xref: /openbmc/qemu/block/nvme.c (revision 09a274d8)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/option.h"
22 #include "qemu/vfio-helpers.h"
23 #include "block/block_int.h"
24 #include "trace.h"
25 
26 #include "block/nvme.h"
27 
28 #define NVME_SQ_ENTRY_BYTES 64
29 #define NVME_CQ_ENTRY_BYTES 16
30 #define NVME_QUEUE_SIZE 128
31 #define NVME_BAR_SIZE 8192
32 
33 typedef struct {
34     int32_t  head, tail;
35     uint8_t  *queue;
36     uint64_t iova;
37     /* Hardware MMIO register */
38     volatile uint32_t *doorbell;
39 } NVMeQueue;
40 
41 typedef struct {
42     BlockCompletionFunc *cb;
43     void *opaque;
44     int cid;
45     void *prp_list_page;
46     uint64_t prp_list_iova;
47     bool busy;
48 } NVMeRequest;
49 
50 typedef struct {
51     CoQueue     free_req_queue;
52     QemuMutex   lock;
53 
54     /* Fields protected by BQL */
55     int         index;
56     uint8_t     *prp_list_pages;
57 
58     /* Fields protected by @lock */
59     NVMeQueue   sq, cq;
60     int         cq_phase;
61     NVMeRequest reqs[NVME_QUEUE_SIZE];
62     bool        busy;
63     int         need_kick;
64     int         inflight;
65 } NVMeQueuePair;
66 
67 /* Memory mapped registers */
68 typedef volatile struct {
69     uint64_t cap;
70     uint32_t vs;
71     uint32_t intms;
72     uint32_t intmc;
73     uint32_t cc;
74     uint32_t reserved0;
75     uint32_t csts;
76     uint32_t nssr;
77     uint32_t aqa;
78     uint64_t asq;
79     uint64_t acq;
80     uint32_t cmbloc;
81     uint32_t cmbsz;
82     uint8_t  reserved1[0xec0];
83     uint8_t  cmd_set_specfic[0x100];
84     uint32_t doorbells[];
85 } QEMU_PACKED NVMeRegs;
86 
87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
88 
89 typedef struct {
90     AioContext *aio_context;
91     QEMUVFIOState *vfio;
92     NVMeRegs *regs;
93     /* The submission/completion queue pairs.
94      * [0]: admin queue.
95      * [1..]: io queues.
96      */
97     NVMeQueuePair **queues;
98     int nr_queues;
99     size_t page_size;
100     /* How many uint32_t elements does each doorbell entry take. */
101     size_t doorbell_scale;
102     bool write_cache_supported;
103     EventNotifier irq_notifier;
104     uint64_t nsze; /* Namespace size reported by identify command */
105     int nsid;      /* The namespace id to read/write data. */
106     uint64_t max_transfer;
107     bool plugged;
108 
109     CoMutex dma_map_lock;
110     CoQueue dma_flush_queue;
111 
112     /* Total size of mapped qiov, accessed under dma_map_lock */
113     int dma_map_count;
114 } BDRVNVMeState;
115 
116 #define NVME_BLOCK_OPT_DEVICE "device"
117 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
118 
119 static QemuOptsList runtime_opts = {
120     .name = "nvme",
121     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
122     .desc = {
123         {
124             .name = NVME_BLOCK_OPT_DEVICE,
125             .type = QEMU_OPT_STRING,
126             .help = "NVMe PCI device address",
127         },
128         {
129             .name = NVME_BLOCK_OPT_NAMESPACE,
130             .type = QEMU_OPT_NUMBER,
131             .help = "NVMe namespace",
132         },
133         { /* end of list */ }
134     },
135 };
136 
137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
138                             int nentries, int entry_bytes, Error **errp)
139 {
140     BDRVNVMeState *s = bs->opaque;
141     size_t bytes;
142     int r;
143 
144     bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
145     q->head = q->tail = 0;
146     q->queue = qemu_try_blockalign0(bs, bytes);
147 
148     if (!q->queue) {
149         error_setg(errp, "Cannot allocate queue");
150         return;
151     }
152     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
153     if (r) {
154         error_setg(errp, "Cannot map queue");
155     }
156 }
157 
158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
159 {
160     qemu_vfree(q->prp_list_pages);
161     qemu_vfree(q->sq.queue);
162     qemu_vfree(q->cq.queue);
163     qemu_mutex_destroy(&q->lock);
164     g_free(q);
165 }
166 
167 static void nvme_free_req_queue_cb(void *opaque)
168 {
169     NVMeQueuePair *q = opaque;
170 
171     qemu_mutex_lock(&q->lock);
172     while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
173         /* Retry all pending requests */
174     }
175     qemu_mutex_unlock(&q->lock);
176 }
177 
178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
179                                              int idx, int size,
180                                              Error **errp)
181 {
182     int i, r;
183     BDRVNVMeState *s = bs->opaque;
184     Error *local_err = NULL;
185     NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
186     uint64_t prp_list_iova;
187 
188     qemu_mutex_init(&q->lock);
189     q->index = idx;
190     qemu_co_queue_init(&q->free_req_queue);
191     q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
192     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
193                           s->page_size * NVME_QUEUE_SIZE,
194                           false, &prp_list_iova);
195     if (r) {
196         goto fail;
197     }
198     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
199         NVMeRequest *req = &q->reqs[i];
200         req->cid = i + 1;
201         req->prp_list_page = q->prp_list_pages + i * s->page_size;
202         req->prp_list_iova = prp_list_iova + i * s->page_size;
203     }
204     nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
205     if (local_err) {
206         error_propagate(errp, local_err);
207         goto fail;
208     }
209     q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
210 
211     nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
212     if (local_err) {
213         error_propagate(errp, local_err);
214         goto fail;
215     }
216     q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
217 
218     return q;
219 fail:
220     nvme_free_queue_pair(bs, q);
221     return NULL;
222 }
223 
224 /* With q->lock */
225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
226 {
227     if (s->plugged || !q->need_kick) {
228         return;
229     }
230     trace_nvme_kick(s, q->index);
231     assert(!(q->sq.tail & 0xFF00));
232     /* Fence the write to submission queue entry before notifying the device. */
233     smp_wmb();
234     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
235     q->inflight += q->need_kick;
236     q->need_kick = 0;
237 }
238 
239 /* Find a free request element if any, otherwise:
240  * a) if in coroutine context, try to wait for one to become available;
241  * b) if not in coroutine, return NULL;
242  */
243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
244 {
245     int i;
246     NVMeRequest *req = NULL;
247 
248     qemu_mutex_lock(&q->lock);
249     while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
250         /* We have to leave one slot empty as that is the full queue case (head
251          * == tail + 1). */
252         if (qemu_in_coroutine()) {
253             trace_nvme_free_req_queue_wait(q);
254             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
255         } else {
256             qemu_mutex_unlock(&q->lock);
257             return NULL;
258         }
259     }
260     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
261         if (!q->reqs[i].busy) {
262             q->reqs[i].busy = true;
263             req = &q->reqs[i];
264             break;
265         }
266     }
267     /* We have checked inflight and need_kick while holding q->lock, so one
268      * free req must be available. */
269     assert(req);
270     qemu_mutex_unlock(&q->lock);
271     return req;
272 }
273 
274 static inline int nvme_translate_error(const NvmeCqe *c)
275 {
276     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
277     if (status) {
278         trace_nvme_error(le32_to_cpu(c->result),
279                          le16_to_cpu(c->sq_head),
280                          le16_to_cpu(c->sq_id),
281                          le16_to_cpu(c->cid),
282                          le16_to_cpu(status));
283     }
284     switch (status) {
285     case 0:
286         return 0;
287     case 1:
288         return -ENOSYS;
289     case 2:
290         return -EINVAL;
291     default:
292         return -EIO;
293     }
294 }
295 
296 /* With q->lock */
297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
298 {
299     bool progress = false;
300     NVMeRequest *preq;
301     NVMeRequest req;
302     NvmeCqe *c;
303 
304     trace_nvme_process_completion(s, q->index, q->inflight);
305     if (q->busy || s->plugged) {
306         trace_nvme_process_completion_queue_busy(s, q->index);
307         return false;
308     }
309     q->busy = true;
310     assert(q->inflight >= 0);
311     while (q->inflight) {
312         int16_t cid;
313         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
314         if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
315             break;
316         }
317         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
318         if (!q->cq.head) {
319             q->cq_phase = !q->cq_phase;
320         }
321         cid = le16_to_cpu(c->cid);
322         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
323             fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
324                     cid);
325             continue;
326         }
327         assert(cid <= NVME_QUEUE_SIZE);
328         trace_nvme_complete_command(s, q->index, cid);
329         preq = &q->reqs[cid - 1];
330         req = *preq;
331         assert(req.cid == cid);
332         assert(req.cb);
333         preq->busy = false;
334         preq->cb = preq->opaque = NULL;
335         qemu_mutex_unlock(&q->lock);
336         req.cb(req.opaque, nvme_translate_error(c));
337         qemu_mutex_lock(&q->lock);
338         c->cid = cpu_to_le16(0);
339         q->inflight--;
340         /* Flip Phase Tag bit. */
341         c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
342         progress = true;
343     }
344     if (progress) {
345         /* Notify the device so it can post more completions. */
346         smp_mb_release();
347         *q->cq.doorbell = cpu_to_le32(q->cq.head);
348         if (!qemu_co_queue_empty(&q->free_req_queue)) {
349             aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
350         }
351     }
352     q->busy = false;
353     return progress;
354 }
355 
356 static void nvme_trace_command(const NvmeCmd *cmd)
357 {
358     int i;
359 
360     for (i = 0; i < 8; ++i) {
361         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
362         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
363                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
364     }
365 }
366 
367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
368                                 NVMeRequest *req,
369                                 NvmeCmd *cmd, BlockCompletionFunc cb,
370                                 void *opaque)
371 {
372     assert(!req->cb);
373     req->cb = cb;
374     req->opaque = opaque;
375     cmd->cid = cpu_to_le32(req->cid);
376 
377     trace_nvme_submit_command(s, q->index, req->cid);
378     nvme_trace_command(cmd);
379     qemu_mutex_lock(&q->lock);
380     memcpy((uint8_t *)q->sq.queue +
381            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
382     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
383     q->need_kick++;
384     nvme_kick(s, q);
385     nvme_process_completion(s, q);
386     qemu_mutex_unlock(&q->lock);
387 }
388 
389 static void nvme_cmd_sync_cb(void *opaque, int ret)
390 {
391     int *pret = opaque;
392     *pret = ret;
393     aio_wait_kick();
394 }
395 
396 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
397                          NvmeCmd *cmd)
398 {
399     NVMeRequest *req;
400     BDRVNVMeState *s = bs->opaque;
401     int ret = -EINPROGRESS;
402     req = nvme_get_free_req(q);
403     if (!req) {
404         return -EBUSY;
405     }
406     nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
407 
408     BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
409     return ret;
410 }
411 
412 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
413 {
414     BDRVNVMeState *s = bs->opaque;
415     NvmeIdCtrl *idctrl;
416     NvmeIdNs *idns;
417     uint8_t *resp;
418     int r;
419     uint64_t iova;
420     NvmeCmd cmd = {
421         .opcode = NVME_ADM_CMD_IDENTIFY,
422         .cdw10 = cpu_to_le32(0x1),
423     };
424 
425     resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
426     if (!resp) {
427         error_setg(errp, "Cannot allocate buffer for identify response");
428         goto out;
429     }
430     idctrl = (NvmeIdCtrl *)resp;
431     idns = (NvmeIdNs *)resp;
432     r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
433     if (r) {
434         error_setg(errp, "Cannot map buffer for DMA");
435         goto out;
436     }
437     cmd.prp1 = cpu_to_le64(iova);
438 
439     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
440         error_setg(errp, "Failed to identify controller");
441         goto out;
442     }
443 
444     if (le32_to_cpu(idctrl->nn) < namespace) {
445         error_setg(errp, "Invalid namespace");
446         goto out;
447     }
448     s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
449     s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
450     /* For now the page list buffer per command is one page, to hold at most
451      * s->page_size / sizeof(uint64_t) entries. */
452     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
453                           s->page_size / sizeof(uint64_t) * s->page_size);
454 
455     memset(resp, 0, 4096);
456 
457     cmd.cdw10 = 0;
458     cmd.nsid = cpu_to_le32(namespace);
459     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
460         error_setg(errp, "Failed to identify namespace");
461         goto out;
462     }
463 
464     s->nsze = le64_to_cpu(idns->nsze);
465 
466 out:
467     qemu_vfio_dma_unmap(s->vfio, resp);
468     qemu_vfree(resp);
469 }
470 
471 static bool nvme_poll_queues(BDRVNVMeState *s)
472 {
473     bool progress = false;
474     int i;
475 
476     for (i = 0; i < s->nr_queues; i++) {
477         NVMeQueuePair *q = s->queues[i];
478         qemu_mutex_lock(&q->lock);
479         while (nvme_process_completion(s, q)) {
480             /* Keep polling */
481             progress = true;
482         }
483         qemu_mutex_unlock(&q->lock);
484     }
485     return progress;
486 }
487 
488 static void nvme_handle_event(EventNotifier *n)
489 {
490     BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
491 
492     trace_nvme_handle_event(s);
493     event_notifier_test_and_clear(n);
494     nvme_poll_queues(s);
495 }
496 
497 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
498 {
499     BDRVNVMeState *s = bs->opaque;
500     int n = s->nr_queues;
501     NVMeQueuePair *q;
502     NvmeCmd cmd;
503     int queue_size = NVME_QUEUE_SIZE;
504 
505     q = nvme_create_queue_pair(bs, n, queue_size, errp);
506     if (!q) {
507         return false;
508     }
509     cmd = (NvmeCmd) {
510         .opcode = NVME_ADM_CMD_CREATE_CQ,
511         .prp1 = cpu_to_le64(q->cq.iova),
512         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
513         .cdw11 = cpu_to_le32(0x3),
514     };
515     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
516         error_setg(errp, "Failed to create io queue [%d]", n);
517         nvme_free_queue_pair(bs, q);
518         return false;
519     }
520     cmd = (NvmeCmd) {
521         .opcode = NVME_ADM_CMD_CREATE_SQ,
522         .prp1 = cpu_to_le64(q->sq.iova),
523         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
524         .cdw11 = cpu_to_le32(0x1 | (n << 16)),
525     };
526     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
527         error_setg(errp, "Failed to create io queue [%d]", n);
528         nvme_free_queue_pair(bs, q);
529         return false;
530     }
531     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
532     s->queues[n] = q;
533     s->nr_queues++;
534     return true;
535 }
536 
537 static bool nvme_poll_cb(void *opaque)
538 {
539     EventNotifier *e = opaque;
540     BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
541     bool progress = false;
542 
543     trace_nvme_poll_cb(s);
544     progress = nvme_poll_queues(s);
545     return progress;
546 }
547 
548 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
549                      Error **errp)
550 {
551     BDRVNVMeState *s = bs->opaque;
552     int ret;
553     uint64_t cap;
554     uint64_t timeout_ms;
555     uint64_t deadline, now;
556     Error *local_err = NULL;
557 
558     qemu_co_mutex_init(&s->dma_map_lock);
559     qemu_co_queue_init(&s->dma_flush_queue);
560     s->nsid = namespace;
561     s->aio_context = bdrv_get_aio_context(bs);
562     ret = event_notifier_init(&s->irq_notifier, 0);
563     if (ret) {
564         error_setg(errp, "Failed to init event notifier");
565         return ret;
566     }
567 
568     s->vfio = qemu_vfio_open_pci(device, errp);
569     if (!s->vfio) {
570         ret = -EINVAL;
571         goto out;
572     }
573 
574     s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
575     if (!s->regs) {
576         ret = -EINVAL;
577         goto out;
578     }
579 
580     /* Perform initialize sequence as described in NVMe spec "7.6.1
581      * Initialization". */
582 
583     cap = le64_to_cpu(s->regs->cap);
584     if (!(cap & (1ULL << 37))) {
585         error_setg(errp, "Device doesn't support NVMe command set");
586         ret = -EINVAL;
587         goto out;
588     }
589 
590     s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
591     s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
592     bs->bl.opt_mem_alignment = s->page_size;
593     timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
594 
595     /* Reset device to get a clean state. */
596     s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
597     /* Wait for CSTS.RDY = 0. */
598     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
599     while (le32_to_cpu(s->regs->csts) & 0x1) {
600         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
601             error_setg(errp, "Timeout while waiting for device to reset (%"
602                              PRId64 " ms)",
603                        timeout_ms);
604             ret = -ETIMEDOUT;
605             goto out;
606         }
607     }
608 
609     /* Set up admin queue. */
610     s->queues = g_new(NVMeQueuePair *, 1);
611     s->nr_queues = 1;
612     s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
613     if (!s->queues[0]) {
614         ret = -EINVAL;
615         goto out;
616     }
617     QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
618     s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
619     s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
620     s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
621 
622     /* After setting up all control registers we can enable device now. */
623     s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
624                               (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
625                               0x1);
626     /* Wait for CSTS.RDY = 1. */
627     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
628     deadline = now + timeout_ms * 1000000;
629     while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
630         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
631             error_setg(errp, "Timeout while waiting for device to start (%"
632                              PRId64 " ms)",
633                        timeout_ms);
634             ret = -ETIMEDOUT;
635             goto out;
636         }
637     }
638 
639     ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
640                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
641     if (ret) {
642         goto out;
643     }
644     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
645                            false, nvme_handle_event, nvme_poll_cb);
646 
647     nvme_identify(bs, namespace, &local_err);
648     if (local_err) {
649         error_propagate(errp, local_err);
650         ret = -EIO;
651         goto out;
652     }
653 
654     /* Set up command queues. */
655     if (!nvme_add_io_queue(bs, errp)) {
656         ret = -EIO;
657     }
658 out:
659     /* Cleaning up is done in nvme_file_open() upon error. */
660     return ret;
661 }
662 
663 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
664  *
665  *     nvme://0000:44:00.0/1
666  *
667  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
668  * is the PCI address, and the last part is the namespace number starting from
669  * 1 according to the NVMe spec. */
670 static void nvme_parse_filename(const char *filename, QDict *options,
671                                 Error **errp)
672 {
673     int pref = strlen("nvme://");
674 
675     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
676         const char *tmp = filename + pref;
677         char *device;
678         const char *namespace;
679         unsigned long ns;
680         const char *slash = strchr(tmp, '/');
681         if (!slash) {
682             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
683             return;
684         }
685         device = g_strndup(tmp, slash - tmp);
686         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
687         g_free(device);
688         namespace = slash + 1;
689         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
690             error_setg(errp, "Invalid namespace '%s', positive number expected",
691                        namespace);
692             return;
693         }
694         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
695                       *namespace ? namespace : "1");
696     }
697 }
698 
699 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
700                                            Error **errp)
701 {
702     int ret;
703     BDRVNVMeState *s = bs->opaque;
704     NvmeCmd cmd = {
705         .opcode = NVME_ADM_CMD_SET_FEATURES,
706         .nsid = cpu_to_le32(s->nsid),
707         .cdw10 = cpu_to_le32(0x06),
708         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
709     };
710 
711     ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
712     if (ret) {
713         error_setg(errp, "Failed to configure NVMe write cache");
714     }
715     return ret;
716 }
717 
718 static void nvme_close(BlockDriverState *bs)
719 {
720     int i;
721     BDRVNVMeState *s = bs->opaque;
722 
723     for (i = 0; i < s->nr_queues; ++i) {
724         nvme_free_queue_pair(bs, s->queues[i]);
725     }
726     g_free(s->queues);
727     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
728                            false, NULL, NULL);
729     event_notifier_cleanup(&s->irq_notifier);
730     qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
731     qemu_vfio_close(s->vfio);
732 }
733 
734 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
735                           Error **errp)
736 {
737     const char *device;
738     QemuOpts *opts;
739     int namespace;
740     int ret;
741     BDRVNVMeState *s = bs->opaque;
742 
743     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
744     qemu_opts_absorb_qdict(opts, options, &error_abort);
745     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
746     if (!device) {
747         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
748         qemu_opts_del(opts);
749         return -EINVAL;
750     }
751 
752     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
753     ret = nvme_init(bs, device, namespace, errp);
754     qemu_opts_del(opts);
755     if (ret) {
756         goto fail;
757     }
758     if (flags & BDRV_O_NOCACHE) {
759         if (!s->write_cache_supported) {
760             error_setg(errp,
761                        "NVMe controller doesn't support write cache configuration");
762             ret = -EINVAL;
763         } else {
764             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
765                                                   errp);
766         }
767         if (ret) {
768             goto fail;
769         }
770     }
771     bs->supported_write_flags = BDRV_REQ_FUA;
772     return 0;
773 fail:
774     nvme_close(bs);
775     return ret;
776 }
777 
778 static int64_t nvme_getlength(BlockDriverState *bs)
779 {
780     BDRVNVMeState *s = bs->opaque;
781 
782     return s->nsze << BDRV_SECTOR_BITS;
783 }
784 
785 /* Called with s->dma_map_lock */
786 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
787                                             QEMUIOVector *qiov)
788 {
789     int r = 0;
790     BDRVNVMeState *s = bs->opaque;
791 
792     s->dma_map_count -= qiov->size;
793     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
794         r = qemu_vfio_dma_reset_temporary(s->vfio);
795         if (!r) {
796             qemu_co_queue_restart_all(&s->dma_flush_queue);
797         }
798     }
799     return r;
800 }
801 
802 /* Called with s->dma_map_lock */
803 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
804                                           NVMeRequest *req, QEMUIOVector *qiov)
805 {
806     BDRVNVMeState *s = bs->opaque;
807     uint64_t *pagelist = req->prp_list_page;
808     int i, j, r;
809     int entries = 0;
810 
811     assert(qiov->size);
812     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
813     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
814     for (i = 0; i < qiov->niov; ++i) {
815         bool retry = true;
816         uint64_t iova;
817 try_map:
818         r = qemu_vfio_dma_map(s->vfio,
819                               qiov->iov[i].iov_base,
820                               qiov->iov[i].iov_len,
821                               true, &iova);
822         if (r == -ENOMEM && retry) {
823             retry = false;
824             trace_nvme_dma_flush_queue_wait(s);
825             if (s->dma_map_count) {
826                 trace_nvme_dma_map_flush(s);
827                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
828             } else {
829                 r = qemu_vfio_dma_reset_temporary(s->vfio);
830                 if (r) {
831                     goto fail;
832                 }
833             }
834             goto try_map;
835         }
836         if (r) {
837             goto fail;
838         }
839 
840         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
841             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
842         }
843         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
844                                     qiov->iov[i].iov_len / s->page_size);
845     }
846 
847     s->dma_map_count += qiov->size;
848 
849     assert(entries <= s->page_size / sizeof(uint64_t));
850     switch (entries) {
851     case 0:
852         abort();
853     case 1:
854         cmd->prp1 = pagelist[0];
855         cmd->prp2 = 0;
856         break;
857     case 2:
858         cmd->prp1 = pagelist[0];
859         cmd->prp2 = pagelist[1];
860         break;
861     default:
862         cmd->prp1 = pagelist[0];
863         cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
864         break;
865     }
866     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
867     for (i = 0; i < entries; ++i) {
868         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
869     }
870     return 0;
871 fail:
872     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
873      * increment s->dma_map_count. This is okay for fixed mapping memory areas
874      * because they are already mapped before calling this function; for
875      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
876      * calling qemu_vfio_dma_reset_temporary when necessary. */
877     return r;
878 }
879 
880 typedef struct {
881     Coroutine *co;
882     int ret;
883     AioContext *ctx;
884 } NVMeCoData;
885 
886 static void nvme_rw_cb_bh(void *opaque)
887 {
888     NVMeCoData *data = opaque;
889     qemu_coroutine_enter(data->co);
890 }
891 
892 static void nvme_rw_cb(void *opaque, int ret)
893 {
894     NVMeCoData *data = opaque;
895     data->ret = ret;
896     if (!data->co) {
897         /* The rw coroutine hasn't yielded, don't try to enter. */
898         return;
899     }
900     aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
901 }
902 
903 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
904                                             uint64_t offset, uint64_t bytes,
905                                             QEMUIOVector *qiov,
906                                             bool is_write,
907                                             int flags)
908 {
909     int r;
910     BDRVNVMeState *s = bs->opaque;
911     NVMeQueuePair *ioq = s->queues[1];
912     NVMeRequest *req;
913     uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
914                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
915     NvmeCmd cmd = {
916         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
917         .nsid = cpu_to_le32(s->nsid),
918         .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
919         .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
920         .cdw12 = cpu_to_le32(cdw12),
921     };
922     NVMeCoData data = {
923         .ctx = bdrv_get_aio_context(bs),
924         .ret = -EINPROGRESS,
925     };
926 
927     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
928     assert(s->nr_queues > 1);
929     req = nvme_get_free_req(ioq);
930     assert(req);
931 
932     qemu_co_mutex_lock(&s->dma_map_lock);
933     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
934     qemu_co_mutex_unlock(&s->dma_map_lock);
935     if (r) {
936         req->busy = false;
937         return r;
938     }
939     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
940 
941     data.co = qemu_coroutine_self();
942     while (data.ret == -EINPROGRESS) {
943         qemu_coroutine_yield();
944     }
945 
946     qemu_co_mutex_lock(&s->dma_map_lock);
947     r = nvme_cmd_unmap_qiov(bs, qiov);
948     qemu_co_mutex_unlock(&s->dma_map_lock);
949     if (r) {
950         return r;
951     }
952 
953     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
954     return data.ret;
955 }
956 
957 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
958                                      const QEMUIOVector *qiov)
959 {
960     int i;
961     BDRVNVMeState *s = bs->opaque;
962 
963     for (i = 0; i < qiov->niov; ++i) {
964         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
965             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
966             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
967                                       qiov->iov[i].iov_len, s->page_size);
968             return false;
969         }
970     }
971     return true;
972 }
973 
974 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
975                        QEMUIOVector *qiov, bool is_write, int flags)
976 {
977     BDRVNVMeState *s = bs->opaque;
978     int r;
979     uint8_t *buf = NULL;
980     QEMUIOVector local_qiov;
981 
982     assert(QEMU_IS_ALIGNED(offset, s->page_size));
983     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
984     assert(bytes <= s->max_transfer);
985     if (nvme_qiov_aligned(bs, qiov)) {
986         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
987     }
988     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
989     buf = qemu_try_blockalign(bs, bytes);
990 
991     if (!buf) {
992         return -ENOMEM;
993     }
994     qemu_iovec_init(&local_qiov, 1);
995     if (is_write) {
996         qemu_iovec_to_buf(qiov, 0, buf, bytes);
997     }
998     qemu_iovec_add(&local_qiov, buf, bytes);
999     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1000     qemu_iovec_destroy(&local_qiov);
1001     if (!r && !is_write) {
1002         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1003     }
1004     qemu_vfree(buf);
1005     return r;
1006 }
1007 
1008 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1009                                        uint64_t offset, uint64_t bytes,
1010                                        QEMUIOVector *qiov, int flags)
1011 {
1012     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1013 }
1014 
1015 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1016                                         uint64_t offset, uint64_t bytes,
1017                                         QEMUIOVector *qiov, int flags)
1018 {
1019     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1020 }
1021 
1022 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1023 {
1024     BDRVNVMeState *s = bs->opaque;
1025     NVMeQueuePair *ioq = s->queues[1];
1026     NVMeRequest *req;
1027     NvmeCmd cmd = {
1028         .opcode = NVME_CMD_FLUSH,
1029         .nsid = cpu_to_le32(s->nsid),
1030     };
1031     NVMeCoData data = {
1032         .ctx = bdrv_get_aio_context(bs),
1033         .ret = -EINPROGRESS,
1034     };
1035 
1036     assert(s->nr_queues > 1);
1037     req = nvme_get_free_req(ioq);
1038     assert(req);
1039     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1040 
1041     data.co = qemu_coroutine_self();
1042     if (data.ret == -EINPROGRESS) {
1043         qemu_coroutine_yield();
1044     }
1045 
1046     return data.ret;
1047 }
1048 
1049 
1050 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1051                                BlockReopenQueue *queue, Error **errp)
1052 {
1053     return 0;
1054 }
1055 
1056 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1057 {
1058     qdict_del(opts, "filename");
1059 
1060     if (!qdict_size(opts)) {
1061         snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1062                  bs->drv->format_name);
1063     }
1064 
1065     qdict_put_str(opts, "driver", bs->drv->format_name);
1066     bs->full_open_options = qobject_ref(opts);
1067 }
1068 
1069 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1070 {
1071     BDRVNVMeState *s = bs->opaque;
1072 
1073     bs->bl.opt_mem_alignment = s->page_size;
1074     bs->bl.request_alignment = s->page_size;
1075     bs->bl.max_transfer = s->max_transfer;
1076 }
1077 
1078 static void nvme_detach_aio_context(BlockDriverState *bs)
1079 {
1080     BDRVNVMeState *s = bs->opaque;
1081 
1082     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1083                            false, NULL, NULL);
1084 }
1085 
1086 static void nvme_attach_aio_context(BlockDriverState *bs,
1087                                     AioContext *new_context)
1088 {
1089     BDRVNVMeState *s = bs->opaque;
1090 
1091     s->aio_context = new_context;
1092     aio_set_event_notifier(new_context, &s->irq_notifier,
1093                            false, nvme_handle_event, nvme_poll_cb);
1094 }
1095 
1096 static void nvme_aio_plug(BlockDriverState *bs)
1097 {
1098     BDRVNVMeState *s = bs->opaque;
1099     assert(!s->plugged);
1100     s->plugged = true;
1101 }
1102 
1103 static void nvme_aio_unplug(BlockDriverState *bs)
1104 {
1105     int i;
1106     BDRVNVMeState *s = bs->opaque;
1107     assert(s->plugged);
1108     s->plugged = false;
1109     for (i = 1; i < s->nr_queues; i++) {
1110         NVMeQueuePair *q = s->queues[i];
1111         qemu_mutex_lock(&q->lock);
1112         nvme_kick(s, q);
1113         nvme_process_completion(s, q);
1114         qemu_mutex_unlock(&q->lock);
1115     }
1116 }
1117 
1118 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1119 {
1120     int ret;
1121     BDRVNVMeState *s = bs->opaque;
1122 
1123     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1124     if (ret) {
1125         /* FIXME: we may run out of IOVA addresses after repeated
1126          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1127          * doesn't reclaim addresses for fixed mappings. */
1128         error_report("nvme_register_buf failed: %s", strerror(-ret));
1129     }
1130 }
1131 
1132 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1133 {
1134     BDRVNVMeState *s = bs->opaque;
1135 
1136     qemu_vfio_dma_unmap(s->vfio, host);
1137 }
1138 
1139 static BlockDriver bdrv_nvme = {
1140     .format_name              = "nvme",
1141     .protocol_name            = "nvme",
1142     .instance_size            = sizeof(BDRVNVMeState),
1143 
1144     .bdrv_parse_filename      = nvme_parse_filename,
1145     .bdrv_file_open           = nvme_file_open,
1146     .bdrv_close               = nvme_close,
1147     .bdrv_getlength           = nvme_getlength,
1148 
1149     .bdrv_co_preadv           = nvme_co_preadv,
1150     .bdrv_co_pwritev          = nvme_co_pwritev,
1151     .bdrv_co_flush_to_disk    = nvme_co_flush,
1152     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1153 
1154     .bdrv_refresh_filename    = nvme_refresh_filename,
1155     .bdrv_refresh_limits      = nvme_refresh_limits,
1156 
1157     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1158     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1159 
1160     .bdrv_io_plug             = nvme_aio_plug,
1161     .bdrv_io_unplug           = nvme_aio_unplug,
1162 
1163     .bdrv_register_buf        = nvme_register_buf,
1164     .bdrv_unregister_buf      = nvme_unregister_buf,
1165 };
1166 
1167 static void bdrv_nvme_init(void)
1168 {
1169     bdrv_register(&bdrv_nvme);
1170 }
1171 
1172 block_init(bdrv_nvme_init);
1173