1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/cutils.h" 23 #include "qemu/option.h" 24 #include "qemu/vfio-helpers.h" 25 #include "block/block_int.h" 26 #include "trace.h" 27 28 #include "block/nvme.h" 29 30 #define NVME_SQ_ENTRY_BYTES 64 31 #define NVME_CQ_ENTRY_BYTES 16 32 #define NVME_QUEUE_SIZE 128 33 #define NVME_BAR_SIZE 8192 34 35 typedef struct { 36 int32_t head, tail; 37 uint8_t *queue; 38 uint64_t iova; 39 /* Hardware MMIO register */ 40 volatile uint32_t *doorbell; 41 } NVMeQueue; 42 43 typedef struct { 44 BlockCompletionFunc *cb; 45 void *opaque; 46 int cid; 47 void *prp_list_page; 48 uint64_t prp_list_iova; 49 bool busy; 50 } NVMeRequest; 51 52 typedef struct { 53 CoQueue free_req_queue; 54 QemuMutex lock; 55 56 /* Fields protected by BQL */ 57 int index; 58 uint8_t *prp_list_pages; 59 60 /* Fields protected by @lock */ 61 NVMeQueue sq, cq; 62 int cq_phase; 63 NVMeRequest reqs[NVME_QUEUE_SIZE]; 64 bool busy; 65 int need_kick; 66 int inflight; 67 } NVMeQueuePair; 68 69 /* Memory mapped registers */ 70 typedef volatile struct { 71 uint64_t cap; 72 uint32_t vs; 73 uint32_t intms; 74 uint32_t intmc; 75 uint32_t cc; 76 uint32_t reserved0; 77 uint32_t csts; 78 uint32_t nssr; 79 uint32_t aqa; 80 uint64_t asq; 81 uint64_t acq; 82 uint32_t cmbloc; 83 uint32_t cmbsz; 84 uint8_t reserved1[0xec0]; 85 uint8_t cmd_set_specfic[0x100]; 86 uint32_t doorbells[]; 87 } NVMeRegs; 88 89 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); 90 91 typedef struct { 92 AioContext *aio_context; 93 QEMUVFIOState *vfio; 94 NVMeRegs *regs; 95 /* The submission/completion queue pairs. 96 * [0]: admin queue. 97 * [1..]: io queues. 98 */ 99 NVMeQueuePair **queues; 100 int nr_queues; 101 size_t page_size; 102 /* How many uint32_t elements does each doorbell entry take. */ 103 size_t doorbell_scale; 104 bool write_cache_supported; 105 EventNotifier irq_notifier; 106 107 uint64_t nsze; /* Namespace size reported by identify command */ 108 int nsid; /* The namespace id to read/write data. */ 109 int blkshift; 110 111 uint64_t max_transfer; 112 bool plugged; 113 114 CoMutex dma_map_lock; 115 CoQueue dma_flush_queue; 116 117 /* Total size of mapped qiov, accessed under dma_map_lock */ 118 int dma_map_count; 119 120 /* PCI address (required for nvme_refresh_filename()) */ 121 char *device; 122 } BDRVNVMeState; 123 124 #define NVME_BLOCK_OPT_DEVICE "device" 125 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 126 127 static QemuOptsList runtime_opts = { 128 .name = "nvme", 129 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 130 .desc = { 131 { 132 .name = NVME_BLOCK_OPT_DEVICE, 133 .type = QEMU_OPT_STRING, 134 .help = "NVMe PCI device address", 135 }, 136 { 137 .name = NVME_BLOCK_OPT_NAMESPACE, 138 .type = QEMU_OPT_NUMBER, 139 .help = "NVMe namespace", 140 }, 141 { /* end of list */ } 142 }, 143 }; 144 145 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, 146 int nentries, int entry_bytes, Error **errp) 147 { 148 BDRVNVMeState *s = bs->opaque; 149 size_t bytes; 150 int r; 151 152 bytes = ROUND_UP(nentries * entry_bytes, s->page_size); 153 q->head = q->tail = 0; 154 q->queue = qemu_try_blockalign0(bs, bytes); 155 156 if (!q->queue) { 157 error_setg(errp, "Cannot allocate queue"); 158 return; 159 } 160 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 161 if (r) { 162 error_setg(errp, "Cannot map queue"); 163 } 164 } 165 166 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) 167 { 168 qemu_vfree(q->prp_list_pages); 169 qemu_vfree(q->sq.queue); 170 qemu_vfree(q->cq.queue); 171 qemu_mutex_destroy(&q->lock); 172 g_free(q); 173 } 174 175 static void nvme_free_req_queue_cb(void *opaque) 176 { 177 NVMeQueuePair *q = opaque; 178 179 qemu_mutex_lock(&q->lock); 180 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 181 /* Retry all pending requests */ 182 } 183 qemu_mutex_unlock(&q->lock); 184 } 185 186 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, 187 int idx, int size, 188 Error **errp) 189 { 190 int i, r; 191 BDRVNVMeState *s = bs->opaque; 192 Error *local_err = NULL; 193 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); 194 uint64_t prp_list_iova; 195 196 qemu_mutex_init(&q->lock); 197 q->index = idx; 198 qemu_co_queue_init(&q->free_req_queue); 199 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); 200 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, 201 s->page_size * NVME_QUEUE_SIZE, 202 false, &prp_list_iova); 203 if (r) { 204 goto fail; 205 } 206 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 207 NVMeRequest *req = &q->reqs[i]; 208 req->cid = i + 1; 209 req->prp_list_page = q->prp_list_pages + i * s->page_size; 210 req->prp_list_iova = prp_list_iova + i * s->page_size; 211 } 212 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); 213 if (local_err) { 214 error_propagate(errp, local_err); 215 goto fail; 216 } 217 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; 218 219 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); 220 if (local_err) { 221 error_propagate(errp, local_err); 222 goto fail; 223 } 224 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale]; 225 226 return q; 227 fail: 228 nvme_free_queue_pair(bs, q); 229 return NULL; 230 } 231 232 /* With q->lock */ 233 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) 234 { 235 if (s->plugged || !q->need_kick) { 236 return; 237 } 238 trace_nvme_kick(s, q->index); 239 assert(!(q->sq.tail & 0xFF00)); 240 /* Fence the write to submission queue entry before notifying the device. */ 241 smp_wmb(); 242 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 243 q->inflight += q->need_kick; 244 q->need_kick = 0; 245 } 246 247 /* Find a free request element if any, otherwise: 248 * a) if in coroutine context, try to wait for one to become available; 249 * b) if not in coroutine, return NULL; 250 */ 251 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 252 { 253 int i; 254 NVMeRequest *req = NULL; 255 256 qemu_mutex_lock(&q->lock); 257 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { 258 /* We have to leave one slot empty as that is the full queue case (head 259 * == tail + 1). */ 260 if (qemu_in_coroutine()) { 261 trace_nvme_free_req_queue_wait(q); 262 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 263 } else { 264 qemu_mutex_unlock(&q->lock); 265 return NULL; 266 } 267 } 268 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 269 if (!q->reqs[i].busy) { 270 q->reqs[i].busy = true; 271 req = &q->reqs[i]; 272 break; 273 } 274 } 275 /* We have checked inflight and need_kick while holding q->lock, so one 276 * free req must be available. */ 277 assert(req); 278 qemu_mutex_unlock(&q->lock); 279 return req; 280 } 281 282 static inline int nvme_translate_error(const NvmeCqe *c) 283 { 284 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 285 if (status) { 286 trace_nvme_error(le32_to_cpu(c->result), 287 le16_to_cpu(c->sq_head), 288 le16_to_cpu(c->sq_id), 289 le16_to_cpu(c->cid), 290 le16_to_cpu(status)); 291 } 292 switch (status) { 293 case 0: 294 return 0; 295 case 1: 296 return -ENOSYS; 297 case 2: 298 return -EINVAL; 299 default: 300 return -EIO; 301 } 302 } 303 304 /* With q->lock */ 305 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) 306 { 307 bool progress = false; 308 NVMeRequest *preq; 309 NVMeRequest req; 310 NvmeCqe *c; 311 312 trace_nvme_process_completion(s, q->index, q->inflight); 313 if (q->busy || s->plugged) { 314 trace_nvme_process_completion_queue_busy(s, q->index); 315 return false; 316 } 317 q->busy = true; 318 assert(q->inflight >= 0); 319 while (q->inflight) { 320 int16_t cid; 321 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 322 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 323 break; 324 } 325 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 326 if (!q->cq.head) { 327 q->cq_phase = !q->cq_phase; 328 } 329 cid = le16_to_cpu(c->cid); 330 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 331 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", 332 cid); 333 continue; 334 } 335 assert(cid <= NVME_QUEUE_SIZE); 336 trace_nvme_complete_command(s, q->index, cid); 337 preq = &q->reqs[cid - 1]; 338 req = *preq; 339 assert(req.cid == cid); 340 assert(req.cb); 341 preq->busy = false; 342 preq->cb = preq->opaque = NULL; 343 qemu_mutex_unlock(&q->lock); 344 req.cb(req.opaque, nvme_translate_error(c)); 345 qemu_mutex_lock(&q->lock); 346 q->inflight--; 347 progress = true; 348 } 349 if (progress) { 350 /* Notify the device so it can post more completions. */ 351 smp_mb_release(); 352 *q->cq.doorbell = cpu_to_le32(q->cq.head); 353 if (!qemu_co_queue_empty(&q->free_req_queue)) { 354 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); 355 } 356 } 357 q->busy = false; 358 return progress; 359 } 360 361 static void nvme_trace_command(const NvmeCmd *cmd) 362 { 363 int i; 364 365 for (i = 0; i < 8; ++i) { 366 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 367 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 368 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 369 } 370 } 371 372 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, 373 NVMeRequest *req, 374 NvmeCmd *cmd, BlockCompletionFunc cb, 375 void *opaque) 376 { 377 assert(!req->cb); 378 req->cb = cb; 379 req->opaque = opaque; 380 cmd->cid = cpu_to_le32(req->cid); 381 382 trace_nvme_submit_command(s, q->index, req->cid); 383 nvme_trace_command(cmd); 384 qemu_mutex_lock(&q->lock); 385 memcpy((uint8_t *)q->sq.queue + 386 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 387 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 388 q->need_kick++; 389 nvme_kick(s, q); 390 nvme_process_completion(s, q); 391 qemu_mutex_unlock(&q->lock); 392 } 393 394 static void nvme_cmd_sync_cb(void *opaque, int ret) 395 { 396 int *pret = opaque; 397 *pret = ret; 398 aio_wait_kick(); 399 } 400 401 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, 402 NvmeCmd *cmd) 403 { 404 NVMeRequest *req; 405 BDRVNVMeState *s = bs->opaque; 406 int ret = -EINPROGRESS; 407 req = nvme_get_free_req(q); 408 if (!req) { 409 return -EBUSY; 410 } 411 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); 412 413 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); 414 return ret; 415 } 416 417 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 418 { 419 BDRVNVMeState *s = bs->opaque; 420 NvmeIdCtrl *idctrl; 421 NvmeIdNs *idns; 422 NvmeLBAF *lbaf; 423 uint8_t *resp; 424 int r; 425 uint64_t iova; 426 NvmeCmd cmd = { 427 .opcode = NVME_ADM_CMD_IDENTIFY, 428 .cdw10 = cpu_to_le32(0x1), 429 }; 430 431 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); 432 if (!resp) { 433 error_setg(errp, "Cannot allocate buffer for identify response"); 434 goto out; 435 } 436 idctrl = (NvmeIdCtrl *)resp; 437 idns = (NvmeIdNs *)resp; 438 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); 439 if (r) { 440 error_setg(errp, "Cannot map buffer for DMA"); 441 goto out; 442 } 443 cmd.prp1 = cpu_to_le64(iova); 444 445 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 446 error_setg(errp, "Failed to identify controller"); 447 goto out; 448 } 449 450 if (le32_to_cpu(idctrl->nn) < namespace) { 451 error_setg(errp, "Invalid namespace"); 452 goto out; 453 } 454 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; 455 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; 456 /* For now the page list buffer per command is one page, to hold at most 457 * s->page_size / sizeof(uint64_t) entries. */ 458 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 459 s->page_size / sizeof(uint64_t) * s->page_size); 460 461 memset(resp, 0, 4096); 462 463 cmd.cdw10 = 0; 464 cmd.nsid = cpu_to_le32(namespace); 465 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 466 error_setg(errp, "Failed to identify namespace"); 467 goto out; 468 } 469 470 s->nsze = le64_to_cpu(idns->nsze); 471 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)]; 472 473 if (lbaf->ms) { 474 error_setg(errp, "Namespaces with metadata are not yet supported"); 475 goto out; 476 } 477 478 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || 479 (1 << lbaf->ds) > s->page_size) 480 { 481 error_setg(errp, "Namespace has unsupported block size (2^%d)", 482 lbaf->ds); 483 goto out; 484 } 485 486 s->blkshift = lbaf->ds; 487 out: 488 qemu_vfio_dma_unmap(s->vfio, resp); 489 qemu_vfree(resp); 490 } 491 492 static bool nvme_poll_queues(BDRVNVMeState *s) 493 { 494 bool progress = false; 495 int i; 496 497 for (i = 0; i < s->nr_queues; i++) { 498 NVMeQueuePair *q = s->queues[i]; 499 qemu_mutex_lock(&q->lock); 500 while (nvme_process_completion(s, q)) { 501 /* Keep polling */ 502 progress = true; 503 } 504 qemu_mutex_unlock(&q->lock); 505 } 506 return progress; 507 } 508 509 static void nvme_handle_event(EventNotifier *n) 510 { 511 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); 512 513 trace_nvme_handle_event(s); 514 event_notifier_test_and_clear(n); 515 nvme_poll_queues(s); 516 } 517 518 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 519 { 520 BDRVNVMeState *s = bs->opaque; 521 int n = s->nr_queues; 522 NVMeQueuePair *q; 523 NvmeCmd cmd; 524 int queue_size = NVME_QUEUE_SIZE; 525 526 q = nvme_create_queue_pair(bs, n, queue_size, errp); 527 if (!q) { 528 return false; 529 } 530 cmd = (NvmeCmd) { 531 .opcode = NVME_ADM_CMD_CREATE_CQ, 532 .prp1 = cpu_to_le64(q->cq.iova), 533 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 534 .cdw11 = cpu_to_le32(0x3), 535 }; 536 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 537 error_setg(errp, "Failed to create io queue [%d]", n); 538 nvme_free_queue_pair(bs, q); 539 return false; 540 } 541 cmd = (NvmeCmd) { 542 .opcode = NVME_ADM_CMD_CREATE_SQ, 543 .prp1 = cpu_to_le64(q->sq.iova), 544 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 545 .cdw11 = cpu_to_le32(0x1 | (n << 16)), 546 }; 547 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 548 error_setg(errp, "Failed to create io queue [%d]", n); 549 nvme_free_queue_pair(bs, q); 550 return false; 551 } 552 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 553 s->queues[n] = q; 554 s->nr_queues++; 555 return true; 556 } 557 558 static bool nvme_poll_cb(void *opaque) 559 { 560 EventNotifier *e = opaque; 561 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); 562 bool progress = false; 563 564 trace_nvme_poll_cb(s); 565 progress = nvme_poll_queues(s); 566 return progress; 567 } 568 569 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 570 Error **errp) 571 { 572 BDRVNVMeState *s = bs->opaque; 573 int ret; 574 uint64_t cap; 575 uint64_t timeout_ms; 576 uint64_t deadline, now; 577 Error *local_err = NULL; 578 579 qemu_co_mutex_init(&s->dma_map_lock); 580 qemu_co_queue_init(&s->dma_flush_queue); 581 s->device = g_strdup(device); 582 s->nsid = namespace; 583 s->aio_context = bdrv_get_aio_context(bs); 584 ret = event_notifier_init(&s->irq_notifier, 0); 585 if (ret) { 586 error_setg(errp, "Failed to init event notifier"); 587 return ret; 588 } 589 590 s->vfio = qemu_vfio_open_pci(device, errp); 591 if (!s->vfio) { 592 ret = -EINVAL; 593 goto out; 594 } 595 596 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); 597 if (!s->regs) { 598 ret = -EINVAL; 599 goto out; 600 } 601 602 /* Perform initialize sequence as described in NVMe spec "7.6.1 603 * Initialization". */ 604 605 cap = le64_to_cpu(s->regs->cap); 606 if (!(cap & (1ULL << 37))) { 607 error_setg(errp, "Device doesn't support NVMe command set"); 608 ret = -EINVAL; 609 goto out; 610 } 611 612 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); 613 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); 614 bs->bl.opt_mem_alignment = s->page_size; 615 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); 616 617 /* Reset device to get a clean state. */ 618 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); 619 /* Wait for CSTS.RDY = 0. */ 620 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; 621 while (le32_to_cpu(s->regs->csts) & 0x1) { 622 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 623 error_setg(errp, "Timeout while waiting for device to reset (%" 624 PRId64 " ms)", 625 timeout_ms); 626 ret = -ETIMEDOUT; 627 goto out; 628 } 629 } 630 631 /* Set up admin queue. */ 632 s->queues = g_new(NVMeQueuePair *, 1); 633 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); 634 if (!s->queues[0]) { 635 ret = -EINVAL; 636 goto out; 637 } 638 s->nr_queues = 1; 639 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); 640 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); 641 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); 642 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); 643 644 /* After setting up all control registers we can enable device now. */ 645 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | 646 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 647 0x1); 648 /* Wait for CSTS.RDY = 1. */ 649 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 650 deadline = now + timeout_ms * 1000000; 651 while (!(le32_to_cpu(s->regs->csts) & 0x1)) { 652 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 653 error_setg(errp, "Timeout while waiting for device to start (%" 654 PRId64 " ms)", 655 timeout_ms); 656 ret = -ETIMEDOUT; 657 goto out; 658 } 659 } 660 661 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, 662 VFIO_PCI_MSIX_IRQ_INDEX, errp); 663 if (ret) { 664 goto out; 665 } 666 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 667 false, nvme_handle_event, nvme_poll_cb); 668 669 nvme_identify(bs, namespace, &local_err); 670 if (local_err) { 671 error_propagate(errp, local_err); 672 ret = -EIO; 673 goto out; 674 } 675 676 /* Set up command queues. */ 677 if (!nvme_add_io_queue(bs, errp)) { 678 ret = -EIO; 679 } 680 out: 681 /* Cleaning up is done in nvme_file_open() upon error. */ 682 return ret; 683 } 684 685 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 686 * 687 * nvme://0000:44:00.0/1 688 * 689 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 690 * is the PCI address, and the last part is the namespace number starting from 691 * 1 according to the NVMe spec. */ 692 static void nvme_parse_filename(const char *filename, QDict *options, 693 Error **errp) 694 { 695 int pref = strlen("nvme://"); 696 697 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 698 const char *tmp = filename + pref; 699 char *device; 700 const char *namespace; 701 unsigned long ns; 702 const char *slash = strchr(tmp, '/'); 703 if (!slash) { 704 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 705 return; 706 } 707 device = g_strndup(tmp, slash - tmp); 708 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 709 g_free(device); 710 namespace = slash + 1; 711 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 712 error_setg(errp, "Invalid namespace '%s', positive number expected", 713 namespace); 714 return; 715 } 716 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 717 *namespace ? namespace : "1"); 718 } 719 } 720 721 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 722 Error **errp) 723 { 724 int ret; 725 BDRVNVMeState *s = bs->opaque; 726 NvmeCmd cmd = { 727 .opcode = NVME_ADM_CMD_SET_FEATURES, 728 .nsid = cpu_to_le32(s->nsid), 729 .cdw10 = cpu_to_le32(0x06), 730 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 731 }; 732 733 ret = nvme_cmd_sync(bs, s->queues[0], &cmd); 734 if (ret) { 735 error_setg(errp, "Failed to configure NVMe write cache"); 736 } 737 return ret; 738 } 739 740 static void nvme_close(BlockDriverState *bs) 741 { 742 int i; 743 BDRVNVMeState *s = bs->opaque; 744 745 for (i = 0; i < s->nr_queues; ++i) { 746 nvme_free_queue_pair(bs, s->queues[i]); 747 } 748 g_free(s->queues); 749 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 750 false, NULL, NULL); 751 event_notifier_cleanup(&s->irq_notifier); 752 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); 753 qemu_vfio_close(s->vfio); 754 755 g_free(s->device); 756 } 757 758 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 759 Error **errp) 760 { 761 const char *device; 762 QemuOpts *opts; 763 int namespace; 764 int ret; 765 BDRVNVMeState *s = bs->opaque; 766 767 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 768 qemu_opts_absorb_qdict(opts, options, &error_abort); 769 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 770 if (!device) { 771 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 772 qemu_opts_del(opts); 773 return -EINVAL; 774 } 775 776 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 777 ret = nvme_init(bs, device, namespace, errp); 778 qemu_opts_del(opts); 779 if (ret) { 780 goto fail; 781 } 782 if (flags & BDRV_O_NOCACHE) { 783 if (!s->write_cache_supported) { 784 error_setg(errp, 785 "NVMe controller doesn't support write cache configuration"); 786 ret = -EINVAL; 787 } else { 788 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 789 errp); 790 } 791 if (ret) { 792 goto fail; 793 } 794 } 795 bs->supported_write_flags = BDRV_REQ_FUA; 796 return 0; 797 fail: 798 nvme_close(bs); 799 return ret; 800 } 801 802 static int64_t nvme_getlength(BlockDriverState *bs) 803 { 804 BDRVNVMeState *s = bs->opaque; 805 return s->nsze << s->blkshift; 806 } 807 808 static uint32_t nvme_get_blocksize(BlockDriverState *bs) 809 { 810 BDRVNVMeState *s = bs->opaque; 811 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); 812 return UINT32_C(1) << s->blkshift; 813 } 814 815 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) 816 { 817 uint32_t blocksize = nvme_get_blocksize(bs); 818 bsz->phys = blocksize; 819 bsz->log = blocksize; 820 return 0; 821 } 822 823 /* Called with s->dma_map_lock */ 824 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 825 QEMUIOVector *qiov) 826 { 827 int r = 0; 828 BDRVNVMeState *s = bs->opaque; 829 830 s->dma_map_count -= qiov->size; 831 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 832 r = qemu_vfio_dma_reset_temporary(s->vfio); 833 if (!r) { 834 qemu_co_queue_restart_all(&s->dma_flush_queue); 835 } 836 } 837 return r; 838 } 839 840 /* Called with s->dma_map_lock */ 841 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 842 NVMeRequest *req, QEMUIOVector *qiov) 843 { 844 BDRVNVMeState *s = bs->opaque; 845 uint64_t *pagelist = req->prp_list_page; 846 int i, j, r; 847 int entries = 0; 848 849 assert(qiov->size); 850 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 851 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 852 for (i = 0; i < qiov->niov; ++i) { 853 bool retry = true; 854 uint64_t iova; 855 try_map: 856 r = qemu_vfio_dma_map(s->vfio, 857 qiov->iov[i].iov_base, 858 qiov->iov[i].iov_len, 859 true, &iova); 860 if (r == -ENOMEM && retry) { 861 retry = false; 862 trace_nvme_dma_flush_queue_wait(s); 863 if (s->dma_map_count) { 864 trace_nvme_dma_map_flush(s); 865 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 866 } else { 867 r = qemu_vfio_dma_reset_temporary(s->vfio); 868 if (r) { 869 goto fail; 870 } 871 } 872 goto try_map; 873 } 874 if (r) { 875 goto fail; 876 } 877 878 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 879 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 880 } 881 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 882 qiov->iov[i].iov_len / s->page_size); 883 } 884 885 s->dma_map_count += qiov->size; 886 887 assert(entries <= s->page_size / sizeof(uint64_t)); 888 switch (entries) { 889 case 0: 890 abort(); 891 case 1: 892 cmd->prp1 = pagelist[0]; 893 cmd->prp2 = 0; 894 break; 895 case 2: 896 cmd->prp1 = pagelist[0]; 897 cmd->prp2 = pagelist[1]; 898 break; 899 default: 900 cmd->prp1 = pagelist[0]; 901 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 902 break; 903 } 904 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 905 for (i = 0; i < entries; ++i) { 906 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 907 } 908 return 0; 909 fail: 910 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 911 * increment s->dma_map_count. This is okay for fixed mapping memory areas 912 * because they are already mapped before calling this function; for 913 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 914 * calling qemu_vfio_dma_reset_temporary when necessary. */ 915 return r; 916 } 917 918 typedef struct { 919 Coroutine *co; 920 int ret; 921 AioContext *ctx; 922 } NVMeCoData; 923 924 static void nvme_rw_cb_bh(void *opaque) 925 { 926 NVMeCoData *data = opaque; 927 qemu_coroutine_enter(data->co); 928 } 929 930 static void nvme_rw_cb(void *opaque, int ret) 931 { 932 NVMeCoData *data = opaque; 933 data->ret = ret; 934 if (!data->co) { 935 /* The rw coroutine hasn't yielded, don't try to enter. */ 936 return; 937 } 938 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); 939 } 940 941 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 942 uint64_t offset, uint64_t bytes, 943 QEMUIOVector *qiov, 944 bool is_write, 945 int flags) 946 { 947 int r; 948 BDRVNVMeState *s = bs->opaque; 949 NVMeQueuePair *ioq = s->queues[1]; 950 NVMeRequest *req; 951 952 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | 953 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 954 NvmeCmd cmd = { 955 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 956 .nsid = cpu_to_le32(s->nsid), 957 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 958 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 959 .cdw12 = cpu_to_le32(cdw12), 960 }; 961 NVMeCoData data = { 962 .ctx = bdrv_get_aio_context(bs), 963 .ret = -EINPROGRESS, 964 }; 965 966 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 967 assert(s->nr_queues > 1); 968 req = nvme_get_free_req(ioq); 969 assert(req); 970 971 qemu_co_mutex_lock(&s->dma_map_lock); 972 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 973 qemu_co_mutex_unlock(&s->dma_map_lock); 974 if (r) { 975 req->busy = false; 976 return r; 977 } 978 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 979 980 data.co = qemu_coroutine_self(); 981 while (data.ret == -EINPROGRESS) { 982 qemu_coroutine_yield(); 983 } 984 985 qemu_co_mutex_lock(&s->dma_map_lock); 986 r = nvme_cmd_unmap_qiov(bs, qiov); 987 qemu_co_mutex_unlock(&s->dma_map_lock); 988 if (r) { 989 return r; 990 } 991 992 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 993 return data.ret; 994 } 995 996 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 997 const QEMUIOVector *qiov) 998 { 999 int i; 1000 BDRVNVMeState *s = bs->opaque; 1001 1002 for (i = 0; i < qiov->niov; ++i) { 1003 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || 1004 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { 1005 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 1006 qiov->iov[i].iov_len, s->page_size); 1007 return false; 1008 } 1009 } 1010 return true; 1011 } 1012 1013 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 1014 QEMUIOVector *qiov, bool is_write, int flags) 1015 { 1016 BDRVNVMeState *s = bs->opaque; 1017 int r; 1018 uint8_t *buf = NULL; 1019 QEMUIOVector local_qiov; 1020 1021 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 1022 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 1023 assert(bytes <= s->max_transfer); 1024 if (nvme_qiov_aligned(bs, qiov)) { 1025 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 1026 } 1027 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 1028 buf = qemu_try_blockalign(bs, bytes); 1029 1030 if (!buf) { 1031 return -ENOMEM; 1032 } 1033 qemu_iovec_init(&local_qiov, 1); 1034 if (is_write) { 1035 qemu_iovec_to_buf(qiov, 0, buf, bytes); 1036 } 1037 qemu_iovec_add(&local_qiov, buf, bytes); 1038 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1039 qemu_iovec_destroy(&local_qiov); 1040 if (!r && !is_write) { 1041 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1042 } 1043 qemu_vfree(buf); 1044 return r; 1045 } 1046 1047 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1048 uint64_t offset, uint64_t bytes, 1049 QEMUIOVector *qiov, int flags) 1050 { 1051 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1052 } 1053 1054 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1055 uint64_t offset, uint64_t bytes, 1056 QEMUIOVector *qiov, int flags) 1057 { 1058 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1059 } 1060 1061 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1062 { 1063 BDRVNVMeState *s = bs->opaque; 1064 NVMeQueuePair *ioq = s->queues[1]; 1065 NVMeRequest *req; 1066 NvmeCmd cmd = { 1067 .opcode = NVME_CMD_FLUSH, 1068 .nsid = cpu_to_le32(s->nsid), 1069 }; 1070 NVMeCoData data = { 1071 .ctx = bdrv_get_aio_context(bs), 1072 .ret = -EINPROGRESS, 1073 }; 1074 1075 assert(s->nr_queues > 1); 1076 req = nvme_get_free_req(ioq); 1077 assert(req); 1078 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1079 1080 data.co = qemu_coroutine_self(); 1081 if (data.ret == -EINPROGRESS) { 1082 qemu_coroutine_yield(); 1083 } 1084 1085 return data.ret; 1086 } 1087 1088 1089 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1090 BlockReopenQueue *queue, Error **errp) 1091 { 1092 return 0; 1093 } 1094 1095 static void nvme_refresh_filename(BlockDriverState *bs) 1096 { 1097 BDRVNVMeState *s = bs->opaque; 1098 1099 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", 1100 s->device, s->nsid); 1101 } 1102 1103 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1104 { 1105 BDRVNVMeState *s = bs->opaque; 1106 1107 bs->bl.opt_mem_alignment = s->page_size; 1108 bs->bl.request_alignment = s->page_size; 1109 bs->bl.max_transfer = s->max_transfer; 1110 } 1111 1112 static void nvme_detach_aio_context(BlockDriverState *bs) 1113 { 1114 BDRVNVMeState *s = bs->opaque; 1115 1116 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 1117 false, NULL, NULL); 1118 } 1119 1120 static void nvme_attach_aio_context(BlockDriverState *bs, 1121 AioContext *new_context) 1122 { 1123 BDRVNVMeState *s = bs->opaque; 1124 1125 s->aio_context = new_context; 1126 aio_set_event_notifier(new_context, &s->irq_notifier, 1127 false, nvme_handle_event, nvme_poll_cb); 1128 } 1129 1130 static void nvme_aio_plug(BlockDriverState *bs) 1131 { 1132 BDRVNVMeState *s = bs->opaque; 1133 assert(!s->plugged); 1134 s->plugged = true; 1135 } 1136 1137 static void nvme_aio_unplug(BlockDriverState *bs) 1138 { 1139 int i; 1140 BDRVNVMeState *s = bs->opaque; 1141 assert(s->plugged); 1142 s->plugged = false; 1143 for (i = 1; i < s->nr_queues; i++) { 1144 NVMeQueuePair *q = s->queues[i]; 1145 qemu_mutex_lock(&q->lock); 1146 nvme_kick(s, q); 1147 nvme_process_completion(s, q); 1148 qemu_mutex_unlock(&q->lock); 1149 } 1150 } 1151 1152 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1153 { 1154 int ret; 1155 BDRVNVMeState *s = bs->opaque; 1156 1157 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1158 if (ret) { 1159 /* FIXME: we may run out of IOVA addresses after repeated 1160 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1161 * doesn't reclaim addresses for fixed mappings. */ 1162 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1163 } 1164 } 1165 1166 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1167 { 1168 BDRVNVMeState *s = bs->opaque; 1169 1170 qemu_vfio_dma_unmap(s->vfio, host); 1171 } 1172 1173 static const char *const nvme_strong_runtime_opts[] = { 1174 NVME_BLOCK_OPT_DEVICE, 1175 NVME_BLOCK_OPT_NAMESPACE, 1176 1177 NULL 1178 }; 1179 1180 static BlockDriver bdrv_nvme = { 1181 .format_name = "nvme", 1182 .protocol_name = "nvme", 1183 .instance_size = sizeof(BDRVNVMeState), 1184 1185 .bdrv_parse_filename = nvme_parse_filename, 1186 .bdrv_file_open = nvme_file_open, 1187 .bdrv_close = nvme_close, 1188 .bdrv_getlength = nvme_getlength, 1189 .bdrv_probe_blocksizes = nvme_probe_blocksizes, 1190 1191 .bdrv_co_preadv = nvme_co_preadv, 1192 .bdrv_co_pwritev = nvme_co_pwritev, 1193 .bdrv_co_flush_to_disk = nvme_co_flush, 1194 .bdrv_reopen_prepare = nvme_reopen_prepare, 1195 1196 .bdrv_refresh_filename = nvme_refresh_filename, 1197 .bdrv_refresh_limits = nvme_refresh_limits, 1198 .strong_runtime_opts = nvme_strong_runtime_opts, 1199 1200 .bdrv_detach_aio_context = nvme_detach_aio_context, 1201 .bdrv_attach_aio_context = nvme_attach_aio_context, 1202 1203 .bdrv_io_plug = nvme_aio_plug, 1204 .bdrv_io_unplug = nvme_aio_unplug, 1205 1206 .bdrv_register_buf = nvme_register_buf, 1207 .bdrv_unregister_buf = nvme_unregister_buf, 1208 }; 1209 1210 static void bdrv_nvme_init(void) 1211 { 1212 bdrv_register(&bdrv_nvme); 1213 } 1214 1215 block_init(bdrv_nvme_init); 1216