xref: /openbmc/qemu/block/nvme.c (revision 4305d482)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28 
29 #include "block/nvme.h"
30 
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
35 
36 typedef struct {
37     int32_t  head, tail;
38     uint8_t  *queue;
39     uint64_t iova;
40     /* Hardware MMIO register */
41     volatile uint32_t *doorbell;
42 } NVMeQueue;
43 
44 typedef struct {
45     BlockCompletionFunc *cb;
46     void *opaque;
47     int cid;
48     void *prp_list_page;
49     uint64_t prp_list_iova;
50     bool busy;
51 } NVMeRequest;
52 
53 typedef struct {
54     CoQueue     free_req_queue;
55     QemuMutex   lock;
56 
57     /* Fields protected by BQL */
58     int         index;
59     uint8_t     *prp_list_pages;
60 
61     /* Fields protected by @lock */
62     NVMeQueue   sq, cq;
63     int         cq_phase;
64     NVMeRequest reqs[NVME_QUEUE_SIZE];
65     bool        busy;
66     int         need_kick;
67     int         inflight;
68 } NVMeQueuePair;
69 
70 /* Memory mapped registers */
71 typedef volatile struct {
72     uint64_t cap;
73     uint32_t vs;
74     uint32_t intms;
75     uint32_t intmc;
76     uint32_t cc;
77     uint32_t reserved0;
78     uint32_t csts;
79     uint32_t nssr;
80     uint32_t aqa;
81     uint64_t asq;
82     uint64_t acq;
83     uint32_t cmbloc;
84     uint32_t cmbsz;
85     uint8_t  reserved1[0xec0];
86     uint8_t  cmd_set_specfic[0x100];
87     uint32_t doorbells[];
88 } NVMeRegs;
89 
90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
91 
92 typedef struct {
93     AioContext *aio_context;
94     QEMUVFIOState *vfio;
95     NVMeRegs *regs;
96     /* The submission/completion queue pairs.
97      * [0]: admin queue.
98      * [1..]: io queues.
99      */
100     NVMeQueuePair **queues;
101     int nr_queues;
102     size_t page_size;
103     /* How many uint32_t elements does each doorbell entry take. */
104     size_t doorbell_scale;
105     bool write_cache_supported;
106     EventNotifier irq_notifier;
107 
108     uint64_t nsze; /* Namespace size reported by identify command */
109     int nsid;      /* The namespace id to read/write data. */
110     int blkshift;
111 
112     uint64_t max_transfer;
113     bool plugged;
114 
115     bool supports_write_zeroes;
116     bool supports_discard;
117 
118     CoMutex dma_map_lock;
119     CoQueue dma_flush_queue;
120 
121     /* Total size of mapped qiov, accessed under dma_map_lock */
122     int dma_map_count;
123 
124     /* PCI address (required for nvme_refresh_filename()) */
125     char *device;
126 } BDRVNVMeState;
127 
128 #define NVME_BLOCK_OPT_DEVICE "device"
129 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
130 
131 static QemuOptsList runtime_opts = {
132     .name = "nvme",
133     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
134     .desc = {
135         {
136             .name = NVME_BLOCK_OPT_DEVICE,
137             .type = QEMU_OPT_STRING,
138             .help = "NVMe PCI device address",
139         },
140         {
141             .name = NVME_BLOCK_OPT_NAMESPACE,
142             .type = QEMU_OPT_NUMBER,
143             .help = "NVMe namespace",
144         },
145         { /* end of list */ }
146     },
147 };
148 
149 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
150                             int nentries, int entry_bytes, Error **errp)
151 {
152     BDRVNVMeState *s = bs->opaque;
153     size_t bytes;
154     int r;
155 
156     bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
157     q->head = q->tail = 0;
158     q->queue = qemu_try_blockalign0(bs, bytes);
159 
160     if (!q->queue) {
161         error_setg(errp, "Cannot allocate queue");
162         return;
163     }
164     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
165     if (r) {
166         error_setg(errp, "Cannot map queue");
167     }
168 }
169 
170 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
171 {
172     qemu_vfree(q->prp_list_pages);
173     qemu_vfree(q->sq.queue);
174     qemu_vfree(q->cq.queue);
175     qemu_mutex_destroy(&q->lock);
176     g_free(q);
177 }
178 
179 static void nvme_free_req_queue_cb(void *opaque)
180 {
181     NVMeQueuePair *q = opaque;
182 
183     qemu_mutex_lock(&q->lock);
184     while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
185         /* Retry all pending requests */
186     }
187     qemu_mutex_unlock(&q->lock);
188 }
189 
190 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
191                                              int idx, int size,
192                                              Error **errp)
193 {
194     int i, r;
195     BDRVNVMeState *s = bs->opaque;
196     Error *local_err = NULL;
197     NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
198     uint64_t prp_list_iova;
199 
200     qemu_mutex_init(&q->lock);
201     q->index = idx;
202     qemu_co_queue_init(&q->free_req_queue);
203     q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
204     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
205                           s->page_size * NVME_QUEUE_SIZE,
206                           false, &prp_list_iova);
207     if (r) {
208         goto fail;
209     }
210     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
211         NVMeRequest *req = &q->reqs[i];
212         req->cid = i + 1;
213         req->prp_list_page = q->prp_list_pages + i * s->page_size;
214         req->prp_list_iova = prp_list_iova + i * s->page_size;
215     }
216     nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
217     if (local_err) {
218         error_propagate(errp, local_err);
219         goto fail;
220     }
221     q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
222 
223     nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
224     if (local_err) {
225         error_propagate(errp, local_err);
226         goto fail;
227     }
228     q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
229 
230     return q;
231 fail:
232     nvme_free_queue_pair(bs, q);
233     return NULL;
234 }
235 
236 /* With q->lock */
237 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
238 {
239     if (s->plugged || !q->need_kick) {
240         return;
241     }
242     trace_nvme_kick(s, q->index);
243     assert(!(q->sq.tail & 0xFF00));
244     /* Fence the write to submission queue entry before notifying the device. */
245     smp_wmb();
246     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
247     q->inflight += q->need_kick;
248     q->need_kick = 0;
249 }
250 
251 /* Find a free request element if any, otherwise:
252  * a) if in coroutine context, try to wait for one to become available;
253  * b) if not in coroutine, return NULL;
254  */
255 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
256 {
257     int i;
258     NVMeRequest *req = NULL;
259 
260     qemu_mutex_lock(&q->lock);
261     while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
262         /* We have to leave one slot empty as that is the full queue case (head
263          * == tail + 1). */
264         if (qemu_in_coroutine()) {
265             trace_nvme_free_req_queue_wait(q);
266             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
267         } else {
268             qemu_mutex_unlock(&q->lock);
269             return NULL;
270         }
271     }
272     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
273         if (!q->reqs[i].busy) {
274             q->reqs[i].busy = true;
275             req = &q->reqs[i];
276             break;
277         }
278     }
279     /* We have checked inflight and need_kick while holding q->lock, so one
280      * free req must be available. */
281     assert(req);
282     qemu_mutex_unlock(&q->lock);
283     return req;
284 }
285 
286 static inline int nvme_translate_error(const NvmeCqe *c)
287 {
288     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
289     if (status) {
290         trace_nvme_error(le32_to_cpu(c->result),
291                          le16_to_cpu(c->sq_head),
292                          le16_to_cpu(c->sq_id),
293                          le16_to_cpu(c->cid),
294                          le16_to_cpu(status));
295     }
296     switch (status) {
297     case 0:
298         return 0;
299     case 1:
300         return -ENOSYS;
301     case 2:
302         return -EINVAL;
303     default:
304         return -EIO;
305     }
306 }
307 
308 /* With q->lock */
309 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
310 {
311     bool progress = false;
312     NVMeRequest *preq;
313     NVMeRequest req;
314     NvmeCqe *c;
315 
316     trace_nvme_process_completion(s, q->index, q->inflight);
317     if (q->busy || s->plugged) {
318         trace_nvme_process_completion_queue_busy(s, q->index);
319         return false;
320     }
321     q->busy = true;
322     assert(q->inflight >= 0);
323     while (q->inflight) {
324         int16_t cid;
325         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
326         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
327             break;
328         }
329         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
330         if (!q->cq.head) {
331             q->cq_phase = !q->cq_phase;
332         }
333         cid = le16_to_cpu(c->cid);
334         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
335             fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
336                     cid);
337             continue;
338         }
339         assert(cid <= NVME_QUEUE_SIZE);
340         trace_nvme_complete_command(s, q->index, cid);
341         preq = &q->reqs[cid - 1];
342         req = *preq;
343         assert(req.cid == cid);
344         assert(req.cb);
345         preq->busy = false;
346         preq->cb = preq->opaque = NULL;
347         qemu_mutex_unlock(&q->lock);
348         req.cb(req.opaque, nvme_translate_error(c));
349         qemu_mutex_lock(&q->lock);
350         q->inflight--;
351         progress = true;
352     }
353     if (progress) {
354         /* Notify the device so it can post more completions. */
355         smp_mb_release();
356         *q->cq.doorbell = cpu_to_le32(q->cq.head);
357         if (!qemu_co_queue_empty(&q->free_req_queue)) {
358             replay_bh_schedule_oneshot_event(s->aio_context,
359                                              nvme_free_req_queue_cb, q);
360         }
361     }
362     q->busy = false;
363     return progress;
364 }
365 
366 static void nvme_trace_command(const NvmeCmd *cmd)
367 {
368     int i;
369 
370     for (i = 0; i < 8; ++i) {
371         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
372         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
373                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
374     }
375 }
376 
377 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
378                                 NVMeRequest *req,
379                                 NvmeCmd *cmd, BlockCompletionFunc cb,
380                                 void *opaque)
381 {
382     assert(!req->cb);
383     req->cb = cb;
384     req->opaque = opaque;
385     cmd->cid = cpu_to_le32(req->cid);
386 
387     trace_nvme_submit_command(s, q->index, req->cid);
388     nvme_trace_command(cmd);
389     qemu_mutex_lock(&q->lock);
390     memcpy((uint8_t *)q->sq.queue +
391            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
392     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
393     q->need_kick++;
394     nvme_kick(s, q);
395     nvme_process_completion(s, q);
396     qemu_mutex_unlock(&q->lock);
397 }
398 
399 static void nvme_cmd_sync_cb(void *opaque, int ret)
400 {
401     int *pret = opaque;
402     *pret = ret;
403     aio_wait_kick();
404 }
405 
406 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
407                          NvmeCmd *cmd)
408 {
409     NVMeRequest *req;
410     BDRVNVMeState *s = bs->opaque;
411     int ret = -EINPROGRESS;
412     req = nvme_get_free_req(q);
413     if (!req) {
414         return -EBUSY;
415     }
416     nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
417 
418     BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
419     return ret;
420 }
421 
422 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
423 {
424     BDRVNVMeState *s = bs->opaque;
425     NvmeIdCtrl *idctrl;
426     NvmeIdNs *idns;
427     NvmeLBAF *lbaf;
428     uint8_t *resp;
429     uint16_t oncs;
430     int r;
431     uint64_t iova;
432     NvmeCmd cmd = {
433         .opcode = NVME_ADM_CMD_IDENTIFY,
434         .cdw10 = cpu_to_le32(0x1),
435     };
436 
437     resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
438     if (!resp) {
439         error_setg(errp, "Cannot allocate buffer for identify response");
440         goto out;
441     }
442     idctrl = (NvmeIdCtrl *)resp;
443     idns = (NvmeIdNs *)resp;
444     r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
445     if (r) {
446         error_setg(errp, "Cannot map buffer for DMA");
447         goto out;
448     }
449     cmd.prp1 = cpu_to_le64(iova);
450 
451     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
452         error_setg(errp, "Failed to identify controller");
453         goto out;
454     }
455 
456     if (le32_to_cpu(idctrl->nn) < namespace) {
457         error_setg(errp, "Invalid namespace");
458         goto out;
459     }
460     s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
461     s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
462     /* For now the page list buffer per command is one page, to hold at most
463      * s->page_size / sizeof(uint64_t) entries. */
464     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
465                           s->page_size / sizeof(uint64_t) * s->page_size);
466 
467     oncs = le16_to_cpu(idctrl->oncs);
468     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROS);
469     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
470 
471     memset(resp, 0, 4096);
472 
473     cmd.cdw10 = 0;
474     cmd.nsid = cpu_to_le32(namespace);
475     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
476         error_setg(errp, "Failed to identify namespace");
477         goto out;
478     }
479 
480     s->nsze = le64_to_cpu(idns->nsze);
481     lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
482 
483     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns->dlfeat) &&
484             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns->dlfeat) ==
485                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
486         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
487     }
488 
489     if (lbaf->ms) {
490         error_setg(errp, "Namespaces with metadata are not yet supported");
491         goto out;
492     }
493 
494     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
495         (1 << lbaf->ds) > s->page_size)
496     {
497         error_setg(errp, "Namespace has unsupported block size (2^%d)",
498                    lbaf->ds);
499         goto out;
500     }
501 
502     s->blkshift = lbaf->ds;
503 out:
504     qemu_vfio_dma_unmap(s->vfio, resp);
505     qemu_vfree(resp);
506 }
507 
508 static bool nvme_poll_queues(BDRVNVMeState *s)
509 {
510     bool progress = false;
511     int i;
512 
513     for (i = 0; i < s->nr_queues; i++) {
514         NVMeQueuePair *q = s->queues[i];
515         qemu_mutex_lock(&q->lock);
516         while (nvme_process_completion(s, q)) {
517             /* Keep polling */
518             progress = true;
519         }
520         qemu_mutex_unlock(&q->lock);
521     }
522     return progress;
523 }
524 
525 static void nvme_handle_event(EventNotifier *n)
526 {
527     BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
528 
529     trace_nvme_handle_event(s);
530     event_notifier_test_and_clear(n);
531     nvme_poll_queues(s);
532 }
533 
534 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
535 {
536     BDRVNVMeState *s = bs->opaque;
537     int n = s->nr_queues;
538     NVMeQueuePair *q;
539     NvmeCmd cmd;
540     int queue_size = NVME_QUEUE_SIZE;
541 
542     q = nvme_create_queue_pair(bs, n, queue_size, errp);
543     if (!q) {
544         return false;
545     }
546     cmd = (NvmeCmd) {
547         .opcode = NVME_ADM_CMD_CREATE_CQ,
548         .prp1 = cpu_to_le64(q->cq.iova),
549         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
550         .cdw11 = cpu_to_le32(0x3),
551     };
552     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
553         error_setg(errp, "Failed to create io queue [%d]", n);
554         nvme_free_queue_pair(bs, q);
555         return false;
556     }
557     cmd = (NvmeCmd) {
558         .opcode = NVME_ADM_CMD_CREATE_SQ,
559         .prp1 = cpu_to_le64(q->sq.iova),
560         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
561         .cdw11 = cpu_to_le32(0x1 | (n << 16)),
562     };
563     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
564         error_setg(errp, "Failed to create io queue [%d]", n);
565         nvme_free_queue_pair(bs, q);
566         return false;
567     }
568     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
569     s->queues[n] = q;
570     s->nr_queues++;
571     return true;
572 }
573 
574 static bool nvme_poll_cb(void *opaque)
575 {
576     EventNotifier *e = opaque;
577     BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
578     bool progress = false;
579 
580     trace_nvme_poll_cb(s);
581     progress = nvme_poll_queues(s);
582     return progress;
583 }
584 
585 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
586                      Error **errp)
587 {
588     BDRVNVMeState *s = bs->opaque;
589     int ret;
590     uint64_t cap;
591     uint64_t timeout_ms;
592     uint64_t deadline, now;
593     Error *local_err = NULL;
594 
595     qemu_co_mutex_init(&s->dma_map_lock);
596     qemu_co_queue_init(&s->dma_flush_queue);
597     s->device = g_strdup(device);
598     s->nsid = namespace;
599     s->aio_context = bdrv_get_aio_context(bs);
600     ret = event_notifier_init(&s->irq_notifier, 0);
601     if (ret) {
602         error_setg(errp, "Failed to init event notifier");
603         return ret;
604     }
605 
606     s->vfio = qemu_vfio_open_pci(device, errp);
607     if (!s->vfio) {
608         ret = -EINVAL;
609         goto out;
610     }
611 
612     s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
613     if (!s->regs) {
614         ret = -EINVAL;
615         goto out;
616     }
617 
618     /* Perform initialize sequence as described in NVMe spec "7.6.1
619      * Initialization". */
620 
621     cap = le64_to_cpu(s->regs->cap);
622     if (!(cap & (1ULL << 37))) {
623         error_setg(errp, "Device doesn't support NVMe command set");
624         ret = -EINVAL;
625         goto out;
626     }
627 
628     s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
629     s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
630     bs->bl.opt_mem_alignment = s->page_size;
631     timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
632 
633     /* Reset device to get a clean state. */
634     s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
635     /* Wait for CSTS.RDY = 0. */
636     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
637     while (le32_to_cpu(s->regs->csts) & 0x1) {
638         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
639             error_setg(errp, "Timeout while waiting for device to reset (%"
640                              PRId64 " ms)",
641                        timeout_ms);
642             ret = -ETIMEDOUT;
643             goto out;
644         }
645     }
646 
647     /* Set up admin queue. */
648     s->queues = g_new(NVMeQueuePair *, 1);
649     s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
650     if (!s->queues[0]) {
651         ret = -EINVAL;
652         goto out;
653     }
654     s->nr_queues = 1;
655     QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
656     s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
657     s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
658     s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
659 
660     /* After setting up all control registers we can enable device now. */
661     s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
662                               (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
663                               0x1);
664     /* Wait for CSTS.RDY = 1. */
665     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
666     deadline = now + timeout_ms * 1000000;
667     while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
668         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
669             error_setg(errp, "Timeout while waiting for device to start (%"
670                              PRId64 " ms)",
671                        timeout_ms);
672             ret = -ETIMEDOUT;
673             goto out;
674         }
675     }
676 
677     ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
678                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
679     if (ret) {
680         goto out;
681     }
682     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
683                            false, nvme_handle_event, nvme_poll_cb);
684 
685     nvme_identify(bs, namespace, &local_err);
686     if (local_err) {
687         error_propagate(errp, local_err);
688         ret = -EIO;
689         goto out;
690     }
691 
692     /* Set up command queues. */
693     if (!nvme_add_io_queue(bs, errp)) {
694         ret = -EIO;
695     }
696 out:
697     /* Cleaning up is done in nvme_file_open() upon error. */
698     return ret;
699 }
700 
701 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
702  *
703  *     nvme://0000:44:00.0/1
704  *
705  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
706  * is the PCI address, and the last part is the namespace number starting from
707  * 1 according to the NVMe spec. */
708 static void nvme_parse_filename(const char *filename, QDict *options,
709                                 Error **errp)
710 {
711     int pref = strlen("nvme://");
712 
713     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
714         const char *tmp = filename + pref;
715         char *device;
716         const char *namespace;
717         unsigned long ns;
718         const char *slash = strchr(tmp, '/');
719         if (!slash) {
720             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
721             return;
722         }
723         device = g_strndup(tmp, slash - tmp);
724         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
725         g_free(device);
726         namespace = slash + 1;
727         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
728             error_setg(errp, "Invalid namespace '%s', positive number expected",
729                        namespace);
730             return;
731         }
732         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
733                       *namespace ? namespace : "1");
734     }
735 }
736 
737 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
738                                            Error **errp)
739 {
740     int ret;
741     BDRVNVMeState *s = bs->opaque;
742     NvmeCmd cmd = {
743         .opcode = NVME_ADM_CMD_SET_FEATURES,
744         .nsid = cpu_to_le32(s->nsid),
745         .cdw10 = cpu_to_le32(0x06),
746         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
747     };
748 
749     ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
750     if (ret) {
751         error_setg(errp, "Failed to configure NVMe write cache");
752     }
753     return ret;
754 }
755 
756 static void nvme_close(BlockDriverState *bs)
757 {
758     int i;
759     BDRVNVMeState *s = bs->opaque;
760 
761     for (i = 0; i < s->nr_queues; ++i) {
762         nvme_free_queue_pair(bs, s->queues[i]);
763     }
764     g_free(s->queues);
765     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
766                            false, NULL, NULL);
767     event_notifier_cleanup(&s->irq_notifier);
768     qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
769     qemu_vfio_close(s->vfio);
770 
771     g_free(s->device);
772 }
773 
774 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
775                           Error **errp)
776 {
777     const char *device;
778     QemuOpts *opts;
779     int namespace;
780     int ret;
781     BDRVNVMeState *s = bs->opaque;
782 
783     bs->supported_write_flags = BDRV_REQ_FUA;
784 
785     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
786     qemu_opts_absorb_qdict(opts, options, &error_abort);
787     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
788     if (!device) {
789         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
790         qemu_opts_del(opts);
791         return -EINVAL;
792     }
793 
794     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
795     ret = nvme_init(bs, device, namespace, errp);
796     qemu_opts_del(opts);
797     if (ret) {
798         goto fail;
799     }
800     if (flags & BDRV_O_NOCACHE) {
801         if (!s->write_cache_supported) {
802             error_setg(errp,
803                        "NVMe controller doesn't support write cache configuration");
804             ret = -EINVAL;
805         } else {
806             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
807                                                   errp);
808         }
809         if (ret) {
810             goto fail;
811         }
812     }
813     return 0;
814 fail:
815     nvme_close(bs);
816     return ret;
817 }
818 
819 static int64_t nvme_getlength(BlockDriverState *bs)
820 {
821     BDRVNVMeState *s = bs->opaque;
822     return s->nsze << s->blkshift;
823 }
824 
825 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
826 {
827     BDRVNVMeState *s = bs->opaque;
828     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
829     return UINT32_C(1) << s->blkshift;
830 }
831 
832 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
833 {
834     uint32_t blocksize = nvme_get_blocksize(bs);
835     bsz->phys = blocksize;
836     bsz->log = blocksize;
837     return 0;
838 }
839 
840 /* Called with s->dma_map_lock */
841 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
842                                             QEMUIOVector *qiov)
843 {
844     int r = 0;
845     BDRVNVMeState *s = bs->opaque;
846 
847     s->dma_map_count -= qiov->size;
848     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
849         r = qemu_vfio_dma_reset_temporary(s->vfio);
850         if (!r) {
851             qemu_co_queue_restart_all(&s->dma_flush_queue);
852         }
853     }
854     return r;
855 }
856 
857 /* Called with s->dma_map_lock */
858 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
859                                           NVMeRequest *req, QEMUIOVector *qiov)
860 {
861     BDRVNVMeState *s = bs->opaque;
862     uint64_t *pagelist = req->prp_list_page;
863     int i, j, r;
864     int entries = 0;
865 
866     assert(qiov->size);
867     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
868     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
869     for (i = 0; i < qiov->niov; ++i) {
870         bool retry = true;
871         uint64_t iova;
872 try_map:
873         r = qemu_vfio_dma_map(s->vfio,
874                               qiov->iov[i].iov_base,
875                               qiov->iov[i].iov_len,
876                               true, &iova);
877         if (r == -ENOMEM && retry) {
878             retry = false;
879             trace_nvme_dma_flush_queue_wait(s);
880             if (s->dma_map_count) {
881                 trace_nvme_dma_map_flush(s);
882                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
883             } else {
884                 r = qemu_vfio_dma_reset_temporary(s->vfio);
885                 if (r) {
886                     goto fail;
887                 }
888             }
889             goto try_map;
890         }
891         if (r) {
892             goto fail;
893         }
894 
895         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
896             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
897         }
898         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
899                                     qiov->iov[i].iov_len / s->page_size);
900     }
901 
902     s->dma_map_count += qiov->size;
903 
904     assert(entries <= s->page_size / sizeof(uint64_t));
905     switch (entries) {
906     case 0:
907         abort();
908     case 1:
909         cmd->prp1 = pagelist[0];
910         cmd->prp2 = 0;
911         break;
912     case 2:
913         cmd->prp1 = pagelist[0];
914         cmd->prp2 = pagelist[1];
915         break;
916     default:
917         cmd->prp1 = pagelist[0];
918         cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
919         break;
920     }
921     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
922     for (i = 0; i < entries; ++i) {
923         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
924     }
925     return 0;
926 fail:
927     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
928      * increment s->dma_map_count. This is okay for fixed mapping memory areas
929      * because they are already mapped before calling this function; for
930      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
931      * calling qemu_vfio_dma_reset_temporary when necessary. */
932     return r;
933 }
934 
935 typedef struct {
936     Coroutine *co;
937     int ret;
938     AioContext *ctx;
939 } NVMeCoData;
940 
941 static void nvme_rw_cb_bh(void *opaque)
942 {
943     NVMeCoData *data = opaque;
944     qemu_coroutine_enter(data->co);
945 }
946 
947 static void nvme_rw_cb(void *opaque, int ret)
948 {
949     NVMeCoData *data = opaque;
950     data->ret = ret;
951     if (!data->co) {
952         /* The rw coroutine hasn't yielded, don't try to enter. */
953         return;
954     }
955     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
956 }
957 
958 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
959                                             uint64_t offset, uint64_t bytes,
960                                             QEMUIOVector *qiov,
961                                             bool is_write,
962                                             int flags)
963 {
964     int r;
965     BDRVNVMeState *s = bs->opaque;
966     NVMeQueuePair *ioq = s->queues[1];
967     NVMeRequest *req;
968 
969     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
970                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
971     NvmeCmd cmd = {
972         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
973         .nsid = cpu_to_le32(s->nsid),
974         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
975         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
976         .cdw12 = cpu_to_le32(cdw12),
977     };
978     NVMeCoData data = {
979         .ctx = bdrv_get_aio_context(bs),
980         .ret = -EINPROGRESS,
981     };
982 
983     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
984     assert(s->nr_queues > 1);
985     req = nvme_get_free_req(ioq);
986     assert(req);
987 
988     qemu_co_mutex_lock(&s->dma_map_lock);
989     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
990     qemu_co_mutex_unlock(&s->dma_map_lock);
991     if (r) {
992         req->busy = false;
993         return r;
994     }
995     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
996 
997     data.co = qemu_coroutine_self();
998     while (data.ret == -EINPROGRESS) {
999         qemu_coroutine_yield();
1000     }
1001 
1002     qemu_co_mutex_lock(&s->dma_map_lock);
1003     r = nvme_cmd_unmap_qiov(bs, qiov);
1004     qemu_co_mutex_unlock(&s->dma_map_lock);
1005     if (r) {
1006         return r;
1007     }
1008 
1009     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1010     return data.ret;
1011 }
1012 
1013 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1014                                      const QEMUIOVector *qiov)
1015 {
1016     int i;
1017     BDRVNVMeState *s = bs->opaque;
1018 
1019     for (i = 0; i < qiov->niov; ++i) {
1020         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1021             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1022             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1023                                       qiov->iov[i].iov_len, s->page_size);
1024             return false;
1025         }
1026     }
1027     return true;
1028 }
1029 
1030 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1031                        QEMUIOVector *qiov, bool is_write, int flags)
1032 {
1033     BDRVNVMeState *s = bs->opaque;
1034     int r;
1035     uint8_t *buf = NULL;
1036     QEMUIOVector local_qiov;
1037 
1038     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1039     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1040     assert(bytes <= s->max_transfer);
1041     if (nvme_qiov_aligned(bs, qiov)) {
1042         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1043     }
1044     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1045     buf = qemu_try_blockalign(bs, bytes);
1046 
1047     if (!buf) {
1048         return -ENOMEM;
1049     }
1050     qemu_iovec_init(&local_qiov, 1);
1051     if (is_write) {
1052         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1053     }
1054     qemu_iovec_add(&local_qiov, buf, bytes);
1055     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1056     qemu_iovec_destroy(&local_qiov);
1057     if (!r && !is_write) {
1058         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1059     }
1060     qemu_vfree(buf);
1061     return r;
1062 }
1063 
1064 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1065                                        uint64_t offset, uint64_t bytes,
1066                                        QEMUIOVector *qiov, int flags)
1067 {
1068     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1069 }
1070 
1071 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1072                                         uint64_t offset, uint64_t bytes,
1073                                         QEMUIOVector *qiov, int flags)
1074 {
1075     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1076 }
1077 
1078 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1079 {
1080     BDRVNVMeState *s = bs->opaque;
1081     NVMeQueuePair *ioq = s->queues[1];
1082     NVMeRequest *req;
1083     NvmeCmd cmd = {
1084         .opcode = NVME_CMD_FLUSH,
1085         .nsid = cpu_to_le32(s->nsid),
1086     };
1087     NVMeCoData data = {
1088         .ctx = bdrv_get_aio_context(bs),
1089         .ret = -EINPROGRESS,
1090     };
1091 
1092     assert(s->nr_queues > 1);
1093     req = nvme_get_free_req(ioq);
1094     assert(req);
1095     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1096 
1097     data.co = qemu_coroutine_self();
1098     if (data.ret == -EINPROGRESS) {
1099         qemu_coroutine_yield();
1100     }
1101 
1102     return data.ret;
1103 }
1104 
1105 
1106 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1107                                               int64_t offset,
1108                                               int bytes,
1109                                               BdrvRequestFlags flags)
1110 {
1111     BDRVNVMeState *s = bs->opaque;
1112     NVMeQueuePair *ioq = s->queues[1];
1113     NVMeRequest *req;
1114 
1115     uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1116 
1117     if (!s->supports_write_zeroes) {
1118         return -ENOTSUP;
1119     }
1120 
1121     NvmeCmd cmd = {
1122         .opcode = NVME_CMD_WRITE_ZEROS,
1123         .nsid = cpu_to_le32(s->nsid),
1124         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1125         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1126     };
1127 
1128     NVMeCoData data = {
1129         .ctx = bdrv_get_aio_context(bs),
1130         .ret = -EINPROGRESS,
1131     };
1132 
1133     if (flags & BDRV_REQ_MAY_UNMAP) {
1134         cdw12 |= (1 << 25);
1135     }
1136 
1137     if (flags & BDRV_REQ_FUA) {
1138         cdw12 |= (1 << 30);
1139     }
1140 
1141     cmd.cdw12 = cpu_to_le32(cdw12);
1142 
1143     trace_nvme_write_zeroes(s, offset, bytes, flags);
1144     assert(s->nr_queues > 1);
1145     req = nvme_get_free_req(ioq);
1146     assert(req);
1147 
1148     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1149 
1150     data.co = qemu_coroutine_self();
1151     while (data.ret == -EINPROGRESS) {
1152         qemu_coroutine_yield();
1153     }
1154 
1155     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1156     return data.ret;
1157 }
1158 
1159 
1160 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1161                                          int64_t offset,
1162                                          int bytes)
1163 {
1164     BDRVNVMeState *s = bs->opaque;
1165     NVMeQueuePair *ioq = s->queues[1];
1166     NVMeRequest *req;
1167     NvmeDsmRange *buf;
1168     QEMUIOVector local_qiov;
1169     int ret;
1170 
1171     NvmeCmd cmd = {
1172         .opcode = NVME_CMD_DSM,
1173         .nsid = cpu_to_le32(s->nsid),
1174         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1175         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1176     };
1177 
1178     NVMeCoData data = {
1179         .ctx = bdrv_get_aio_context(bs),
1180         .ret = -EINPROGRESS,
1181     };
1182 
1183     if (!s->supports_discard) {
1184         return -ENOTSUP;
1185     }
1186 
1187     assert(s->nr_queues > 1);
1188 
1189     buf = qemu_try_blockalign0(bs, s->page_size);
1190     if (!buf) {
1191         return -ENOMEM;
1192     }
1193 
1194     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1195     buf->slba = cpu_to_le64(offset >> s->blkshift);
1196     buf->cattr = 0;
1197 
1198     qemu_iovec_init(&local_qiov, 1);
1199     qemu_iovec_add(&local_qiov, buf, 4096);
1200 
1201     req = nvme_get_free_req(ioq);
1202     assert(req);
1203 
1204     qemu_co_mutex_lock(&s->dma_map_lock);
1205     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1206     qemu_co_mutex_unlock(&s->dma_map_lock);
1207 
1208     if (ret) {
1209         req->busy = false;
1210         goto out;
1211     }
1212 
1213     trace_nvme_dsm(s, offset, bytes);
1214 
1215     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1216 
1217     data.co = qemu_coroutine_self();
1218     while (data.ret == -EINPROGRESS) {
1219         qemu_coroutine_yield();
1220     }
1221 
1222     qemu_co_mutex_lock(&s->dma_map_lock);
1223     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1224     qemu_co_mutex_unlock(&s->dma_map_lock);
1225 
1226     if (ret) {
1227         goto out;
1228     }
1229 
1230     ret = data.ret;
1231     trace_nvme_dsm_done(s, offset, bytes, ret);
1232 out:
1233     qemu_iovec_destroy(&local_qiov);
1234     qemu_vfree(buf);
1235     return ret;
1236 
1237 }
1238 
1239 
1240 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1241                                BlockReopenQueue *queue, Error **errp)
1242 {
1243     return 0;
1244 }
1245 
1246 static void nvme_refresh_filename(BlockDriverState *bs)
1247 {
1248     BDRVNVMeState *s = bs->opaque;
1249 
1250     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1251              s->device, s->nsid);
1252 }
1253 
1254 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1255 {
1256     BDRVNVMeState *s = bs->opaque;
1257 
1258     bs->bl.opt_mem_alignment = s->page_size;
1259     bs->bl.request_alignment = s->page_size;
1260     bs->bl.max_transfer = s->max_transfer;
1261 }
1262 
1263 static void nvme_detach_aio_context(BlockDriverState *bs)
1264 {
1265     BDRVNVMeState *s = bs->opaque;
1266 
1267     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1268                            false, NULL, NULL);
1269 }
1270 
1271 static void nvme_attach_aio_context(BlockDriverState *bs,
1272                                     AioContext *new_context)
1273 {
1274     BDRVNVMeState *s = bs->opaque;
1275 
1276     s->aio_context = new_context;
1277     aio_set_event_notifier(new_context, &s->irq_notifier,
1278                            false, nvme_handle_event, nvme_poll_cb);
1279 }
1280 
1281 static void nvme_aio_plug(BlockDriverState *bs)
1282 {
1283     BDRVNVMeState *s = bs->opaque;
1284     assert(!s->plugged);
1285     s->plugged = true;
1286 }
1287 
1288 static void nvme_aio_unplug(BlockDriverState *bs)
1289 {
1290     int i;
1291     BDRVNVMeState *s = bs->opaque;
1292     assert(s->plugged);
1293     s->plugged = false;
1294     for (i = 1; i < s->nr_queues; i++) {
1295         NVMeQueuePair *q = s->queues[i];
1296         qemu_mutex_lock(&q->lock);
1297         nvme_kick(s, q);
1298         nvme_process_completion(s, q);
1299         qemu_mutex_unlock(&q->lock);
1300     }
1301 }
1302 
1303 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1304 {
1305     int ret;
1306     BDRVNVMeState *s = bs->opaque;
1307 
1308     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1309     if (ret) {
1310         /* FIXME: we may run out of IOVA addresses after repeated
1311          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1312          * doesn't reclaim addresses for fixed mappings. */
1313         error_report("nvme_register_buf failed: %s", strerror(-ret));
1314     }
1315 }
1316 
1317 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1318 {
1319     BDRVNVMeState *s = bs->opaque;
1320 
1321     qemu_vfio_dma_unmap(s->vfio, host);
1322 }
1323 
1324 static const char *const nvme_strong_runtime_opts[] = {
1325     NVME_BLOCK_OPT_DEVICE,
1326     NVME_BLOCK_OPT_NAMESPACE,
1327 
1328     NULL
1329 };
1330 
1331 static BlockDriver bdrv_nvme = {
1332     .format_name              = "nvme",
1333     .protocol_name            = "nvme",
1334     .instance_size            = sizeof(BDRVNVMeState),
1335 
1336     .bdrv_parse_filename      = nvme_parse_filename,
1337     .bdrv_file_open           = nvme_file_open,
1338     .bdrv_close               = nvme_close,
1339     .bdrv_getlength           = nvme_getlength,
1340     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1341 
1342     .bdrv_co_preadv           = nvme_co_preadv,
1343     .bdrv_co_pwritev          = nvme_co_pwritev,
1344 
1345     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1346     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1347 
1348     .bdrv_co_flush_to_disk    = nvme_co_flush,
1349     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1350 
1351     .bdrv_refresh_filename    = nvme_refresh_filename,
1352     .bdrv_refresh_limits      = nvme_refresh_limits,
1353     .strong_runtime_opts      = nvme_strong_runtime_opts,
1354 
1355     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1356     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1357 
1358     .bdrv_io_plug             = nvme_aio_plug,
1359     .bdrv_io_unplug           = nvme_aio_unplug,
1360 
1361     .bdrv_register_buf        = nvme_register_buf,
1362     .bdrv_unregister_buf      = nvme_unregister_buf,
1363 };
1364 
1365 static void bdrv_nvme_init(void)
1366 {
1367     bdrv_register(&bdrv_nvme);
1368 }
1369 
1370 block_init(bdrv_nvme_init);
1371