1 /* 2 * NVMe block driver based on vfio 3 * 4 * Copyright 2016 - 2018 Red Hat, Inc. 5 * 6 * Authors: 7 * Fam Zheng <famz@redhat.com> 8 * Paolo Bonzini <pbonzini@redhat.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include <linux/vfio.h> 16 #include "qapi/error.h" 17 #include "qapi/qmp/qdict.h" 18 #include "qapi/qmp/qstring.h" 19 #include "qemu/error-report.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/cutils.h" 23 #include "qemu/option.h" 24 #include "qemu/vfio-helpers.h" 25 #include "block/block_int.h" 26 #include "sysemu/replay.h" 27 #include "trace.h" 28 29 #include "block/nvme.h" 30 31 #define NVME_SQ_ENTRY_BYTES 64 32 #define NVME_CQ_ENTRY_BYTES 16 33 #define NVME_QUEUE_SIZE 128 34 #define NVME_BAR_SIZE 8192 35 36 typedef struct { 37 int32_t head, tail; 38 uint8_t *queue; 39 uint64_t iova; 40 /* Hardware MMIO register */ 41 volatile uint32_t *doorbell; 42 } NVMeQueue; 43 44 typedef struct { 45 BlockCompletionFunc *cb; 46 void *opaque; 47 int cid; 48 void *prp_list_page; 49 uint64_t prp_list_iova; 50 bool busy; 51 } NVMeRequest; 52 53 typedef struct { 54 CoQueue free_req_queue; 55 QemuMutex lock; 56 57 /* Fields protected by BQL */ 58 int index; 59 uint8_t *prp_list_pages; 60 61 /* Fields protected by @lock */ 62 NVMeQueue sq, cq; 63 int cq_phase; 64 NVMeRequest reqs[NVME_QUEUE_SIZE]; 65 bool busy; 66 int need_kick; 67 int inflight; 68 } NVMeQueuePair; 69 70 /* Memory mapped registers */ 71 typedef volatile struct { 72 uint64_t cap; 73 uint32_t vs; 74 uint32_t intms; 75 uint32_t intmc; 76 uint32_t cc; 77 uint32_t reserved0; 78 uint32_t csts; 79 uint32_t nssr; 80 uint32_t aqa; 81 uint64_t asq; 82 uint64_t acq; 83 uint32_t cmbloc; 84 uint32_t cmbsz; 85 uint8_t reserved1[0xec0]; 86 uint8_t cmd_set_specfic[0x100]; 87 uint32_t doorbells[]; 88 } NVMeRegs; 89 90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); 91 92 typedef struct { 93 AioContext *aio_context; 94 QEMUVFIOState *vfio; 95 NVMeRegs *regs; 96 /* The submission/completion queue pairs. 97 * [0]: admin queue. 98 * [1..]: io queues. 99 */ 100 NVMeQueuePair **queues; 101 int nr_queues; 102 size_t page_size; 103 /* How many uint32_t elements does each doorbell entry take. */ 104 size_t doorbell_scale; 105 bool write_cache_supported; 106 EventNotifier irq_notifier; 107 108 uint64_t nsze; /* Namespace size reported by identify command */ 109 int nsid; /* The namespace id to read/write data. */ 110 int blkshift; 111 112 uint64_t max_transfer; 113 bool plugged; 114 115 bool supports_write_zeroes; 116 bool supports_discard; 117 118 CoMutex dma_map_lock; 119 CoQueue dma_flush_queue; 120 121 /* Total size of mapped qiov, accessed under dma_map_lock */ 122 int dma_map_count; 123 124 /* PCI address (required for nvme_refresh_filename()) */ 125 char *device; 126 } BDRVNVMeState; 127 128 #define NVME_BLOCK_OPT_DEVICE "device" 129 #define NVME_BLOCK_OPT_NAMESPACE "namespace" 130 131 static QemuOptsList runtime_opts = { 132 .name = "nvme", 133 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), 134 .desc = { 135 { 136 .name = NVME_BLOCK_OPT_DEVICE, 137 .type = QEMU_OPT_STRING, 138 .help = "NVMe PCI device address", 139 }, 140 { 141 .name = NVME_BLOCK_OPT_NAMESPACE, 142 .type = QEMU_OPT_NUMBER, 143 .help = "NVMe namespace", 144 }, 145 { /* end of list */ } 146 }, 147 }; 148 149 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, 150 int nentries, int entry_bytes, Error **errp) 151 { 152 BDRVNVMeState *s = bs->opaque; 153 size_t bytes; 154 int r; 155 156 bytes = ROUND_UP(nentries * entry_bytes, s->page_size); 157 q->head = q->tail = 0; 158 q->queue = qemu_try_blockalign0(bs, bytes); 159 160 if (!q->queue) { 161 error_setg(errp, "Cannot allocate queue"); 162 return; 163 } 164 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); 165 if (r) { 166 error_setg(errp, "Cannot map queue"); 167 } 168 } 169 170 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) 171 { 172 qemu_vfree(q->prp_list_pages); 173 qemu_vfree(q->sq.queue); 174 qemu_vfree(q->cq.queue); 175 qemu_mutex_destroy(&q->lock); 176 g_free(q); 177 } 178 179 static void nvme_free_req_queue_cb(void *opaque) 180 { 181 NVMeQueuePair *q = opaque; 182 183 qemu_mutex_lock(&q->lock); 184 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { 185 /* Retry all pending requests */ 186 } 187 qemu_mutex_unlock(&q->lock); 188 } 189 190 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, 191 int idx, int size, 192 Error **errp) 193 { 194 int i, r; 195 BDRVNVMeState *s = bs->opaque; 196 Error *local_err = NULL; 197 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); 198 uint64_t prp_list_iova; 199 200 qemu_mutex_init(&q->lock); 201 q->index = idx; 202 qemu_co_queue_init(&q->free_req_queue); 203 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); 204 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, 205 s->page_size * NVME_QUEUE_SIZE, 206 false, &prp_list_iova); 207 if (r) { 208 goto fail; 209 } 210 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 211 NVMeRequest *req = &q->reqs[i]; 212 req->cid = i + 1; 213 req->prp_list_page = q->prp_list_pages + i * s->page_size; 214 req->prp_list_iova = prp_list_iova + i * s->page_size; 215 } 216 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); 217 if (local_err) { 218 error_propagate(errp, local_err); 219 goto fail; 220 } 221 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; 222 223 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); 224 if (local_err) { 225 error_propagate(errp, local_err); 226 goto fail; 227 } 228 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale]; 229 230 return q; 231 fail: 232 nvme_free_queue_pair(bs, q); 233 return NULL; 234 } 235 236 /* With q->lock */ 237 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) 238 { 239 if (s->plugged || !q->need_kick) { 240 return; 241 } 242 trace_nvme_kick(s, q->index); 243 assert(!(q->sq.tail & 0xFF00)); 244 /* Fence the write to submission queue entry before notifying the device. */ 245 smp_wmb(); 246 *q->sq.doorbell = cpu_to_le32(q->sq.tail); 247 q->inflight += q->need_kick; 248 q->need_kick = 0; 249 } 250 251 /* Find a free request element if any, otherwise: 252 * a) if in coroutine context, try to wait for one to become available; 253 * b) if not in coroutine, return NULL; 254 */ 255 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) 256 { 257 int i; 258 NVMeRequest *req = NULL; 259 260 qemu_mutex_lock(&q->lock); 261 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { 262 /* We have to leave one slot empty as that is the full queue case (head 263 * == tail + 1). */ 264 if (qemu_in_coroutine()) { 265 trace_nvme_free_req_queue_wait(q); 266 qemu_co_queue_wait(&q->free_req_queue, &q->lock); 267 } else { 268 qemu_mutex_unlock(&q->lock); 269 return NULL; 270 } 271 } 272 for (i = 0; i < NVME_QUEUE_SIZE; i++) { 273 if (!q->reqs[i].busy) { 274 q->reqs[i].busy = true; 275 req = &q->reqs[i]; 276 break; 277 } 278 } 279 /* We have checked inflight and need_kick while holding q->lock, so one 280 * free req must be available. */ 281 assert(req); 282 qemu_mutex_unlock(&q->lock); 283 return req; 284 } 285 286 static inline int nvme_translate_error(const NvmeCqe *c) 287 { 288 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; 289 if (status) { 290 trace_nvme_error(le32_to_cpu(c->result), 291 le16_to_cpu(c->sq_head), 292 le16_to_cpu(c->sq_id), 293 le16_to_cpu(c->cid), 294 le16_to_cpu(status)); 295 } 296 switch (status) { 297 case 0: 298 return 0; 299 case 1: 300 return -ENOSYS; 301 case 2: 302 return -EINVAL; 303 default: 304 return -EIO; 305 } 306 } 307 308 /* With q->lock */ 309 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) 310 { 311 bool progress = false; 312 NVMeRequest *preq; 313 NVMeRequest req; 314 NvmeCqe *c; 315 316 trace_nvme_process_completion(s, q->index, q->inflight); 317 if (q->busy || s->plugged) { 318 trace_nvme_process_completion_queue_busy(s, q->index); 319 return false; 320 } 321 q->busy = true; 322 assert(q->inflight >= 0); 323 while (q->inflight) { 324 int16_t cid; 325 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; 326 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { 327 break; 328 } 329 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; 330 if (!q->cq.head) { 331 q->cq_phase = !q->cq_phase; 332 } 333 cid = le16_to_cpu(c->cid); 334 if (cid == 0 || cid > NVME_QUEUE_SIZE) { 335 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", 336 cid); 337 continue; 338 } 339 assert(cid <= NVME_QUEUE_SIZE); 340 trace_nvme_complete_command(s, q->index, cid); 341 preq = &q->reqs[cid - 1]; 342 req = *preq; 343 assert(req.cid == cid); 344 assert(req.cb); 345 preq->busy = false; 346 preq->cb = preq->opaque = NULL; 347 qemu_mutex_unlock(&q->lock); 348 req.cb(req.opaque, nvme_translate_error(c)); 349 qemu_mutex_lock(&q->lock); 350 q->inflight--; 351 progress = true; 352 } 353 if (progress) { 354 /* Notify the device so it can post more completions. */ 355 smp_mb_release(); 356 *q->cq.doorbell = cpu_to_le32(q->cq.head); 357 if (!qemu_co_queue_empty(&q->free_req_queue)) { 358 replay_bh_schedule_oneshot_event(s->aio_context, 359 nvme_free_req_queue_cb, q); 360 } 361 } 362 q->busy = false; 363 return progress; 364 } 365 366 static void nvme_trace_command(const NvmeCmd *cmd) 367 { 368 int i; 369 370 for (i = 0; i < 8; ++i) { 371 uint8_t *cmdp = (uint8_t *)cmd + i * 8; 372 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], 373 cmdp[4], cmdp[5], cmdp[6], cmdp[7]); 374 } 375 } 376 377 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, 378 NVMeRequest *req, 379 NvmeCmd *cmd, BlockCompletionFunc cb, 380 void *opaque) 381 { 382 assert(!req->cb); 383 req->cb = cb; 384 req->opaque = opaque; 385 cmd->cid = cpu_to_le32(req->cid); 386 387 trace_nvme_submit_command(s, q->index, req->cid); 388 nvme_trace_command(cmd); 389 qemu_mutex_lock(&q->lock); 390 memcpy((uint8_t *)q->sq.queue + 391 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); 392 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; 393 q->need_kick++; 394 nvme_kick(s, q); 395 nvme_process_completion(s, q); 396 qemu_mutex_unlock(&q->lock); 397 } 398 399 static void nvme_cmd_sync_cb(void *opaque, int ret) 400 { 401 int *pret = opaque; 402 *pret = ret; 403 aio_wait_kick(); 404 } 405 406 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, 407 NvmeCmd *cmd) 408 { 409 NVMeRequest *req; 410 BDRVNVMeState *s = bs->opaque; 411 int ret = -EINPROGRESS; 412 req = nvme_get_free_req(q); 413 if (!req) { 414 return -EBUSY; 415 } 416 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); 417 418 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); 419 return ret; 420 } 421 422 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) 423 { 424 BDRVNVMeState *s = bs->opaque; 425 NvmeIdCtrl *idctrl; 426 NvmeIdNs *idns; 427 NvmeLBAF *lbaf; 428 uint8_t *resp; 429 uint16_t oncs; 430 int r; 431 uint64_t iova; 432 NvmeCmd cmd = { 433 .opcode = NVME_ADM_CMD_IDENTIFY, 434 .cdw10 = cpu_to_le32(0x1), 435 }; 436 437 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); 438 if (!resp) { 439 error_setg(errp, "Cannot allocate buffer for identify response"); 440 goto out; 441 } 442 idctrl = (NvmeIdCtrl *)resp; 443 idns = (NvmeIdNs *)resp; 444 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); 445 if (r) { 446 error_setg(errp, "Cannot map buffer for DMA"); 447 goto out; 448 } 449 cmd.prp1 = cpu_to_le64(iova); 450 451 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 452 error_setg(errp, "Failed to identify controller"); 453 goto out; 454 } 455 456 if (le32_to_cpu(idctrl->nn) < namespace) { 457 error_setg(errp, "Invalid namespace"); 458 goto out; 459 } 460 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; 461 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; 462 /* For now the page list buffer per command is one page, to hold at most 463 * s->page_size / sizeof(uint64_t) entries. */ 464 s->max_transfer = MIN_NON_ZERO(s->max_transfer, 465 s->page_size / sizeof(uint64_t) * s->page_size); 466 467 oncs = le16_to_cpu(idctrl->oncs); 468 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROS); 469 s->supports_discard = !!(oncs & NVME_ONCS_DSM); 470 471 memset(resp, 0, 4096); 472 473 cmd.cdw10 = 0; 474 cmd.nsid = cpu_to_le32(namespace); 475 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 476 error_setg(errp, "Failed to identify namespace"); 477 goto out; 478 } 479 480 s->nsze = le64_to_cpu(idns->nsze); 481 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)]; 482 483 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns->dlfeat) && 484 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns->dlfeat) == 485 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) { 486 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP; 487 } 488 489 if (lbaf->ms) { 490 error_setg(errp, "Namespaces with metadata are not yet supported"); 491 goto out; 492 } 493 494 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || 495 (1 << lbaf->ds) > s->page_size) 496 { 497 error_setg(errp, "Namespace has unsupported block size (2^%d)", 498 lbaf->ds); 499 goto out; 500 } 501 502 s->blkshift = lbaf->ds; 503 out: 504 qemu_vfio_dma_unmap(s->vfio, resp); 505 qemu_vfree(resp); 506 } 507 508 static bool nvme_poll_queues(BDRVNVMeState *s) 509 { 510 bool progress = false; 511 int i; 512 513 for (i = 0; i < s->nr_queues; i++) { 514 NVMeQueuePair *q = s->queues[i]; 515 qemu_mutex_lock(&q->lock); 516 while (nvme_process_completion(s, q)) { 517 /* Keep polling */ 518 progress = true; 519 } 520 qemu_mutex_unlock(&q->lock); 521 } 522 return progress; 523 } 524 525 static void nvme_handle_event(EventNotifier *n) 526 { 527 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); 528 529 trace_nvme_handle_event(s); 530 event_notifier_test_and_clear(n); 531 nvme_poll_queues(s); 532 } 533 534 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) 535 { 536 BDRVNVMeState *s = bs->opaque; 537 int n = s->nr_queues; 538 NVMeQueuePair *q; 539 NvmeCmd cmd; 540 int queue_size = NVME_QUEUE_SIZE; 541 542 q = nvme_create_queue_pair(bs, n, queue_size, errp); 543 if (!q) { 544 return false; 545 } 546 cmd = (NvmeCmd) { 547 .opcode = NVME_ADM_CMD_CREATE_CQ, 548 .prp1 = cpu_to_le64(q->cq.iova), 549 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 550 .cdw11 = cpu_to_le32(0x3), 551 }; 552 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 553 error_setg(errp, "Failed to create io queue [%d]", n); 554 nvme_free_queue_pair(bs, q); 555 return false; 556 } 557 cmd = (NvmeCmd) { 558 .opcode = NVME_ADM_CMD_CREATE_SQ, 559 .prp1 = cpu_to_le64(q->sq.iova), 560 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), 561 .cdw11 = cpu_to_le32(0x1 | (n << 16)), 562 }; 563 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { 564 error_setg(errp, "Failed to create io queue [%d]", n); 565 nvme_free_queue_pair(bs, q); 566 return false; 567 } 568 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); 569 s->queues[n] = q; 570 s->nr_queues++; 571 return true; 572 } 573 574 static bool nvme_poll_cb(void *opaque) 575 { 576 EventNotifier *e = opaque; 577 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); 578 579 trace_nvme_poll_cb(s); 580 return nvme_poll_queues(s); 581 } 582 583 static int nvme_init(BlockDriverState *bs, const char *device, int namespace, 584 Error **errp) 585 { 586 BDRVNVMeState *s = bs->opaque; 587 int ret; 588 uint64_t cap; 589 uint64_t timeout_ms; 590 uint64_t deadline, now; 591 Error *local_err = NULL; 592 593 qemu_co_mutex_init(&s->dma_map_lock); 594 qemu_co_queue_init(&s->dma_flush_queue); 595 s->device = g_strdup(device); 596 s->nsid = namespace; 597 s->aio_context = bdrv_get_aio_context(bs); 598 ret = event_notifier_init(&s->irq_notifier, 0); 599 if (ret) { 600 error_setg(errp, "Failed to init event notifier"); 601 return ret; 602 } 603 604 s->vfio = qemu_vfio_open_pci(device, errp); 605 if (!s->vfio) { 606 ret = -EINVAL; 607 goto out; 608 } 609 610 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); 611 if (!s->regs) { 612 ret = -EINVAL; 613 goto out; 614 } 615 616 /* Perform initialize sequence as described in NVMe spec "7.6.1 617 * Initialization". */ 618 619 cap = le64_to_cpu(s->regs->cap); 620 if (!(cap & (1ULL << 37))) { 621 error_setg(errp, "Device doesn't support NVMe command set"); 622 ret = -EINVAL; 623 goto out; 624 } 625 626 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); 627 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); 628 bs->bl.opt_mem_alignment = s->page_size; 629 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); 630 631 /* Reset device to get a clean state. */ 632 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); 633 /* Wait for CSTS.RDY = 0. */ 634 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; 635 while (le32_to_cpu(s->regs->csts) & 0x1) { 636 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 637 error_setg(errp, "Timeout while waiting for device to reset (%" 638 PRId64 " ms)", 639 timeout_ms); 640 ret = -ETIMEDOUT; 641 goto out; 642 } 643 } 644 645 /* Set up admin queue. */ 646 s->queues = g_new(NVMeQueuePair *, 1); 647 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); 648 if (!s->queues[0]) { 649 ret = -EINVAL; 650 goto out; 651 } 652 s->nr_queues = 1; 653 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); 654 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); 655 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); 656 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); 657 658 /* After setting up all control registers we can enable device now. */ 659 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | 660 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 661 0x1); 662 /* Wait for CSTS.RDY = 1. */ 663 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 664 deadline = now + timeout_ms * 1000000; 665 while (!(le32_to_cpu(s->regs->csts) & 0x1)) { 666 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { 667 error_setg(errp, "Timeout while waiting for device to start (%" 668 PRId64 " ms)", 669 timeout_ms); 670 ret = -ETIMEDOUT; 671 goto out; 672 } 673 } 674 675 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, 676 VFIO_PCI_MSIX_IRQ_INDEX, errp); 677 if (ret) { 678 goto out; 679 } 680 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 681 false, nvme_handle_event, nvme_poll_cb); 682 683 nvme_identify(bs, namespace, &local_err); 684 if (local_err) { 685 error_propagate(errp, local_err); 686 ret = -EIO; 687 goto out; 688 } 689 690 /* Set up command queues. */ 691 if (!nvme_add_io_queue(bs, errp)) { 692 ret = -EIO; 693 } 694 out: 695 /* Cleaning up is done in nvme_file_open() upon error. */ 696 return ret; 697 } 698 699 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: 700 * 701 * nvme://0000:44:00.0/1 702 * 703 * where the "nvme://" is a fixed form of the protocol prefix, the middle part 704 * is the PCI address, and the last part is the namespace number starting from 705 * 1 according to the NVMe spec. */ 706 static void nvme_parse_filename(const char *filename, QDict *options, 707 Error **errp) 708 { 709 int pref = strlen("nvme://"); 710 711 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { 712 const char *tmp = filename + pref; 713 char *device; 714 const char *namespace; 715 unsigned long ns; 716 const char *slash = strchr(tmp, '/'); 717 if (!slash) { 718 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); 719 return; 720 } 721 device = g_strndup(tmp, slash - tmp); 722 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); 723 g_free(device); 724 namespace = slash + 1; 725 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { 726 error_setg(errp, "Invalid namespace '%s', positive number expected", 727 namespace); 728 return; 729 } 730 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, 731 *namespace ? namespace : "1"); 732 } 733 } 734 735 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, 736 Error **errp) 737 { 738 int ret; 739 BDRVNVMeState *s = bs->opaque; 740 NvmeCmd cmd = { 741 .opcode = NVME_ADM_CMD_SET_FEATURES, 742 .nsid = cpu_to_le32(s->nsid), 743 .cdw10 = cpu_to_le32(0x06), 744 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), 745 }; 746 747 ret = nvme_cmd_sync(bs, s->queues[0], &cmd); 748 if (ret) { 749 error_setg(errp, "Failed to configure NVMe write cache"); 750 } 751 return ret; 752 } 753 754 static void nvme_close(BlockDriverState *bs) 755 { 756 int i; 757 BDRVNVMeState *s = bs->opaque; 758 759 for (i = 0; i < s->nr_queues; ++i) { 760 nvme_free_queue_pair(bs, s->queues[i]); 761 } 762 g_free(s->queues); 763 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 764 false, NULL, NULL); 765 event_notifier_cleanup(&s->irq_notifier); 766 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); 767 qemu_vfio_close(s->vfio); 768 769 g_free(s->device); 770 } 771 772 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, 773 Error **errp) 774 { 775 const char *device; 776 QemuOpts *opts; 777 int namespace; 778 int ret; 779 BDRVNVMeState *s = bs->opaque; 780 781 bs->supported_write_flags = BDRV_REQ_FUA; 782 783 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); 784 qemu_opts_absorb_qdict(opts, options, &error_abort); 785 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); 786 if (!device) { 787 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); 788 qemu_opts_del(opts); 789 return -EINVAL; 790 } 791 792 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); 793 ret = nvme_init(bs, device, namespace, errp); 794 qemu_opts_del(opts); 795 if (ret) { 796 goto fail; 797 } 798 if (flags & BDRV_O_NOCACHE) { 799 if (!s->write_cache_supported) { 800 error_setg(errp, 801 "NVMe controller doesn't support write cache configuration"); 802 ret = -EINVAL; 803 } else { 804 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), 805 errp); 806 } 807 if (ret) { 808 goto fail; 809 } 810 } 811 return 0; 812 fail: 813 nvme_close(bs); 814 return ret; 815 } 816 817 static int64_t nvme_getlength(BlockDriverState *bs) 818 { 819 BDRVNVMeState *s = bs->opaque; 820 return s->nsze << s->blkshift; 821 } 822 823 static uint32_t nvme_get_blocksize(BlockDriverState *bs) 824 { 825 BDRVNVMeState *s = bs->opaque; 826 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); 827 return UINT32_C(1) << s->blkshift; 828 } 829 830 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) 831 { 832 uint32_t blocksize = nvme_get_blocksize(bs); 833 bsz->phys = blocksize; 834 bsz->log = blocksize; 835 return 0; 836 } 837 838 /* Called with s->dma_map_lock */ 839 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, 840 QEMUIOVector *qiov) 841 { 842 int r = 0; 843 BDRVNVMeState *s = bs->opaque; 844 845 s->dma_map_count -= qiov->size; 846 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { 847 r = qemu_vfio_dma_reset_temporary(s->vfio); 848 if (!r) { 849 qemu_co_queue_restart_all(&s->dma_flush_queue); 850 } 851 } 852 return r; 853 } 854 855 /* Called with s->dma_map_lock */ 856 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, 857 NVMeRequest *req, QEMUIOVector *qiov) 858 { 859 BDRVNVMeState *s = bs->opaque; 860 uint64_t *pagelist = req->prp_list_page; 861 int i, j, r; 862 int entries = 0; 863 864 assert(qiov->size); 865 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); 866 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); 867 for (i = 0; i < qiov->niov; ++i) { 868 bool retry = true; 869 uint64_t iova; 870 try_map: 871 r = qemu_vfio_dma_map(s->vfio, 872 qiov->iov[i].iov_base, 873 qiov->iov[i].iov_len, 874 true, &iova); 875 if (r == -ENOMEM && retry) { 876 retry = false; 877 trace_nvme_dma_flush_queue_wait(s); 878 if (s->dma_map_count) { 879 trace_nvme_dma_map_flush(s); 880 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); 881 } else { 882 r = qemu_vfio_dma_reset_temporary(s->vfio); 883 if (r) { 884 goto fail; 885 } 886 } 887 goto try_map; 888 } 889 if (r) { 890 goto fail; 891 } 892 893 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { 894 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); 895 } 896 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, 897 qiov->iov[i].iov_len / s->page_size); 898 } 899 900 s->dma_map_count += qiov->size; 901 902 assert(entries <= s->page_size / sizeof(uint64_t)); 903 switch (entries) { 904 case 0: 905 abort(); 906 case 1: 907 cmd->prp1 = pagelist[0]; 908 cmd->prp2 = 0; 909 break; 910 case 2: 911 cmd->prp1 = pagelist[0]; 912 cmd->prp2 = pagelist[1]; 913 break; 914 default: 915 cmd->prp1 = pagelist[0]; 916 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); 917 break; 918 } 919 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); 920 for (i = 0; i < entries; ++i) { 921 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); 922 } 923 return 0; 924 fail: 925 /* No need to unmap [0 - i) iovs even if we've failed, since we don't 926 * increment s->dma_map_count. This is okay for fixed mapping memory areas 927 * because they are already mapped before calling this function; for 928 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by 929 * calling qemu_vfio_dma_reset_temporary when necessary. */ 930 return r; 931 } 932 933 typedef struct { 934 Coroutine *co; 935 int ret; 936 AioContext *ctx; 937 } NVMeCoData; 938 939 static void nvme_rw_cb_bh(void *opaque) 940 { 941 NVMeCoData *data = opaque; 942 qemu_coroutine_enter(data->co); 943 } 944 945 static void nvme_rw_cb(void *opaque, int ret) 946 { 947 NVMeCoData *data = opaque; 948 data->ret = ret; 949 if (!data->co) { 950 /* The rw coroutine hasn't yielded, don't try to enter. */ 951 return; 952 } 953 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data); 954 } 955 956 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, 957 uint64_t offset, uint64_t bytes, 958 QEMUIOVector *qiov, 959 bool is_write, 960 int flags) 961 { 962 int r; 963 BDRVNVMeState *s = bs->opaque; 964 NVMeQueuePair *ioq = s->queues[1]; 965 NVMeRequest *req; 966 967 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | 968 (flags & BDRV_REQ_FUA ? 1 << 30 : 0); 969 NvmeCmd cmd = { 970 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, 971 .nsid = cpu_to_le32(s->nsid), 972 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 973 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 974 .cdw12 = cpu_to_le32(cdw12), 975 }; 976 NVMeCoData data = { 977 .ctx = bdrv_get_aio_context(bs), 978 .ret = -EINPROGRESS, 979 }; 980 981 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); 982 assert(s->nr_queues > 1); 983 req = nvme_get_free_req(ioq); 984 assert(req); 985 986 qemu_co_mutex_lock(&s->dma_map_lock); 987 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); 988 qemu_co_mutex_unlock(&s->dma_map_lock); 989 if (r) { 990 req->busy = false; 991 return r; 992 } 993 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 994 995 data.co = qemu_coroutine_self(); 996 while (data.ret == -EINPROGRESS) { 997 qemu_coroutine_yield(); 998 } 999 1000 qemu_co_mutex_lock(&s->dma_map_lock); 1001 r = nvme_cmd_unmap_qiov(bs, qiov); 1002 qemu_co_mutex_unlock(&s->dma_map_lock); 1003 if (r) { 1004 return r; 1005 } 1006 1007 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); 1008 return data.ret; 1009 } 1010 1011 static inline bool nvme_qiov_aligned(BlockDriverState *bs, 1012 const QEMUIOVector *qiov) 1013 { 1014 int i; 1015 BDRVNVMeState *s = bs->opaque; 1016 1017 for (i = 0; i < qiov->niov; ++i) { 1018 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || 1019 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { 1020 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, 1021 qiov->iov[i].iov_len, s->page_size); 1022 return false; 1023 } 1024 } 1025 return true; 1026 } 1027 1028 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, 1029 QEMUIOVector *qiov, bool is_write, int flags) 1030 { 1031 BDRVNVMeState *s = bs->opaque; 1032 int r; 1033 uint8_t *buf = NULL; 1034 QEMUIOVector local_qiov; 1035 1036 assert(QEMU_IS_ALIGNED(offset, s->page_size)); 1037 assert(QEMU_IS_ALIGNED(bytes, s->page_size)); 1038 assert(bytes <= s->max_transfer); 1039 if (nvme_qiov_aligned(bs, qiov)) { 1040 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); 1041 } 1042 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); 1043 buf = qemu_try_blockalign(bs, bytes); 1044 1045 if (!buf) { 1046 return -ENOMEM; 1047 } 1048 qemu_iovec_init(&local_qiov, 1); 1049 if (is_write) { 1050 qemu_iovec_to_buf(qiov, 0, buf, bytes); 1051 } 1052 qemu_iovec_add(&local_qiov, buf, bytes); 1053 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); 1054 qemu_iovec_destroy(&local_qiov); 1055 if (!r && !is_write) { 1056 qemu_iovec_from_buf(qiov, 0, buf, bytes); 1057 } 1058 qemu_vfree(buf); 1059 return r; 1060 } 1061 1062 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, 1063 uint64_t offset, uint64_t bytes, 1064 QEMUIOVector *qiov, int flags) 1065 { 1066 return nvme_co_prw(bs, offset, bytes, qiov, false, flags); 1067 } 1068 1069 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, 1070 uint64_t offset, uint64_t bytes, 1071 QEMUIOVector *qiov, int flags) 1072 { 1073 return nvme_co_prw(bs, offset, bytes, qiov, true, flags); 1074 } 1075 1076 static coroutine_fn int nvme_co_flush(BlockDriverState *bs) 1077 { 1078 BDRVNVMeState *s = bs->opaque; 1079 NVMeQueuePair *ioq = s->queues[1]; 1080 NVMeRequest *req; 1081 NvmeCmd cmd = { 1082 .opcode = NVME_CMD_FLUSH, 1083 .nsid = cpu_to_le32(s->nsid), 1084 }; 1085 NVMeCoData data = { 1086 .ctx = bdrv_get_aio_context(bs), 1087 .ret = -EINPROGRESS, 1088 }; 1089 1090 assert(s->nr_queues > 1); 1091 req = nvme_get_free_req(ioq); 1092 assert(req); 1093 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1094 1095 data.co = qemu_coroutine_self(); 1096 if (data.ret == -EINPROGRESS) { 1097 qemu_coroutine_yield(); 1098 } 1099 1100 return data.ret; 1101 } 1102 1103 1104 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs, 1105 int64_t offset, 1106 int bytes, 1107 BdrvRequestFlags flags) 1108 { 1109 BDRVNVMeState *s = bs->opaque; 1110 NVMeQueuePair *ioq = s->queues[1]; 1111 NVMeRequest *req; 1112 1113 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF; 1114 1115 if (!s->supports_write_zeroes) { 1116 return -ENOTSUP; 1117 } 1118 1119 NvmeCmd cmd = { 1120 .opcode = NVME_CMD_WRITE_ZEROS, 1121 .nsid = cpu_to_le32(s->nsid), 1122 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), 1123 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), 1124 }; 1125 1126 NVMeCoData data = { 1127 .ctx = bdrv_get_aio_context(bs), 1128 .ret = -EINPROGRESS, 1129 }; 1130 1131 if (flags & BDRV_REQ_MAY_UNMAP) { 1132 cdw12 |= (1 << 25); 1133 } 1134 1135 if (flags & BDRV_REQ_FUA) { 1136 cdw12 |= (1 << 30); 1137 } 1138 1139 cmd.cdw12 = cpu_to_le32(cdw12); 1140 1141 trace_nvme_write_zeroes(s, offset, bytes, flags); 1142 assert(s->nr_queues > 1); 1143 req = nvme_get_free_req(ioq); 1144 assert(req); 1145 1146 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1147 1148 data.co = qemu_coroutine_self(); 1149 while (data.ret == -EINPROGRESS) { 1150 qemu_coroutine_yield(); 1151 } 1152 1153 trace_nvme_rw_done(s, true, offset, bytes, data.ret); 1154 return data.ret; 1155 } 1156 1157 1158 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs, 1159 int64_t offset, 1160 int bytes) 1161 { 1162 BDRVNVMeState *s = bs->opaque; 1163 NVMeQueuePair *ioq = s->queues[1]; 1164 NVMeRequest *req; 1165 NvmeDsmRange *buf; 1166 QEMUIOVector local_qiov; 1167 int ret; 1168 1169 NvmeCmd cmd = { 1170 .opcode = NVME_CMD_DSM, 1171 .nsid = cpu_to_le32(s->nsid), 1172 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/ 1173 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/ 1174 }; 1175 1176 NVMeCoData data = { 1177 .ctx = bdrv_get_aio_context(bs), 1178 .ret = -EINPROGRESS, 1179 }; 1180 1181 if (!s->supports_discard) { 1182 return -ENOTSUP; 1183 } 1184 1185 assert(s->nr_queues > 1); 1186 1187 buf = qemu_try_blockalign0(bs, s->page_size); 1188 if (!buf) { 1189 return -ENOMEM; 1190 } 1191 1192 buf->nlb = cpu_to_le32(bytes >> s->blkshift); 1193 buf->slba = cpu_to_le64(offset >> s->blkshift); 1194 buf->cattr = 0; 1195 1196 qemu_iovec_init(&local_qiov, 1); 1197 qemu_iovec_add(&local_qiov, buf, 4096); 1198 1199 req = nvme_get_free_req(ioq); 1200 assert(req); 1201 1202 qemu_co_mutex_lock(&s->dma_map_lock); 1203 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov); 1204 qemu_co_mutex_unlock(&s->dma_map_lock); 1205 1206 if (ret) { 1207 req->busy = false; 1208 goto out; 1209 } 1210 1211 trace_nvme_dsm(s, offset, bytes); 1212 1213 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); 1214 1215 data.co = qemu_coroutine_self(); 1216 while (data.ret == -EINPROGRESS) { 1217 qemu_coroutine_yield(); 1218 } 1219 1220 qemu_co_mutex_lock(&s->dma_map_lock); 1221 ret = nvme_cmd_unmap_qiov(bs, &local_qiov); 1222 qemu_co_mutex_unlock(&s->dma_map_lock); 1223 1224 if (ret) { 1225 goto out; 1226 } 1227 1228 ret = data.ret; 1229 trace_nvme_dsm_done(s, offset, bytes, ret); 1230 out: 1231 qemu_iovec_destroy(&local_qiov); 1232 qemu_vfree(buf); 1233 return ret; 1234 1235 } 1236 1237 1238 static int nvme_reopen_prepare(BDRVReopenState *reopen_state, 1239 BlockReopenQueue *queue, Error **errp) 1240 { 1241 return 0; 1242 } 1243 1244 static void nvme_refresh_filename(BlockDriverState *bs) 1245 { 1246 BDRVNVMeState *s = bs->opaque; 1247 1248 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", 1249 s->device, s->nsid); 1250 } 1251 1252 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) 1253 { 1254 BDRVNVMeState *s = bs->opaque; 1255 1256 bs->bl.opt_mem_alignment = s->page_size; 1257 bs->bl.request_alignment = s->page_size; 1258 bs->bl.max_transfer = s->max_transfer; 1259 } 1260 1261 static void nvme_detach_aio_context(BlockDriverState *bs) 1262 { 1263 BDRVNVMeState *s = bs->opaque; 1264 1265 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, 1266 false, NULL, NULL); 1267 } 1268 1269 static void nvme_attach_aio_context(BlockDriverState *bs, 1270 AioContext *new_context) 1271 { 1272 BDRVNVMeState *s = bs->opaque; 1273 1274 s->aio_context = new_context; 1275 aio_set_event_notifier(new_context, &s->irq_notifier, 1276 false, nvme_handle_event, nvme_poll_cb); 1277 } 1278 1279 static void nvme_aio_plug(BlockDriverState *bs) 1280 { 1281 BDRVNVMeState *s = bs->opaque; 1282 assert(!s->plugged); 1283 s->plugged = true; 1284 } 1285 1286 static void nvme_aio_unplug(BlockDriverState *bs) 1287 { 1288 int i; 1289 BDRVNVMeState *s = bs->opaque; 1290 assert(s->plugged); 1291 s->plugged = false; 1292 for (i = 1; i < s->nr_queues; i++) { 1293 NVMeQueuePair *q = s->queues[i]; 1294 qemu_mutex_lock(&q->lock); 1295 nvme_kick(s, q); 1296 nvme_process_completion(s, q); 1297 qemu_mutex_unlock(&q->lock); 1298 } 1299 } 1300 1301 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) 1302 { 1303 int ret; 1304 BDRVNVMeState *s = bs->opaque; 1305 1306 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); 1307 if (ret) { 1308 /* FIXME: we may run out of IOVA addresses after repeated 1309 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap 1310 * doesn't reclaim addresses for fixed mappings. */ 1311 error_report("nvme_register_buf failed: %s", strerror(-ret)); 1312 } 1313 } 1314 1315 static void nvme_unregister_buf(BlockDriverState *bs, void *host) 1316 { 1317 BDRVNVMeState *s = bs->opaque; 1318 1319 qemu_vfio_dma_unmap(s->vfio, host); 1320 } 1321 1322 static const char *const nvme_strong_runtime_opts[] = { 1323 NVME_BLOCK_OPT_DEVICE, 1324 NVME_BLOCK_OPT_NAMESPACE, 1325 1326 NULL 1327 }; 1328 1329 static BlockDriver bdrv_nvme = { 1330 .format_name = "nvme", 1331 .protocol_name = "nvme", 1332 .instance_size = sizeof(BDRVNVMeState), 1333 1334 .bdrv_co_create_opts = bdrv_co_create_opts_simple, 1335 .create_opts = &bdrv_create_opts_simple, 1336 1337 .bdrv_parse_filename = nvme_parse_filename, 1338 .bdrv_file_open = nvme_file_open, 1339 .bdrv_close = nvme_close, 1340 .bdrv_getlength = nvme_getlength, 1341 .bdrv_probe_blocksizes = nvme_probe_blocksizes, 1342 1343 .bdrv_co_preadv = nvme_co_preadv, 1344 .bdrv_co_pwritev = nvme_co_pwritev, 1345 1346 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes, 1347 .bdrv_co_pdiscard = nvme_co_pdiscard, 1348 1349 .bdrv_co_flush_to_disk = nvme_co_flush, 1350 .bdrv_reopen_prepare = nvme_reopen_prepare, 1351 1352 .bdrv_refresh_filename = nvme_refresh_filename, 1353 .bdrv_refresh_limits = nvme_refresh_limits, 1354 .strong_runtime_opts = nvme_strong_runtime_opts, 1355 1356 .bdrv_detach_aio_context = nvme_detach_aio_context, 1357 .bdrv_attach_aio_context = nvme_attach_aio_context, 1358 1359 .bdrv_io_plug = nvme_aio_plug, 1360 .bdrv_io_unplug = nvme_aio_unplug, 1361 1362 .bdrv_register_buf = nvme_register_buf, 1363 .bdrv_unregister_buf = nvme_unregister_buf, 1364 }; 1365 1366 static void bdrv_nvme_init(void) 1367 { 1368 bdrv_register(&bdrv_nvme); 1369 } 1370 1371 block_init(bdrv_nvme_init); 1372