bool nvme_process_completion(NVMeQueuePair *q)
382  {
383      BDRVNVMeState *s = q->s;
384      bool progress = false;
385      NVMeRequest *preq;
386      NVMeRequest req;
387      NvmeCqe *c;
388  
389      trace_nvme_process_completion(s, q->index, q->inflight);
390  
391      /*
392       * Support re-entrancy when a request cb() function invokes aio_poll().
393       * Pending completions must be visible to aio_poll() so that a cb()
394       * function can wait for the completion of another request.
395       *
396       * The aio_poll() loop will execute our BH and we'll resume completion
397       * processing there.
398       */
399      qemu_bh_schedule(q->completion_bh);
400  
401      assert(q->inflight >= 0);
402      while (q->inflight) {
403          int ret;
404          int16_t cid;
405  
406          c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
407          if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
408              break;
409          }
410          ret = nvme_translate_error(c);
411          if (ret) {
412              s->stats.completion_errors++;
413          }
414          q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
415          if (!q->cq.head) {
416              q->cq_phase = !q->cq_phase;
417          }
418          cid = le16_to_cpu(c->cid);
419          if (cid == 0 || cid > NVME_QUEUE_SIZE) {
420              warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
421                          "queue size: %u", cid, NVME_QUEUE_SIZE);
422              continue;
423          }
424          trace_nvme_complete_command(s, q->index, cid);
425          preq = &q->reqs[cid - 1];
426          req = *preq;
427          assert(req.cid == cid);
428          assert(req.cb);
429          nvme_put_free_req_locked(q, preq);
430          preq->cb = preq->opaque = NULL;
431          q->inflight--;
432          qemu_mutex_unlock(&q->lock);
433          req.cb(req.opaque, ret);
434          qemu_mutex_lock(&q->lock);
435          progress = true;
436      }
437      if (progress) {
438          /* Notify the device so it can post more completions. */
439          smp_mb_release();
440          *q->cq.doorbell = cpu_to_le32(q->cq.head);
441          nvme_wake_free_req_locked(q);
442      }
443  
444      qemu_bh_cancel(q->completion_bh);
445  
446      return progress;
447  }
448  
449  static void nvme_process_completion_bh(void *opaque)
450  {
451      NVMeQueuePair *q = opaque;
452  
453      /*
454       * We're being invoked because a nvme_process_completion() cb() function
455       * called aio_poll(). The callback may be waiting for further completions
456       * so notify the device that it has space to fill in more completions now.
457       */
458      smp_mb_release();
459      *q->cq.doorbell = cpu_to_le32(q->cq.head);
460      nvme_wake_free_req_locked(q);
461  
462      nvme_process_completion(q);
463  }
464  
465  static void nvme_trace_command(const NvmeCmd *cmd)
466  {
467      int i;
468  
469      if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
470          return;
471      }
472      for (i = 0; i < 8; ++i) {
473          uint8_t *cmdp = (uint8_t *)cmd + i * 8;
474          trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
475                                        cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
476      }
477  }
478  
479  static void nvme_unplug_fn(void *opaque)
480  {
481      NVMeQueuePair *q = opaque;
482  
483      QEMU_LOCK_GUARD(&q->lock);
484      nvme_kick(q);
485      nvme_process_completion(q);
486  }
487  
488  static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
489                                  NvmeCmd *cmd, BlockCompletionFunc cb,
490                                  void *opaque)
491  {
492      assert(!req->cb);
493      req->cb = cb;
494      req->opaque = opaque;
495      cmd->cid = cpu_to_le16(req->cid);
496  
497      trace_nvme_submit_command(q->s, q->index, req->cid);
498      nvme_trace_command(cmd);
499      qemu_mutex_lock(&q->lock);
500      memcpy((uint8_t *)q->sq.queue +
501             q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
502      q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
503      q->need_kick++;
504      qemu_mutex_unlock(&q->lock);
505  
506      blk_io_plug_call(nvme_unplug_fn, q);
507  }
508  
509  static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
510  {
511      int *pret = opaque;
512      *pret = ret;
513      aio_wait_kick();
514  }
515  
516  static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
517  {
518      BDRVNVMeState *s = bs->opaque;
519      NVMeQueuePair *q = s->queues[INDEX_ADMIN];
520      AioContext *aio_context = bdrv_get_aio_context(bs);
521      NVMeRequest *req;
522      int ret = -EINPROGRESS;
523      req = nvme_get_free_req_nowait(q);
524      if (!req) {
525          return -EBUSY;
526      }
527      nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
528  
529      AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
530      return ret;
531  }
532  
533  /* Returns true on success, false on failure. */
534  static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
535  {
536      BDRVNVMeState *s = bs->opaque;
537      bool ret = false;
538      QEMU_AUTO_VFREE union {
539          NvmeIdCtrl ctrl;
540          NvmeIdNs ns;
541      } *id = NULL;
542      NvmeLBAF *lbaf;
543      uint16_t oncs;
544      int r;
545      uint64_t iova;
546      NvmeCmd cmd = {
547          .opcode = NVME_ADM_CMD_IDENTIFY,
548          .cdw10 = cpu_to_le32(0x1),
549      };
550      size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
551  
552      id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
553      if (!id) {
554          error_setg(errp, "Cannot allocate buffer for identify response");
555          goto out;
556      }
557      r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
558      if (r) {
559          error_prepend(errp, "Cannot map buffer for DMA: ");
560          goto out;
561      }
562  
563      memset(id, 0, id_size);
564      cmd.dptr.prp1 = cpu_to_le64(iova);
565      if (nvme_admin_cmd_sync(bs, &cmd)) {
566          error_setg(errp, "Failed to identify controller");
567          goto out;
568      }
569  
570      if (le32_to_cpu(id->ctrl.nn) < namespace) {
571          error_setg(errp, "Invalid namespace");
572          goto out;
573      }
574      s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
575      s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
576      /* For now the page list buffer per command is one page, to hold at most
577       * s->page_size / sizeof(uint64_t) entries. */
578      s->max_transfer = MIN_NON_ZERO(s->max_transfer,
579                            s->page_size / sizeof(uint64_t) * s->page_size);
580  
581      oncs = le16_to_cpu(id->ctrl.oncs);
582      s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
583      s->supports_discard = !!(oncs & NVME_ONCS_DSM);
584  
585      memset(id, 0, id_size);
586      cmd.cdw10 = 0;
587      cmd.nsid = cpu_to_le32(namespace);
588      if (nvme_admin_cmd_sync(bs, &cmd)) {
589          error_setg(errp, "Failed to identify namespace");
590          goto out;
591      }
592  
593      s->nsze = le64_to_cpu(id->ns.nsze);
594      lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
595  
596      if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
597              NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
598                      NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
599          bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
600      }
601  
602      if (lbaf->ms) {
603          error_setg(errp, "Namespaces with metadata are not yet supported");
604          goto out;
605      }
606  
607      if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
608          (1 << lbaf->ds) > s->page_size)
609      {
610          error_setg(errp, "Namespace has unsupported block size (2^%d)",
611                     lbaf->ds);
612          goto out;
613      }
614  
615      ret = true;
616      s->blkshift = lbaf->ds;
617  out:
618      qemu_vfio_dma_unmap(s->vfio, id);
619  
620      return ret;
621  }
622  
623  static void nvme_poll_queue(NVMeQueuePair *q)
624  {
625      const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
626      NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
627  
628      trace_nvme_poll_queue(q->s, q->index);
629      /*
630       * Do an early check for completions. q->lock isn't needed because
631       * nvme_process_completion() only runs in the event loop thread and
632       * cannot race with itself.
633       */
634      if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
635          return;
636      }
637  
638      qemu_mutex_lock(&q->lock);
639      while (nvme_process_completion(q)) {
640          /* Keep polling */
641      }
642      qemu_mutex_unlock(&q->lock);
643  }
644  
645  static void nvme_poll_queues(BDRVNVMeState *s)
646  {
647      int i;
648  
649      for (i = 0; i < s->queue_count; i++) {
650          nvme_poll_queue(s->queues[i]);
651      }
652  }
653  
654  static void nvme_handle_event(EventNotifier *n)
655  {
656      BDRVNVMeState *s = container_of(n, BDRVNVMeState,
657                                      irq_notifier[MSIX_SHARED_IRQ_IDX]);
658  
659      trace_nvme_handle_event(s);
660      event_notifier_test_and_clear(n);
661      nvme_poll_queues(s);
662  }
663  
664  static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
665  {
666      BDRVNVMeState *s = bs->opaque;
667      unsigned n = s->queue_count;
668      NVMeQueuePair *q;
669      NvmeCmd cmd;
670      unsigned queue_size = NVME_QUEUE_SIZE;
671  
672      assert(n <= UINT16_MAX);
673      q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
674                                 n, queue_size, errp);
675      if (!q) {
676          return false;
677      }
678      cmd = (NvmeCmd) {
679          .opcode = NVME_ADM_CMD_CREATE_CQ,
680          .dptr.prp1 = cpu_to_le64(q->cq.iova),
681          .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
682          .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
683      };
684      if (nvme_admin_cmd_sync(bs, &cmd)) {
685          error_setg(errp, "Failed to create CQ io queue [%u]", n);
686          goto out_error;
687      }
688      cmd = (NvmeCmd) {
689          .opcode = NVME_ADM_CMD_CREATE_SQ,
690          .dptr.prp1 = cpu_to_le64(q->sq.iova),
691          .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
692          .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
693      };
694      if (nvme_admin_cmd_sync(bs, &cmd)) {
695          error_setg(errp, "Failed to create SQ io queue [%u]", n);
696          goto out_error;
697      }
698      s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
699      s->queues[n] = q;
700      s->queue_count++;
701      return true;
702  out_error:
703      nvme_free_queue_pair(q);
704      return false;
705  }
706  
707  static bool nvme_poll_cb(void *opaque)
708  {
709      EventNotifier *e = opaque;
710      BDRVNVMeState *s = container_of(e, BDRVNVMeState,
711                                      irq_notifier[MSIX_SHARED_IRQ_IDX]);
712      int i;
713  
714      for (i = 0; i < s->queue_count; i++) {
715          NVMeQueuePair *q = s->queues[i];
716          const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
717          NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
718  
719          /*
720           * q->lock isn't needed because nvme_process_completion() only runs in
721           * the event loop thread and cannot race with itself.
722           */
723          if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
724              return true;
725          }
726      }
727      return false;
728  }
729  
730  static void nvme_poll_ready(EventNotifier *e)
731  {
732      BDRVNVMeState *s = container_of(e, BDRVNVMeState,
733                                      irq_notifier[MSIX_SHARED_IRQ_IDX]);
734  
735      nvme_poll_queues(s);
736  }
737  
738  static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
739                       Error **errp)
740  {
741      BDRVNVMeState *s = bs->opaque;
742      NVMeQueuePair *q;
743      AioContext *aio_context = bdrv_get_aio_context(bs);
744      int ret;
745      uint64_t cap;
746      uint32_t ver;
747      uint64_t timeout_ms;
748      uint64_t deadline, now;
749      volatile NvmeBar *regs = NULL;
750  
751      qemu_co_mutex_init(&s->dma_map_lock);
752      qemu_co_queue_init(&s->dma_flush_queue);
753      s->device = g_strdup(device);
754      s->nsid = namespace;
755      s->aio_context = bdrv_get_aio_context(bs);
756      ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
757      if (ret) {
758          error_setg(errp, "Failed to init event notifier");
759          return ret;
760      }
761  
762      s->vfio = qemu_vfio_open_pci(device, errp);
763      if (!s->vfio) {
764          ret = -EINVAL;
765          goto out;
766      }
767  
768      regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
769                                   PROT_READ | PROT_WRITE, errp);
770      if (!regs) {
771          ret = -EINVAL;
772          goto out;
773      }
774      /* Perform initialize sequence as described in NVMe spec "7.6.1
775       * Initialization". */
776  
777      cap = le64_to_cpu(regs->cap);
778      trace_nvme_controller_capability_raw(cap);
779      trace_nvme_controller_capability("Maximum Queue Entries Supported",
780                                       1 + NVME_CAP_MQES(cap));
781      trace_nvme_controller_capability("Contiguous Queues Required",
782                                       NVME_CAP_CQR(cap));
783      trace_nvme_controller_capability("Doorbell Stride",
784                                       1 << (2 + NVME_CAP_DSTRD(cap)));
785      trace_nvme_controller_capability("Subsystem Reset Supported",
786                                       NVME_CAP_NSSRS(cap));
787      trace_nvme_controller_capability("Memory Page Size Minimum",
788                                       1 << (12 + NVME_CAP_MPSMIN(cap)));
789      trace_nvme_controller_capability("Memory Page Size Maximum",
790                                       1 << (12 + NVME_CAP_MPSMAX(cap)));
791      if (!NVME_CAP_CSS(cap)) {
792          error_setg(errp, "Device doesn't support NVMe command set");
793          ret = -EINVAL;
794          goto out;
795      }
796  
797      s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
798      s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
799      bs->bl.opt_mem_alignment = s->page_size;
800      bs->bl.request_alignment = s->page_size;
801      timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
802  
803      ver = le32_to_cpu(regs->vs);
804      trace_nvme_controller_spec_version(extract32(ver, 16, 16),
805                                         extract32(ver, 8, 8),
806                                         extract32(ver, 0, 8));
807  
808      /* Reset device to get a clean state. */
809      regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
810      /* Wait for CSTS.RDY = 0. */
811      deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
812      while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
813          if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
814              error_setg(errp, "Timeout while waiting for device to reset (%"
815                               PRId64 " ms)",
816                         timeout_ms);
817              ret = -ETIMEDOUT;
818              goto out;
819          }
820      }
821  
822      s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
823                                             sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
824                                             PROT_WRITE, errp);
825      s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
826      if (!s->doorbells) {
827          ret = -EINVAL;
828          goto out;
829      }
830  
831      /* Set up admin queue. */
832      s->queues = g_new(NVMeQueuePair *, 1);
833      q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
834      if (!q) {
835          ret = -EINVAL;
836          goto out;
837      }
838      s->queues[INDEX_ADMIN] = q;
839      s->queue_count = 1;
840      QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
841      regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
842                              ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
843      regs->asq = cpu_to_le64(q->sq.iova);
844      regs->acq = cpu_to_le64(q->cq.iova);
845  
846      /* After setting up all control registers we can enable device now. */
847      regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
848                             (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
849                             CC_EN_MASK);
850      /* Wait for CSTS.RDY = 1. */
851      now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
852      deadline = now + timeout_ms * SCALE_MS;
853      while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
854          if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
855              error_setg(errp, "Timeout while waiting for device to start (%"
856                               PRId64 " ms)",
857                         timeout_ms);
858              ret = -ETIMEDOUT;
859              goto out;
860          }
861      }
862  
863      ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
864                                   VFIO_PCI_MSIX_IRQ_INDEX, errp);
865      if (ret) {
866          goto out;
867      }
868      aio_set_event_notifier(bdrv_get_aio_context(bs),
869                             &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
870                             nvme_handle_event, nvme_poll_cb,
871                             nvme_poll_ready);
872  
873      if (!nvme_identify(bs, namespace, errp)) {
874          ret = -EIO;
875          goto out;
876      }
877  
878      /* Set up command queues. */
879      if (!nvme_add_io_queue(bs, errp)) {
880          ret = -EIO;
881      }
882  out:
883      if (regs) {
884          qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
885      }
886  
887      /* Cleaning up is done in nvme_file_open() upon error. */
888      return ret;
889  }
890  
891  /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
892   *
893   *     nvme://0000:44:00.0/1
894   *
895   * where the "nvme://" is a fixed form of the protocol prefix, the middle part
896   * is the PCI address, and the last part is the namespace number starting from
897   * 1 according to the NVMe spec. */
898  static void nvme_parse_filename(const char *filename, QDict *options,
899                                  Error **errp)
900  {
901      int pref = strlen("nvme://");
902  
903      if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
904          const char *tmp = filename + pref;
905          char *device;
906          const char *namespace;
907          unsigned long ns;
908          const char *slash = strchr(tmp, '/');
909          if (!slash) {
910              qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
911              return;
912          }
913          device = g_strndup(tmp, slash - tmp);
914          qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
915          g_free(device);
916          namespace = slash + 1;
917          if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
918              error_setg(errp, "Invalid namespace '%s', positive number expected",
919                         namespace);
920              return;
921          }
922          qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
923                        *namespace ? namespace : "1");
924      }
925  }
926  
927  static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
928                                             Error **errp)
929  {
930      int ret;
931      BDRVNVMeState *s = bs->opaque;
932      NvmeCmd cmd = {
933          .opcode = NVME_ADM_CMD_SET_FEATURES,
934          .nsid = cpu_to_le32(s->nsid),
935          .cdw10 = cpu_to_le32(0x06),
936          .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
937      };
938  
939      ret = nvme_admin_cmd_sync(bs, &cmd);
940      if (ret) {
941          error_setg(errp, "Failed to configure NVMe write cache");
942      }
943      return ret;
944  }
945  
946  static void nvme_close(BlockDriverState *bs)
947  {
948      BDRVNVMeState *s = bs->opaque;
949  
950      for (unsigned i = 0; i < s->queue_count; ++i) {
951          nvme_free_queue_pair(s->queues[i]);
952      }
953      g_free(s->queues);
954      aio_set_event_notifier(bdrv_get_aio_context(bs),
955                             &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
956                             NULL, NULL, NULL);
957      event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
958      qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
959                              0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
960      qemu_vfio_close(s->vfio);
961  
962      g_free(s->device);
963  }
964  
965  static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
966                            Error **errp)
967  {
968      const char *device;
969      QemuOpts *opts;
970      int namespace;
971      int ret;
972      BDRVNVMeState *s = bs->opaque;
973  
974      bs->supported_write_flags = BDRV_REQ_FUA;
975  
976      opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
977      qemu_opts_absorb_qdict(opts, options, &error_abort);
978      device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
979      if (!device) {
980          error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
981          qemu_opts_del(opts);
982          return -EINVAL;
983      }
984  
985      namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
986      ret = nvme_init(bs, device, namespace, errp);
987      qemu_opts_del(opts);
988      if (ret) {
989          goto fail;
990      }
991      if (flags & BDRV_O_NOCACHE) {
992          if (!s->write_cache_supported) {
993              error_setg(errp,
994                         "NVMe controller doesn't support write cache configuration");
995              ret = -EINVAL;
996          } else {
997              ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
998                                                    errp);
999          }
1000          if (ret) {
1001              goto fail;
1002          }
1003      }
1004      return 0;
1005  fail:
1006      nvme_close(bs);
1007      return ret;
1008  }
1009  
1010  static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1011  {
1012      BDRVNVMeState *s = bs->opaque;
1013      return s->nsze << s->blkshift;
1014  }
1015  
1016  static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1017  {
1018      BDRVNVMeState *s = bs->opaque;
1019      assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1020      return UINT32_C(1) << s->blkshift;
1021  }
1022  
1023  static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1024  {
1025      uint32_t blocksize = nvme_get_blocksize(bs);
1026      bsz->phys = blocksize;
1027      bsz->log = blocksize;
1028      return 0;
1029  }
1030  
1031  /* Called with s->dma_map_lock */
1032  static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1033                                              QEMUIOVector *qiov)
1034  {
1035      int r = 0;
1036      BDRVNVMeState *s = bs->opaque;
1037  
1038      s->dma_map_count -= qiov->size;
1039      if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1040          r = qemu_vfio_dma_reset_temporary(s->vfio);
1041          if (!r) {
1042              qemu_co_queue_restart_all(&s->dma_flush_queue);
1043          }
1044      }
1045      return r;
1046  }
1047  
1048  /* Called with s->dma_map_lock */
1049  static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1050                                            NVMeRequest *req, QEMUIOVector *qiov)
1051  {
1052      BDRVNVMeState *s = bs->opaque;
1053      uint64_t *pagelist = req->prp_list_page;
1054      int i, j, r;
1055      int entries = 0;
1056      Error *local_err = NULL, **errp = NULL;
1057  
1058      assert(qiov->size);
1059      assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1060      assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1061      for (i = 0; i < qiov->niov; ++i) {
1062          bool retry = true;
1063          uint64_t iova;
1064          size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1065                                     qemu_real_host_page_size());
1066  try_map:
1067          r = qemu_vfio_dma_map(s->vfio,
1068                                qiov->iov[i].iov_base,
1069                                len, true, &iova, errp);
1070          if (r == -ENOSPC) {
1071              /*
1072               * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1073               * ioctl returns -ENOSPC to signal the user exhausted the DMA
1074               * mappings available for a container since Linux kernel commit
1075               * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1076               * April 2019, see CVE-2019-3882).
1077               *
1078               * This block driver already handles this error path by checking
1079               * for the -ENOMEM error, so we directly replace -ENOSPC by
1080               * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1081               * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1082               * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1083               * to add more storage to the blockdev. Not something we can do
1084               * easily with an IOMMU :)
1085               */
1086              r = -ENOMEM;
1087          }
1088          if (r == -ENOMEM && retry) {
1089              /*
1090               * We exhausted the DMA mappings available for our container:
1091               * recycle the volatile IOVA mappings.
1092               */
1093              retry = false;
1094              trace_nvme_dma_flush_queue_wait(s);
1095              if (s->dma_map_count) {
1096                  trace_nvme_dma_map_flush(s);
1097                  qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1098              } else {
1099                  r = qemu_vfio_dma_reset_temporary(s->vfio);
1100                  if (r) {
1101                      goto fail;
1102                  }
1103              }
1104              errp = &local_err;
1105  
1106              goto try_map;
1107          }
1108          if (r) {
1109              goto fail;
1110          }
1111  
1112          for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1113              pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1114          }
1115          trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1116                                      qiov->iov[i].iov_len / s->page_size);
1117      }
1118  
1119      s->dma_map_count += qiov->size;
1120  
1121      assert(entries <= s->page_size / sizeof(uint64_t));
1122      switch (entries) {
1123      case 0:
1124          abort();
1125      case 1:
1126          cmd->dptr.prp1 = pagelist[0];
1127          cmd->dptr.prp2 = 0;
1128          break;
1129      case 2:
1130          cmd->dptr.prp1 = pagelist[0];
1131          cmd->dptr.prp2 = pagelist[1];
1132          break;
1133      default:
1134          cmd->dptr.prp1 = pagelist[0];
1135          cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1136          break;
1137      }
1138      trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1139      for (i = 0; i < entries; ++i) {
1140          trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1141      }
1142      return 0;
1143  fail:
1144      /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1145       * increment s->dma_map_count. This is okay for fixed mapping memory areas
1146       * because they are already mapped before calling this function; for
1147       * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1148       * calling qemu_vfio_dma_reset_temporary when necessary. */
1149      if (local_err) {
1150          error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1151      }
1152      return r;
1153  }
1154  
1155  typedef struct {
1156      Coroutine *co;
1157      int ret;
1158      AioContext *ctx;
1159  } NVMeCoData;
1160  
1161  static void nvme_rw_cb_bh(void *opaque)
1162  {
1163      NVMeCoData *data = opaque;
1164      qemu_coroutine_enter(data->co);
1165  }
1166  
1167  static void nvme_rw_cb(void *opaque, int ret)
1168  {
1169      NVMeCoData *data = opaque;
1170      data->ret = ret;
1171      if (!data->co) {
1172          /* The rw coroutine hasn't yielded, don't try to enter. */
1173          return;
1174      }
1175      replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1176  }
1177  
1178  static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1179                                              uint64_t offset, uint64_t bytes,
1180                                              QEMUIOVector *qiov,
1181                                              bool is_write,
1182                                              int flags)
1183  {
1184      int r;
1185      BDRVNVMeState *s = bs->opaque;
1186      NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1187      NVMeRequest *req;
1188  
1189      uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1190                         (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1191      NvmeCmd cmd = {
1192          .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1193          .nsid = cpu_to_le32(s->nsid),
1194          .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1195          .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1196          .cdw12 = cpu_to_le32(cdw12),
1197      };
1198      NVMeCoData data = {
1199          .ctx = bdrv_get_aio_context(bs),
1200          .ret = -EINPROGRESS,
1201      };
1202  
1203      trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1204      assert(s->queue_count > 1);
1205      req = nvme_get_free_req(ioq);
1206      assert(req);
1207  
1208      qemu_co_mutex_lock(&s->dma_map_lock);
1209      r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1210      qemu_co_mutex_unlock(&s->dma_map_lock);
1211      if (r) {
1212          nvme_put_free_req_and_wake(ioq, req);
1213          return r;
1214      }
1215      nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1216  
1217      data.co = qemu_coroutine_self();
1218      while (data.ret == -EINPROGRESS) {
1219          qemu_coroutine_yield();
1220      }
1221  
1222      qemu_co_mutex_lock(&s->dma_map_lock);
1223      r = nvme_cmd_unmap_qiov(bs, qiov);
1224      qemu_co_mutex_unlock(&s->dma_map_lock);
1225      if (r) {
1226          return r;
1227      }
1228  
1229      trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1230      return data.ret;
1231  }
1232  
1233  static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1234                                       const QEMUIOVector *qiov)
1235  {
1236      int i;
1237      BDRVNVMeState *s = bs->opaque;
1238  
1239      for (i = 0; i < qiov->niov; ++i) {
1240          if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1241                                   qemu_real_host_page_size()) ||
1242              !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1243              trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1244                                        qiov->iov[i].iov_len, s->page_size);
1245              return false;
1246          }
1247      }
1248      return true;
1249  }
1250  
1251  static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1252                                      uint64_t offset, uint64_t bytes,
1253                                      QEMUIOVector *qiov, bool is_write,
1254                                      int flags)
1255  {
1256      BDRVNVMeState *s = bs->opaque;
1257      int r;
1258      QEMU_AUTO_VFREE uint8_t *buf = NULL;
1259      QEMUIOVector local_qiov;
1260      size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1261      assert(QEMU_IS_ALIGNED(offset, s->page_size));
1262      assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1263      assert(bytes <= s->max_transfer);
1264      if (nvme_qiov_aligned(bs, qiov)) {
1265          s->stats.aligned_accesses++;
1266          return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1267      }
1268      s->stats.unaligned_accesses++;
1269      trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1270      buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1271  
1272      if (!buf) {
1273          return -ENOMEM;
1274      }
1275      qemu_iovec_init(&local_qiov, 1);
1276      if (is_write) {
1277          qemu_iovec_to_buf(qiov, 0, buf, bytes);
1278      }
1279      qemu_iovec_add(&local_qiov, buf, bytes);
1280      r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1281      qemu_iovec_destroy(&local_qiov);
1282      if (!r && !is_write) {
1283          qemu_iovec_from_buf(qiov, 0, buf, bytes);
1284      }
1285      return r;
1286  }
1287  
1288  static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1289                                         int64_t offset, int64_t bytes,
1290                                         QEMUIOVector *qiov,
1291                                         BdrvRequestFlags flags)
1292  {
1293      return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1294  }
1295  
1296  static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1297                                          int64_t offset, int64_t bytes,
1298                                          QEMUIOVector *qiov,
1299                                          BdrvRequestFlags flags)
1300  {
1301      return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1302  }
1303  
1304  static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1305  {
1306      BDRVNVMeState *s = bs->opaque;
1307      NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1308      NVMeRequest *req;
1309      NvmeCmd cmd = {
1310          .opcode = NVME_CMD_FLUSH,
1311          .nsid = cpu_to_le32(s->nsid),
1312      };
1313      NVMeCoData data = {
1314          .ctx = bdrv_get_aio_context(bs),
1315          .ret = -EINPROGRESS,
1316      };
1317  
1318      assert(s->queue_count > 1);
1319      req = nvme_get_free_req(ioq);
1320      assert(req);
1321      nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1322  
1323      data.co = qemu_coroutine_self();
1324      if (data.ret == -EINPROGRESS) {
1325          qemu_coroutine_yield();
1326      }
1327  
1328      return data.ret;
1329  }
1330  
1331  
1332  static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1333                                                int64_t offset,
1334                                                int64_t bytes,
1335                                                BdrvRequestFlags flags)
1336  {
1337      BDRVNVMeState *s = bs->opaque;
1338      NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1339      NVMeRequest *req;
1340      uint32_t cdw12;
1341  
1342      if (!s->supports_write_zeroes) {
1343          return -ENOTSUP;
1344      }
1345  
1346      if (bytes == 0) {
1347          return 0;
1348      }
1349  
1350      cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1351      /*
1352       * We should not lose information. pwrite_zeroes_alignment and
1353       * max_pwrite_zeroes guarantees it.
1354       */
1355      assert(((cdw12 + 1) << s->blkshift) == bytes);
1356  
1357      NvmeCmd cmd = {
1358          .opcode = NVME_CMD_WRITE_ZEROES,
1359          .nsid = cpu_to_le32(s->nsid),
1360          .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1361          .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1362      };
1363  
1364      NVMeCoData data = {
1365          .ctx = bdrv_get_aio_context(bs),
1366          .ret = -EINPROGRESS,
1367      };
1368  
1369      if (flags & BDRV_REQ_MAY_UNMAP) {
1370          cdw12 |= (1 << 25);
1371      }
1372  
1373      if (flags & BDRV_REQ_FUA) {
1374          cdw12 |= (1 << 30);
1375      }
1376  
1377      cmd.cdw12 = cpu_to_le32(cdw12);
1378  
1379      trace_nvme_write_zeroes(s, offset, bytes, flags);
1380      assert(s->queue_count > 1);
1381      req = nvme_get_free_req(ioq);
1382      assert(req);
1383  
1384      nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1385  
1386      data.co = qemu_coroutine_self();
1387      while (data.ret == -EINPROGRESS) {
1388          qemu_coroutine_yield();
1389      }
1390  
1391      trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1392      return data.ret;
1393  }
1394  
1395  
1396  static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1397                                           int64_t offset,
1398                                           int64_t bytes)
1399  {
1400      BDRVNVMeState *s = bs->opaque;
1401      NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1402      NVMeRequest *req;
1403      QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1404      QEMUIOVector local_qiov;
1405      int ret;
1406  
1407      NvmeCmd cmd = {
1408          .opcode = NVME_CMD_DSM,
1409          .nsid = cpu_to_le32(s->nsid),
1410          .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1411          .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1412      };
1413  
1414      NVMeCoData data = {
1415          .ctx = bdrv_get_aio_context(bs),
1416          .ret = -EINPROGRESS,
1417      };
1418  
1419      if (!s->supports_discard) {
1420          return -ENOTSUP;
1421      }
1422  
1423      assert(s->queue_count > 1);
1424  
1425      /*
1426       * Filling the @buf requires @offset and @bytes to satisfy restrictions
1427       * defined in nvme_refresh_limits().
1428       */
1429      assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1430      assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1431      assert((bytes >> s->blkshift) <= UINT32_MAX);
1432  
1433      buf = qemu_try_memalign(s->page_size, s->page_size);
1434      if (!buf) {
1435          return -ENOMEM;
1436      }
1437      memset(buf, 0, s->page_size);
1438      buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1439      buf->slba = cpu_to_le64(offset >> s->blkshift);
1440      buf->cattr = 0;
1441  
1442      qemu_iovec_init(&local_qiov, 1);
1443      qemu_iovec_add(&local_qiov, buf, 4096);
1444  
1445      req = nvme_get_free_req(ioq);
1446      assert(req);
1447  
1448      qemu_co_mutex_lock(&s->dma_map_lock);
1449      ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1450      qemu_co_mutex_unlock(&s->dma_map_lock);
1451  
1452      if (ret) {
1453          nvme_put_free_req_and_wake(ioq, req);
1454          goto out;
1455      }
1456  
1457      trace_nvme_dsm(s, offset, bytes);
1458  
1459      nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1460  
1461      data.co = qemu_coroutine_self();
1462      while (data.ret == -EINPROGRESS) {
1463          qemu_coroutine_yield();
1464      }
1465  
1466      qemu_co_mutex_lock(&s->dma_map_lock);
1467      ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1468      qemu_co_mutex_unlock(&s->dma_map_lock);
1469  
1470      if (ret) {
1471          goto out;
1472      }
1473  
1474      ret = data.ret;
1475      trace_nvme_dsm_done(s, offset, bytes, ret);
1476  out:
1477      qemu_iovec_destroy(&local_qiov);
1478      return ret;
1479  
1480  }
1481  
1482  static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1483                                           bool exact, PreallocMode prealloc,
1484                                           BdrvRequestFlags flags, Error **errp)
1485  {
1486      int64_t cur_length;
1487  
1488      if (prealloc != PREALLOC_MODE_OFF) {
1489          error_setg(errp, "Unsupported preallocation mode '%s'",
1490                     PreallocMode_str(prealloc));
1491          return -ENOTSUP;
1492      }
1493  
1494      cur_length = nvme_co_getlength(bs);
1495      if (offset != cur_length && exact) {
1496          error_setg(errp, "Cannot resize NVMe devices");
1497          return -ENOTSUP;
1498      } else if (offset > cur_length) {
1499          error_setg(errp, "Cannot grow NVMe devices");
1500          return -EINVAL;
1501      }
1502  
1503      return 0;
1504  }
1505  
1506  static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1507                                 BlockReopenQueue *queue, Error **errp)
1508  {
1509      return 0;
1510  }
1511  
1512  static void nvme_refresh_filename(BlockDriverState *bs)
1513  {
1514      BDRVNVMeState *s = bs->opaque;
1515  
1516      snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1517               s->device, s->nsid);
1518  }
1519  
1520  static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1521  {
1522      BDRVNVMeState *s = bs->opaque;
1523  
1524      bs->bl.opt_mem_alignment = s->page_size;
1525      bs->bl.request_alignment = s->page_size;
1526      bs->bl.max_transfer = s->max_transfer;
1527  
1528      /*
1529       * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1530       * at most 0xFFFF
1531       */
1532      bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1533      bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1534                                           1UL << s->blkshift);
1535  
1536      bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1537      bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1538                                      1UL << s->blkshift);
1539  }
1540  
1541  static void nvme_detach_aio_context(BlockDriverState *bs)
1542  {
1543      BDRVNVMeState *s = bs->opaque;
1544  
1545      for (unsigned i = 0; i < s->queue_count; i++) {
1546          NVMeQueuePair *q = s->queues[i];
1547  
1548          qemu_bh_delete(q->completion_bh);
1549          q->completion_bh = NULL;
1550      }
1551  
1552      aio_set_event_notifier(bdrv_get_aio_context(bs),
1553                             &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1554                             NULL, NULL, NULL);
1555  }
1556  
1557  static void nvme_attach_aio_context(BlockDriverState *bs,
1558                                      AioContext *new_context)
1559  {
1560      BDRVNVMeState *s = bs->opaque;
1561  
1562      s->aio_context = new_context;
1563      aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1564                             nvme_handle_event, nvme_poll_cb,
1565                             nvme_poll_ready);
1566  
1567      for (unsigned i = 0; i < s->queue_count; i++) {
1568          NVMeQueuePair *q = s->queues[i];
1569  
1570          q->completion_bh =
1571              aio_bh_new(new_context, nvme_process_completion_bh, q);
1572      }
1573  }
1574  
1575  static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1576                                Error **errp)
1577  {
1578      int ret;
1579      BDRVNVMeState *s = bs->opaque;
1580  
1581      /*
1582       * FIXME: we may run out of IOVA addresses after repeated
1583       * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1584       * doesn't reclaim addresses for fixed mappings.
1585       */
1586      ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1587      return ret == 0;
1588  }
1589  
1590  static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1591  {
1592      BDRVNVMeState *s = bs->opaque;
1593  
1594      qemu_vfio_dma_unmap(s->vfio, host);
1595  }
1596  
1597  static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1598  {
1599      BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1600      BDRVNVMeState *s = bs->opaque;
1601  
1602      stats->driver = BLOCKDEV_DRIVER_NVME;
1603      stats->u.nvme = (BlockStatsSpecificNvme) {
1604          .completion_errors = s->stats.completion_errors,
1605          .aligned_accesses = s->stats.aligned_accesses,
1606          .unaligned_accesses = s->stats.unaligned_accesses,
1607      };
1608  
1609      return stats;
1610  }
1611  
1612  static const char *const nvme_strong_runtime_opts[] = {
1613      NVME_BLOCK_OPT_DEVICE,
1614      NVME_BLOCK_OPT_NAMESPACE,
1615  
1616      NULL
1617  };
1618  
1619  static BlockDriver bdrv_nvme = {
1620      .format_name              = "nvme",
1621      .protocol_name            = "nvme",
1622      .instance_size            = sizeof(BDRVNVMeState),
1623  
1624      .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1625      .create_opts              = &bdrv_create_opts_simple,
1626  
1627      .bdrv_parse_filename      = nvme_parse_filename,
1628      .bdrv_file_open           = nvme_file_open,
1629      .bdrv_close               = nvme_close,
1630      .bdrv_co_getlength        = nvme_co_getlength,
1631      .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1632      .bdrv_co_truncate         = nvme_co_truncate,
1633  
1634      .bdrv_co_preadv           = nvme_co_preadv,
1635      .bdrv_co_pwritev          = nvme_co_pwritev,
1636  
1637      .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1638      .bdrv_co_pdiscard         = nvme_co_pdiscard,
1639  
1640      .bdrv_co_flush_to_disk    = nvme_co_flush,
1641      .bdrv_reopen_prepare      = nvme_reopen_prepare,
1642  
1643      .bdrv_refresh_filename    = nvme_refresh_filename,
1644      .bdrv_refresh_limits      = nvme_refresh_limits,
1645      .strong_runtime_opts      = nvme_strong_runtime_opts,
1646      .bdrv_get_specific_stats  = nvme_get_specific_stats,
1647  
1648      .bdrv_detach_aio_context  = nvme_detach_aio_context,
1649      .bdrv_attach_aio_context  = nvme_attach_aio_context,
1650  
1651      .bdrv_register_buf        = nvme_register_buf,
1652      .bdrv_unregister_buf      = nvme_unregister_buf,
1653  };
1654  
1655  static void bdrv_nvme_init(void)
1656  {
1657      bdrv_register(&bdrv_nvme);
1658  }
1659  
1660  block_init(bdrv_nvme_init);
1661