xref: /openbmc/qemu/block/mirror.c (revision 4c25f365)
1 /*
2  * Image mirroring
3  *
4  * Copyright Red Hat, Inc. 2012
5  *
6  * Authors:
7  *  Paolo Bonzini  <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
10  * See the COPYING.LIB file in the top-level directory.
11  *
12  */
13 
14 #include "trace.h"
15 #include "block/blockjob.h"
16 #include "block/block_int.h"
17 #include "qemu/ratelimit.h"
18 #include "qemu/bitmap.h"
19 
20 #define SLICE_TIME    100000000ULL /* ns */
21 #define MAX_IN_FLIGHT 16
22 
23 /* The mirroring buffer is a list of granularity-sized chunks.
24  * Free chunks are organized in a list.
25  */
26 typedef struct MirrorBuffer {
27     QSIMPLEQ_ENTRY(MirrorBuffer) next;
28 } MirrorBuffer;
29 
30 typedef struct MirrorBlockJob {
31     BlockJob common;
32     RateLimit limit;
33     BlockDriverState *target;
34     MirrorSyncMode mode;
35     BlockdevOnError on_source_error, on_target_error;
36     bool synced;
37     bool should_complete;
38     int64_t sector_num;
39     int64_t granularity;
40     size_t buf_size;
41     unsigned long *cow_bitmap;
42     BdrvDirtyBitmap *dirty_bitmap;
43     HBitmapIter hbi;
44     uint8_t *buf;
45     QSIMPLEQ_HEAD(, MirrorBuffer) buf_free;
46     int buf_free_count;
47 
48     unsigned long *in_flight_bitmap;
49     int in_flight;
50     int ret;
51 } MirrorBlockJob;
52 
53 typedef struct MirrorOp {
54     MirrorBlockJob *s;
55     QEMUIOVector qiov;
56     int64_t sector_num;
57     int nb_sectors;
58 } MirrorOp;
59 
60 static BlockErrorAction mirror_error_action(MirrorBlockJob *s, bool read,
61                                             int error)
62 {
63     s->synced = false;
64     if (read) {
65         return block_job_error_action(&s->common, s->common.bs,
66                                       s->on_source_error, true, error);
67     } else {
68         return block_job_error_action(&s->common, s->target,
69                                       s->on_target_error, false, error);
70     }
71 }
72 
73 static void mirror_iteration_done(MirrorOp *op, int ret)
74 {
75     MirrorBlockJob *s = op->s;
76     struct iovec *iov;
77     int64_t chunk_num;
78     int i, nb_chunks, sectors_per_chunk;
79 
80     trace_mirror_iteration_done(s, op->sector_num, op->nb_sectors, ret);
81 
82     s->in_flight--;
83     iov = op->qiov.iov;
84     for (i = 0; i < op->qiov.niov; i++) {
85         MirrorBuffer *buf = (MirrorBuffer *) iov[i].iov_base;
86         QSIMPLEQ_INSERT_TAIL(&s->buf_free, buf, next);
87         s->buf_free_count++;
88     }
89 
90     sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
91     chunk_num = op->sector_num / sectors_per_chunk;
92     nb_chunks = op->nb_sectors / sectors_per_chunk;
93     bitmap_clear(s->in_flight_bitmap, chunk_num, nb_chunks);
94     if (s->cow_bitmap && ret >= 0) {
95         bitmap_set(s->cow_bitmap, chunk_num, nb_chunks);
96     }
97 
98     g_slice_free(MirrorOp, op);
99     qemu_coroutine_enter(s->common.co, NULL);
100 }
101 
102 static void mirror_write_complete(void *opaque, int ret)
103 {
104     MirrorOp *op = opaque;
105     MirrorBlockJob *s = op->s;
106     if (ret < 0) {
107         BlockDriverState *source = s->common.bs;
108         BlockErrorAction action;
109 
110         bdrv_set_dirty(source, op->sector_num, op->nb_sectors);
111         action = mirror_error_action(s, false, -ret);
112         if (action == BDRV_ACTION_REPORT && s->ret >= 0) {
113             s->ret = ret;
114         }
115     }
116     mirror_iteration_done(op, ret);
117 }
118 
119 static void mirror_read_complete(void *opaque, int ret)
120 {
121     MirrorOp *op = opaque;
122     MirrorBlockJob *s = op->s;
123     if (ret < 0) {
124         BlockDriverState *source = s->common.bs;
125         BlockErrorAction action;
126 
127         bdrv_set_dirty(source, op->sector_num, op->nb_sectors);
128         action = mirror_error_action(s, true, -ret);
129         if (action == BDRV_ACTION_REPORT && s->ret >= 0) {
130             s->ret = ret;
131         }
132 
133         mirror_iteration_done(op, ret);
134         return;
135     }
136     bdrv_aio_writev(s->target, op->sector_num, &op->qiov, op->nb_sectors,
137                     mirror_write_complete, op);
138 }
139 
140 static void coroutine_fn mirror_iteration(MirrorBlockJob *s)
141 {
142     BlockDriverState *source = s->common.bs;
143     int nb_sectors, sectors_per_chunk, nb_chunks;
144     int64_t end, sector_num, next_chunk, next_sector, hbitmap_next_sector;
145     MirrorOp *op;
146 
147     s->sector_num = hbitmap_iter_next(&s->hbi);
148     if (s->sector_num < 0) {
149         bdrv_dirty_iter_init(source, s->dirty_bitmap, &s->hbi);
150         s->sector_num = hbitmap_iter_next(&s->hbi);
151         trace_mirror_restart_iter(s,
152                                   bdrv_get_dirty_count(source, s->dirty_bitmap));
153         assert(s->sector_num >= 0);
154     }
155 
156     hbitmap_next_sector = s->sector_num;
157     sector_num = s->sector_num;
158     sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
159     end = s->common.len >> BDRV_SECTOR_BITS;
160 
161     /* Extend the QEMUIOVector to include all adjacent blocks that will
162      * be copied in this operation.
163      *
164      * We have to do this if we have no backing file yet in the destination,
165      * and the cluster size is very large.  Then we need to do COW ourselves.
166      * The first time a cluster is copied, copy it entirely.  Note that,
167      * because both the granularity and the cluster size are powers of two,
168      * the number of sectors to copy cannot exceed one cluster.
169      *
170      * We also want to extend the QEMUIOVector to include more adjacent
171      * dirty blocks if possible, to limit the number of I/O operations and
172      * run efficiently even with a small granularity.
173      */
174     nb_chunks = 0;
175     nb_sectors = 0;
176     next_sector = sector_num;
177     next_chunk = sector_num / sectors_per_chunk;
178 
179     /* Wait for I/O to this cluster (from a previous iteration) to be done.  */
180     while (test_bit(next_chunk, s->in_flight_bitmap)) {
181         trace_mirror_yield_in_flight(s, sector_num, s->in_flight);
182         qemu_coroutine_yield();
183     }
184 
185     do {
186         int added_sectors, added_chunks;
187 
188         if (!bdrv_get_dirty(source, s->dirty_bitmap, next_sector) ||
189             test_bit(next_chunk, s->in_flight_bitmap)) {
190             assert(nb_sectors > 0);
191             break;
192         }
193 
194         added_sectors = sectors_per_chunk;
195         if (s->cow_bitmap && !test_bit(next_chunk, s->cow_bitmap)) {
196             bdrv_round_to_clusters(s->target,
197                                    next_sector, added_sectors,
198                                    &next_sector, &added_sectors);
199 
200             /* On the first iteration, the rounding may make us copy
201              * sectors before the first dirty one.
202              */
203             if (next_sector < sector_num) {
204                 assert(nb_sectors == 0);
205                 sector_num = next_sector;
206                 next_chunk = next_sector / sectors_per_chunk;
207             }
208         }
209 
210         added_sectors = MIN(added_sectors, end - (sector_num + nb_sectors));
211         added_chunks = (added_sectors + sectors_per_chunk - 1) / sectors_per_chunk;
212 
213         /* When doing COW, it may happen that there is not enough space for
214          * a full cluster.  Wait if that is the case.
215          */
216         while (nb_chunks == 0 && s->buf_free_count < added_chunks) {
217             trace_mirror_yield_buf_busy(s, nb_chunks, s->in_flight);
218             qemu_coroutine_yield();
219         }
220         if (s->buf_free_count < nb_chunks + added_chunks) {
221             trace_mirror_break_buf_busy(s, nb_chunks, s->in_flight);
222             break;
223         }
224 
225         /* We have enough free space to copy these sectors.  */
226         bitmap_set(s->in_flight_bitmap, next_chunk, added_chunks);
227 
228         nb_sectors += added_sectors;
229         nb_chunks += added_chunks;
230         next_sector += added_sectors;
231         next_chunk += added_chunks;
232     } while (next_sector < end);
233 
234     /* Allocate a MirrorOp that is used as an AIO callback.  */
235     op = g_slice_new(MirrorOp);
236     op->s = s;
237     op->sector_num = sector_num;
238     op->nb_sectors = nb_sectors;
239 
240     /* Now make a QEMUIOVector taking enough granularity-sized chunks
241      * from s->buf_free.
242      */
243     qemu_iovec_init(&op->qiov, nb_chunks);
244     next_sector = sector_num;
245     while (nb_chunks-- > 0) {
246         MirrorBuffer *buf = QSIMPLEQ_FIRST(&s->buf_free);
247         QSIMPLEQ_REMOVE_HEAD(&s->buf_free, next);
248         s->buf_free_count--;
249         qemu_iovec_add(&op->qiov, buf, s->granularity);
250 
251         /* Advance the HBitmapIter in parallel, so that we do not examine
252          * the same sector twice.
253          */
254         if (next_sector > hbitmap_next_sector
255             && bdrv_get_dirty(source, s->dirty_bitmap, next_sector)) {
256             hbitmap_next_sector = hbitmap_iter_next(&s->hbi);
257         }
258 
259         next_sector += sectors_per_chunk;
260     }
261 
262     bdrv_reset_dirty(source, sector_num, nb_sectors);
263 
264     /* Copy the dirty cluster.  */
265     s->in_flight++;
266     trace_mirror_one_iteration(s, sector_num, nb_sectors);
267     bdrv_aio_readv(source, sector_num, &op->qiov, nb_sectors,
268                    mirror_read_complete, op);
269 }
270 
271 static void mirror_free_init(MirrorBlockJob *s)
272 {
273     int granularity = s->granularity;
274     size_t buf_size = s->buf_size;
275     uint8_t *buf = s->buf;
276 
277     assert(s->buf_free_count == 0);
278     QSIMPLEQ_INIT(&s->buf_free);
279     while (buf_size != 0) {
280         MirrorBuffer *cur = (MirrorBuffer *)buf;
281         QSIMPLEQ_INSERT_TAIL(&s->buf_free, cur, next);
282         s->buf_free_count++;
283         buf_size -= granularity;
284         buf += granularity;
285     }
286 }
287 
288 static void mirror_drain(MirrorBlockJob *s)
289 {
290     while (s->in_flight > 0) {
291         qemu_coroutine_yield();
292     }
293 }
294 
295 static void coroutine_fn mirror_run(void *opaque)
296 {
297     MirrorBlockJob *s = opaque;
298     BlockDriverState *bs = s->common.bs;
299     int64_t sector_num, end, sectors_per_chunk, length;
300     uint64_t last_pause_ns;
301     BlockDriverInfo bdi;
302     char backing_filename[1024];
303     int ret = 0;
304     int n;
305 
306     if (block_job_is_cancelled(&s->common)) {
307         goto immediate_exit;
308     }
309 
310     s->common.len = bdrv_getlength(bs);
311     if (s->common.len <= 0) {
312         block_job_completed(&s->common, s->common.len);
313         return;
314     }
315 
316     length = (bdrv_getlength(bs) + s->granularity - 1) / s->granularity;
317     s->in_flight_bitmap = bitmap_new(length);
318 
319     /* If we have no backing file yet in the destination, we cannot let
320      * the destination do COW.  Instead, we copy sectors around the
321      * dirty data if needed.  We need a bitmap to do that.
322      */
323     bdrv_get_backing_filename(s->target, backing_filename,
324                               sizeof(backing_filename));
325     if (backing_filename[0] && !s->target->backing_hd) {
326         bdrv_get_info(s->target, &bdi);
327         if (s->granularity < bdi.cluster_size) {
328             s->buf_size = MAX(s->buf_size, bdi.cluster_size);
329             s->cow_bitmap = bitmap_new(length);
330         }
331     }
332 
333     end = s->common.len >> BDRV_SECTOR_BITS;
334     s->buf = qemu_blockalign(bs, s->buf_size);
335     sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
336     mirror_free_init(s);
337 
338     if (s->mode != MIRROR_SYNC_MODE_NONE) {
339         /* First part, loop on the sectors and initialize the dirty bitmap.  */
340         BlockDriverState *base;
341         base = s->mode == MIRROR_SYNC_MODE_FULL ? NULL : bs->backing_hd;
342         for (sector_num = 0; sector_num < end; ) {
343             int64_t next = (sector_num | (sectors_per_chunk - 1)) + 1;
344             ret = bdrv_is_allocated_above(bs, base,
345                                           sector_num, next - sector_num, &n);
346 
347             if (ret < 0) {
348                 goto immediate_exit;
349             }
350 
351             assert(n > 0);
352             if (ret == 1) {
353                 bdrv_set_dirty(bs, sector_num, n);
354                 sector_num = next;
355             } else {
356                 sector_num += n;
357             }
358         }
359     }
360 
361     bdrv_dirty_iter_init(bs, s->dirty_bitmap, &s->hbi);
362     last_pause_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
363     for (;;) {
364         uint64_t delay_ns;
365         int64_t cnt;
366         bool should_complete;
367 
368         if (s->ret < 0) {
369             ret = s->ret;
370             goto immediate_exit;
371         }
372 
373         cnt = bdrv_get_dirty_count(bs, s->dirty_bitmap);
374 
375         /* Note that even when no rate limit is applied we need to yield
376          * periodically with no pending I/O so that qemu_aio_flush() returns.
377          * We do so every SLICE_TIME nanoseconds, or when there is an error,
378          * or when the source is clean, whichever comes first.
379          */
380         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - last_pause_ns < SLICE_TIME &&
381             s->common.iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
382             if (s->in_flight == MAX_IN_FLIGHT || s->buf_free_count == 0 ||
383                 (cnt == 0 && s->in_flight > 0)) {
384                 trace_mirror_yield(s, s->in_flight, s->buf_free_count, cnt);
385                 qemu_coroutine_yield();
386                 continue;
387             } else if (cnt != 0) {
388                 mirror_iteration(s);
389                 continue;
390             }
391         }
392 
393         should_complete = false;
394         if (s->in_flight == 0 && cnt == 0) {
395             trace_mirror_before_flush(s);
396             ret = bdrv_flush(s->target);
397             if (ret < 0) {
398                 if (mirror_error_action(s, false, -ret) == BDRV_ACTION_REPORT) {
399                     goto immediate_exit;
400                 }
401             } else {
402                 /* We're out of the streaming phase.  From now on, if the job
403                  * is cancelled we will actually complete all pending I/O and
404                  * report completion.  This way, block-job-cancel will leave
405                  * the target in a consistent state.
406                  */
407                 s->common.offset = end * BDRV_SECTOR_SIZE;
408                 if (!s->synced) {
409                     block_job_ready(&s->common);
410                     s->synced = true;
411                 }
412 
413                 should_complete = s->should_complete ||
414                     block_job_is_cancelled(&s->common);
415                 cnt = bdrv_get_dirty_count(bs, s->dirty_bitmap);
416             }
417         }
418 
419         if (cnt == 0 && should_complete) {
420             /* The dirty bitmap is not updated while operations are pending.
421              * If we're about to exit, wait for pending operations before
422              * calling bdrv_get_dirty_count(bs), or we may exit while the
423              * source has dirty data to copy!
424              *
425              * Note that I/O can be submitted by the guest while
426              * mirror_populate runs.
427              */
428             trace_mirror_before_drain(s, cnt);
429             bdrv_drain_all();
430             cnt = bdrv_get_dirty_count(bs, s->dirty_bitmap);
431         }
432 
433         ret = 0;
434         trace_mirror_before_sleep(s, cnt, s->synced);
435         if (!s->synced) {
436             /* Publish progress */
437             s->common.offset = (end - cnt) * BDRV_SECTOR_SIZE;
438 
439             if (s->common.speed) {
440                 delay_ns = ratelimit_calculate_delay(&s->limit, sectors_per_chunk);
441             } else {
442                 delay_ns = 0;
443             }
444 
445             block_job_sleep_ns(&s->common, QEMU_CLOCK_REALTIME, delay_ns);
446             if (block_job_is_cancelled(&s->common)) {
447                 break;
448             }
449         } else if (!should_complete) {
450             delay_ns = (s->in_flight == 0 && cnt == 0 ? SLICE_TIME : 0);
451             block_job_sleep_ns(&s->common, QEMU_CLOCK_REALTIME, delay_ns);
452         } else if (cnt == 0) {
453             /* The two disks are in sync.  Exit and report successful
454              * completion.
455              */
456             assert(QLIST_EMPTY(&bs->tracked_requests));
457             s->common.cancelled = false;
458             break;
459         }
460         last_pause_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
461     }
462 
463 immediate_exit:
464     if (s->in_flight > 0) {
465         /* We get here only if something went wrong.  Either the job failed,
466          * or it was cancelled prematurely so that we do not guarantee that
467          * the target is a copy of the source.
468          */
469         assert(ret < 0 || (!s->synced && block_job_is_cancelled(&s->common)));
470         mirror_drain(s);
471     }
472 
473     assert(s->in_flight == 0);
474     qemu_vfree(s->buf);
475     g_free(s->cow_bitmap);
476     g_free(s->in_flight_bitmap);
477     bdrv_release_dirty_bitmap(bs, s->dirty_bitmap);
478     bdrv_iostatus_disable(s->target);
479     if (s->should_complete && ret == 0) {
480         if (bdrv_get_flags(s->target) != bdrv_get_flags(s->common.bs)) {
481             bdrv_reopen(s->target, bdrv_get_flags(s->common.bs), NULL);
482         }
483         bdrv_swap(s->target, s->common.bs);
484     }
485     bdrv_close(s->target);
486     bdrv_unref(s->target);
487     block_job_completed(&s->common, ret);
488 }
489 
490 static void mirror_set_speed(BlockJob *job, int64_t speed, Error **errp)
491 {
492     MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
493 
494     if (speed < 0) {
495         error_set(errp, QERR_INVALID_PARAMETER, "speed");
496         return;
497     }
498     ratelimit_set_speed(&s->limit, speed / BDRV_SECTOR_SIZE, SLICE_TIME);
499 }
500 
501 static void mirror_iostatus_reset(BlockJob *job)
502 {
503     MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
504 
505     bdrv_iostatus_reset(s->target);
506 }
507 
508 static void mirror_complete(BlockJob *job, Error **errp)
509 {
510     MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
511     Error *local_err = NULL;
512     int ret;
513 
514     ret = bdrv_open_backing_file(s->target, NULL, &local_err);
515     if (ret < 0) {
516         char backing_filename[PATH_MAX];
517         bdrv_get_full_backing_filename(s->target, backing_filename,
518                                        sizeof(backing_filename));
519         error_propagate(errp, local_err);
520         return;
521     }
522     if (!s->synced) {
523         error_set(errp, QERR_BLOCK_JOB_NOT_READY, job->bs->device_name);
524         return;
525     }
526 
527     s->should_complete = true;
528     block_job_resume(job);
529 }
530 
531 static const BlockJobDriver mirror_job_driver = {
532     .instance_size = sizeof(MirrorBlockJob),
533     .job_type      = BLOCK_JOB_TYPE_MIRROR,
534     .set_speed     = mirror_set_speed,
535     .iostatus_reset= mirror_iostatus_reset,
536     .complete      = mirror_complete,
537 };
538 
539 void mirror_start(BlockDriverState *bs, BlockDriverState *target,
540                   int64_t speed, int64_t granularity, int64_t buf_size,
541                   MirrorSyncMode mode, BlockdevOnError on_source_error,
542                   BlockdevOnError on_target_error,
543                   BlockDriverCompletionFunc *cb,
544                   void *opaque, Error **errp)
545 {
546     MirrorBlockJob *s;
547 
548     if (granularity == 0) {
549         /* Choose the default granularity based on the target file's cluster
550          * size, clamped between 4k and 64k.  */
551         BlockDriverInfo bdi;
552         if (bdrv_get_info(target, &bdi) >= 0 && bdi.cluster_size != 0) {
553             granularity = MAX(4096, bdi.cluster_size);
554             granularity = MIN(65536, granularity);
555         } else {
556             granularity = 65536;
557         }
558     }
559 
560     assert ((granularity & (granularity - 1)) == 0);
561 
562     if ((on_source_error == BLOCKDEV_ON_ERROR_STOP ||
563          on_source_error == BLOCKDEV_ON_ERROR_ENOSPC) &&
564         !bdrv_iostatus_is_enabled(bs)) {
565         error_set(errp, QERR_INVALID_PARAMETER, "on-source-error");
566         return;
567     }
568 
569     s = block_job_create(&mirror_job_driver, bs, speed, cb, opaque, errp);
570     if (!s) {
571         return;
572     }
573 
574     s->on_source_error = on_source_error;
575     s->on_target_error = on_target_error;
576     s->target = target;
577     s->mode = mode;
578     s->granularity = granularity;
579     s->buf_size = MAX(buf_size, granularity);
580 
581     s->dirty_bitmap = bdrv_create_dirty_bitmap(bs, granularity);
582     bdrv_set_enable_write_cache(s->target, true);
583     bdrv_set_on_error(s->target, on_target_error, on_target_error);
584     bdrv_iostatus_enable(s->target);
585     s->common.co = qemu_coroutine_create(mirror_run);
586     trace_mirror_start(bs, s, s->common.co, opaque);
587     qemu_coroutine_enter(s->common.co, s);
588 }
589