1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/cutils.h" 21 #include "qemu/option.h" 22 #include "qemu/vfio-helpers.h" 23 #include "block/block_int.h" 24 #include "trace.h" 25 26 #include "block/nvme.h" 27 28 #define NVME_SQ_ENTRY_BYTES 64 29 #define NVME_CQ_ENTRY_BYTES 16 30 #define NVME_QUEUE_SIZE 128 31 #define NVME_BAR_SIZE 8192 32 33 typedef struct { 34 int32_t head, tail; 35 uint8_t *queue; 36 uint64_t iova; 37 /* Hardware MMIO register */ 38 volatile uint32_t *doorbell; 39 } NVMeQueue; 40 41 typedef struct { 42 BlockCompletionFunc *cb; 43 void *opaque; 44 int cid; 45 void *prp_list_page; 46 uint64_t prp_list_iova; 47 bool busy; 48 } NVMeRequest; 49 50 typedef struct { 51 CoQueue free_req_queue; 52 QemuMutex lock; 53 54 /* Fields protected by BQL */ 55 int index; 56 uint8_t *prp_list_pages; 57 58 /* Fields protected by @lock */ 59 NVMeQueue sq, cq; 60 int cq_phase; 61 NVMeRequest reqs[NVME_QUEUE_SIZE]; 62 bool busy; 63 int need_kick; 64 int inflight; 65 } NVMeQueuePair; 66 67 /* Memory mapped registers */ 68 typedef volatile struct { 69 uint64_t cap; 70 uint32_t vs; 71 uint32_t intms; 72 uint32_t intmc; 73 uint32_t cc; 74 uint32_t reserved0; 75 uint32_t csts; 76 uint32_t nssr; 77 uint32_t aqa; 78 uint64_t asq; 79 uint64_t acq; 80 uint32_t cmbloc; 81 uint32_t cmbsz; 82 uint8_t reserved1[0xec0]; 83 uint8_t cmd_set_specfic[0x100]; 84 uint32_t doorbells[]; 85 } QEMU_PACKED NVMeRegs; 86 87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); 88 89 typedef struct { 90 AioContext *aio_context; 91 QEMUVFIOState *vfio; 92 NVMeRegs *regs; 93 /* The submission/completion queue pairs. 94 * [0]: admin queue. 95 * [1..]: io queues. 96 */ 97 NVMeQueuePair **queues; 98 int nr_queues; 99 size_t page_size; 100 /* How many uint32_t elements does each doorbell entry take. */ 101 size_t doorbell_scale; 102 bool write_cache_supported; 103 EventNotifier irq_notifier; 104 uint64_t nsze; /* Namespace size reported by identify command */ 105 int nsid; /* The namespace id to read/write data. */ 106 uint64_t max_transfer; 107 bool plugged; 108 109 CoMutex dma_map_lock; 110 CoQueue dma_flush_queue; 111 112 /* Total size of mapped qiov, accessed under dma_map_lock */ 113 int dma_map_count; 114 } BDRVNVMeState; 115 116 #define NVME_BLOCK_OPT_DEVICE "device" 117 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 118 119 static QemuOptsList runtime_opts = { 120 .name = "nvme", 121 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 122 .desc = { 123 { 124 .name = NVME_BLOCK_OPT_DEVICE, 125 .type = QEMU_OPT_STRING, 126 .help = "NVMe PCI device address", 127 }, 128 { 129 .name = NVME_BLOCK_OPT_NAMESPACE, 130 .type = QEMU_OPT_NUMBER, 131 .help = "NVMe namespace", 132 }, 133 { /* end of list */ } 134 }, 135 }; 136 137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, 138 int nentries, int entry_bytes, Error **errp) 139 { 140 BDRVNVMeState *s = bs->opaque; 141 size_t bytes; 142 int r; 143 144 bytes = ROUND_UP(nentries * entry_bytes, s->page_size); 145 q->head = q->tail = 0; 146 q->queue = qemu_try_blockalign0(bs, bytes); 147 148 if (!q->queue) { 149 error_setg(errp, "Cannot allocate queue"); 150 return; 151 } 152 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 153 if (r) { 154 error_setg(errp, "Cannot map queue"); 155 } 156 } 157 158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) 159 { 160 qemu_vfree(q->prp_list_pages); 161 qemu_vfree(q->sq.queue); 162 qemu_vfree(q->cq.queue); 163 qemu_mutex_destroy(&q->lock); 164 g_free(q); 165 } 166 167 static void nvme_free_req_queue_cb(void *opaque) 168 { 169 NVMeQueuePair *q = opaque; 170 171 qemu_mutex_lock(&q->lock); 172 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 173 /* Retry all pending requests */ 174 } 175 qemu_mutex_unlock(&q->lock); 176 } 177 178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, 179 int idx, int size, 180 Error **errp) 181 { 182 int i, r; 183 BDRVNVMeState *s = bs->opaque; 184 Error *local_err = NULL; 185 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); 186 uint64_t prp_list_iova; 187 188 qemu_mutex_init(&q->lock); 189 q->index = idx; 190 qemu_co_queue_init(&q->free_req_queue); 191 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); 192 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, 193 s->page_size * NVME_QUEUE_SIZE, 194 false, &prp_list_iova); 195 if (r) { 196 goto fail; 197 } 198 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 199 NVMeRequest *req = &q->reqs[i]; 200 req->cid = i + 1; 201 req->prp_list_page = q->prp_list_pages + i * s->page_size; 202 req->prp_list_iova = prp_list_iova + i * s->page_size; 203 } 204 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); 205 if (local_err) { 206 error_propagate(errp, local_err); 207 goto fail; 208 } 209 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; 210 211 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); 212 if (local_err) { 213 error_propagate(errp, local_err); 214 goto fail; 215 } 216 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; 217 218 return q; 219 fail: 220 nvme_free_queue_pair(bs, q); 221 return NULL; 222 } 223 224 /* With q->lock */ 225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) 226 { 227 if (s->plugged || !q->need_kick) { 228 return; 229 } 230 trace_nvme_kick(s, q->index); 231 assert(!(q->sq.tail & 0xFF00)); 232 /* Fence the write to submission queue entry before notifying the device. */ 233 smp_wmb(); 234 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 235 q->inflight += q->need_kick; 236 q->need_kick = 0; 237 } 238 239 /* Find a free request element if any, otherwise: 240 * a) if in coroutine context, try to wait for one to become available; 241 * b) if not in coroutine, return NULL; 242 */ 243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 244 { 245 int i; 246 NVMeRequest *req = NULL; 247 248 qemu_mutex_lock(&q->lock); 249 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { 250 /* We have to leave one slot empty as that is the full queue case (head 251 * == tail + 1). */ 252 if (qemu_in_coroutine()) { 253 trace_nvme_free_req_queue_wait(q); 254 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 255 } else { 256 qemu_mutex_unlock(&q->lock); 257 return NULL; 258 } 259 } 260 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 261 if (!q->reqs[i].busy) { 262 q->reqs[i].busy = true; 263 req = &q->reqs[i]; 264 break; 265 } 266 } 267 /* We have checked inflight and need_kick while holding q->lock, so one 268 * free req must be available. */ 269 assert(req); 270 qemu_mutex_unlock(&q->lock); 271 return req; 272 } 273 274 static inline int nvme_translate_error(const NvmeCqe *c) 275 { 276 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 277 if (status) { 278 trace_nvme_error(le32_to_cpu(c->result), 279 le16_to_cpu(c->sq_head), 280 le16_to_cpu(c->sq_id), 281 le16_to_cpu(c->cid), 282 le16_to_cpu(status)); 283 } 284 switch (status) { 285 case 0: 286 return 0; 287 case 1: 288 return -ENOSYS; 289 case 2: 290 return -EINVAL; 291 default: 292 return -EIO; 293 } 294 } 295 296 /* With q->lock */ 297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) 298 { 299 bool progress = false; 300 NVMeRequest *preq; 301 NVMeRequest req; 302 NvmeCqe *c; 303 304 trace_nvme_process_completion(s, q->index, q->inflight); 305 if (q->busy || s->plugged) { 306 trace_nvme_process_completion_queue_busy(s, q->index); 307 return false; 308 } 309 q->busy = true; 310 assert(q->inflight >= 0); 311 while (q->inflight) { 312 int16_t cid; 313 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 314 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 315 break; 316 } 317 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 318 if (!q->cq.head) { 319 q->cq_phase = !q->cq_phase; 320 } 321 cid = le16_to_cpu(c->cid); 322 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 323 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", 324 cid); 325 continue; 326 } 327 assert(cid <= NVME_QUEUE_SIZE); 328 trace_nvme_complete_command(s, q->index, cid); 329 preq = &q->reqs[cid - 1]; 330 req = *preq; 331 assert(req.cid == cid); 332 assert(req.cb); 333 preq->busy = false; 334 preq->cb = preq->opaque = NULL; 335 qemu_mutex_unlock(&q->lock); 336 req.cb(req.opaque, nvme_translate_error(c)); 337 qemu_mutex_lock(&q->lock); 338 c->cid = cpu_to_le16(0); 339 q->inflight--; 340 /* Flip Phase Tag bit. */ 341 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); 342 progress = true; 343 } 344 if (progress) { 345 /* Notify the device so it can post more completions. */ 346 smp_mb_release(); 347 *q->cq.doorbell = cpu_to_le32(q->cq.head); 348 if (!qemu_co_queue_empty(&q->free_req_queue)) { 349 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); 350 } 351 } 352 q->busy = false; 353 return progress; 354 } 355 356 static void nvme_trace_command(const NvmeCmd *cmd) 357 { 358 int i; 359 360 for (i = 0; i < 8; ++i) { 361 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 362 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 363 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 364 } 365 } 366 367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, 368 NVMeRequest *req, 369 NvmeCmd *cmd, BlockCompletionFunc cb, 370 void *opaque) 371 { 372 assert(!req->cb); 373 req->cb = cb; 374 req->opaque = opaque; 375 cmd->cid = cpu_to_le32(req->cid); 376 377 trace_nvme_submit_command(s, q->index, req->cid); 378 nvme_trace_command(cmd); 379 qemu_mutex_lock(&q->lock); 380 memcpy((uint8_t *)q->sq.queue + 381 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 382 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 383 q->need_kick++; 384 nvme_kick(s, q); 385 nvme_process_completion(s, q); 386 qemu_mutex_unlock(&q->lock); 387 } 388 389 static void nvme_cmd_sync_cb(void *opaque, int ret) 390 { 391 int *pret = opaque; 392 *pret = ret; 393 aio_wait_kick(); 394 } 395 396 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, 397 NvmeCmd *cmd) 398 { 399 NVMeRequest *req; 400 BDRVNVMeState *s = bs->opaque; 401 int ret = -EINPROGRESS; 402 req = nvme_get_free_req(q); 403 if (!req) { 404 return -EBUSY; 405 } 406 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); 407 408 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); 409 return ret; 410 } 411 412 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 413 { 414 BDRVNVMeState *s = bs->opaque; 415 NvmeIdCtrl *idctrl; 416 NvmeIdNs *idns; 417 uint8_t *resp; 418 int r; 419 uint64_t iova; 420 NvmeCmd cmd = { 421 .opcode = NVME_ADM_CMD_IDENTIFY, 422 .cdw10 = cpu_to_le32(0x1), 423 }; 424 425 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); 426 if (!resp) { 427 error_setg(errp, "Cannot allocate buffer for identify response"); 428 goto out; 429 } 430 idctrl = (NvmeIdCtrl *)resp; 431 idns = (NvmeIdNs *)resp; 432 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); 433 if (r) { 434 error_setg(errp, "Cannot map buffer for DMA"); 435 goto out; 436 } 437 cmd.prp1 = cpu_to_le64(iova); 438 439 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 440 error_setg(errp, "Failed to identify controller"); 441 goto out; 442 } 443 444 if (le32_to_cpu(idctrl->nn) < namespace) { 445 error_setg(errp, "Invalid namespace"); 446 goto out; 447 } 448 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; 449 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; 450 /* For now the page list buffer per command is one page, to hold at most 451 * s->page_size / sizeof(uint64_t) entries. */ 452 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 453 s->page_size / sizeof(uint64_t) * s->page_size); 454 455 memset(resp, 0, 4096); 456 457 cmd.cdw10 = 0; 458 cmd.nsid = cpu_to_le32(namespace); 459 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 460 error_setg(errp, "Failed to identify namespace"); 461 goto out; 462 } 463 464 s->nsze = le64_to_cpu(idns->nsze); 465 466 out: 467 qemu_vfio_dma_unmap(s->vfio, resp); 468 qemu_vfree(resp); 469 } 470 471 static bool nvme_poll_queues(BDRVNVMeState *s) 472 { 473 bool progress = false; 474 int i; 475 476 for (i = 0; i < s->nr_queues; i++) { 477 NVMeQueuePair *q = s->queues[i]; 478 qemu_mutex_lock(&q->lock); 479 while (nvme_process_completion(s, q)) { 480 /* Keep polling */ 481 progress = true; 482 } 483 qemu_mutex_unlock(&q->lock); 484 } 485 return progress; 486 } 487 488 static void nvme_handle_event(EventNotifier *n) 489 { 490 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); 491 492 trace_nvme_handle_event(s); 493 event_notifier_test_and_clear(n); 494 nvme_poll_queues(s); 495 } 496 497 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 498 { 499 BDRVNVMeState *s = bs->opaque; 500 int n = s->nr_queues; 501 NVMeQueuePair *q; 502 NvmeCmd cmd; 503 int queue_size = NVME_QUEUE_SIZE; 504 505 q = nvme_create_queue_pair(bs, n, queue_size, errp); 506 if (!q) { 507 return false; 508 } 509 cmd = (NvmeCmd) { 510 .opcode = NVME_ADM_CMD_CREATE_CQ, 511 .prp1 = cpu_to_le64(q->cq.iova), 512 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 513 .cdw11 = cpu_to_le32(0x3), 514 }; 515 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 516 error_setg(errp, "Failed to create io queue [%d]", n); 517 nvme_free_queue_pair(bs, q); 518 return false; 519 } 520 cmd = (NvmeCmd) { 521 .opcode = NVME_ADM_CMD_CREATE_SQ, 522 .prp1 = cpu_to_le64(q->sq.iova), 523 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 524 .cdw11 = cpu_to_le32(0x1 | (n << 16)), 525 }; 526 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 527 error_setg(errp, "Failed to create io queue [%d]", n); 528 nvme_free_queue_pair(bs, q); 529 return false; 530 } 531 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 532 s->queues[n] = q; 533 s->nr_queues++; 534 return true; 535 } 536 537 static bool nvme_poll_cb(void *opaque) 538 { 539 EventNotifier *e = opaque; 540 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); 541 bool progress = false; 542 543 trace_nvme_poll_cb(s); 544 progress = nvme_poll_queues(s); 545 return progress; 546 } 547 548 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 549 Error **errp) 550 { 551 BDRVNVMeState *s = bs->opaque; 552 int ret; 553 uint64_t cap; 554 uint64_t timeout_ms; 555 uint64_t deadline, now; 556 Error *local_err = NULL; 557 558 qemu_co_mutex_init(&s->dma_map_lock); 559 qemu_co_queue_init(&s->dma_flush_queue); 560 s->nsid = namespace; 561 s->aio_context = bdrv_get_aio_context(bs); 562 ret = event_notifier_init(&s->irq_notifier, 0); 563 if (ret) { 564 error_setg(errp, "Failed to init event notifier"); 565 return ret; 566 } 567 568 s->vfio = qemu_vfio_open_pci(device, errp); 569 if (!s->vfio) { 570 ret = -EINVAL; 571 goto out; 572 } 573 574 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); 575 if (!s->regs) { 576 ret = -EINVAL; 577 goto out; 578 } 579 580 /* Perform initialize sequence as described in NVMe spec "7.6.1 581 * Initialization". */ 582 583 cap = le64_to_cpu(s->regs->cap); 584 if (!(cap & (1ULL << 37))) { 585 error_setg(errp, "Device doesn't support NVMe command set"); 586 ret = -EINVAL; 587 goto out; 588 } 589 590 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); 591 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); 592 bs->bl.opt_mem_alignment = s->page_size; 593 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); 594 595 /* Reset device to get a clean state. */ 596 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); 597 /* Wait for CSTS.RDY = 0. */ 598 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; 599 while (le32_to_cpu(s->regs->csts) & 0x1) { 600 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 601 error_setg(errp, "Timeout while waiting for device to reset (%" 602 PRId64 " ms)", 603 timeout_ms); 604 ret = -ETIMEDOUT; 605 goto out; 606 } 607 } 608 609 /* Set up admin queue. */ 610 s->queues = g_new(NVMeQueuePair *, 1); 611 s->nr_queues = 1; 612 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); 613 if (!s->queues[0]) { 614 ret = -EINVAL; 615 goto out; 616 } 617 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); 618 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); 619 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); 620 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); 621 622 /* After setting up all control registers we can enable device now. */ 623 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | 624 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 625 0x1); 626 /* Wait for CSTS.RDY = 1. */ 627 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 628 deadline = now + timeout_ms * 1000000; 629 while (!(le32_to_cpu(s->regs->csts) & 0x1)) { 630 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 631 error_setg(errp, "Timeout while waiting for device to start (%" 632 PRId64 " ms)", 633 timeout_ms); 634 ret = -ETIMEDOUT; 635 goto out; 636 } 637 } 638 639 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, 640 VFIO_PCI_MSIX_IRQ_INDEX, errp); 641 if (ret) { 642 goto out; 643 } 644 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 645 false, nvme_handle_event, nvme_poll_cb); 646 647 nvme_identify(bs, namespace, &local_err); 648 if (local_err) { 649 error_propagate(errp, local_err); 650 ret = -EIO; 651 goto out; 652 } 653 654 /* Set up command queues. */ 655 if (!nvme_add_io_queue(bs, errp)) { 656 ret = -EIO; 657 } 658 out: 659 /* Cleaning up is done in nvme_file_open() upon error. */ 660 return ret; 661 } 662 663 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 664 * 665 * nvme://0000:44:00.0/1 666 * 667 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 668 * is the PCI address, and the last part is the namespace number starting from 669 * 1 according to the NVMe spec. */ 670 static void nvme_parse_filename(const char *filename, QDict *options, 671 Error **errp) 672 { 673 int pref = strlen("nvme://"); 674 675 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 676 const char *tmp = filename + pref; 677 char *device; 678 const char *namespace; 679 unsigned long ns; 680 const char *slash = strchr(tmp, '/'); 681 if (!slash) { 682 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 683 return; 684 } 685 device = g_strndup(tmp, slash - tmp); 686 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 687 g_free(device); 688 namespace = slash + 1; 689 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 690 error_setg(errp, "Invalid namespace '%s', positive number expected", 691 namespace); 692 return; 693 } 694 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 695 *namespace ? namespace : "1"); 696 } 697 } 698 699 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 700 Error **errp) 701 { 702 int ret; 703 BDRVNVMeState *s = bs->opaque; 704 NvmeCmd cmd = { 705 .opcode = NVME_ADM_CMD_SET_FEATURES, 706 .nsid = cpu_to_le32(s->nsid), 707 .cdw10 = cpu_to_le32(0x06), 708 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 709 }; 710 711 ret = nvme_cmd_sync(bs, s->queues[0], &cmd); 712 if (ret) { 713 error_setg(errp, "Failed to configure NVMe write cache"); 714 } 715 return ret; 716 } 717 718 static void nvme_close(BlockDriverState *bs) 719 { 720 int i; 721 BDRVNVMeState *s = bs->opaque; 722 723 for (i = 0; i < s->nr_queues; ++i) { 724 nvme_free_queue_pair(bs, s->queues[i]); 725 } 726 g_free(s->queues); 727 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 728 false, NULL, NULL); 729 event_notifier_cleanup(&s->irq_notifier); 730 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); 731 qemu_vfio_close(s->vfio); 732 } 733 734 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 735 Error **errp) 736 { 737 const char *device; 738 QemuOpts *opts; 739 int namespace; 740 int ret; 741 BDRVNVMeState *s = bs->opaque; 742 743 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 744 qemu_opts_absorb_qdict(opts, options, &error_abort); 745 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 746 if (!device) { 747 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 748 qemu_opts_del(opts); 749 return -EINVAL; 750 } 751 752 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 753 ret = nvme_init(bs, device, namespace, errp); 754 qemu_opts_del(opts); 755 if (ret) { 756 goto fail; 757 } 758 if (flags & BDRV_O_NOCACHE) { 759 if (!s->write_cache_supported) { 760 error_setg(errp, 761 "NVMe controller doesn't support write cache configuration"); 762 ret = -EINVAL; 763 } else { 764 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 765 errp); 766 } 767 if (ret) { 768 goto fail; 769 } 770 } 771 bs->supported_write_flags = BDRV_REQ_FUA; 772 return 0; 773 fail: 774 nvme_close(bs); 775 return ret; 776 } 777 778 static int64_t nvme_getlength(BlockDriverState *bs) 779 { 780 BDRVNVMeState *s = bs->opaque; 781 782 return s->nsze << BDRV_SECTOR_BITS; 783 } 784 785 /* Called with s->dma_map_lock */ 786 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 787 QEMUIOVector *qiov) 788 { 789 int r = 0; 790 BDRVNVMeState *s = bs->opaque; 791 792 s->dma_map_count -= qiov->size; 793 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 794 r = qemu_vfio_dma_reset_temporary(s->vfio); 795 if (!r) { 796 qemu_co_queue_restart_all(&s->dma_flush_queue); 797 } 798 } 799 return r; 800 } 801 802 /* Called with s->dma_map_lock */ 803 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 804 NVMeRequest *req, QEMUIOVector *qiov) 805 { 806 BDRVNVMeState *s = bs->opaque; 807 uint64_t *pagelist = req->prp_list_page; 808 int i, j, r; 809 int entries = 0; 810 811 assert(qiov->size); 812 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 813 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 814 for (i = 0; i < qiov->niov; ++i) { 815 bool retry = true; 816 uint64_t iova; 817 try_map: 818 r = qemu_vfio_dma_map(s->vfio, 819 qiov->iov[i].iov_base, 820 qiov->iov[i].iov_len, 821 true, &iova); 822 if (r == -ENOMEM && retry) { 823 retry = false; 824 trace_nvme_dma_flush_queue_wait(s); 825 if (s->dma_map_count) { 826 trace_nvme_dma_map_flush(s); 827 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 828 } else { 829 r = qemu_vfio_dma_reset_temporary(s->vfio); 830 if (r) { 831 goto fail; 832 } 833 } 834 goto try_map; 835 } 836 if (r) { 837 goto fail; 838 } 839 840 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 841 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 842 } 843 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 844 qiov->iov[i].iov_len / s->page_size); 845 } 846 847 s->dma_map_count += qiov->size; 848 849 assert(entries <= s->page_size / sizeof(uint64_t)); 850 switch (entries) { 851 case 0: 852 abort(); 853 case 1: 854 cmd->prp1 = pagelist[0]; 855 cmd->prp2 = 0; 856 break; 857 case 2: 858 cmd->prp1 = pagelist[0]; 859 cmd->prp2 = pagelist[1]; 860 break; 861 default: 862 cmd->prp1 = pagelist[0]; 863 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 864 break; 865 } 866 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 867 for (i = 0; i < entries; ++i) { 868 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 869 } 870 return 0; 871 fail: 872 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 873 * increment s->dma_map_count. This is okay for fixed mapping memory areas 874 * because they are already mapped before calling this function; for 875 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 876 * calling qemu_vfio_dma_reset_temporary when necessary. */ 877 return r; 878 } 879 880 typedef struct { 881 Coroutine *co; 882 int ret; 883 AioContext *ctx; 884 } NVMeCoData; 885 886 static void nvme_rw_cb_bh(void *opaque) 887 { 888 NVMeCoData *data = opaque; 889 qemu_coroutine_enter(data->co); 890 } 891 892 static void nvme_rw_cb(void *opaque, int ret) 893 { 894 NVMeCoData *data = opaque; 895 data->ret = ret; 896 if (!data->co) { 897 /* The rw coroutine hasn't yielded, don't try to enter. */ 898 return; 899 } 900 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); 901 } 902 903 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 904 uint64_t offset, uint64_t bytes, 905 QEMUIOVector *qiov, 906 bool is_write, 907 int flags) 908 { 909 int r; 910 BDRVNVMeState *s = bs->opaque; 911 NVMeQueuePair *ioq = s->queues[1]; 912 NVMeRequest *req; 913 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | 914 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 915 NvmeCmd cmd = { 916 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 917 .nsid = cpu_to_le32(s->nsid), 918 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), 919 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), 920 .cdw12 = cpu_to_le32(cdw12), 921 }; 922 NVMeCoData data = { 923 .ctx = bdrv_get_aio_context(bs), 924 .ret = -EINPROGRESS, 925 }; 926 927 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 928 assert(s->nr_queues > 1); 929 req = nvme_get_free_req(ioq); 930 assert(req); 931 932 qemu_co_mutex_lock(&s->dma_map_lock); 933 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 934 qemu_co_mutex_unlock(&s->dma_map_lock); 935 if (r) { 936 req->busy = false; 937 return r; 938 } 939 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 940 941 data.co = qemu_coroutine_self(); 942 while (data.ret == -EINPROGRESS) { 943 qemu_coroutine_yield(); 944 } 945 946 qemu_co_mutex_lock(&s->dma_map_lock); 947 r = nvme_cmd_unmap_qiov(bs, qiov); 948 qemu_co_mutex_unlock(&s->dma_map_lock); 949 if (r) { 950 return r; 951 } 952 953 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 954 return data.ret; 955 } 956 957 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 958 const QEMUIOVector *qiov) 959 { 960 int i; 961 BDRVNVMeState *s = bs->opaque; 962 963 for (i = 0; i < qiov->niov; ++i) { 964 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || 965 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { 966 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 967 qiov->iov[i].iov_len, s->page_size); 968 return false; 969 } 970 } 971 return true; 972 } 973 974 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 975 QEMUIOVector *qiov, bool is_write, int flags) 976 { 977 BDRVNVMeState *s = bs->opaque; 978 int r; 979 uint8_t *buf = NULL; 980 QEMUIOVector local_qiov; 981 982 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 983 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 984 assert(bytes <= s->max_transfer); 985 if (nvme_qiov_aligned(bs, qiov)) { 986 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 987 } 988 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 989 buf = qemu_try_blockalign(bs, bytes); 990 991 if (!buf) { 992 return -ENOMEM; 993 } 994 qemu_iovec_init(&local_qiov, 1); 995 if (is_write) { 996 qemu_iovec_to_buf(qiov, 0, buf, bytes); 997 } 998 qemu_iovec_add(&local_qiov, buf, bytes); 999 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1000 qemu_iovec_destroy(&local_qiov); 1001 if (!r && !is_write) { 1002 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1003 } 1004 qemu_vfree(buf); 1005 return r; 1006 } 1007 1008 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1009 uint64_t offset, uint64_t bytes, 1010 QEMUIOVector *qiov, int flags) 1011 { 1012 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1013 } 1014 1015 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1016 uint64_t offset, uint64_t bytes, 1017 QEMUIOVector *qiov, int flags) 1018 { 1019 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1020 } 1021 1022 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1023 { 1024 BDRVNVMeState *s = bs->opaque; 1025 NVMeQueuePair *ioq = s->queues[1]; 1026 NVMeRequest *req; 1027 NvmeCmd cmd = { 1028 .opcode = NVME_CMD_FLUSH, 1029 .nsid = cpu_to_le32(s->nsid), 1030 }; 1031 NVMeCoData data = { 1032 .ctx = bdrv_get_aio_context(bs), 1033 .ret = -EINPROGRESS, 1034 }; 1035 1036 assert(s->nr_queues > 1); 1037 req = nvme_get_free_req(ioq); 1038 assert(req); 1039 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1040 1041 data.co = qemu_coroutine_self(); 1042 if (data.ret == -EINPROGRESS) { 1043 qemu_coroutine_yield(); 1044 } 1045 1046 return data.ret; 1047 } 1048 1049 1050 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1051 BlockReopenQueue *queue, Error **errp) 1052 { 1053 return 0; 1054 } 1055 1056 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts) 1057 { 1058 qdict_del(opts, "filename"); 1059 1060 if (!qdict_size(opts)) { 1061 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://", 1062 bs->drv->format_name); 1063 } 1064 1065 qdict_put_str(opts, "driver", bs->drv->format_name); 1066 bs->full_open_options = qobject_ref(opts); 1067 } 1068 1069 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1070 { 1071 BDRVNVMeState *s = bs->opaque; 1072 1073 bs->bl.opt_mem_alignment = s->page_size; 1074 bs->bl.request_alignment = s->page_size; 1075 bs->bl.max_transfer = s->max_transfer; 1076 } 1077 1078 static void nvme_detach_aio_context(BlockDriverState *bs) 1079 { 1080 BDRVNVMeState *s = bs->opaque; 1081 1082 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 1083 false, NULL, NULL); 1084 } 1085 1086 static void nvme_attach_aio_context(BlockDriverState *bs, 1087 AioContext *new_context) 1088 { 1089 BDRVNVMeState *s = bs->opaque; 1090 1091 s->aio_context = new_context; 1092 aio_set_event_notifier(new_context, &s->irq_notifier, 1093 false, nvme_handle_event, nvme_poll_cb); 1094 } 1095 1096 static void nvme_aio_plug(BlockDriverState *bs) 1097 { 1098 BDRVNVMeState *s = bs->opaque; 1099 assert(!s->plugged); 1100 s->plugged = true; 1101 } 1102 1103 static void nvme_aio_unplug(BlockDriverState *bs) 1104 { 1105 int i; 1106 BDRVNVMeState *s = bs->opaque; 1107 assert(s->plugged); 1108 s->plugged = false; 1109 for (i = 1; i < s->nr_queues; i++) { 1110 NVMeQueuePair *q = s->queues[i]; 1111 qemu_mutex_lock(&q->lock); 1112 nvme_kick(s, q); 1113 nvme_process_completion(s, q); 1114 qemu_mutex_unlock(&q->lock); 1115 } 1116 } 1117 1118 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1119 { 1120 int ret; 1121 BDRVNVMeState *s = bs->opaque; 1122 1123 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1124 if (ret) { 1125 /* FIXME: we may run out of IOVA addresses after repeated 1126 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1127 * doesn't reclaim addresses for fixed mappings. */ 1128 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1129 } 1130 } 1131 1132 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1133 { 1134 BDRVNVMeState *s = bs->opaque; 1135 1136 qemu_vfio_dma_unmap(s->vfio, host); 1137 } 1138 1139 static BlockDriver bdrv_nvme = { 1140 .format_name = "nvme", 1141 .protocol_name = "nvme", 1142 .instance_size = sizeof(BDRVNVMeState), 1143 1144 .bdrv_parse_filename = nvme_parse_filename, 1145 .bdrv_file_open = nvme_file_open, 1146 .bdrv_close = nvme_close, 1147 .bdrv_getlength = nvme_getlength, 1148 1149 .bdrv_co_preadv = nvme_co_preadv, 1150 .bdrv_co_pwritev = nvme_co_pwritev, 1151 .bdrv_co_flush_to_disk = nvme_co_flush, 1152 .bdrv_reopen_prepare = nvme_reopen_prepare, 1153 1154 .bdrv_refresh_filename = nvme_refresh_filename, 1155 .bdrv_refresh_limits = nvme_refresh_limits, 1156 1157 .bdrv_detach_aio_context = nvme_detach_aio_context, 1158 .bdrv_attach_aio_context = nvme_attach_aio_context, 1159 1160 .bdrv_io_plug = nvme_aio_plug, 1161 .bdrv_io_unplug = nvme_aio_unplug, 1162 1163 .bdrv_register_buf = nvme_register_buf, 1164 .bdrv_unregister_buf = nvme_unregister_buf, 1165 }; 1166 1167 static void bdrv_nvme_init(void) 1168 { 1169 bdrv_register(&bdrv_nvme); 1170 } 1171 1172 block_init(bdrv_nvme_init); 1173