1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/cutils.h" 23 #include "qemu/option.h" 24 #include "qemu/vfio-helpers.h" 25 #include "block/block_int.h" 26 #include "sysemu/replay.h" 27 #include "trace.h" 28 29 #include "block/nvme.h" 30 31 #define NVME_SQ_ENTRY_BYTES 64 32 #define NVME_CQ_ENTRY_BYTES 16 33 #define NVME_QUEUE_SIZE 128 34 #define NVME_DOORBELL_SIZE 4096 35 36 /* 37 * We have to leave one slot empty as that is the full queue case where 38 * head == tail + 1. 39 */ 40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1) 41 42 typedef struct BDRVNVMeState BDRVNVMeState; 43 44 /* Same index is used for queues and IRQs */ 45 #define INDEX_ADMIN 0 46 #define INDEX_IO(n) (1 + n) 47 48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */ 49 enum { 50 MSIX_SHARED_IRQ_IDX = 0, 51 MSIX_IRQ_COUNT = 1 52 }; 53 54 typedef struct { 55 int32_t head, tail; 56 uint8_t *queue; 57 uint64_t iova; 58 /* Hardware MMIO register */ 59 volatile uint32_t *doorbell; 60 } NVMeQueue; 61 62 typedef struct { 63 BlockCompletionFunc *cb; 64 void *opaque; 65 int cid; 66 void *prp_list_page; 67 uint64_t prp_list_iova; 68 int free_req_next; /* q->reqs[] index of next free req */ 69 } NVMeRequest; 70 71 typedef struct { 72 QemuMutex lock; 73 74 /* Read from I/O code path, initialized under BQL */ 75 BDRVNVMeState *s; 76 int index; 77 78 /* Fields protected by BQL */ 79 uint8_t *prp_list_pages; 80 81 /* Fields protected by @lock */ 82 CoQueue free_req_queue; 83 NVMeQueue sq, cq; 84 int cq_phase; 85 int free_req_head; 86 NVMeRequest reqs[NVME_NUM_REQS]; 87 int need_kick; 88 int inflight; 89 90 /* Thread-safe, no lock necessary */ 91 QEMUBH *completion_bh; 92 } NVMeQueuePair; 93 94 struct BDRVNVMeState { 95 AioContext *aio_context; 96 QEMUVFIOState *vfio; 97 void *bar0_wo_map; 98 /* Memory mapped registers */ 99 volatile struct { 100 uint32_t sq_tail; 101 uint32_t cq_head; 102 } *doorbells; 103 /* The submission/completion queue pairs. 104 * [0]: admin queue. 105 * [1..]: io queues. 106 */ 107 NVMeQueuePair **queues; 108 unsigned queue_count; 109 size_t page_size; 110 /* How many uint32_t elements does each doorbell entry take. */ 111 size_t doorbell_scale; 112 bool write_cache_supported; 113 EventNotifier irq_notifier[MSIX_IRQ_COUNT]; 114 115 uint64_t nsze; /* Namespace size reported by identify command */ 116 int nsid; /* The namespace id to read/write data. */ 117 int blkshift; 118 119 uint64_t max_transfer; 120 bool plugged; 121 122 bool supports_write_zeroes; 123 bool supports_discard; 124 125 CoMutex dma_map_lock; 126 CoQueue dma_flush_queue; 127 128 /* Total size of mapped qiov, accessed under dma_map_lock */ 129 int dma_map_count; 130 131 /* PCI address (required for nvme_refresh_filename()) */ 132 char *device; 133 134 struct { 135 uint64_t completion_errors; 136 uint64_t aligned_accesses; 137 uint64_t unaligned_accesses; 138 } stats; 139 }; 140 141 #define NVME_BLOCK_OPT_DEVICE "device" 142 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 143 144 static void nvme_process_completion_bh(void *opaque); 145 146 static QemuOptsList runtime_opts = { 147 .name = "nvme", 148 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 149 .desc = { 150 { 151 .name = NVME_BLOCK_OPT_DEVICE, 152 .type = QEMU_OPT_STRING, 153 .help = "NVMe PCI device address", 154 }, 155 { 156 .name = NVME_BLOCK_OPT_NAMESPACE, 157 .type = QEMU_OPT_NUMBER, 158 .help = "NVMe namespace", 159 }, 160 { /* end of list */ } 161 }, 162 }; 163 164 /* Returns true on success, false on failure. */ 165 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q, 166 unsigned nentries, size_t entry_bytes, Error **errp) 167 { 168 size_t bytes; 169 int r; 170 171 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size); 172 q->head = q->tail = 0; 173 q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes); 174 if (!q->queue) { 175 error_setg(errp, "Cannot allocate queue"); 176 return false; 177 } 178 memset(q->queue, 0, bytes); 179 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 180 if (r) { 181 error_setg(errp, "Cannot map queue"); 182 return false; 183 } 184 return true; 185 } 186 187 static void nvme_free_queue_pair(NVMeQueuePair *q) 188 { 189 trace_nvme_free_queue_pair(q->index, q); 190 if (q->completion_bh) { 191 qemu_bh_delete(q->completion_bh); 192 } 193 qemu_vfree(q->prp_list_pages); 194 qemu_vfree(q->sq.queue); 195 qemu_vfree(q->cq.queue); 196 qemu_mutex_destroy(&q->lock); 197 g_free(q); 198 } 199 200 static void nvme_free_req_queue_cb(void *opaque) 201 { 202 NVMeQueuePair *q = opaque; 203 204 qemu_mutex_lock(&q->lock); 205 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 206 /* Retry all pending requests */ 207 } 208 qemu_mutex_unlock(&q->lock); 209 } 210 211 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s, 212 AioContext *aio_context, 213 unsigned idx, size_t size, 214 Error **errp) 215 { 216 int i, r; 217 NVMeQueuePair *q; 218 uint64_t prp_list_iova; 219 size_t bytes; 220 221 q = g_try_new0(NVMeQueuePair, 1); 222 if (!q) { 223 return NULL; 224 } 225 trace_nvme_create_queue_pair(idx, q, size, aio_context, 226 event_notifier_get_fd(s->irq_notifier)); 227 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS, 228 qemu_real_host_page_size); 229 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes); 230 if (!q->prp_list_pages) { 231 goto fail; 232 } 233 memset(q->prp_list_pages, 0, bytes); 234 qemu_mutex_init(&q->lock); 235 q->s = s; 236 q->index = idx; 237 qemu_co_queue_init(&q->free_req_queue); 238 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q); 239 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes, 240 false, &prp_list_iova); 241 if (r) { 242 goto fail; 243 } 244 q->free_req_head = -1; 245 for (i = 0; i < NVME_NUM_REQS; i++) { 246 NVMeRequest *req = &q->reqs[i]; 247 req->cid = i + 1; 248 req->free_req_next = q->free_req_head; 249 q->free_req_head = i; 250 req->prp_list_page = q->prp_list_pages + i * s->page_size; 251 req->prp_list_iova = prp_list_iova + i * s->page_size; 252 } 253 254 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) { 255 goto fail; 256 } 257 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail; 258 259 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) { 260 goto fail; 261 } 262 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head; 263 264 return q; 265 fail: 266 nvme_free_queue_pair(q); 267 return NULL; 268 } 269 270 /* With q->lock */ 271 static void nvme_kick(NVMeQueuePair *q) 272 { 273 BDRVNVMeState *s = q->s; 274 275 if (s->plugged || !q->need_kick) { 276 return; 277 } 278 trace_nvme_kick(s, q->index); 279 assert(!(q->sq.tail & 0xFF00)); 280 /* Fence the write to submission queue entry before notifying the device. */ 281 smp_wmb(); 282 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 283 q->inflight += q->need_kick; 284 q->need_kick = 0; 285 } 286 287 /* Find a free request element if any, otherwise: 288 * a) if in coroutine context, try to wait for one to become available; 289 * b) if not in coroutine, return NULL; 290 */ 291 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 292 { 293 NVMeRequest *req; 294 295 qemu_mutex_lock(&q->lock); 296 297 while (q->free_req_head == -1) { 298 if (qemu_in_coroutine()) { 299 trace_nvme_free_req_queue_wait(q->s, q->index); 300 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 301 } else { 302 qemu_mutex_unlock(&q->lock); 303 return NULL; 304 } 305 } 306 307 req = &q->reqs[q->free_req_head]; 308 q->free_req_head = req->free_req_next; 309 req->free_req_next = -1; 310 311 qemu_mutex_unlock(&q->lock); 312 return req; 313 } 314 315 /* With q->lock */ 316 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req) 317 { 318 req->free_req_next = q->free_req_head; 319 q->free_req_head = req - q->reqs; 320 } 321 322 /* With q->lock */ 323 static void nvme_wake_free_req_locked(NVMeQueuePair *q) 324 { 325 if (!qemu_co_queue_empty(&q->free_req_queue)) { 326 replay_bh_schedule_oneshot_event(q->s->aio_context, 327 nvme_free_req_queue_cb, q); 328 } 329 } 330 331 /* Insert a request in the freelist and wake waiters */ 332 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req) 333 { 334 qemu_mutex_lock(&q->lock); 335 nvme_put_free_req_locked(q, req); 336 nvme_wake_free_req_locked(q); 337 qemu_mutex_unlock(&q->lock); 338 } 339 340 static inline int nvme_translate_error(const NvmeCqe *c) 341 { 342 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 343 if (status) { 344 trace_nvme_error(le32_to_cpu(c->result), 345 le16_to_cpu(c->sq_head), 346 le16_to_cpu(c->sq_id), 347 le16_to_cpu(c->cid), 348 le16_to_cpu(status)); 349 } 350 switch (status) { 351 case 0: 352 return 0; 353 case 1: 354 return -ENOSYS; 355 case 2: 356 return -EINVAL; 357 default: 358 return -EIO; 359 } 360 } 361 362 /* With q->lock */ 363 static bool nvme_process_completion(NVMeQueuePair *q) 364 { 365 BDRVNVMeState *s = q->s; 366 bool progress = false; 367 NVMeRequest *preq; 368 NVMeRequest req; 369 NvmeCqe *c; 370 371 trace_nvme_process_completion(s, q->index, q->inflight); 372 if (s->plugged) { 373 trace_nvme_process_completion_queue_plugged(s, q->index); 374 return false; 375 } 376 377 /* 378 * Support re-entrancy when a request cb() function invokes aio_poll(). 379 * Pending completions must be visible to aio_poll() so that a cb() 380 * function can wait for the completion of another request. 381 * 382 * The aio_poll() loop will execute our BH and we'll resume completion 383 * processing there. 384 */ 385 qemu_bh_schedule(q->completion_bh); 386 387 assert(q->inflight >= 0); 388 while (q->inflight) { 389 int ret; 390 int16_t cid; 391 392 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 393 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 394 break; 395 } 396 ret = nvme_translate_error(c); 397 if (ret) { 398 s->stats.completion_errors++; 399 } 400 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 401 if (!q->cq.head) { 402 q->cq_phase = !q->cq_phase; 403 } 404 cid = le16_to_cpu(c->cid); 405 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 406 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", " 407 "queue size: %u", cid, NVME_QUEUE_SIZE); 408 continue; 409 } 410 trace_nvme_complete_command(s, q->index, cid); 411 preq = &q->reqs[cid - 1]; 412 req = *preq; 413 assert(req.cid == cid); 414 assert(req.cb); 415 nvme_put_free_req_locked(q, preq); 416 preq->cb = preq->opaque = NULL; 417 q->inflight--; 418 qemu_mutex_unlock(&q->lock); 419 req.cb(req.opaque, ret); 420 qemu_mutex_lock(&q->lock); 421 progress = true; 422 } 423 if (progress) { 424 /* Notify the device so it can post more completions. */ 425 smp_mb_release(); 426 *q->cq.doorbell = cpu_to_le32(q->cq.head); 427 nvme_wake_free_req_locked(q); 428 } 429 430 qemu_bh_cancel(q->completion_bh); 431 432 return progress; 433 } 434 435 static void nvme_process_completion_bh(void *opaque) 436 { 437 NVMeQueuePair *q = opaque; 438 439 /* 440 * We're being invoked because a nvme_process_completion() cb() function 441 * called aio_poll(). The callback may be waiting for further completions 442 * so notify the device that it has space to fill in more completions now. 443 */ 444 smp_mb_release(); 445 *q->cq.doorbell = cpu_to_le32(q->cq.head); 446 nvme_wake_free_req_locked(q); 447 448 nvme_process_completion(q); 449 } 450 451 static void nvme_trace_command(const NvmeCmd *cmd) 452 { 453 int i; 454 455 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) { 456 return; 457 } 458 for (i = 0; i < 8; ++i) { 459 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 460 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 461 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 462 } 463 } 464 465 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req, 466 NvmeCmd *cmd, BlockCompletionFunc cb, 467 void *opaque) 468 { 469 assert(!req->cb); 470 req->cb = cb; 471 req->opaque = opaque; 472 cmd->cid = cpu_to_le16(req->cid); 473 474 trace_nvme_submit_command(q->s, q->index, req->cid); 475 nvme_trace_command(cmd); 476 qemu_mutex_lock(&q->lock); 477 memcpy((uint8_t *)q->sq.queue + 478 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 479 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 480 q->need_kick++; 481 nvme_kick(q); 482 nvme_process_completion(q); 483 qemu_mutex_unlock(&q->lock); 484 } 485 486 static void nvme_admin_cmd_sync_cb(void *opaque, int ret) 487 { 488 int *pret = opaque; 489 *pret = ret; 490 aio_wait_kick(); 491 } 492 493 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd) 494 { 495 BDRVNVMeState *s = bs->opaque; 496 NVMeQueuePair *q = s->queues[INDEX_ADMIN]; 497 AioContext *aio_context = bdrv_get_aio_context(bs); 498 NVMeRequest *req; 499 int ret = -EINPROGRESS; 500 req = nvme_get_free_req(q); 501 if (!req) { 502 return -EBUSY; 503 } 504 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret); 505 506 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS); 507 return ret; 508 } 509 510 /* Returns true on success, false on failure. */ 511 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 512 { 513 BDRVNVMeState *s = bs->opaque; 514 bool ret = false; 515 union { 516 NvmeIdCtrl ctrl; 517 NvmeIdNs ns; 518 } *id; 519 NvmeLBAF *lbaf; 520 uint16_t oncs; 521 int r; 522 uint64_t iova; 523 NvmeCmd cmd = { 524 .opcode = NVME_ADM_CMD_IDENTIFY, 525 .cdw10 = cpu_to_le32(0x1), 526 }; 527 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size); 528 529 id = qemu_try_memalign(qemu_real_host_page_size, id_size); 530 if (!id) { 531 error_setg(errp, "Cannot allocate buffer for identify response"); 532 goto out; 533 } 534 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova); 535 if (r) { 536 error_setg(errp, "Cannot map buffer for DMA"); 537 goto out; 538 } 539 540 memset(id, 0, id_size); 541 cmd.dptr.prp1 = cpu_to_le64(iova); 542 if (nvme_admin_cmd_sync(bs, &cmd)) { 543 error_setg(errp, "Failed to identify controller"); 544 goto out; 545 } 546 547 if (le32_to_cpu(id->ctrl.nn) < namespace) { 548 error_setg(errp, "Invalid namespace"); 549 goto out; 550 } 551 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1; 552 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size; 553 /* For now the page list buffer per command is one page, to hold at most 554 * s->page_size / sizeof(uint64_t) entries. */ 555 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 556 s->page_size / sizeof(uint64_t) * s->page_size); 557 558 oncs = le16_to_cpu(id->ctrl.oncs); 559 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES); 560 s->supports_discard = !!(oncs & NVME_ONCS_DSM); 561 562 memset(id, 0, id_size); 563 cmd.cdw10 = 0; 564 cmd.nsid = cpu_to_le32(namespace); 565 if (nvme_admin_cmd_sync(bs, &cmd)) { 566 error_setg(errp, "Failed to identify namespace"); 567 goto out; 568 } 569 570 s->nsze = le64_to_cpu(id->ns.nsze); 571 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)]; 572 573 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) && 574 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) == 575 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) { 576 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP; 577 } 578 579 if (lbaf->ms) { 580 error_setg(errp, "Namespaces with metadata are not yet supported"); 581 goto out; 582 } 583 584 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || 585 (1 << lbaf->ds) > s->page_size) 586 { 587 error_setg(errp, "Namespace has unsupported block size (2^%d)", 588 lbaf->ds); 589 goto out; 590 } 591 592 ret = true; 593 s->blkshift = lbaf->ds; 594 out: 595 qemu_vfio_dma_unmap(s->vfio, id); 596 qemu_vfree(id); 597 598 return ret; 599 } 600 601 static bool nvme_poll_queue(NVMeQueuePair *q) 602 { 603 bool progress = false; 604 605 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES; 606 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset]; 607 608 trace_nvme_poll_queue(q->s, q->index); 609 /* 610 * Do an early check for completions. q->lock isn't needed because 611 * nvme_process_completion() only runs in the event loop thread and 612 * cannot race with itself. 613 */ 614 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) { 615 return false; 616 } 617 618 qemu_mutex_lock(&q->lock); 619 while (nvme_process_completion(q)) { 620 /* Keep polling */ 621 progress = true; 622 } 623 qemu_mutex_unlock(&q->lock); 624 625 return progress; 626 } 627 628 static bool nvme_poll_queues(BDRVNVMeState *s) 629 { 630 bool progress = false; 631 int i; 632 633 for (i = 0; i < s->queue_count; i++) { 634 if (nvme_poll_queue(s->queues[i])) { 635 progress = true; 636 } 637 } 638 return progress; 639 } 640 641 static void nvme_handle_event(EventNotifier *n) 642 { 643 BDRVNVMeState *s = container_of(n, BDRVNVMeState, 644 irq_notifier[MSIX_SHARED_IRQ_IDX]); 645 646 trace_nvme_handle_event(s); 647 event_notifier_test_and_clear(n); 648 nvme_poll_queues(s); 649 } 650 651 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 652 { 653 BDRVNVMeState *s = bs->opaque; 654 unsigned n = s->queue_count; 655 NVMeQueuePair *q; 656 NvmeCmd cmd; 657 unsigned queue_size = NVME_QUEUE_SIZE; 658 659 assert(n <= UINT16_MAX); 660 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs), 661 n, queue_size, errp); 662 if (!q) { 663 return false; 664 } 665 cmd = (NvmeCmd) { 666 .opcode = NVME_ADM_CMD_CREATE_CQ, 667 .dptr.prp1 = cpu_to_le64(q->cq.iova), 668 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), 669 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC), 670 }; 671 if (nvme_admin_cmd_sync(bs, &cmd)) { 672 error_setg(errp, "Failed to create CQ io queue [%u]", n); 673 goto out_error; 674 } 675 cmd = (NvmeCmd) { 676 .opcode = NVME_ADM_CMD_CREATE_SQ, 677 .dptr.prp1 = cpu_to_le64(q->sq.iova), 678 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), 679 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)), 680 }; 681 if (nvme_admin_cmd_sync(bs, &cmd)) { 682 error_setg(errp, "Failed to create SQ io queue [%u]", n); 683 goto out_error; 684 } 685 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 686 s->queues[n] = q; 687 s->queue_count++; 688 return true; 689 out_error: 690 nvme_free_queue_pair(q); 691 return false; 692 } 693 694 static bool nvme_poll_cb(void *opaque) 695 { 696 EventNotifier *e = opaque; 697 BDRVNVMeState *s = container_of(e, BDRVNVMeState, 698 irq_notifier[MSIX_SHARED_IRQ_IDX]); 699 700 return nvme_poll_queues(s); 701 } 702 703 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 704 Error **errp) 705 { 706 BDRVNVMeState *s = bs->opaque; 707 NVMeQueuePair *q; 708 AioContext *aio_context = bdrv_get_aio_context(bs); 709 int ret; 710 uint64_t cap; 711 uint64_t timeout_ms; 712 uint64_t deadline, now; 713 volatile NvmeBar *regs = NULL; 714 715 qemu_co_mutex_init(&s->dma_map_lock); 716 qemu_co_queue_init(&s->dma_flush_queue); 717 s->device = g_strdup(device); 718 s->nsid = namespace; 719 s->aio_context = bdrv_get_aio_context(bs); 720 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0); 721 if (ret) { 722 error_setg(errp, "Failed to init event notifier"); 723 return ret; 724 } 725 726 s->vfio = qemu_vfio_open_pci(device, errp); 727 if (!s->vfio) { 728 ret = -EINVAL; 729 goto out; 730 } 731 732 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar), 733 PROT_READ | PROT_WRITE, errp); 734 if (!regs) { 735 ret = -EINVAL; 736 goto out; 737 } 738 /* Perform initialize sequence as described in NVMe spec "7.6.1 739 * Initialization". */ 740 741 cap = le64_to_cpu(regs->cap); 742 trace_nvme_controller_capability_raw(cap); 743 trace_nvme_controller_capability("Maximum Queue Entries Supported", 744 1 + NVME_CAP_MQES(cap)); 745 trace_nvme_controller_capability("Contiguous Queues Required", 746 NVME_CAP_CQR(cap)); 747 trace_nvme_controller_capability("Doorbell Stride", 748 2 << (2 + NVME_CAP_DSTRD(cap))); 749 trace_nvme_controller_capability("Subsystem Reset Supported", 750 NVME_CAP_NSSRS(cap)); 751 trace_nvme_controller_capability("Memory Page Size Minimum", 752 1 << (12 + NVME_CAP_MPSMIN(cap))); 753 trace_nvme_controller_capability("Memory Page Size Maximum", 754 1 << (12 + NVME_CAP_MPSMAX(cap))); 755 if (!NVME_CAP_CSS(cap)) { 756 error_setg(errp, "Device doesn't support NVMe command set"); 757 ret = -EINVAL; 758 goto out; 759 } 760 761 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap)); 762 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t); 763 bs->bl.opt_mem_alignment = s->page_size; 764 bs->bl.request_alignment = s->page_size; 765 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000); 766 767 /* Reset device to get a clean state. */ 768 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE); 769 /* Wait for CSTS.RDY = 0. */ 770 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS; 771 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { 772 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 773 error_setg(errp, "Timeout while waiting for device to reset (%" 774 PRId64 " ms)", 775 timeout_ms); 776 ret = -ETIMEDOUT; 777 goto out; 778 } 779 } 780 781 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0, 782 sizeof(NvmeBar) + NVME_DOORBELL_SIZE, 783 PROT_WRITE, errp); 784 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar)); 785 if (!s->doorbells) { 786 ret = -EINVAL; 787 goto out; 788 } 789 790 /* Set up admin queue. */ 791 s->queues = g_new(NVMeQueuePair *, 1); 792 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp); 793 if (!q) { 794 ret = -EINVAL; 795 goto out; 796 } 797 s->queues[INDEX_ADMIN] = q; 798 s->queue_count = 1; 799 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000); 800 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) | 801 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT)); 802 regs->asq = cpu_to_le64(q->sq.iova); 803 regs->acq = cpu_to_le64(q->cq.iova); 804 805 /* After setting up all control registers we can enable device now. */ 806 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) | 807 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) | 808 CC_EN_MASK); 809 /* Wait for CSTS.RDY = 1. */ 810 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 811 deadline = now + timeout_ms * SCALE_MS; 812 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { 813 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 814 error_setg(errp, "Timeout while waiting for device to start (%" 815 PRId64 " ms)", 816 timeout_ms); 817 ret = -ETIMEDOUT; 818 goto out; 819 } 820 } 821 822 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier, 823 VFIO_PCI_MSIX_IRQ_INDEX, errp); 824 if (ret) { 825 goto out; 826 } 827 aio_set_event_notifier(bdrv_get_aio_context(bs), 828 &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 829 false, nvme_handle_event, nvme_poll_cb); 830 831 if (!nvme_identify(bs, namespace, errp)) { 832 ret = -EIO; 833 goto out; 834 } 835 836 /* Set up command queues. */ 837 if (!nvme_add_io_queue(bs, errp)) { 838 ret = -EIO; 839 } 840 out: 841 if (regs) { 842 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar)); 843 } 844 845 /* Cleaning up is done in nvme_file_open() upon error. */ 846 return ret; 847 } 848 849 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 850 * 851 * nvme://0000:44:00.0/1 852 * 853 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 854 * is the PCI address, and the last part is the namespace number starting from 855 * 1 according to the NVMe spec. */ 856 static void nvme_parse_filename(const char *filename, QDict *options, 857 Error **errp) 858 { 859 int pref = strlen("nvme://"); 860 861 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 862 const char *tmp = filename + pref; 863 char *device; 864 const char *namespace; 865 unsigned long ns; 866 const char *slash = strchr(tmp, '/'); 867 if (!slash) { 868 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 869 return; 870 } 871 device = g_strndup(tmp, slash - tmp); 872 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 873 g_free(device); 874 namespace = slash + 1; 875 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 876 error_setg(errp, "Invalid namespace '%s', positive number expected", 877 namespace); 878 return; 879 } 880 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 881 *namespace ? namespace : "1"); 882 } 883 } 884 885 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 886 Error **errp) 887 { 888 int ret; 889 BDRVNVMeState *s = bs->opaque; 890 NvmeCmd cmd = { 891 .opcode = NVME_ADM_CMD_SET_FEATURES, 892 .nsid = cpu_to_le32(s->nsid), 893 .cdw10 = cpu_to_le32(0x06), 894 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 895 }; 896 897 ret = nvme_admin_cmd_sync(bs, &cmd); 898 if (ret) { 899 error_setg(errp, "Failed to configure NVMe write cache"); 900 } 901 return ret; 902 } 903 904 static void nvme_close(BlockDriverState *bs) 905 { 906 BDRVNVMeState *s = bs->opaque; 907 908 for (unsigned i = 0; i < s->queue_count; ++i) { 909 nvme_free_queue_pair(s->queues[i]); 910 } 911 g_free(s->queues); 912 aio_set_event_notifier(bdrv_get_aio_context(bs), 913 &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 914 false, NULL, NULL); 915 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]); 916 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map, 917 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE); 918 qemu_vfio_close(s->vfio); 919 920 g_free(s->device); 921 } 922 923 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 924 Error **errp) 925 { 926 const char *device; 927 QemuOpts *opts; 928 int namespace; 929 int ret; 930 BDRVNVMeState *s = bs->opaque; 931 932 bs->supported_write_flags = BDRV_REQ_FUA; 933 934 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 935 qemu_opts_absorb_qdict(opts, options, &error_abort); 936 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 937 if (!device) { 938 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 939 qemu_opts_del(opts); 940 return -EINVAL; 941 } 942 943 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 944 ret = nvme_init(bs, device, namespace, errp); 945 qemu_opts_del(opts); 946 if (ret) { 947 goto fail; 948 } 949 if (flags & BDRV_O_NOCACHE) { 950 if (!s->write_cache_supported) { 951 error_setg(errp, 952 "NVMe controller doesn't support write cache configuration"); 953 ret = -EINVAL; 954 } else { 955 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 956 errp); 957 } 958 if (ret) { 959 goto fail; 960 } 961 } 962 return 0; 963 fail: 964 nvme_close(bs); 965 return ret; 966 } 967 968 static int64_t nvme_getlength(BlockDriverState *bs) 969 { 970 BDRVNVMeState *s = bs->opaque; 971 return s->nsze << s->blkshift; 972 } 973 974 static uint32_t nvme_get_blocksize(BlockDriverState *bs) 975 { 976 BDRVNVMeState *s = bs->opaque; 977 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); 978 return UINT32_C(1) << s->blkshift; 979 } 980 981 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) 982 { 983 uint32_t blocksize = nvme_get_blocksize(bs); 984 bsz->phys = blocksize; 985 bsz->log = blocksize; 986 return 0; 987 } 988 989 /* Called with s->dma_map_lock */ 990 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 991 QEMUIOVector *qiov) 992 { 993 int r = 0; 994 BDRVNVMeState *s = bs->opaque; 995 996 s->dma_map_count -= qiov->size; 997 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 998 r = qemu_vfio_dma_reset_temporary(s->vfio); 999 if (!r) { 1000 qemu_co_queue_restart_all(&s->dma_flush_queue); 1001 } 1002 } 1003 return r; 1004 } 1005 1006 /* Called with s->dma_map_lock */ 1007 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 1008 NVMeRequest *req, QEMUIOVector *qiov) 1009 { 1010 BDRVNVMeState *s = bs->opaque; 1011 uint64_t *pagelist = req->prp_list_page; 1012 int i, j, r; 1013 int entries = 0; 1014 1015 assert(qiov->size); 1016 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 1017 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 1018 for (i = 0; i < qiov->niov; ++i) { 1019 bool retry = true; 1020 uint64_t iova; 1021 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len, 1022 qemu_real_host_page_size); 1023 try_map: 1024 r = qemu_vfio_dma_map(s->vfio, 1025 qiov->iov[i].iov_base, 1026 len, true, &iova); 1027 if (r == -ENOMEM && retry) { 1028 retry = false; 1029 trace_nvme_dma_flush_queue_wait(s); 1030 if (s->dma_map_count) { 1031 trace_nvme_dma_map_flush(s); 1032 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 1033 } else { 1034 r = qemu_vfio_dma_reset_temporary(s->vfio); 1035 if (r) { 1036 goto fail; 1037 } 1038 } 1039 goto try_map; 1040 } 1041 if (r) { 1042 goto fail; 1043 } 1044 1045 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 1046 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 1047 } 1048 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 1049 qiov->iov[i].iov_len / s->page_size); 1050 } 1051 1052 s->dma_map_count += qiov->size; 1053 1054 assert(entries <= s->page_size / sizeof(uint64_t)); 1055 switch (entries) { 1056 case 0: 1057 abort(); 1058 case 1: 1059 cmd->dptr.prp1 = pagelist[0]; 1060 cmd->dptr.prp2 = 0; 1061 break; 1062 case 2: 1063 cmd->dptr.prp1 = pagelist[0]; 1064 cmd->dptr.prp2 = pagelist[1]; 1065 break; 1066 default: 1067 cmd->dptr.prp1 = pagelist[0]; 1068 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 1069 break; 1070 } 1071 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 1072 for (i = 0; i < entries; ++i) { 1073 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 1074 } 1075 return 0; 1076 fail: 1077 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 1078 * increment s->dma_map_count. This is okay for fixed mapping memory areas 1079 * because they are already mapped before calling this function; for 1080 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 1081 * calling qemu_vfio_dma_reset_temporary when necessary. */ 1082 return r; 1083 } 1084 1085 typedef struct { 1086 Coroutine *co; 1087 int ret; 1088 AioContext *ctx; 1089 } NVMeCoData; 1090 1091 static void nvme_rw_cb_bh(void *opaque) 1092 { 1093 NVMeCoData *data = opaque; 1094 qemu_coroutine_enter(data->co); 1095 } 1096 1097 static void nvme_rw_cb(void *opaque, int ret) 1098 { 1099 NVMeCoData *data = opaque; 1100 data->ret = ret; 1101 if (!data->co) { 1102 /* The rw coroutine hasn't yielded, don't try to enter. */ 1103 return; 1104 } 1105 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data); 1106 } 1107 1108 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 1109 uint64_t offset, uint64_t bytes, 1110 QEMUIOVector *qiov, 1111 bool is_write, 1112 int flags) 1113 { 1114 int r; 1115 BDRVNVMeState *s = bs->opaque; 1116 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1117 NVMeRequest *req; 1118 1119 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | 1120 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 1121 NvmeCmd cmd = { 1122 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 1123 .nsid = cpu_to_le32(s->nsid), 1124 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 1125 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 1126 .cdw12 = cpu_to_le32(cdw12), 1127 }; 1128 NVMeCoData data = { 1129 .ctx = bdrv_get_aio_context(bs), 1130 .ret = -EINPROGRESS, 1131 }; 1132 1133 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 1134 assert(s->queue_count > 1); 1135 req = nvme_get_free_req(ioq); 1136 assert(req); 1137 1138 qemu_co_mutex_lock(&s->dma_map_lock); 1139 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 1140 qemu_co_mutex_unlock(&s->dma_map_lock); 1141 if (r) { 1142 nvme_put_free_req_and_wake(ioq, req); 1143 return r; 1144 } 1145 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1146 1147 data.co = qemu_coroutine_self(); 1148 while (data.ret == -EINPROGRESS) { 1149 qemu_coroutine_yield(); 1150 } 1151 1152 qemu_co_mutex_lock(&s->dma_map_lock); 1153 r = nvme_cmd_unmap_qiov(bs, qiov); 1154 qemu_co_mutex_unlock(&s->dma_map_lock); 1155 if (r) { 1156 return r; 1157 } 1158 1159 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 1160 return data.ret; 1161 } 1162 1163 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 1164 const QEMUIOVector *qiov) 1165 { 1166 int i; 1167 BDRVNVMeState *s = bs->opaque; 1168 1169 for (i = 0; i < qiov->niov; ++i) { 1170 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, 1171 qemu_real_host_page_size) || 1172 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) { 1173 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 1174 qiov->iov[i].iov_len, s->page_size); 1175 return false; 1176 } 1177 } 1178 return true; 1179 } 1180 1181 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 1182 QEMUIOVector *qiov, bool is_write, int flags) 1183 { 1184 BDRVNVMeState *s = bs->opaque; 1185 int r; 1186 uint8_t *buf = NULL; 1187 QEMUIOVector local_qiov; 1188 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size); 1189 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 1190 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 1191 assert(bytes <= s->max_transfer); 1192 if (nvme_qiov_aligned(bs, qiov)) { 1193 s->stats.aligned_accesses++; 1194 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 1195 } 1196 s->stats.unaligned_accesses++; 1197 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 1198 buf = qemu_try_memalign(qemu_real_host_page_size, len); 1199 1200 if (!buf) { 1201 return -ENOMEM; 1202 } 1203 qemu_iovec_init(&local_qiov, 1); 1204 if (is_write) { 1205 qemu_iovec_to_buf(qiov, 0, buf, bytes); 1206 } 1207 qemu_iovec_add(&local_qiov, buf, bytes); 1208 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1209 qemu_iovec_destroy(&local_qiov); 1210 if (!r && !is_write) { 1211 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1212 } 1213 qemu_vfree(buf); 1214 return r; 1215 } 1216 1217 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1218 uint64_t offset, uint64_t bytes, 1219 QEMUIOVector *qiov, int flags) 1220 { 1221 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1222 } 1223 1224 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1225 uint64_t offset, uint64_t bytes, 1226 QEMUIOVector *qiov, int flags) 1227 { 1228 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1229 } 1230 1231 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1232 { 1233 BDRVNVMeState *s = bs->opaque; 1234 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1235 NVMeRequest *req; 1236 NvmeCmd cmd = { 1237 .opcode = NVME_CMD_FLUSH, 1238 .nsid = cpu_to_le32(s->nsid), 1239 }; 1240 NVMeCoData data = { 1241 .ctx = bdrv_get_aio_context(bs), 1242 .ret = -EINPROGRESS, 1243 }; 1244 1245 assert(s->queue_count > 1); 1246 req = nvme_get_free_req(ioq); 1247 assert(req); 1248 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1249 1250 data.co = qemu_coroutine_self(); 1251 if (data.ret == -EINPROGRESS) { 1252 qemu_coroutine_yield(); 1253 } 1254 1255 return data.ret; 1256 } 1257 1258 1259 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs, 1260 int64_t offset, 1261 int bytes, 1262 BdrvRequestFlags flags) 1263 { 1264 BDRVNVMeState *s = bs->opaque; 1265 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1266 NVMeRequest *req; 1267 1268 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF; 1269 1270 if (!s->supports_write_zeroes) { 1271 return -ENOTSUP; 1272 } 1273 1274 NvmeCmd cmd = { 1275 .opcode = NVME_CMD_WRITE_ZEROES, 1276 .nsid = cpu_to_le32(s->nsid), 1277 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 1278 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 1279 }; 1280 1281 NVMeCoData data = { 1282 .ctx = bdrv_get_aio_context(bs), 1283 .ret = -EINPROGRESS, 1284 }; 1285 1286 if (flags & BDRV_REQ_MAY_UNMAP) { 1287 cdw12 |= (1 << 25); 1288 } 1289 1290 if (flags & BDRV_REQ_FUA) { 1291 cdw12 |= (1 << 30); 1292 } 1293 1294 cmd.cdw12 = cpu_to_le32(cdw12); 1295 1296 trace_nvme_write_zeroes(s, offset, bytes, flags); 1297 assert(s->queue_count > 1); 1298 req = nvme_get_free_req(ioq); 1299 assert(req); 1300 1301 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1302 1303 data.co = qemu_coroutine_self(); 1304 while (data.ret == -EINPROGRESS) { 1305 qemu_coroutine_yield(); 1306 } 1307 1308 trace_nvme_rw_done(s, true, offset, bytes, data.ret); 1309 return data.ret; 1310 } 1311 1312 1313 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs, 1314 int64_t offset, 1315 int bytes) 1316 { 1317 BDRVNVMeState *s = bs->opaque; 1318 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; 1319 NVMeRequest *req; 1320 NvmeDsmRange *buf; 1321 QEMUIOVector local_qiov; 1322 int ret; 1323 1324 NvmeCmd cmd = { 1325 .opcode = NVME_CMD_DSM, 1326 .nsid = cpu_to_le32(s->nsid), 1327 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/ 1328 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/ 1329 }; 1330 1331 NVMeCoData data = { 1332 .ctx = bdrv_get_aio_context(bs), 1333 .ret = -EINPROGRESS, 1334 }; 1335 1336 if (!s->supports_discard) { 1337 return -ENOTSUP; 1338 } 1339 1340 assert(s->queue_count > 1); 1341 1342 buf = qemu_try_memalign(s->page_size, s->page_size); 1343 if (!buf) { 1344 return -ENOMEM; 1345 } 1346 memset(buf, 0, s->page_size); 1347 buf->nlb = cpu_to_le32(bytes >> s->blkshift); 1348 buf->slba = cpu_to_le64(offset >> s->blkshift); 1349 buf->cattr = 0; 1350 1351 qemu_iovec_init(&local_qiov, 1); 1352 qemu_iovec_add(&local_qiov, buf, 4096); 1353 1354 req = nvme_get_free_req(ioq); 1355 assert(req); 1356 1357 qemu_co_mutex_lock(&s->dma_map_lock); 1358 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov); 1359 qemu_co_mutex_unlock(&s->dma_map_lock); 1360 1361 if (ret) { 1362 nvme_put_free_req_and_wake(ioq, req); 1363 goto out; 1364 } 1365 1366 trace_nvme_dsm(s, offset, bytes); 1367 1368 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); 1369 1370 data.co = qemu_coroutine_self(); 1371 while (data.ret == -EINPROGRESS) { 1372 qemu_coroutine_yield(); 1373 } 1374 1375 qemu_co_mutex_lock(&s->dma_map_lock); 1376 ret = nvme_cmd_unmap_qiov(bs, &local_qiov); 1377 qemu_co_mutex_unlock(&s->dma_map_lock); 1378 1379 if (ret) { 1380 goto out; 1381 } 1382 1383 ret = data.ret; 1384 trace_nvme_dsm_done(s, offset, bytes, ret); 1385 out: 1386 qemu_iovec_destroy(&local_qiov); 1387 qemu_vfree(buf); 1388 return ret; 1389 1390 } 1391 1392 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset, 1393 bool exact, PreallocMode prealloc, 1394 BdrvRequestFlags flags, Error **errp) 1395 { 1396 int64_t cur_length; 1397 1398 if (prealloc != PREALLOC_MODE_OFF) { 1399 error_setg(errp, "Unsupported preallocation mode '%s'", 1400 PreallocMode_str(prealloc)); 1401 return -ENOTSUP; 1402 } 1403 1404 cur_length = nvme_getlength(bs); 1405 if (offset != cur_length && exact) { 1406 error_setg(errp, "Cannot resize NVMe devices"); 1407 return -ENOTSUP; 1408 } else if (offset > cur_length) { 1409 error_setg(errp, "Cannot grow NVMe devices"); 1410 return -EINVAL; 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1417 BlockReopenQueue *queue, Error **errp) 1418 { 1419 return 0; 1420 } 1421 1422 static void nvme_refresh_filename(BlockDriverState *bs) 1423 { 1424 BDRVNVMeState *s = bs->opaque; 1425 1426 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", 1427 s->device, s->nsid); 1428 } 1429 1430 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1431 { 1432 BDRVNVMeState *s = bs->opaque; 1433 1434 bs->bl.opt_mem_alignment = s->page_size; 1435 bs->bl.request_alignment = s->page_size; 1436 bs->bl.max_transfer = s->max_transfer; 1437 } 1438 1439 static void nvme_detach_aio_context(BlockDriverState *bs) 1440 { 1441 BDRVNVMeState *s = bs->opaque; 1442 1443 for (unsigned i = 0; i < s->queue_count; i++) { 1444 NVMeQueuePair *q = s->queues[i]; 1445 1446 qemu_bh_delete(q->completion_bh); 1447 q->completion_bh = NULL; 1448 } 1449 1450 aio_set_event_notifier(bdrv_get_aio_context(bs), 1451 &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 1452 false, NULL, NULL); 1453 } 1454 1455 static void nvme_attach_aio_context(BlockDriverState *bs, 1456 AioContext *new_context) 1457 { 1458 BDRVNVMeState *s = bs->opaque; 1459 1460 s->aio_context = new_context; 1461 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX], 1462 false, nvme_handle_event, nvme_poll_cb); 1463 1464 for (unsigned i = 0; i < s->queue_count; i++) { 1465 NVMeQueuePair *q = s->queues[i]; 1466 1467 q->completion_bh = 1468 aio_bh_new(new_context, nvme_process_completion_bh, q); 1469 } 1470 } 1471 1472 static void nvme_aio_plug(BlockDriverState *bs) 1473 { 1474 BDRVNVMeState *s = bs->opaque; 1475 assert(!s->plugged); 1476 s->plugged = true; 1477 } 1478 1479 static void nvme_aio_unplug(BlockDriverState *bs) 1480 { 1481 BDRVNVMeState *s = bs->opaque; 1482 assert(s->plugged); 1483 s->plugged = false; 1484 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) { 1485 NVMeQueuePair *q = s->queues[i]; 1486 qemu_mutex_lock(&q->lock); 1487 nvme_kick(q); 1488 nvme_process_completion(q); 1489 qemu_mutex_unlock(&q->lock); 1490 } 1491 } 1492 1493 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1494 { 1495 int ret; 1496 BDRVNVMeState *s = bs->opaque; 1497 1498 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1499 if (ret) { 1500 /* FIXME: we may run out of IOVA addresses after repeated 1501 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1502 * doesn't reclaim addresses for fixed mappings. */ 1503 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1504 } 1505 } 1506 1507 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1508 { 1509 BDRVNVMeState *s = bs->opaque; 1510 1511 qemu_vfio_dma_unmap(s->vfio, host); 1512 } 1513 1514 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs) 1515 { 1516 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1); 1517 BDRVNVMeState *s = bs->opaque; 1518 1519 stats->driver = BLOCKDEV_DRIVER_NVME; 1520 stats->u.nvme = (BlockStatsSpecificNvme) { 1521 .completion_errors = s->stats.completion_errors, 1522 .aligned_accesses = s->stats.aligned_accesses, 1523 .unaligned_accesses = s->stats.unaligned_accesses, 1524 }; 1525 1526 return stats; 1527 } 1528 1529 static const char *const nvme_strong_runtime_opts[] = { 1530 NVME_BLOCK_OPT_DEVICE, 1531 NVME_BLOCK_OPT_NAMESPACE, 1532 1533 NULL 1534 }; 1535 1536 static BlockDriver bdrv_nvme = { 1537 .format_name = "nvme", 1538 .protocol_name = "nvme", 1539 .instance_size = sizeof(BDRVNVMeState), 1540 1541 .bdrv_co_create_opts = bdrv_co_create_opts_simple, 1542 .create_opts = &bdrv_create_opts_simple, 1543 1544 .bdrv_parse_filename = nvme_parse_filename, 1545 .bdrv_file_open = nvme_file_open, 1546 .bdrv_close = nvme_close, 1547 .bdrv_getlength = nvme_getlength, 1548 .bdrv_probe_blocksizes = nvme_probe_blocksizes, 1549 .bdrv_co_truncate = nvme_co_truncate, 1550 1551 .bdrv_co_preadv = nvme_co_preadv, 1552 .bdrv_co_pwritev = nvme_co_pwritev, 1553 1554 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes, 1555 .bdrv_co_pdiscard = nvme_co_pdiscard, 1556 1557 .bdrv_co_flush_to_disk = nvme_co_flush, 1558 .bdrv_reopen_prepare = nvme_reopen_prepare, 1559 1560 .bdrv_refresh_filename = nvme_refresh_filename, 1561 .bdrv_refresh_limits = nvme_refresh_limits, 1562 .strong_runtime_opts = nvme_strong_runtime_opts, 1563 .bdrv_get_specific_stats = nvme_get_specific_stats, 1564 1565 .bdrv_detach_aio_context = nvme_detach_aio_context, 1566 .bdrv_attach_aio_context = nvme_attach_aio_context, 1567 1568 .bdrv_io_plug = nvme_aio_plug, 1569 .bdrv_io_unplug = nvme_aio_unplug, 1570 1571 .bdrv_register_buf = nvme_register_buf, 1572 .bdrv_unregister_buf = nvme_unregister_buf, 1573 }; 1574 1575 static void bdrv_nvme_init(void) 1576 { 1577 bdrv_register(&bdrv_nvme); 1578 } 1579 1580 block_init(bdrv_nvme_init); 1581