xref: /openbmc/qemu/block/nvme.c (revision 10df8ff1)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/option.h"
22 #include "qemu/vfio-helpers.h"
23 #include "block/block_int.h"
24 #include "trace.h"
25 
26 #include "block/nvme.h"
27 
28 #define NVME_SQ_ENTRY_BYTES 64
29 #define NVME_CQ_ENTRY_BYTES 16
30 #define NVME_QUEUE_SIZE 128
31 #define NVME_BAR_SIZE 8192
32 
33 typedef struct {
34     int32_t  head, tail;
35     uint8_t  *queue;
36     uint64_t iova;
37     /* Hardware MMIO register */
38     volatile uint32_t *doorbell;
39 } NVMeQueue;
40 
41 typedef struct {
42     BlockCompletionFunc *cb;
43     void *opaque;
44     int cid;
45     void *prp_list_page;
46     uint64_t prp_list_iova;
47     bool busy;
48 } NVMeRequest;
49 
50 typedef struct {
51     CoQueue     free_req_queue;
52     QemuMutex   lock;
53 
54     /* Fields protected by BQL */
55     int         index;
56     uint8_t     *prp_list_pages;
57 
58     /* Fields protected by @lock */
59     NVMeQueue   sq, cq;
60     int         cq_phase;
61     NVMeRequest reqs[NVME_QUEUE_SIZE];
62     bool        busy;
63     int         need_kick;
64     int         inflight;
65 } NVMeQueuePair;
66 
67 /* Memory mapped registers */
68 typedef volatile struct {
69     uint64_t cap;
70     uint32_t vs;
71     uint32_t intms;
72     uint32_t intmc;
73     uint32_t cc;
74     uint32_t reserved0;
75     uint32_t csts;
76     uint32_t nssr;
77     uint32_t aqa;
78     uint64_t asq;
79     uint64_t acq;
80     uint32_t cmbloc;
81     uint32_t cmbsz;
82     uint8_t  reserved1[0xec0];
83     uint8_t  cmd_set_specfic[0x100];
84     uint32_t doorbells[];
85 } QEMU_PACKED NVMeRegs;
86 
87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
88 
89 typedef struct {
90     AioContext *aio_context;
91     QEMUVFIOState *vfio;
92     NVMeRegs *regs;
93     /* The submission/completion queue pairs.
94      * [0]: admin queue.
95      * [1..]: io queues.
96      */
97     NVMeQueuePair **queues;
98     int nr_queues;
99     size_t page_size;
100     /* How many uint32_t elements does each doorbell entry take. */
101     size_t doorbell_scale;
102     bool write_cache_supported;
103     EventNotifier irq_notifier;
104     uint64_t nsze; /* Namespace size reported by identify command */
105     int nsid;      /* The namespace id to read/write data. */
106     uint64_t max_transfer;
107     bool plugged;
108 
109     CoMutex dma_map_lock;
110     CoQueue dma_flush_queue;
111 
112     /* Total size of mapped qiov, accessed under dma_map_lock */
113     int dma_map_count;
114 } BDRVNVMeState;
115 
116 #define NVME_BLOCK_OPT_DEVICE "device"
117 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
118 
119 static QemuOptsList runtime_opts = {
120     .name = "nvme",
121     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
122     .desc = {
123         {
124             .name = NVME_BLOCK_OPT_DEVICE,
125             .type = QEMU_OPT_STRING,
126             .help = "NVMe PCI device address",
127         },
128         {
129             .name = NVME_BLOCK_OPT_NAMESPACE,
130             .type = QEMU_OPT_NUMBER,
131             .help = "NVMe namespace",
132         },
133         { /* end of list */ }
134     },
135 };
136 
137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
138                             int nentries, int entry_bytes, Error **errp)
139 {
140     BDRVNVMeState *s = bs->opaque;
141     size_t bytes;
142     int r;
143 
144     bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
145     q->head = q->tail = 0;
146     q->queue = qemu_try_blockalign0(bs, bytes);
147 
148     if (!q->queue) {
149         error_setg(errp, "Cannot allocate queue");
150         return;
151     }
152     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
153     if (r) {
154         error_setg(errp, "Cannot map queue");
155     }
156 }
157 
158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
159 {
160     qemu_vfree(q->prp_list_pages);
161     qemu_vfree(q->sq.queue);
162     qemu_vfree(q->cq.queue);
163     qemu_mutex_destroy(&q->lock);
164     g_free(q);
165 }
166 
167 static void nvme_free_req_queue_cb(void *opaque)
168 {
169     NVMeQueuePair *q = opaque;
170 
171     qemu_mutex_lock(&q->lock);
172     while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
173         /* Retry all pending requests */
174     }
175     qemu_mutex_unlock(&q->lock);
176 }
177 
178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
179                                              int idx, int size,
180                                              Error **errp)
181 {
182     int i, r;
183     BDRVNVMeState *s = bs->opaque;
184     Error *local_err = NULL;
185     NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
186     uint64_t prp_list_iova;
187 
188     qemu_mutex_init(&q->lock);
189     q->index = idx;
190     qemu_co_queue_init(&q->free_req_queue);
191     q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
192     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
193                           s->page_size * NVME_QUEUE_SIZE,
194                           false, &prp_list_iova);
195     if (r) {
196         goto fail;
197     }
198     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
199         NVMeRequest *req = &q->reqs[i];
200         req->cid = i + 1;
201         req->prp_list_page = q->prp_list_pages + i * s->page_size;
202         req->prp_list_iova = prp_list_iova + i * s->page_size;
203     }
204     nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
205     if (local_err) {
206         error_propagate(errp, local_err);
207         goto fail;
208     }
209     q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
210 
211     nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
212     if (local_err) {
213         error_propagate(errp, local_err);
214         goto fail;
215     }
216     q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
217 
218     return q;
219 fail:
220     nvme_free_queue_pair(bs, q);
221     return NULL;
222 }
223 
224 /* With q->lock */
225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
226 {
227     if (s->plugged || !q->need_kick) {
228         return;
229     }
230     trace_nvme_kick(s, q->index);
231     assert(!(q->sq.tail & 0xFF00));
232     /* Fence the write to submission queue entry before notifying the device. */
233     smp_wmb();
234     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
235     q->inflight += q->need_kick;
236     q->need_kick = 0;
237 }
238 
239 /* Find a free request element if any, otherwise:
240  * a) if in coroutine context, try to wait for one to become available;
241  * b) if not in coroutine, return NULL;
242  */
243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
244 {
245     int i;
246     NVMeRequest *req = NULL;
247 
248     qemu_mutex_lock(&q->lock);
249     while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
250         /* We have to leave one slot empty as that is the full queue case (head
251          * == tail + 1). */
252         if (qemu_in_coroutine()) {
253             trace_nvme_free_req_queue_wait(q);
254             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
255         } else {
256             qemu_mutex_unlock(&q->lock);
257             return NULL;
258         }
259     }
260     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
261         if (!q->reqs[i].busy) {
262             q->reqs[i].busy = true;
263             req = &q->reqs[i];
264             break;
265         }
266     }
267     /* We have checked inflight and need_kick while holding q->lock, so one
268      * free req must be available. */
269     assert(req);
270     qemu_mutex_unlock(&q->lock);
271     return req;
272 }
273 
274 static inline int nvme_translate_error(const NvmeCqe *c)
275 {
276     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
277     if (status) {
278         trace_nvme_error(le32_to_cpu(c->result),
279                          le16_to_cpu(c->sq_head),
280                          le16_to_cpu(c->sq_id),
281                          le16_to_cpu(c->cid),
282                          le16_to_cpu(status));
283     }
284     switch (status) {
285     case 0:
286         return 0;
287     case 1:
288         return -ENOSYS;
289     case 2:
290         return -EINVAL;
291     default:
292         return -EIO;
293     }
294 }
295 
296 /* With q->lock */
297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
298 {
299     bool progress = false;
300     NVMeRequest *preq;
301     NVMeRequest req;
302     NvmeCqe *c;
303 
304     trace_nvme_process_completion(s, q->index, q->inflight);
305     if (q->busy || s->plugged) {
306         trace_nvme_process_completion_queue_busy(s, q->index);
307         return false;
308     }
309     q->busy = true;
310     assert(q->inflight >= 0);
311     while (q->inflight) {
312         int16_t cid;
313         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
314         if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
315             break;
316         }
317         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
318         if (!q->cq.head) {
319             q->cq_phase = !q->cq_phase;
320         }
321         cid = le16_to_cpu(c->cid);
322         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
323             fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
324                     cid);
325             continue;
326         }
327         assert(cid <= NVME_QUEUE_SIZE);
328         trace_nvme_complete_command(s, q->index, cid);
329         preq = &q->reqs[cid - 1];
330         req = *preq;
331         assert(req.cid == cid);
332         assert(req.cb);
333         preq->busy = false;
334         preq->cb = preq->opaque = NULL;
335         qemu_mutex_unlock(&q->lock);
336         req.cb(req.opaque, nvme_translate_error(c));
337         qemu_mutex_lock(&q->lock);
338         c->cid = cpu_to_le16(0);
339         q->inflight--;
340         /* Flip Phase Tag bit. */
341         c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
342         progress = true;
343     }
344     if (progress) {
345         /* Notify the device so it can post more completions. */
346         smp_mb_release();
347         *q->cq.doorbell = cpu_to_le32(q->cq.head);
348         if (!qemu_co_queue_empty(&q->free_req_queue)) {
349             aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
350         }
351     }
352     q->busy = false;
353     return progress;
354 }
355 
356 static void nvme_trace_command(const NvmeCmd *cmd)
357 {
358     int i;
359 
360     for (i = 0; i < 8; ++i) {
361         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
362         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
363                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
364     }
365 }
366 
367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
368                                 NVMeRequest *req,
369                                 NvmeCmd *cmd, BlockCompletionFunc cb,
370                                 void *opaque)
371 {
372     assert(!req->cb);
373     req->cb = cb;
374     req->opaque = opaque;
375     cmd->cid = cpu_to_le32(req->cid);
376 
377     trace_nvme_submit_command(s, q->index, req->cid);
378     nvme_trace_command(cmd);
379     qemu_mutex_lock(&q->lock);
380     memcpy((uint8_t *)q->sq.queue +
381            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
382     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
383     q->need_kick++;
384     nvme_kick(s, q);
385     nvme_process_completion(s, q);
386     qemu_mutex_unlock(&q->lock);
387 }
388 
389 static void nvme_cmd_sync_cb(void *opaque, int ret)
390 {
391     int *pret = opaque;
392     *pret = ret;
393 }
394 
395 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
396                          NvmeCmd *cmd)
397 {
398     NVMeRequest *req;
399     BDRVNVMeState *s = bs->opaque;
400     int ret = -EINPROGRESS;
401     req = nvme_get_free_req(q);
402     if (!req) {
403         return -EBUSY;
404     }
405     nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
406 
407     BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
408     return ret;
409 }
410 
411 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
412 {
413     BDRVNVMeState *s = bs->opaque;
414     NvmeIdCtrl *idctrl;
415     NvmeIdNs *idns;
416     uint8_t *resp;
417     int r;
418     uint64_t iova;
419     NvmeCmd cmd = {
420         .opcode = NVME_ADM_CMD_IDENTIFY,
421         .cdw10 = cpu_to_le32(0x1),
422     };
423 
424     resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
425     if (!resp) {
426         error_setg(errp, "Cannot allocate buffer for identify response");
427         goto out;
428     }
429     idctrl = (NvmeIdCtrl *)resp;
430     idns = (NvmeIdNs *)resp;
431     r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
432     if (r) {
433         error_setg(errp, "Cannot map buffer for DMA");
434         goto out;
435     }
436     cmd.prp1 = cpu_to_le64(iova);
437 
438     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
439         error_setg(errp, "Failed to identify controller");
440         goto out;
441     }
442 
443     if (le32_to_cpu(idctrl->nn) < namespace) {
444         error_setg(errp, "Invalid namespace");
445         goto out;
446     }
447     s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
448     s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
449     /* For now the page list buffer per command is one page, to hold at most
450      * s->page_size / sizeof(uint64_t) entries. */
451     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
452                           s->page_size / sizeof(uint64_t) * s->page_size);
453 
454     memset(resp, 0, 4096);
455 
456     cmd.cdw10 = 0;
457     cmd.nsid = cpu_to_le32(namespace);
458     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
459         error_setg(errp, "Failed to identify namespace");
460         goto out;
461     }
462 
463     s->nsze = le64_to_cpu(idns->nsze);
464 
465 out:
466     qemu_vfio_dma_unmap(s->vfio, resp);
467     qemu_vfree(resp);
468 }
469 
470 static bool nvme_poll_queues(BDRVNVMeState *s)
471 {
472     bool progress = false;
473     int i;
474 
475     for (i = 0; i < s->nr_queues; i++) {
476         NVMeQueuePair *q = s->queues[i];
477         qemu_mutex_lock(&q->lock);
478         while (nvme_process_completion(s, q)) {
479             /* Keep polling */
480             progress = true;
481         }
482         qemu_mutex_unlock(&q->lock);
483     }
484     return progress;
485 }
486 
487 static void nvme_handle_event(EventNotifier *n)
488 {
489     BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
490 
491     trace_nvme_handle_event(s);
492     event_notifier_test_and_clear(n);
493     nvme_poll_queues(s);
494 }
495 
496 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
497 {
498     BDRVNVMeState *s = bs->opaque;
499     int n = s->nr_queues;
500     NVMeQueuePair *q;
501     NvmeCmd cmd;
502     int queue_size = NVME_QUEUE_SIZE;
503 
504     q = nvme_create_queue_pair(bs, n, queue_size, errp);
505     if (!q) {
506         return false;
507     }
508     cmd = (NvmeCmd) {
509         .opcode = NVME_ADM_CMD_CREATE_CQ,
510         .prp1 = cpu_to_le64(q->cq.iova),
511         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
512         .cdw11 = cpu_to_le32(0x3),
513     };
514     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
515         error_setg(errp, "Failed to create io queue [%d]", n);
516         nvme_free_queue_pair(bs, q);
517         return false;
518     }
519     cmd = (NvmeCmd) {
520         .opcode = NVME_ADM_CMD_CREATE_SQ,
521         .prp1 = cpu_to_le64(q->sq.iova),
522         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
523         .cdw11 = cpu_to_le32(0x1 | (n << 16)),
524     };
525     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
526         error_setg(errp, "Failed to create io queue [%d]", n);
527         nvme_free_queue_pair(bs, q);
528         return false;
529     }
530     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
531     s->queues[n] = q;
532     s->nr_queues++;
533     return true;
534 }
535 
536 static bool nvme_poll_cb(void *opaque)
537 {
538     EventNotifier *e = opaque;
539     BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
540     bool progress = false;
541 
542     trace_nvme_poll_cb(s);
543     progress = nvme_poll_queues(s);
544     return progress;
545 }
546 
547 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
548                      Error **errp)
549 {
550     BDRVNVMeState *s = bs->opaque;
551     int ret;
552     uint64_t cap;
553     uint64_t timeout_ms;
554     uint64_t deadline, now;
555     Error *local_err = NULL;
556 
557     qemu_co_mutex_init(&s->dma_map_lock);
558     qemu_co_queue_init(&s->dma_flush_queue);
559     s->nsid = namespace;
560     s->aio_context = bdrv_get_aio_context(bs);
561     ret = event_notifier_init(&s->irq_notifier, 0);
562     if (ret) {
563         error_setg(errp, "Failed to init event notifier");
564         return ret;
565     }
566 
567     s->vfio = qemu_vfio_open_pci(device, errp);
568     if (!s->vfio) {
569         ret = -EINVAL;
570         goto out;
571     }
572 
573     s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
574     if (!s->regs) {
575         ret = -EINVAL;
576         goto out;
577     }
578 
579     /* Perform initialize sequence as described in NVMe spec "7.6.1
580      * Initialization". */
581 
582     cap = le64_to_cpu(s->regs->cap);
583     if (!(cap & (1ULL << 37))) {
584         error_setg(errp, "Device doesn't support NVMe command set");
585         ret = -EINVAL;
586         goto out;
587     }
588 
589     s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
590     s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
591     bs->bl.opt_mem_alignment = s->page_size;
592     timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
593 
594     /* Reset device to get a clean state. */
595     s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
596     /* Wait for CSTS.RDY = 0. */
597     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
598     while (le32_to_cpu(s->regs->csts) & 0x1) {
599         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
600             error_setg(errp, "Timeout while waiting for device to reset (%"
601                              PRId64 " ms)",
602                        timeout_ms);
603             ret = -ETIMEDOUT;
604             goto out;
605         }
606     }
607 
608     /* Set up admin queue. */
609     s->queues = g_new(NVMeQueuePair *, 1);
610     s->nr_queues = 1;
611     s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
612     if (!s->queues[0]) {
613         ret = -EINVAL;
614         goto out;
615     }
616     QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
617     s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
618     s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
619     s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
620 
621     /* After setting up all control registers we can enable device now. */
622     s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
623                               (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
624                               0x1);
625     /* Wait for CSTS.RDY = 1. */
626     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
627     deadline = now + timeout_ms * 1000000;
628     while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
629         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
630             error_setg(errp, "Timeout while waiting for device to start (%"
631                              PRId64 " ms)",
632                        timeout_ms);
633             ret = -ETIMEDOUT;
634             goto out;
635         }
636     }
637 
638     ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
639                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
640     if (ret) {
641         goto out;
642     }
643     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
644                            false, nvme_handle_event, nvme_poll_cb);
645 
646     nvme_identify(bs, namespace, &local_err);
647     if (local_err) {
648         error_propagate(errp, local_err);
649         ret = -EIO;
650         goto out;
651     }
652 
653     /* Set up command queues. */
654     if (!nvme_add_io_queue(bs, errp)) {
655         ret = -EIO;
656     }
657 out:
658     /* Cleaning up is done in nvme_file_open() upon error. */
659     return ret;
660 }
661 
662 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
663  *
664  *     nvme://0000:44:00.0/1
665  *
666  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
667  * is the PCI address, and the last part is the namespace number starting from
668  * 1 according to the NVMe spec. */
669 static void nvme_parse_filename(const char *filename, QDict *options,
670                                 Error **errp)
671 {
672     int pref = strlen("nvme://");
673 
674     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
675         const char *tmp = filename + pref;
676         char *device;
677         const char *namespace;
678         unsigned long ns;
679         const char *slash = strchr(tmp, '/');
680         if (!slash) {
681             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
682             return;
683         }
684         device = g_strndup(tmp, slash - tmp);
685         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
686         g_free(device);
687         namespace = slash + 1;
688         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
689             error_setg(errp, "Invalid namespace '%s', positive number expected",
690                        namespace);
691             return;
692         }
693         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
694                       *namespace ? namespace : "1");
695     }
696 }
697 
698 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
699                                            Error **errp)
700 {
701     int ret;
702     BDRVNVMeState *s = bs->opaque;
703     NvmeCmd cmd = {
704         .opcode = NVME_ADM_CMD_SET_FEATURES,
705         .nsid = cpu_to_le32(s->nsid),
706         .cdw10 = cpu_to_le32(0x06),
707         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
708     };
709 
710     ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
711     if (ret) {
712         error_setg(errp, "Failed to configure NVMe write cache");
713     }
714     return ret;
715 }
716 
717 static void nvme_close(BlockDriverState *bs)
718 {
719     int i;
720     BDRVNVMeState *s = bs->opaque;
721 
722     for (i = 0; i < s->nr_queues; ++i) {
723         nvme_free_queue_pair(bs, s->queues[i]);
724     }
725     g_free(s->queues);
726     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
727                            false, NULL, NULL);
728     event_notifier_cleanup(&s->irq_notifier);
729     qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
730     qemu_vfio_close(s->vfio);
731 }
732 
733 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
734                           Error **errp)
735 {
736     const char *device;
737     QemuOpts *opts;
738     int namespace;
739     int ret;
740     BDRVNVMeState *s = bs->opaque;
741 
742     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
743     qemu_opts_absorb_qdict(opts, options, &error_abort);
744     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
745     if (!device) {
746         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
747         qemu_opts_del(opts);
748         return -EINVAL;
749     }
750 
751     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
752     ret = nvme_init(bs, device, namespace, errp);
753     qemu_opts_del(opts);
754     if (ret) {
755         goto fail;
756     }
757     if (flags & BDRV_O_NOCACHE) {
758         if (!s->write_cache_supported) {
759             error_setg(errp,
760                        "NVMe controller doesn't support write cache configuration");
761             ret = -EINVAL;
762         } else {
763             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
764                                                   errp);
765         }
766         if (ret) {
767             goto fail;
768         }
769     }
770     bs->supported_write_flags = BDRV_REQ_FUA;
771     return 0;
772 fail:
773     nvme_close(bs);
774     return ret;
775 }
776 
777 static int64_t nvme_getlength(BlockDriverState *bs)
778 {
779     BDRVNVMeState *s = bs->opaque;
780 
781     return s->nsze << BDRV_SECTOR_BITS;
782 }
783 
784 /* Called with s->dma_map_lock */
785 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
786                                             QEMUIOVector *qiov)
787 {
788     int r = 0;
789     BDRVNVMeState *s = bs->opaque;
790 
791     s->dma_map_count -= qiov->size;
792     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
793         r = qemu_vfio_dma_reset_temporary(s->vfio);
794         if (!r) {
795             qemu_co_queue_restart_all(&s->dma_flush_queue);
796         }
797     }
798     return r;
799 }
800 
801 /* Called with s->dma_map_lock */
802 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
803                                           NVMeRequest *req, QEMUIOVector *qiov)
804 {
805     BDRVNVMeState *s = bs->opaque;
806     uint64_t *pagelist = req->prp_list_page;
807     int i, j, r;
808     int entries = 0;
809 
810     assert(qiov->size);
811     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
812     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
813     for (i = 0; i < qiov->niov; ++i) {
814         bool retry = true;
815         uint64_t iova;
816 try_map:
817         r = qemu_vfio_dma_map(s->vfio,
818                               qiov->iov[i].iov_base,
819                               qiov->iov[i].iov_len,
820                               true, &iova);
821         if (r == -ENOMEM && retry) {
822             retry = false;
823             trace_nvme_dma_flush_queue_wait(s);
824             if (s->dma_map_count) {
825                 trace_nvme_dma_map_flush(s);
826                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
827             } else {
828                 r = qemu_vfio_dma_reset_temporary(s->vfio);
829                 if (r) {
830                     goto fail;
831                 }
832             }
833             goto try_map;
834         }
835         if (r) {
836             goto fail;
837         }
838 
839         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
840             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
841         }
842         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
843                                     qiov->iov[i].iov_len / s->page_size);
844     }
845 
846     s->dma_map_count += qiov->size;
847 
848     assert(entries <= s->page_size / sizeof(uint64_t));
849     switch (entries) {
850     case 0:
851         abort();
852     case 1:
853         cmd->prp1 = pagelist[0];
854         cmd->prp2 = 0;
855         break;
856     case 2:
857         cmd->prp1 = pagelist[0];
858         cmd->prp2 = pagelist[1];
859         break;
860     default:
861         cmd->prp1 = pagelist[0];
862         cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
863         break;
864     }
865     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
866     for (i = 0; i < entries; ++i) {
867         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
868     }
869     return 0;
870 fail:
871     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
872      * increment s->dma_map_count. This is okay for fixed mapping memory areas
873      * because they are already mapped before calling this function; for
874      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
875      * calling qemu_vfio_dma_reset_temporary when necessary. */
876     return r;
877 }
878 
879 typedef struct {
880     Coroutine *co;
881     int ret;
882     AioContext *ctx;
883 } NVMeCoData;
884 
885 static void nvme_rw_cb_bh(void *opaque)
886 {
887     NVMeCoData *data = opaque;
888     qemu_coroutine_enter(data->co);
889 }
890 
891 static void nvme_rw_cb(void *opaque, int ret)
892 {
893     NVMeCoData *data = opaque;
894     data->ret = ret;
895     if (!data->co) {
896         /* The rw coroutine hasn't yielded, don't try to enter. */
897         return;
898     }
899     aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
900 }
901 
902 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
903                                             uint64_t offset, uint64_t bytes,
904                                             QEMUIOVector *qiov,
905                                             bool is_write,
906                                             int flags)
907 {
908     int r;
909     BDRVNVMeState *s = bs->opaque;
910     NVMeQueuePair *ioq = s->queues[1];
911     NVMeRequest *req;
912     uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
913                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
914     NvmeCmd cmd = {
915         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
916         .nsid = cpu_to_le32(s->nsid),
917         .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
918         .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
919         .cdw12 = cpu_to_le32(cdw12),
920     };
921     NVMeCoData data = {
922         .ctx = bdrv_get_aio_context(bs),
923         .ret = -EINPROGRESS,
924     };
925 
926     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
927     assert(s->nr_queues > 1);
928     req = nvme_get_free_req(ioq);
929     assert(req);
930 
931     qemu_co_mutex_lock(&s->dma_map_lock);
932     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
933     qemu_co_mutex_unlock(&s->dma_map_lock);
934     if (r) {
935         req->busy = false;
936         return r;
937     }
938     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
939 
940     data.co = qemu_coroutine_self();
941     while (data.ret == -EINPROGRESS) {
942         qemu_coroutine_yield();
943     }
944 
945     qemu_co_mutex_lock(&s->dma_map_lock);
946     r = nvme_cmd_unmap_qiov(bs, qiov);
947     qemu_co_mutex_unlock(&s->dma_map_lock);
948     if (r) {
949         return r;
950     }
951 
952     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
953     return data.ret;
954 }
955 
956 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
957                                      const QEMUIOVector *qiov)
958 {
959     int i;
960     BDRVNVMeState *s = bs->opaque;
961 
962     for (i = 0; i < qiov->niov; ++i) {
963         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
964             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
965             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
966                                       qiov->iov[i].iov_len, s->page_size);
967             return false;
968         }
969     }
970     return true;
971 }
972 
973 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
974                        QEMUIOVector *qiov, bool is_write, int flags)
975 {
976     BDRVNVMeState *s = bs->opaque;
977     int r;
978     uint8_t *buf = NULL;
979     QEMUIOVector local_qiov;
980 
981     assert(QEMU_IS_ALIGNED(offset, s->page_size));
982     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
983     assert(bytes <= s->max_transfer);
984     if (nvme_qiov_aligned(bs, qiov)) {
985         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
986     }
987     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
988     buf = qemu_try_blockalign(bs, bytes);
989 
990     if (!buf) {
991         return -ENOMEM;
992     }
993     qemu_iovec_init(&local_qiov, 1);
994     if (is_write) {
995         qemu_iovec_to_buf(qiov, 0, buf, bytes);
996     }
997     qemu_iovec_add(&local_qiov, buf, bytes);
998     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
999     qemu_iovec_destroy(&local_qiov);
1000     if (!r && !is_write) {
1001         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1002     }
1003     qemu_vfree(buf);
1004     return r;
1005 }
1006 
1007 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1008                                        uint64_t offset, uint64_t bytes,
1009                                        QEMUIOVector *qiov, int flags)
1010 {
1011     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1012 }
1013 
1014 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1015                                         uint64_t offset, uint64_t bytes,
1016                                         QEMUIOVector *qiov, int flags)
1017 {
1018     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1019 }
1020 
1021 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1022 {
1023     BDRVNVMeState *s = bs->opaque;
1024     NVMeQueuePair *ioq = s->queues[1];
1025     NVMeRequest *req;
1026     NvmeCmd cmd = {
1027         .opcode = NVME_CMD_FLUSH,
1028         .nsid = cpu_to_le32(s->nsid),
1029     };
1030     NVMeCoData data = {
1031         .ctx = bdrv_get_aio_context(bs),
1032         .ret = -EINPROGRESS,
1033     };
1034 
1035     assert(s->nr_queues > 1);
1036     req = nvme_get_free_req(ioq);
1037     assert(req);
1038     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1039 
1040     data.co = qemu_coroutine_self();
1041     if (data.ret == -EINPROGRESS) {
1042         qemu_coroutine_yield();
1043     }
1044 
1045     return data.ret;
1046 }
1047 
1048 
1049 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1050                                BlockReopenQueue *queue, Error **errp)
1051 {
1052     return 0;
1053 }
1054 
1055 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1056 {
1057     qdict_del(opts, "filename");
1058 
1059     if (!qdict_size(opts)) {
1060         snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1061                  bs->drv->format_name);
1062     }
1063 
1064     qdict_put_str(opts, "driver", bs->drv->format_name);
1065     bs->full_open_options = qobject_ref(opts);
1066 }
1067 
1068 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1069 {
1070     BDRVNVMeState *s = bs->opaque;
1071 
1072     bs->bl.opt_mem_alignment = s->page_size;
1073     bs->bl.request_alignment = s->page_size;
1074     bs->bl.max_transfer = s->max_transfer;
1075 }
1076 
1077 static void nvme_detach_aio_context(BlockDriverState *bs)
1078 {
1079     BDRVNVMeState *s = bs->opaque;
1080 
1081     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1082                            false, NULL, NULL);
1083 }
1084 
1085 static void nvme_attach_aio_context(BlockDriverState *bs,
1086                                     AioContext *new_context)
1087 {
1088     BDRVNVMeState *s = bs->opaque;
1089 
1090     s->aio_context = new_context;
1091     aio_set_event_notifier(new_context, &s->irq_notifier,
1092                            false, nvme_handle_event, nvme_poll_cb);
1093 }
1094 
1095 static void nvme_aio_plug(BlockDriverState *bs)
1096 {
1097     BDRVNVMeState *s = bs->opaque;
1098     assert(!s->plugged);
1099     s->plugged = true;
1100 }
1101 
1102 static void nvme_aio_unplug(BlockDriverState *bs)
1103 {
1104     int i;
1105     BDRVNVMeState *s = bs->opaque;
1106     assert(s->plugged);
1107     s->plugged = false;
1108     for (i = 1; i < s->nr_queues; i++) {
1109         NVMeQueuePair *q = s->queues[i];
1110         qemu_mutex_lock(&q->lock);
1111         nvme_kick(s, q);
1112         nvme_process_completion(s, q);
1113         qemu_mutex_unlock(&q->lock);
1114     }
1115 }
1116 
1117 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1118 {
1119     int ret;
1120     BDRVNVMeState *s = bs->opaque;
1121 
1122     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1123     if (ret) {
1124         /* FIXME: we may run out of IOVA addresses after repeated
1125          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1126          * doesn't reclaim addresses for fixed mappings. */
1127         error_report("nvme_register_buf failed: %s", strerror(-ret));
1128     }
1129 }
1130 
1131 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1132 {
1133     BDRVNVMeState *s = bs->opaque;
1134 
1135     qemu_vfio_dma_unmap(s->vfio, host);
1136 }
1137 
1138 static BlockDriver bdrv_nvme = {
1139     .format_name              = "nvme",
1140     .protocol_name            = "nvme",
1141     .instance_size            = sizeof(BDRVNVMeState),
1142 
1143     .bdrv_parse_filename      = nvme_parse_filename,
1144     .bdrv_file_open           = nvme_file_open,
1145     .bdrv_close               = nvme_close,
1146     .bdrv_getlength           = nvme_getlength,
1147 
1148     .bdrv_co_preadv           = nvme_co_preadv,
1149     .bdrv_co_pwritev          = nvme_co_pwritev,
1150     .bdrv_co_flush_to_disk    = nvme_co_flush,
1151     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1152 
1153     .bdrv_refresh_filename    = nvme_refresh_filename,
1154     .bdrv_refresh_limits      = nvme_refresh_limits,
1155 
1156     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1157     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1158 
1159     .bdrv_io_plug             = nvme_aio_plug,
1160     .bdrv_io_unplug           = nvme_aio_unplug,
1161 
1162     .bdrv_register_buf        = nvme_register_buf,
1163     .bdrv_unregister_buf      = nvme_unregister_buf,
1164 };
1165 
1166 static void bdrv_nvme_init(void)
1167 {
1168     bdrv_register(&bdrv_nvme);
1169 }
1170 
1171 block_init(bdrv_nvme_init);
1172