1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 39 40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 41 int64_t offset, int bytes, BdrvRequestFlags flags); 42 43 void bdrv_parent_drained_begin(BlockDriverState *bs) 44 { 45 BdrvChild *c, *next; 46 47 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 48 if (c->role->drained_begin) { 49 c->role->drained_begin(c); 50 } 51 } 52 } 53 54 void bdrv_parent_drained_end(BlockDriverState *bs) 55 { 56 BdrvChild *c, *next; 57 58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 59 if (c->role->drained_end) { 60 c->role->drained_end(c); 61 } 62 } 63 } 64 65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 66 { 67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 70 src->opt_mem_alignment); 71 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 72 src->min_mem_alignment); 73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 74 } 75 76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 77 { 78 BlockDriver *drv = bs->drv; 79 Error *local_err = NULL; 80 81 memset(&bs->bl, 0, sizeof(bs->bl)); 82 83 if (!drv) { 84 return; 85 } 86 87 /* Default alignment based on whether driver has byte interface */ 88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 89 90 /* Take some limits from the children as a default */ 91 if (bs->file) { 92 bdrv_refresh_limits(bs->file->bs, &local_err); 93 if (local_err) { 94 error_propagate(errp, local_err); 95 return; 96 } 97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 98 } else { 99 bs->bl.min_mem_alignment = 512; 100 bs->bl.opt_mem_alignment = getpagesize(); 101 102 /* Safe default since most protocols use readv()/writev()/etc */ 103 bs->bl.max_iov = IOV_MAX; 104 } 105 106 if (bs->backing) { 107 bdrv_refresh_limits(bs->backing->bs, &local_err); 108 if (local_err) { 109 error_propagate(errp, local_err); 110 return; 111 } 112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 113 } 114 115 /* Then let the driver override it */ 116 if (drv->bdrv_refresh_limits) { 117 drv->bdrv_refresh_limits(bs, errp); 118 } 119 } 120 121 /** 122 * The copy-on-read flag is actually a reference count so multiple users may 123 * use the feature without worrying about clobbering its previous state. 124 * Copy-on-read stays enabled until all users have called to disable it. 125 */ 126 void bdrv_enable_copy_on_read(BlockDriverState *bs) 127 { 128 atomic_inc(&bs->copy_on_read); 129 } 130 131 void bdrv_disable_copy_on_read(BlockDriverState *bs) 132 { 133 int old = atomic_fetch_dec(&bs->copy_on_read); 134 assert(old >= 1); 135 } 136 137 /* Check if any requests are in-flight (including throttled requests) */ 138 bool bdrv_requests_pending(BlockDriverState *bs) 139 { 140 BdrvChild *child; 141 142 if (atomic_read(&bs->in_flight)) { 143 return true; 144 } 145 146 QLIST_FOREACH(child, &bs->children, next) { 147 if (bdrv_requests_pending(child->bs)) { 148 return true; 149 } 150 } 151 152 return false; 153 } 154 155 typedef struct { 156 Coroutine *co; 157 BlockDriverState *bs; 158 bool done; 159 bool begin; 160 } BdrvCoDrainData; 161 162 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 163 { 164 BdrvCoDrainData *data = opaque; 165 BlockDriverState *bs = data->bs; 166 167 if (data->begin) { 168 bs->drv->bdrv_co_drain_begin(bs); 169 } else { 170 bs->drv->bdrv_co_drain_end(bs); 171 } 172 173 /* Set data->done before reading bs->wakeup. */ 174 atomic_mb_set(&data->done, true); 175 bdrv_wakeup(bs); 176 } 177 178 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 179 { 180 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin}; 181 182 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 183 (!begin && !bs->drv->bdrv_co_drain_end)) { 184 return; 185 } 186 187 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); 188 bdrv_coroutine_enter(bs, data.co); 189 BDRV_POLL_WHILE(bs, !data.done); 190 } 191 192 static bool bdrv_drain_recurse(BlockDriverState *bs, bool begin) 193 { 194 BdrvChild *child, *tmp; 195 bool waited; 196 197 /* Ensure any pending metadata writes are submitted to bs->file. */ 198 bdrv_drain_invoke(bs, begin); 199 200 /* Wait for drained requests to finish */ 201 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 202 203 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 204 BlockDriverState *bs = child->bs; 205 bool in_main_loop = 206 qemu_get_current_aio_context() == qemu_get_aio_context(); 207 assert(bs->refcnt > 0); 208 if (in_main_loop) { 209 /* In case the recursive bdrv_drain_recurse processes a 210 * block_job_defer_to_main_loop BH and modifies the graph, 211 * let's hold a reference to bs until we are done. 212 * 213 * IOThread doesn't have such a BH, and it is not safe to call 214 * bdrv_unref without BQL, so skip doing it there. 215 */ 216 bdrv_ref(bs); 217 } 218 waited |= bdrv_drain_recurse(bs, begin); 219 if (in_main_loop) { 220 bdrv_unref(bs); 221 } 222 } 223 224 return waited; 225 } 226 227 static void bdrv_co_drain_bh_cb(void *opaque) 228 { 229 BdrvCoDrainData *data = opaque; 230 Coroutine *co = data->co; 231 BlockDriverState *bs = data->bs; 232 233 bdrv_dec_in_flight(bs); 234 if (data->begin) { 235 bdrv_drained_begin(bs); 236 } else { 237 bdrv_drained_end(bs); 238 } 239 240 data->done = true; 241 aio_co_wake(co); 242 } 243 244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 245 bool begin) 246 { 247 BdrvCoDrainData data; 248 249 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 250 * other coroutines run if they were queued from 251 * qemu_co_queue_run_restart(). */ 252 253 assert(qemu_in_coroutine()); 254 data = (BdrvCoDrainData) { 255 .co = qemu_coroutine_self(), 256 .bs = bs, 257 .done = false, 258 .begin = begin, 259 }; 260 bdrv_inc_in_flight(bs); 261 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 262 bdrv_co_drain_bh_cb, &data); 263 264 qemu_coroutine_yield(); 265 /* If we are resumed from some other event (such as an aio completion or a 266 * timer callback), it is a bug in the caller that should be fixed. */ 267 assert(data.done); 268 } 269 270 void bdrv_drained_begin(BlockDriverState *bs) 271 { 272 if (qemu_in_coroutine()) { 273 bdrv_co_yield_to_drain(bs, true); 274 return; 275 } 276 277 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 278 aio_disable_external(bdrv_get_aio_context(bs)); 279 bdrv_parent_drained_begin(bs); 280 } 281 282 bdrv_drain_recurse(bs, true); 283 } 284 285 void bdrv_drained_end(BlockDriverState *bs) 286 { 287 if (qemu_in_coroutine()) { 288 bdrv_co_yield_to_drain(bs, false); 289 return; 290 } 291 assert(bs->quiesce_counter > 0); 292 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 293 return; 294 } 295 296 bdrv_parent_drained_end(bs); 297 bdrv_drain_recurse(bs, false); 298 aio_enable_external(bdrv_get_aio_context(bs)); 299 } 300 301 /* 302 * Wait for pending requests to complete on a single BlockDriverState subtree, 303 * and suspend block driver's internal I/O until next request arrives. 304 * 305 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 306 * AioContext. 307 * 308 * Only this BlockDriverState's AioContext is run, so in-flight requests must 309 * not depend on events in other AioContexts. In that case, use 310 * bdrv_drain_all() instead. 311 */ 312 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 313 { 314 assert(qemu_in_coroutine()); 315 bdrv_drained_begin(bs); 316 bdrv_drained_end(bs); 317 } 318 319 void bdrv_drain(BlockDriverState *bs) 320 { 321 bdrv_drained_begin(bs); 322 bdrv_drained_end(bs); 323 } 324 325 /* 326 * Wait for pending requests to complete across all BlockDriverStates 327 * 328 * This function does not flush data to disk, use bdrv_flush_all() for that 329 * after calling this function. 330 * 331 * This pauses all block jobs and disables external clients. It must 332 * be paired with bdrv_drain_all_end(). 333 * 334 * NOTE: no new block jobs or BlockDriverStates can be created between 335 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 336 */ 337 void bdrv_drain_all_begin(void) 338 { 339 /* Always run first iteration so any pending completion BHs run */ 340 bool waited = true; 341 BlockDriverState *bs; 342 BdrvNextIterator it; 343 GSList *aio_ctxs = NULL, *ctx; 344 345 block_job_pause_all(); 346 347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 348 AioContext *aio_context = bdrv_get_aio_context(bs); 349 350 aio_context_acquire(aio_context); 351 bdrv_parent_drained_begin(bs); 352 aio_disable_external(aio_context); 353 aio_context_release(aio_context); 354 355 if (!g_slist_find(aio_ctxs, aio_context)) { 356 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 357 } 358 } 359 360 /* Note that completion of an asynchronous I/O operation can trigger any 361 * number of other I/O operations on other devices---for example a 362 * coroutine can submit an I/O request to another device in response to 363 * request completion. Therefore we must keep looping until there was no 364 * more activity rather than simply draining each device independently. 365 */ 366 while (waited) { 367 waited = false; 368 369 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 370 AioContext *aio_context = ctx->data; 371 372 aio_context_acquire(aio_context); 373 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 374 if (aio_context == bdrv_get_aio_context(bs)) { 375 waited |= bdrv_drain_recurse(bs, true); 376 } 377 } 378 aio_context_release(aio_context); 379 } 380 } 381 382 g_slist_free(aio_ctxs); 383 } 384 385 void bdrv_drain_all_end(void) 386 { 387 BlockDriverState *bs; 388 BdrvNextIterator it; 389 390 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 391 AioContext *aio_context = bdrv_get_aio_context(bs); 392 393 aio_context_acquire(aio_context); 394 aio_enable_external(aio_context); 395 bdrv_parent_drained_end(bs); 396 bdrv_drain_recurse(bs, false); 397 aio_context_release(aio_context); 398 } 399 400 block_job_resume_all(); 401 } 402 403 void bdrv_drain_all(void) 404 { 405 bdrv_drain_all_begin(); 406 bdrv_drain_all_end(); 407 } 408 409 /** 410 * Remove an active request from the tracked requests list 411 * 412 * This function should be called when a tracked request is completing. 413 */ 414 static void tracked_request_end(BdrvTrackedRequest *req) 415 { 416 if (req->serialising) { 417 atomic_dec(&req->bs->serialising_in_flight); 418 } 419 420 qemu_co_mutex_lock(&req->bs->reqs_lock); 421 QLIST_REMOVE(req, list); 422 qemu_co_queue_restart_all(&req->wait_queue); 423 qemu_co_mutex_unlock(&req->bs->reqs_lock); 424 } 425 426 /** 427 * Add an active request to the tracked requests list 428 */ 429 static void tracked_request_begin(BdrvTrackedRequest *req, 430 BlockDriverState *bs, 431 int64_t offset, 432 unsigned int bytes, 433 enum BdrvTrackedRequestType type) 434 { 435 *req = (BdrvTrackedRequest){ 436 .bs = bs, 437 .offset = offset, 438 .bytes = bytes, 439 .type = type, 440 .co = qemu_coroutine_self(), 441 .serialising = false, 442 .overlap_offset = offset, 443 .overlap_bytes = bytes, 444 }; 445 446 qemu_co_queue_init(&req->wait_queue); 447 448 qemu_co_mutex_lock(&bs->reqs_lock); 449 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 450 qemu_co_mutex_unlock(&bs->reqs_lock); 451 } 452 453 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 454 { 455 int64_t overlap_offset = req->offset & ~(align - 1); 456 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 457 - overlap_offset; 458 459 if (!req->serialising) { 460 atomic_inc(&req->bs->serialising_in_flight); 461 req->serialising = true; 462 } 463 464 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 465 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 466 } 467 468 /** 469 * Round a region to cluster boundaries 470 */ 471 void bdrv_round_to_clusters(BlockDriverState *bs, 472 int64_t offset, int64_t bytes, 473 int64_t *cluster_offset, 474 int64_t *cluster_bytes) 475 { 476 BlockDriverInfo bdi; 477 478 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 479 *cluster_offset = offset; 480 *cluster_bytes = bytes; 481 } else { 482 int64_t c = bdi.cluster_size; 483 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 484 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 485 } 486 } 487 488 static int bdrv_get_cluster_size(BlockDriverState *bs) 489 { 490 BlockDriverInfo bdi; 491 int ret; 492 493 ret = bdrv_get_info(bs, &bdi); 494 if (ret < 0 || bdi.cluster_size == 0) { 495 return bs->bl.request_alignment; 496 } else { 497 return bdi.cluster_size; 498 } 499 } 500 501 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 502 int64_t offset, unsigned int bytes) 503 { 504 /* aaaa bbbb */ 505 if (offset >= req->overlap_offset + req->overlap_bytes) { 506 return false; 507 } 508 /* bbbb aaaa */ 509 if (req->overlap_offset >= offset + bytes) { 510 return false; 511 } 512 return true; 513 } 514 515 void bdrv_inc_in_flight(BlockDriverState *bs) 516 { 517 atomic_inc(&bs->in_flight); 518 } 519 520 static void dummy_bh_cb(void *opaque) 521 { 522 } 523 524 void bdrv_wakeup(BlockDriverState *bs) 525 { 526 /* The barrier (or an atomic op) is in the caller. */ 527 if (atomic_read(&bs->wakeup)) { 528 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 529 } 530 } 531 532 void bdrv_dec_in_flight(BlockDriverState *bs) 533 { 534 atomic_dec(&bs->in_flight); 535 bdrv_wakeup(bs); 536 } 537 538 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 539 { 540 BlockDriverState *bs = self->bs; 541 BdrvTrackedRequest *req; 542 bool retry; 543 bool waited = false; 544 545 if (!atomic_read(&bs->serialising_in_flight)) { 546 return false; 547 } 548 549 do { 550 retry = false; 551 qemu_co_mutex_lock(&bs->reqs_lock); 552 QLIST_FOREACH(req, &bs->tracked_requests, list) { 553 if (req == self || (!req->serialising && !self->serialising)) { 554 continue; 555 } 556 if (tracked_request_overlaps(req, self->overlap_offset, 557 self->overlap_bytes)) 558 { 559 /* Hitting this means there was a reentrant request, for 560 * example, a block driver issuing nested requests. This must 561 * never happen since it means deadlock. 562 */ 563 assert(qemu_coroutine_self() != req->co); 564 565 /* If the request is already (indirectly) waiting for us, or 566 * will wait for us as soon as it wakes up, then just go on 567 * (instead of producing a deadlock in the former case). */ 568 if (!req->waiting_for) { 569 self->waiting_for = req; 570 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 571 self->waiting_for = NULL; 572 retry = true; 573 waited = true; 574 break; 575 } 576 } 577 } 578 qemu_co_mutex_unlock(&bs->reqs_lock); 579 } while (retry); 580 581 return waited; 582 } 583 584 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 585 size_t size) 586 { 587 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 588 return -EIO; 589 } 590 591 if (!bdrv_is_inserted(bs)) { 592 return -ENOMEDIUM; 593 } 594 595 if (offset < 0) { 596 return -EIO; 597 } 598 599 return 0; 600 } 601 602 typedef struct RwCo { 603 BdrvChild *child; 604 int64_t offset; 605 QEMUIOVector *qiov; 606 bool is_write; 607 int ret; 608 BdrvRequestFlags flags; 609 } RwCo; 610 611 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 612 { 613 RwCo *rwco = opaque; 614 615 if (!rwco->is_write) { 616 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 617 rwco->qiov->size, rwco->qiov, 618 rwco->flags); 619 } else { 620 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 621 rwco->qiov->size, rwco->qiov, 622 rwco->flags); 623 } 624 } 625 626 /* 627 * Process a vectored synchronous request using coroutines 628 */ 629 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 630 QEMUIOVector *qiov, bool is_write, 631 BdrvRequestFlags flags) 632 { 633 Coroutine *co; 634 RwCo rwco = { 635 .child = child, 636 .offset = offset, 637 .qiov = qiov, 638 .is_write = is_write, 639 .ret = NOT_DONE, 640 .flags = flags, 641 }; 642 643 if (qemu_in_coroutine()) { 644 /* Fast-path if already in coroutine context */ 645 bdrv_rw_co_entry(&rwco); 646 } else { 647 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 648 bdrv_coroutine_enter(child->bs, co); 649 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 650 } 651 return rwco.ret; 652 } 653 654 /* 655 * Process a synchronous request using coroutines 656 */ 657 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 658 int nb_sectors, bool is_write, BdrvRequestFlags flags) 659 { 660 QEMUIOVector qiov; 661 struct iovec iov = { 662 .iov_base = (void *)buf, 663 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 664 }; 665 666 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 667 return -EINVAL; 668 } 669 670 qemu_iovec_init_external(&qiov, &iov, 1); 671 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 672 &qiov, is_write, flags); 673 } 674 675 /* return < 0 if error. See bdrv_write() for the return codes */ 676 int bdrv_read(BdrvChild *child, int64_t sector_num, 677 uint8_t *buf, int nb_sectors) 678 { 679 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 680 } 681 682 /* Return < 0 if error. Important errors are: 683 -EIO generic I/O error (may happen for all errors) 684 -ENOMEDIUM No media inserted. 685 -EINVAL Invalid sector number or nb_sectors 686 -EACCES Trying to write a read-only device 687 */ 688 int bdrv_write(BdrvChild *child, int64_t sector_num, 689 const uint8_t *buf, int nb_sectors) 690 { 691 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 692 } 693 694 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 695 int bytes, BdrvRequestFlags flags) 696 { 697 QEMUIOVector qiov; 698 struct iovec iov = { 699 .iov_base = NULL, 700 .iov_len = bytes, 701 }; 702 703 qemu_iovec_init_external(&qiov, &iov, 1); 704 return bdrv_prwv_co(child, offset, &qiov, true, 705 BDRV_REQ_ZERO_WRITE | flags); 706 } 707 708 /* 709 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 710 * The operation is sped up by checking the block status and only writing 711 * zeroes to the device if they currently do not return zeroes. Optional 712 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 713 * BDRV_REQ_FUA). 714 * 715 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 716 */ 717 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 718 { 719 int ret; 720 int64_t target_size, bytes, offset = 0; 721 BlockDriverState *bs = child->bs; 722 723 target_size = bdrv_getlength(bs); 724 if (target_size < 0) { 725 return target_size; 726 } 727 728 for (;;) { 729 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 730 if (bytes <= 0) { 731 return 0; 732 } 733 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 734 if (ret < 0) { 735 error_report("error getting block status at offset %" PRId64 ": %s", 736 offset, strerror(-ret)); 737 return ret; 738 } 739 if (ret & BDRV_BLOCK_ZERO) { 740 offset += bytes; 741 continue; 742 } 743 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 744 if (ret < 0) { 745 error_report("error writing zeroes at offset %" PRId64 ": %s", 746 offset, strerror(-ret)); 747 return ret; 748 } 749 offset += bytes; 750 } 751 } 752 753 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 754 { 755 int ret; 756 757 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 758 if (ret < 0) { 759 return ret; 760 } 761 762 return qiov->size; 763 } 764 765 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 766 { 767 QEMUIOVector qiov; 768 struct iovec iov = { 769 .iov_base = (void *)buf, 770 .iov_len = bytes, 771 }; 772 773 if (bytes < 0) { 774 return -EINVAL; 775 } 776 777 qemu_iovec_init_external(&qiov, &iov, 1); 778 return bdrv_preadv(child, offset, &qiov); 779 } 780 781 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 782 { 783 int ret; 784 785 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 786 if (ret < 0) { 787 return ret; 788 } 789 790 return qiov->size; 791 } 792 793 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 794 { 795 QEMUIOVector qiov; 796 struct iovec iov = { 797 .iov_base = (void *) buf, 798 .iov_len = bytes, 799 }; 800 801 if (bytes < 0) { 802 return -EINVAL; 803 } 804 805 qemu_iovec_init_external(&qiov, &iov, 1); 806 return bdrv_pwritev(child, offset, &qiov); 807 } 808 809 /* 810 * Writes to the file and ensures that no writes are reordered across this 811 * request (acts as a barrier) 812 * 813 * Returns 0 on success, -errno in error cases. 814 */ 815 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 816 const void *buf, int count) 817 { 818 int ret; 819 820 ret = bdrv_pwrite(child, offset, buf, count); 821 if (ret < 0) { 822 return ret; 823 } 824 825 ret = bdrv_flush(child->bs); 826 if (ret < 0) { 827 return ret; 828 } 829 830 return 0; 831 } 832 833 typedef struct CoroutineIOCompletion { 834 Coroutine *coroutine; 835 int ret; 836 } CoroutineIOCompletion; 837 838 static void bdrv_co_io_em_complete(void *opaque, int ret) 839 { 840 CoroutineIOCompletion *co = opaque; 841 842 co->ret = ret; 843 aio_co_wake(co->coroutine); 844 } 845 846 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 847 uint64_t offset, uint64_t bytes, 848 QEMUIOVector *qiov, int flags) 849 { 850 BlockDriver *drv = bs->drv; 851 int64_t sector_num; 852 unsigned int nb_sectors; 853 854 assert(!(flags & ~BDRV_REQ_MASK)); 855 856 if (!drv) { 857 return -ENOMEDIUM; 858 } 859 860 if (drv->bdrv_co_preadv) { 861 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 862 } 863 864 sector_num = offset >> BDRV_SECTOR_BITS; 865 nb_sectors = bytes >> BDRV_SECTOR_BITS; 866 867 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 868 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 869 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 870 871 if (drv->bdrv_co_readv) { 872 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 873 } else { 874 BlockAIOCB *acb; 875 CoroutineIOCompletion co = { 876 .coroutine = qemu_coroutine_self(), 877 }; 878 879 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 880 bdrv_co_io_em_complete, &co); 881 if (acb == NULL) { 882 return -EIO; 883 } else { 884 qemu_coroutine_yield(); 885 return co.ret; 886 } 887 } 888 } 889 890 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 891 uint64_t offset, uint64_t bytes, 892 QEMUIOVector *qiov, int flags) 893 { 894 BlockDriver *drv = bs->drv; 895 int64_t sector_num; 896 unsigned int nb_sectors; 897 int ret; 898 899 assert(!(flags & ~BDRV_REQ_MASK)); 900 901 if (!drv) { 902 return -ENOMEDIUM; 903 } 904 905 if (drv->bdrv_co_pwritev) { 906 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 907 flags & bs->supported_write_flags); 908 flags &= ~bs->supported_write_flags; 909 goto emulate_flags; 910 } 911 912 sector_num = offset >> BDRV_SECTOR_BITS; 913 nb_sectors = bytes >> BDRV_SECTOR_BITS; 914 915 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 916 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 917 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 918 919 if (drv->bdrv_co_writev_flags) { 920 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 921 flags & bs->supported_write_flags); 922 flags &= ~bs->supported_write_flags; 923 } else if (drv->bdrv_co_writev) { 924 assert(!bs->supported_write_flags); 925 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 926 } else { 927 BlockAIOCB *acb; 928 CoroutineIOCompletion co = { 929 .coroutine = qemu_coroutine_self(), 930 }; 931 932 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 933 bdrv_co_io_em_complete, &co); 934 if (acb == NULL) { 935 ret = -EIO; 936 } else { 937 qemu_coroutine_yield(); 938 ret = co.ret; 939 } 940 } 941 942 emulate_flags: 943 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 944 ret = bdrv_co_flush(bs); 945 } 946 947 return ret; 948 } 949 950 static int coroutine_fn 951 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 952 uint64_t bytes, QEMUIOVector *qiov) 953 { 954 BlockDriver *drv = bs->drv; 955 956 if (!drv) { 957 return -ENOMEDIUM; 958 } 959 960 if (!drv->bdrv_co_pwritev_compressed) { 961 return -ENOTSUP; 962 } 963 964 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 965 } 966 967 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 968 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 969 { 970 BlockDriverState *bs = child->bs; 971 972 /* Perform I/O through a temporary buffer so that users who scribble over 973 * their read buffer while the operation is in progress do not end up 974 * modifying the image file. This is critical for zero-copy guest I/O 975 * where anything might happen inside guest memory. 976 */ 977 void *bounce_buffer; 978 979 BlockDriver *drv = bs->drv; 980 struct iovec iov; 981 QEMUIOVector local_qiov; 982 int64_t cluster_offset; 983 int64_t cluster_bytes; 984 size_t skip_bytes; 985 int ret; 986 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 987 BDRV_REQUEST_MAX_BYTES); 988 unsigned int progress = 0; 989 990 if (!drv) { 991 return -ENOMEDIUM; 992 } 993 994 /* FIXME We cannot require callers to have write permissions when all they 995 * are doing is a read request. If we did things right, write permissions 996 * would be obtained anyway, but internally by the copy-on-read code. As 997 * long as it is implemented here rather than in a separate filter driver, 998 * the copy-on-read code doesn't have its own BdrvChild, however, for which 999 * it could request permissions. Therefore we have to bypass the permission 1000 * system for the moment. */ 1001 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1002 1003 /* Cover entire cluster so no additional backing file I/O is required when 1004 * allocating cluster in the image file. Note that this value may exceed 1005 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1006 * is one reason we loop rather than doing it all at once. 1007 */ 1008 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1009 skip_bytes = offset - cluster_offset; 1010 1011 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1012 cluster_offset, cluster_bytes); 1013 1014 bounce_buffer = qemu_try_blockalign(bs, 1015 MIN(MIN(max_transfer, cluster_bytes), 1016 MAX_BOUNCE_BUFFER)); 1017 if (bounce_buffer == NULL) { 1018 ret = -ENOMEM; 1019 goto err; 1020 } 1021 1022 while (cluster_bytes) { 1023 int64_t pnum; 1024 1025 ret = bdrv_is_allocated(bs, cluster_offset, 1026 MIN(cluster_bytes, max_transfer), &pnum); 1027 if (ret < 0) { 1028 /* Safe to treat errors in querying allocation as if 1029 * unallocated; we'll probably fail again soon on the 1030 * read, but at least that will set a decent errno. 1031 */ 1032 pnum = MIN(cluster_bytes, max_transfer); 1033 } 1034 1035 assert(skip_bytes < pnum); 1036 1037 if (ret <= 0) { 1038 /* Must copy-on-read; use the bounce buffer */ 1039 iov.iov_base = bounce_buffer; 1040 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1041 qemu_iovec_init_external(&local_qiov, &iov, 1); 1042 1043 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1044 &local_qiov, 0); 1045 if (ret < 0) { 1046 goto err; 1047 } 1048 1049 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1050 if (drv->bdrv_co_pwrite_zeroes && 1051 buffer_is_zero(bounce_buffer, pnum)) { 1052 /* FIXME: Should we (perhaps conditionally) be setting 1053 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1054 * that still correctly reads as zero? */ 1055 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0); 1056 } else { 1057 /* This does not change the data on the disk, it is not 1058 * necessary to flush even in cache=writethrough mode. 1059 */ 1060 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1061 &local_qiov, 0); 1062 } 1063 1064 if (ret < 0) { 1065 /* It might be okay to ignore write errors for guest 1066 * requests. If this is a deliberate copy-on-read 1067 * then we don't want to ignore the error. Simply 1068 * report it in all cases. 1069 */ 1070 goto err; 1071 } 1072 1073 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1074 pnum - skip_bytes); 1075 } else { 1076 /* Read directly into the destination */ 1077 qemu_iovec_init(&local_qiov, qiov->niov); 1078 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1079 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1080 &local_qiov, 0); 1081 qemu_iovec_destroy(&local_qiov); 1082 if (ret < 0) { 1083 goto err; 1084 } 1085 } 1086 1087 cluster_offset += pnum; 1088 cluster_bytes -= pnum; 1089 progress += pnum - skip_bytes; 1090 skip_bytes = 0; 1091 } 1092 ret = 0; 1093 1094 err: 1095 qemu_vfree(bounce_buffer); 1096 return ret; 1097 } 1098 1099 /* 1100 * Forwards an already correctly aligned request to the BlockDriver. This 1101 * handles copy on read, zeroing after EOF, and fragmentation of large 1102 * reads; any other features must be implemented by the caller. 1103 */ 1104 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1105 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1106 int64_t align, QEMUIOVector *qiov, int flags) 1107 { 1108 BlockDriverState *bs = child->bs; 1109 int64_t total_bytes, max_bytes; 1110 int ret = 0; 1111 uint64_t bytes_remaining = bytes; 1112 int max_transfer; 1113 1114 assert(is_power_of_2(align)); 1115 assert((offset & (align - 1)) == 0); 1116 assert((bytes & (align - 1)) == 0); 1117 assert(!qiov || bytes == qiov->size); 1118 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1119 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1120 align); 1121 1122 /* TODO: We would need a per-BDS .supported_read_flags and 1123 * potential fallback support, if we ever implement any read flags 1124 * to pass through to drivers. For now, there aren't any 1125 * passthrough flags. */ 1126 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1127 1128 /* Handle Copy on Read and associated serialisation */ 1129 if (flags & BDRV_REQ_COPY_ON_READ) { 1130 /* If we touch the same cluster it counts as an overlap. This 1131 * guarantees that allocating writes will be serialized and not race 1132 * with each other for the same cluster. For example, in copy-on-read 1133 * it ensures that the CoR read and write operations are atomic and 1134 * guest writes cannot interleave between them. */ 1135 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1136 } 1137 1138 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1139 wait_serialising_requests(req); 1140 } 1141 1142 if (flags & BDRV_REQ_COPY_ON_READ) { 1143 int64_t pnum; 1144 1145 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1146 if (ret < 0) { 1147 goto out; 1148 } 1149 1150 if (!ret || pnum != bytes) { 1151 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1152 goto out; 1153 } 1154 } 1155 1156 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1157 total_bytes = bdrv_getlength(bs); 1158 if (total_bytes < 0) { 1159 ret = total_bytes; 1160 goto out; 1161 } 1162 1163 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1164 if (bytes <= max_bytes && bytes <= max_transfer) { 1165 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1166 goto out; 1167 } 1168 1169 while (bytes_remaining) { 1170 int num; 1171 1172 if (max_bytes) { 1173 QEMUIOVector local_qiov; 1174 1175 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1176 assert(num); 1177 qemu_iovec_init(&local_qiov, qiov->niov); 1178 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1179 1180 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1181 num, &local_qiov, 0); 1182 max_bytes -= num; 1183 qemu_iovec_destroy(&local_qiov); 1184 } else { 1185 num = bytes_remaining; 1186 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1187 bytes_remaining); 1188 } 1189 if (ret < 0) { 1190 goto out; 1191 } 1192 bytes_remaining -= num; 1193 } 1194 1195 out: 1196 return ret < 0 ? ret : 0; 1197 } 1198 1199 /* 1200 * Handle a read request in coroutine context 1201 */ 1202 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1203 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1204 BdrvRequestFlags flags) 1205 { 1206 BlockDriverState *bs = child->bs; 1207 BlockDriver *drv = bs->drv; 1208 BdrvTrackedRequest req; 1209 1210 uint64_t align = bs->bl.request_alignment; 1211 uint8_t *head_buf = NULL; 1212 uint8_t *tail_buf = NULL; 1213 QEMUIOVector local_qiov; 1214 bool use_local_qiov = false; 1215 int ret; 1216 1217 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1218 1219 if (!drv) { 1220 return -ENOMEDIUM; 1221 } 1222 1223 ret = bdrv_check_byte_request(bs, offset, bytes); 1224 if (ret < 0) { 1225 return ret; 1226 } 1227 1228 bdrv_inc_in_flight(bs); 1229 1230 /* Don't do copy-on-read if we read data before write operation */ 1231 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1232 flags |= BDRV_REQ_COPY_ON_READ; 1233 } 1234 1235 /* Align read if necessary by padding qiov */ 1236 if (offset & (align - 1)) { 1237 head_buf = qemu_blockalign(bs, align); 1238 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1239 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1240 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1241 use_local_qiov = true; 1242 1243 bytes += offset & (align - 1); 1244 offset = offset & ~(align - 1); 1245 } 1246 1247 if ((offset + bytes) & (align - 1)) { 1248 if (!use_local_qiov) { 1249 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1250 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1251 use_local_qiov = true; 1252 } 1253 tail_buf = qemu_blockalign(bs, align); 1254 qemu_iovec_add(&local_qiov, tail_buf, 1255 align - ((offset + bytes) & (align - 1))); 1256 1257 bytes = ROUND_UP(bytes, align); 1258 } 1259 1260 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1261 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1262 use_local_qiov ? &local_qiov : qiov, 1263 flags); 1264 tracked_request_end(&req); 1265 bdrv_dec_in_flight(bs); 1266 1267 if (use_local_qiov) { 1268 qemu_iovec_destroy(&local_qiov); 1269 qemu_vfree(head_buf); 1270 qemu_vfree(tail_buf); 1271 } 1272 1273 return ret; 1274 } 1275 1276 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1277 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1278 BdrvRequestFlags flags) 1279 { 1280 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1281 return -EINVAL; 1282 } 1283 1284 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1285 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1286 } 1287 1288 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1289 int nb_sectors, QEMUIOVector *qiov) 1290 { 1291 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1292 } 1293 1294 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1295 int64_t offset, int bytes, BdrvRequestFlags flags) 1296 { 1297 BlockDriver *drv = bs->drv; 1298 QEMUIOVector qiov; 1299 struct iovec iov = {0}; 1300 int ret = 0; 1301 bool need_flush = false; 1302 int head = 0; 1303 int tail = 0; 1304 1305 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1306 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1307 bs->bl.request_alignment); 1308 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1309 1310 if (!drv) { 1311 return -ENOMEDIUM; 1312 } 1313 1314 assert(alignment % bs->bl.request_alignment == 0); 1315 head = offset % alignment; 1316 tail = (offset + bytes) % alignment; 1317 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1318 assert(max_write_zeroes >= bs->bl.request_alignment); 1319 1320 while (bytes > 0 && !ret) { 1321 int num = bytes; 1322 1323 /* Align request. Block drivers can expect the "bulk" of the request 1324 * to be aligned, and that unaligned requests do not cross cluster 1325 * boundaries. 1326 */ 1327 if (head) { 1328 /* Make a small request up to the first aligned sector. For 1329 * convenience, limit this request to max_transfer even if 1330 * we don't need to fall back to writes. */ 1331 num = MIN(MIN(bytes, max_transfer), alignment - head); 1332 head = (head + num) % alignment; 1333 assert(num < max_write_zeroes); 1334 } else if (tail && num > alignment) { 1335 /* Shorten the request to the last aligned sector. */ 1336 num -= tail; 1337 } 1338 1339 /* limit request size */ 1340 if (num > max_write_zeroes) { 1341 num = max_write_zeroes; 1342 } 1343 1344 ret = -ENOTSUP; 1345 /* First try the efficient write zeroes operation */ 1346 if (drv->bdrv_co_pwrite_zeroes) { 1347 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1348 flags & bs->supported_zero_flags); 1349 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1350 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1351 need_flush = true; 1352 } 1353 } else { 1354 assert(!bs->supported_zero_flags); 1355 } 1356 1357 if (ret == -ENOTSUP) { 1358 /* Fall back to bounce buffer if write zeroes is unsupported */ 1359 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1360 1361 if ((flags & BDRV_REQ_FUA) && 1362 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1363 /* No need for bdrv_driver_pwrite() to do a fallback 1364 * flush on each chunk; use just one at the end */ 1365 write_flags &= ~BDRV_REQ_FUA; 1366 need_flush = true; 1367 } 1368 num = MIN(num, max_transfer); 1369 iov.iov_len = num; 1370 if (iov.iov_base == NULL) { 1371 iov.iov_base = qemu_try_blockalign(bs, num); 1372 if (iov.iov_base == NULL) { 1373 ret = -ENOMEM; 1374 goto fail; 1375 } 1376 memset(iov.iov_base, 0, num); 1377 } 1378 qemu_iovec_init_external(&qiov, &iov, 1); 1379 1380 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1381 1382 /* Keep bounce buffer around if it is big enough for all 1383 * all future requests. 1384 */ 1385 if (num < max_transfer) { 1386 qemu_vfree(iov.iov_base); 1387 iov.iov_base = NULL; 1388 } 1389 } 1390 1391 offset += num; 1392 bytes -= num; 1393 } 1394 1395 fail: 1396 if (ret == 0 && need_flush) { 1397 ret = bdrv_co_flush(bs); 1398 } 1399 qemu_vfree(iov.iov_base); 1400 return ret; 1401 } 1402 1403 /* 1404 * Forwards an already correctly aligned write request to the BlockDriver, 1405 * after possibly fragmenting it. 1406 */ 1407 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1408 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1409 int64_t align, QEMUIOVector *qiov, int flags) 1410 { 1411 BlockDriverState *bs = child->bs; 1412 BlockDriver *drv = bs->drv; 1413 bool waited; 1414 int ret; 1415 1416 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1417 uint64_t bytes_remaining = bytes; 1418 int max_transfer; 1419 1420 if (!drv) { 1421 return -ENOMEDIUM; 1422 } 1423 1424 if (bdrv_has_readonly_bitmaps(bs)) { 1425 return -EPERM; 1426 } 1427 1428 assert(is_power_of_2(align)); 1429 assert((offset & (align - 1)) == 0); 1430 assert((bytes & (align - 1)) == 0); 1431 assert(!qiov || bytes == qiov->size); 1432 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1433 assert(!(flags & ~BDRV_REQ_MASK)); 1434 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1435 align); 1436 1437 waited = wait_serialising_requests(req); 1438 assert(!waited || !req->serialising); 1439 assert(req->overlap_offset <= offset); 1440 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1441 assert(child->perm & BLK_PERM_WRITE); 1442 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1443 1444 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1445 1446 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1447 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1448 qemu_iovec_is_zero(qiov)) { 1449 flags |= BDRV_REQ_ZERO_WRITE; 1450 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1451 flags |= BDRV_REQ_MAY_UNMAP; 1452 } 1453 } 1454 1455 if (ret < 0) { 1456 /* Do nothing, write notifier decided to fail this request */ 1457 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1458 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1459 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1460 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1461 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1462 } else if (bytes <= max_transfer) { 1463 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1464 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1465 } else { 1466 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1467 while (bytes_remaining) { 1468 int num = MIN(bytes_remaining, max_transfer); 1469 QEMUIOVector local_qiov; 1470 int local_flags = flags; 1471 1472 assert(num); 1473 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1474 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1475 /* If FUA is going to be emulated by flush, we only 1476 * need to flush on the last iteration */ 1477 local_flags &= ~BDRV_REQ_FUA; 1478 } 1479 qemu_iovec_init(&local_qiov, qiov->niov); 1480 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1481 1482 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1483 num, &local_qiov, local_flags); 1484 qemu_iovec_destroy(&local_qiov); 1485 if (ret < 0) { 1486 break; 1487 } 1488 bytes_remaining -= num; 1489 } 1490 } 1491 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1492 1493 atomic_inc(&bs->write_gen); 1494 bdrv_set_dirty(bs, offset, bytes); 1495 1496 stat64_max(&bs->wr_highest_offset, offset + bytes); 1497 1498 if (ret >= 0) { 1499 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1500 ret = 0; 1501 } 1502 1503 return ret; 1504 } 1505 1506 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1507 int64_t offset, 1508 unsigned int bytes, 1509 BdrvRequestFlags flags, 1510 BdrvTrackedRequest *req) 1511 { 1512 BlockDriverState *bs = child->bs; 1513 uint8_t *buf = NULL; 1514 QEMUIOVector local_qiov; 1515 struct iovec iov; 1516 uint64_t align = bs->bl.request_alignment; 1517 unsigned int head_padding_bytes, tail_padding_bytes; 1518 int ret = 0; 1519 1520 head_padding_bytes = offset & (align - 1); 1521 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1522 1523 1524 assert(flags & BDRV_REQ_ZERO_WRITE); 1525 if (head_padding_bytes || tail_padding_bytes) { 1526 buf = qemu_blockalign(bs, align); 1527 iov = (struct iovec) { 1528 .iov_base = buf, 1529 .iov_len = align, 1530 }; 1531 qemu_iovec_init_external(&local_qiov, &iov, 1); 1532 } 1533 if (head_padding_bytes) { 1534 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1535 1536 /* RMW the unaligned part before head. */ 1537 mark_request_serialising(req, align); 1538 wait_serialising_requests(req); 1539 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1540 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1541 align, &local_qiov, 0); 1542 if (ret < 0) { 1543 goto fail; 1544 } 1545 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1546 1547 memset(buf + head_padding_bytes, 0, zero_bytes); 1548 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1549 align, &local_qiov, 1550 flags & ~BDRV_REQ_ZERO_WRITE); 1551 if (ret < 0) { 1552 goto fail; 1553 } 1554 offset += zero_bytes; 1555 bytes -= zero_bytes; 1556 } 1557 1558 assert(!bytes || (offset & (align - 1)) == 0); 1559 if (bytes >= align) { 1560 /* Write the aligned part in the middle. */ 1561 uint64_t aligned_bytes = bytes & ~(align - 1); 1562 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1563 NULL, flags); 1564 if (ret < 0) { 1565 goto fail; 1566 } 1567 bytes -= aligned_bytes; 1568 offset += aligned_bytes; 1569 } 1570 1571 assert(!bytes || (offset & (align - 1)) == 0); 1572 if (bytes) { 1573 assert(align == tail_padding_bytes + bytes); 1574 /* RMW the unaligned part after tail. */ 1575 mark_request_serialising(req, align); 1576 wait_serialising_requests(req); 1577 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1578 ret = bdrv_aligned_preadv(child, req, offset, align, 1579 align, &local_qiov, 0); 1580 if (ret < 0) { 1581 goto fail; 1582 } 1583 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1584 1585 memset(buf, 0, bytes); 1586 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1587 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1588 } 1589 fail: 1590 qemu_vfree(buf); 1591 return ret; 1592 1593 } 1594 1595 /* 1596 * Handle a write request in coroutine context 1597 */ 1598 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1599 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1600 BdrvRequestFlags flags) 1601 { 1602 BlockDriverState *bs = child->bs; 1603 BdrvTrackedRequest req; 1604 uint64_t align = bs->bl.request_alignment; 1605 uint8_t *head_buf = NULL; 1606 uint8_t *tail_buf = NULL; 1607 QEMUIOVector local_qiov; 1608 bool use_local_qiov = false; 1609 int ret; 1610 1611 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1612 1613 if (!bs->drv) { 1614 return -ENOMEDIUM; 1615 } 1616 if (bs->read_only) { 1617 return -EPERM; 1618 } 1619 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1620 1621 ret = bdrv_check_byte_request(bs, offset, bytes); 1622 if (ret < 0) { 1623 return ret; 1624 } 1625 1626 bdrv_inc_in_flight(bs); 1627 /* 1628 * Align write if necessary by performing a read-modify-write cycle. 1629 * Pad qiov with the read parts and be sure to have a tracked request not 1630 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1631 */ 1632 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1633 1634 if (!qiov) { 1635 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1636 goto out; 1637 } 1638 1639 if (offset & (align - 1)) { 1640 QEMUIOVector head_qiov; 1641 struct iovec head_iov; 1642 1643 mark_request_serialising(&req, align); 1644 wait_serialising_requests(&req); 1645 1646 head_buf = qemu_blockalign(bs, align); 1647 head_iov = (struct iovec) { 1648 .iov_base = head_buf, 1649 .iov_len = align, 1650 }; 1651 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1652 1653 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1654 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1655 align, &head_qiov, 0); 1656 if (ret < 0) { 1657 goto fail; 1658 } 1659 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1660 1661 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1662 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1663 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1664 use_local_qiov = true; 1665 1666 bytes += offset & (align - 1); 1667 offset = offset & ~(align - 1); 1668 1669 /* We have read the tail already if the request is smaller 1670 * than one aligned block. 1671 */ 1672 if (bytes < align) { 1673 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1674 bytes = align; 1675 } 1676 } 1677 1678 if ((offset + bytes) & (align - 1)) { 1679 QEMUIOVector tail_qiov; 1680 struct iovec tail_iov; 1681 size_t tail_bytes; 1682 bool waited; 1683 1684 mark_request_serialising(&req, align); 1685 waited = wait_serialising_requests(&req); 1686 assert(!waited || !use_local_qiov); 1687 1688 tail_buf = qemu_blockalign(bs, align); 1689 tail_iov = (struct iovec) { 1690 .iov_base = tail_buf, 1691 .iov_len = align, 1692 }; 1693 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1694 1695 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1696 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1697 align, align, &tail_qiov, 0); 1698 if (ret < 0) { 1699 goto fail; 1700 } 1701 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1702 1703 if (!use_local_qiov) { 1704 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1705 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1706 use_local_qiov = true; 1707 } 1708 1709 tail_bytes = (offset + bytes) & (align - 1); 1710 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1711 1712 bytes = ROUND_UP(bytes, align); 1713 } 1714 1715 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1716 use_local_qiov ? &local_qiov : qiov, 1717 flags); 1718 1719 fail: 1720 1721 if (use_local_qiov) { 1722 qemu_iovec_destroy(&local_qiov); 1723 } 1724 qemu_vfree(head_buf); 1725 qemu_vfree(tail_buf); 1726 out: 1727 tracked_request_end(&req); 1728 bdrv_dec_in_flight(bs); 1729 return ret; 1730 } 1731 1732 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1733 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1734 BdrvRequestFlags flags) 1735 { 1736 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1737 return -EINVAL; 1738 } 1739 1740 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1741 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1742 } 1743 1744 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1745 int nb_sectors, QEMUIOVector *qiov) 1746 { 1747 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1748 } 1749 1750 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1751 int bytes, BdrvRequestFlags flags) 1752 { 1753 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1754 1755 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1756 flags &= ~BDRV_REQ_MAY_UNMAP; 1757 } 1758 1759 return bdrv_co_pwritev(child, offset, bytes, NULL, 1760 BDRV_REQ_ZERO_WRITE | flags); 1761 } 1762 1763 /* 1764 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1765 */ 1766 int bdrv_flush_all(void) 1767 { 1768 BdrvNextIterator it; 1769 BlockDriverState *bs = NULL; 1770 int result = 0; 1771 1772 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1773 AioContext *aio_context = bdrv_get_aio_context(bs); 1774 int ret; 1775 1776 aio_context_acquire(aio_context); 1777 ret = bdrv_flush(bs); 1778 if (ret < 0 && !result) { 1779 result = ret; 1780 } 1781 aio_context_release(aio_context); 1782 } 1783 1784 return result; 1785 } 1786 1787 1788 typedef struct BdrvCoBlockStatusData { 1789 BlockDriverState *bs; 1790 BlockDriverState *base; 1791 bool want_zero; 1792 int64_t offset; 1793 int64_t bytes; 1794 int64_t *pnum; 1795 int64_t *map; 1796 BlockDriverState **file; 1797 int ret; 1798 bool done; 1799 } BdrvCoBlockStatusData; 1800 1801 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs, 1802 int64_t sector_num, 1803 int nb_sectors, 1804 int *pnum, 1805 BlockDriverState **file) 1806 { 1807 assert(bs->file && bs->file->bs); 1808 *pnum = nb_sectors; 1809 *file = bs->file->bs; 1810 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1811 (sector_num << BDRV_SECTOR_BITS); 1812 } 1813 1814 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs, 1815 int64_t sector_num, 1816 int nb_sectors, 1817 int *pnum, 1818 BlockDriverState **file) 1819 { 1820 assert(bs->backing && bs->backing->bs); 1821 *pnum = nb_sectors; 1822 *file = bs->backing->bs; 1823 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1824 (sector_num << BDRV_SECTOR_BITS); 1825 } 1826 1827 /* 1828 * Returns the allocation status of the specified sectors. 1829 * Drivers not implementing the functionality are assumed to not support 1830 * backing files, hence all their sectors are reported as allocated. 1831 * 1832 * If 'want_zero' is true, the caller is querying for mapping purposes, 1833 * and the result should include BDRV_BLOCK_OFFSET_VALID and 1834 * BDRV_BLOCK_ZERO where possible; otherwise, the result may omit those 1835 * bits particularly if it allows for a larger value in 'pnum'. 1836 * 1837 * If 'offset' is beyond the end of the disk image the return value is 1838 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1839 * 1840 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 1841 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1842 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1843 * 1844 * 'pnum' is set to the number of bytes (including and immediately 1845 * following the specified offset) that are easily known to be in the 1846 * same allocated/unallocated state. Note that a second call starting 1847 * at the original offset plus returned pnum may have the same status. 1848 * The returned value is non-zero on success except at end-of-file. 1849 * 1850 * Returns negative errno on failure. Otherwise, if the 1851 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 1852 * set to the host mapping and BDS corresponding to the guest offset. 1853 */ 1854 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 1855 bool want_zero, 1856 int64_t offset, int64_t bytes, 1857 int64_t *pnum, int64_t *map, 1858 BlockDriverState **file) 1859 { 1860 int64_t total_size; 1861 int64_t n; /* bytes */ 1862 int ret; 1863 int64_t local_map = 0; 1864 BlockDriverState *local_file = NULL; 1865 int64_t aligned_offset, aligned_bytes; 1866 uint32_t align; 1867 1868 assert(pnum); 1869 *pnum = 0; 1870 total_size = bdrv_getlength(bs); 1871 if (total_size < 0) { 1872 ret = total_size; 1873 goto early_out; 1874 } 1875 1876 if (offset >= total_size) { 1877 ret = BDRV_BLOCK_EOF; 1878 goto early_out; 1879 } 1880 if (!bytes) { 1881 ret = 0; 1882 goto early_out; 1883 } 1884 1885 n = total_size - offset; 1886 if (n < bytes) { 1887 bytes = n; 1888 } 1889 1890 /* Must be non-NULL or bdrv_getlength() would have failed */ 1891 assert(bs->drv); 1892 if (!bs->drv->bdrv_co_get_block_status) { 1893 *pnum = bytes; 1894 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1895 if (offset + bytes == total_size) { 1896 ret |= BDRV_BLOCK_EOF; 1897 } 1898 if (bs->drv->protocol_name) { 1899 ret |= BDRV_BLOCK_OFFSET_VALID; 1900 local_map = offset; 1901 local_file = bs; 1902 } 1903 goto early_out; 1904 } 1905 1906 bdrv_inc_in_flight(bs); 1907 1908 /* Round out to request_alignment boundaries */ 1909 /* TODO: until we have a byte-based driver callback, we also have to 1910 * round out to sectors, even if that is bigger than request_alignment */ 1911 align = MAX(bs->bl.request_alignment, BDRV_SECTOR_SIZE); 1912 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 1913 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 1914 1915 { 1916 int count; /* sectors */ 1917 int64_t longret; 1918 1919 assert(QEMU_IS_ALIGNED(aligned_offset | aligned_bytes, 1920 BDRV_SECTOR_SIZE)); 1921 /* 1922 * The contract allows us to return pnum smaller than bytes, even 1923 * if the next query would see the same status; we truncate the 1924 * request to avoid overflowing the driver's 32-bit interface. 1925 */ 1926 longret = bs->drv->bdrv_co_get_block_status( 1927 bs, aligned_offset >> BDRV_SECTOR_BITS, 1928 MIN(INT_MAX, aligned_bytes) >> BDRV_SECTOR_BITS, &count, 1929 &local_file); 1930 if (longret < 0) { 1931 assert(INT_MIN <= longret); 1932 ret = longret; 1933 goto out; 1934 } 1935 if (longret & BDRV_BLOCK_OFFSET_VALID) { 1936 local_map = longret & BDRV_BLOCK_OFFSET_MASK; 1937 } 1938 ret = longret & ~BDRV_BLOCK_OFFSET_MASK; 1939 *pnum = count * BDRV_SECTOR_SIZE; 1940 } 1941 1942 /* 1943 * The driver's result must be a multiple of request_alignment. 1944 * Clamp pnum and adjust map to original request. 1945 */ 1946 assert(QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset); 1947 *pnum -= offset - aligned_offset; 1948 if (*pnum > bytes) { 1949 *pnum = bytes; 1950 } 1951 if (ret & BDRV_BLOCK_OFFSET_VALID) { 1952 local_map += offset - aligned_offset; 1953 } 1954 1955 if (ret & BDRV_BLOCK_RAW) { 1956 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 1957 ret = bdrv_co_block_status(local_file, want_zero, local_map, 1958 *pnum, pnum, &local_map, &local_file); 1959 goto out; 1960 } 1961 1962 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1963 ret |= BDRV_BLOCK_ALLOCATED; 1964 } else if (want_zero) { 1965 if (bdrv_unallocated_blocks_are_zero(bs)) { 1966 ret |= BDRV_BLOCK_ZERO; 1967 } else if (bs->backing) { 1968 BlockDriverState *bs2 = bs->backing->bs; 1969 int64_t size2 = bdrv_getlength(bs2); 1970 1971 if (size2 >= 0 && offset >= size2) { 1972 ret |= BDRV_BLOCK_ZERO; 1973 } 1974 } 1975 } 1976 1977 if (want_zero && local_file && local_file != bs && 1978 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1979 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1980 int64_t file_pnum; 1981 int ret2; 1982 1983 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 1984 *pnum, &file_pnum, NULL, NULL); 1985 if (ret2 >= 0) { 1986 /* Ignore errors. This is just providing extra information, it 1987 * is useful but not necessary. 1988 */ 1989 if (ret2 & BDRV_BLOCK_EOF && 1990 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1991 /* 1992 * It is valid for the format block driver to read 1993 * beyond the end of the underlying file's current 1994 * size; such areas read as zero. 1995 */ 1996 ret |= BDRV_BLOCK_ZERO; 1997 } else { 1998 /* Limit request to the range reported by the protocol driver */ 1999 *pnum = file_pnum; 2000 ret |= (ret2 & BDRV_BLOCK_ZERO); 2001 } 2002 } 2003 } 2004 2005 out: 2006 bdrv_dec_in_flight(bs); 2007 if (ret >= 0 && offset + *pnum == total_size) { 2008 ret |= BDRV_BLOCK_EOF; 2009 } 2010 early_out: 2011 if (file) { 2012 *file = local_file; 2013 } 2014 if (map) { 2015 *map = local_map; 2016 } 2017 return ret; 2018 } 2019 2020 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2021 BlockDriverState *base, 2022 bool want_zero, 2023 int64_t offset, 2024 int64_t bytes, 2025 int64_t *pnum, 2026 int64_t *map, 2027 BlockDriverState **file) 2028 { 2029 BlockDriverState *p; 2030 int ret = 0; 2031 bool first = true; 2032 2033 assert(bs != base); 2034 for (p = bs; p != base; p = backing_bs(p)) { 2035 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2036 file); 2037 if (ret < 0) { 2038 break; 2039 } 2040 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2041 /* 2042 * Reading beyond the end of the file continues to read 2043 * zeroes, but we can only widen the result to the 2044 * unallocated length we learned from an earlier 2045 * iteration. 2046 */ 2047 *pnum = bytes; 2048 } 2049 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2050 break; 2051 } 2052 /* [offset, pnum] unallocated on this layer, which could be only 2053 * the first part of [offset, bytes]. */ 2054 bytes = MIN(bytes, *pnum); 2055 first = false; 2056 } 2057 return ret; 2058 } 2059 2060 /* Coroutine wrapper for bdrv_block_status_above() */ 2061 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2062 { 2063 BdrvCoBlockStatusData *data = opaque; 2064 2065 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2066 data->want_zero, 2067 data->offset, data->bytes, 2068 data->pnum, data->map, data->file); 2069 data->done = true; 2070 } 2071 2072 /* 2073 * Synchronous wrapper around bdrv_co_block_status_above(). 2074 * 2075 * See bdrv_co_block_status_above() for details. 2076 */ 2077 static int bdrv_common_block_status_above(BlockDriverState *bs, 2078 BlockDriverState *base, 2079 bool want_zero, int64_t offset, 2080 int64_t bytes, int64_t *pnum, 2081 int64_t *map, 2082 BlockDriverState **file) 2083 { 2084 Coroutine *co; 2085 BdrvCoBlockStatusData data = { 2086 .bs = bs, 2087 .base = base, 2088 .want_zero = want_zero, 2089 .offset = offset, 2090 .bytes = bytes, 2091 .pnum = pnum, 2092 .map = map, 2093 .file = file, 2094 .done = false, 2095 }; 2096 2097 if (qemu_in_coroutine()) { 2098 /* Fast-path if already in coroutine context */ 2099 bdrv_block_status_above_co_entry(&data); 2100 } else { 2101 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2102 bdrv_coroutine_enter(bs, co); 2103 BDRV_POLL_WHILE(bs, !data.done); 2104 } 2105 return data.ret; 2106 } 2107 2108 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2109 int64_t offset, int64_t bytes, int64_t *pnum, 2110 int64_t *map, BlockDriverState **file) 2111 { 2112 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2113 pnum, map, file); 2114 } 2115 2116 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2117 int64_t *pnum, int64_t *map, BlockDriverState **file) 2118 { 2119 return bdrv_block_status_above(bs, backing_bs(bs), 2120 offset, bytes, pnum, map, file); 2121 } 2122 2123 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2124 int64_t bytes, int64_t *pnum) 2125 { 2126 int ret; 2127 int64_t dummy; 2128 2129 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2130 bytes, pnum ? pnum : &dummy, NULL, 2131 NULL); 2132 if (ret < 0) { 2133 return ret; 2134 } 2135 return !!(ret & BDRV_BLOCK_ALLOCATED); 2136 } 2137 2138 /* 2139 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2140 * 2141 * Return true if (a prefix of) the given range is allocated in any image 2142 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2143 * offset is allocated in any image of the chain. Return false otherwise, 2144 * or negative errno on failure. 2145 * 2146 * 'pnum' is set to the number of bytes (including and immediately 2147 * following the specified offset) that are known to be in the same 2148 * allocated/unallocated state. Note that a subsequent call starting 2149 * at 'offset + *pnum' may return the same allocation status (in other 2150 * words, the result is not necessarily the maximum possible range); 2151 * but 'pnum' will only be 0 when end of file is reached. 2152 * 2153 */ 2154 int bdrv_is_allocated_above(BlockDriverState *top, 2155 BlockDriverState *base, 2156 int64_t offset, int64_t bytes, int64_t *pnum) 2157 { 2158 BlockDriverState *intermediate; 2159 int ret; 2160 int64_t n = bytes; 2161 2162 intermediate = top; 2163 while (intermediate && intermediate != base) { 2164 int64_t pnum_inter; 2165 int64_t size_inter; 2166 2167 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2168 if (ret < 0) { 2169 return ret; 2170 } 2171 if (ret) { 2172 *pnum = pnum_inter; 2173 return 1; 2174 } 2175 2176 size_inter = bdrv_getlength(intermediate); 2177 if (size_inter < 0) { 2178 return size_inter; 2179 } 2180 if (n > pnum_inter && 2181 (intermediate == top || offset + pnum_inter < size_inter)) { 2182 n = pnum_inter; 2183 } 2184 2185 intermediate = backing_bs(intermediate); 2186 } 2187 2188 *pnum = n; 2189 return 0; 2190 } 2191 2192 typedef struct BdrvVmstateCo { 2193 BlockDriverState *bs; 2194 QEMUIOVector *qiov; 2195 int64_t pos; 2196 bool is_read; 2197 int ret; 2198 } BdrvVmstateCo; 2199 2200 static int coroutine_fn 2201 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2202 bool is_read) 2203 { 2204 BlockDriver *drv = bs->drv; 2205 int ret = -ENOTSUP; 2206 2207 bdrv_inc_in_flight(bs); 2208 2209 if (!drv) { 2210 ret = -ENOMEDIUM; 2211 } else if (drv->bdrv_load_vmstate) { 2212 if (is_read) { 2213 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2214 } else { 2215 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2216 } 2217 } else if (bs->file) { 2218 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2219 } 2220 2221 bdrv_dec_in_flight(bs); 2222 return ret; 2223 } 2224 2225 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2226 { 2227 BdrvVmstateCo *co = opaque; 2228 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2229 } 2230 2231 static inline int 2232 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2233 bool is_read) 2234 { 2235 if (qemu_in_coroutine()) { 2236 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2237 } else { 2238 BdrvVmstateCo data = { 2239 .bs = bs, 2240 .qiov = qiov, 2241 .pos = pos, 2242 .is_read = is_read, 2243 .ret = -EINPROGRESS, 2244 }; 2245 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2246 2247 bdrv_coroutine_enter(bs, co); 2248 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2249 return data.ret; 2250 } 2251 } 2252 2253 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2254 int64_t pos, int size) 2255 { 2256 QEMUIOVector qiov; 2257 struct iovec iov = { 2258 .iov_base = (void *) buf, 2259 .iov_len = size, 2260 }; 2261 int ret; 2262 2263 qemu_iovec_init_external(&qiov, &iov, 1); 2264 2265 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2266 if (ret < 0) { 2267 return ret; 2268 } 2269 2270 return size; 2271 } 2272 2273 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2274 { 2275 return bdrv_rw_vmstate(bs, qiov, pos, false); 2276 } 2277 2278 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2279 int64_t pos, int size) 2280 { 2281 QEMUIOVector qiov; 2282 struct iovec iov = { 2283 .iov_base = buf, 2284 .iov_len = size, 2285 }; 2286 int ret; 2287 2288 qemu_iovec_init_external(&qiov, &iov, 1); 2289 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2290 if (ret < 0) { 2291 return ret; 2292 } 2293 2294 return size; 2295 } 2296 2297 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2298 { 2299 return bdrv_rw_vmstate(bs, qiov, pos, true); 2300 } 2301 2302 /**************************************************************/ 2303 /* async I/Os */ 2304 2305 void bdrv_aio_cancel(BlockAIOCB *acb) 2306 { 2307 qemu_aio_ref(acb); 2308 bdrv_aio_cancel_async(acb); 2309 while (acb->refcnt > 1) { 2310 if (acb->aiocb_info->get_aio_context) { 2311 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2312 } else if (acb->bs) { 2313 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2314 * assert that we're not using an I/O thread. Thread-safe 2315 * code should use bdrv_aio_cancel_async exclusively. 2316 */ 2317 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2318 aio_poll(bdrv_get_aio_context(acb->bs), true); 2319 } else { 2320 abort(); 2321 } 2322 } 2323 qemu_aio_unref(acb); 2324 } 2325 2326 /* Async version of aio cancel. The caller is not blocked if the acb implements 2327 * cancel_async, otherwise we do nothing and let the request normally complete. 2328 * In either case the completion callback must be called. */ 2329 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2330 { 2331 if (acb->aiocb_info->cancel_async) { 2332 acb->aiocb_info->cancel_async(acb); 2333 } 2334 } 2335 2336 /**************************************************************/ 2337 /* Coroutine block device emulation */ 2338 2339 typedef struct FlushCo { 2340 BlockDriverState *bs; 2341 int ret; 2342 } FlushCo; 2343 2344 2345 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2346 { 2347 FlushCo *rwco = opaque; 2348 2349 rwco->ret = bdrv_co_flush(rwco->bs); 2350 } 2351 2352 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2353 { 2354 int current_gen; 2355 int ret = 0; 2356 2357 bdrv_inc_in_flight(bs); 2358 2359 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2360 bdrv_is_sg(bs)) { 2361 goto early_exit; 2362 } 2363 2364 qemu_co_mutex_lock(&bs->reqs_lock); 2365 current_gen = atomic_read(&bs->write_gen); 2366 2367 /* Wait until any previous flushes are completed */ 2368 while (bs->active_flush_req) { 2369 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2370 } 2371 2372 /* Flushes reach this point in nondecreasing current_gen order. */ 2373 bs->active_flush_req = true; 2374 qemu_co_mutex_unlock(&bs->reqs_lock); 2375 2376 /* Write back all layers by calling one driver function */ 2377 if (bs->drv->bdrv_co_flush) { 2378 ret = bs->drv->bdrv_co_flush(bs); 2379 goto out; 2380 } 2381 2382 /* Write back cached data to the OS even with cache=unsafe */ 2383 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2384 if (bs->drv->bdrv_co_flush_to_os) { 2385 ret = bs->drv->bdrv_co_flush_to_os(bs); 2386 if (ret < 0) { 2387 goto out; 2388 } 2389 } 2390 2391 /* But don't actually force it to the disk with cache=unsafe */ 2392 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2393 goto flush_parent; 2394 } 2395 2396 /* Check if we really need to flush anything */ 2397 if (bs->flushed_gen == current_gen) { 2398 goto flush_parent; 2399 } 2400 2401 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2402 if (!bs->drv) { 2403 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2404 * (even in case of apparent success) */ 2405 ret = -ENOMEDIUM; 2406 goto out; 2407 } 2408 if (bs->drv->bdrv_co_flush_to_disk) { 2409 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2410 } else if (bs->drv->bdrv_aio_flush) { 2411 BlockAIOCB *acb; 2412 CoroutineIOCompletion co = { 2413 .coroutine = qemu_coroutine_self(), 2414 }; 2415 2416 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2417 if (acb == NULL) { 2418 ret = -EIO; 2419 } else { 2420 qemu_coroutine_yield(); 2421 ret = co.ret; 2422 } 2423 } else { 2424 /* 2425 * Some block drivers always operate in either writethrough or unsafe 2426 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2427 * know how the server works (because the behaviour is hardcoded or 2428 * depends on server-side configuration), so we can't ensure that 2429 * everything is safe on disk. Returning an error doesn't work because 2430 * that would break guests even if the server operates in writethrough 2431 * mode. 2432 * 2433 * Let's hope the user knows what he's doing. 2434 */ 2435 ret = 0; 2436 } 2437 2438 if (ret < 0) { 2439 goto out; 2440 } 2441 2442 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2443 * in the case of cache=unsafe, so there are no useless flushes. 2444 */ 2445 flush_parent: 2446 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2447 out: 2448 /* Notify any pending flushes that we have completed */ 2449 if (ret == 0) { 2450 bs->flushed_gen = current_gen; 2451 } 2452 2453 qemu_co_mutex_lock(&bs->reqs_lock); 2454 bs->active_flush_req = false; 2455 /* Return value is ignored - it's ok if wait queue is empty */ 2456 qemu_co_queue_next(&bs->flush_queue); 2457 qemu_co_mutex_unlock(&bs->reqs_lock); 2458 2459 early_exit: 2460 bdrv_dec_in_flight(bs); 2461 return ret; 2462 } 2463 2464 int bdrv_flush(BlockDriverState *bs) 2465 { 2466 Coroutine *co; 2467 FlushCo flush_co = { 2468 .bs = bs, 2469 .ret = NOT_DONE, 2470 }; 2471 2472 if (qemu_in_coroutine()) { 2473 /* Fast-path if already in coroutine context */ 2474 bdrv_flush_co_entry(&flush_co); 2475 } else { 2476 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2477 bdrv_coroutine_enter(bs, co); 2478 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2479 } 2480 2481 return flush_co.ret; 2482 } 2483 2484 typedef struct DiscardCo { 2485 BlockDriverState *bs; 2486 int64_t offset; 2487 int bytes; 2488 int ret; 2489 } DiscardCo; 2490 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2491 { 2492 DiscardCo *rwco = opaque; 2493 2494 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2495 } 2496 2497 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2498 int bytes) 2499 { 2500 BdrvTrackedRequest req; 2501 int max_pdiscard, ret; 2502 int head, tail, align; 2503 2504 if (!bs->drv) { 2505 return -ENOMEDIUM; 2506 } 2507 2508 if (bdrv_has_readonly_bitmaps(bs)) { 2509 return -EPERM; 2510 } 2511 2512 ret = bdrv_check_byte_request(bs, offset, bytes); 2513 if (ret < 0) { 2514 return ret; 2515 } else if (bs->read_only) { 2516 return -EPERM; 2517 } 2518 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2519 2520 /* Do nothing if disabled. */ 2521 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2522 return 0; 2523 } 2524 2525 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2526 return 0; 2527 } 2528 2529 /* Discard is advisory, but some devices track and coalesce 2530 * unaligned requests, so we must pass everything down rather than 2531 * round here. Still, most devices will just silently ignore 2532 * unaligned requests (by returning -ENOTSUP), so we must fragment 2533 * the request accordingly. */ 2534 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2535 assert(align % bs->bl.request_alignment == 0); 2536 head = offset % align; 2537 tail = (offset + bytes) % align; 2538 2539 bdrv_inc_in_flight(bs); 2540 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2541 2542 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2543 if (ret < 0) { 2544 goto out; 2545 } 2546 2547 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2548 align); 2549 assert(max_pdiscard >= bs->bl.request_alignment); 2550 2551 while (bytes > 0) { 2552 int num = bytes; 2553 2554 if (head) { 2555 /* Make small requests to get to alignment boundaries. */ 2556 num = MIN(bytes, align - head); 2557 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2558 num %= bs->bl.request_alignment; 2559 } 2560 head = (head + num) % align; 2561 assert(num < max_pdiscard); 2562 } else if (tail) { 2563 if (num > align) { 2564 /* Shorten the request to the last aligned cluster. */ 2565 num -= tail; 2566 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2567 tail > bs->bl.request_alignment) { 2568 tail %= bs->bl.request_alignment; 2569 num -= tail; 2570 } 2571 } 2572 /* limit request size */ 2573 if (num > max_pdiscard) { 2574 num = max_pdiscard; 2575 } 2576 2577 if (!bs->drv) { 2578 ret = -ENOMEDIUM; 2579 goto out; 2580 } 2581 if (bs->drv->bdrv_co_pdiscard) { 2582 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2583 } else { 2584 BlockAIOCB *acb; 2585 CoroutineIOCompletion co = { 2586 .coroutine = qemu_coroutine_self(), 2587 }; 2588 2589 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2590 bdrv_co_io_em_complete, &co); 2591 if (acb == NULL) { 2592 ret = -EIO; 2593 goto out; 2594 } else { 2595 qemu_coroutine_yield(); 2596 ret = co.ret; 2597 } 2598 } 2599 if (ret && ret != -ENOTSUP) { 2600 goto out; 2601 } 2602 2603 offset += num; 2604 bytes -= num; 2605 } 2606 ret = 0; 2607 out: 2608 atomic_inc(&bs->write_gen); 2609 bdrv_set_dirty(bs, req.offset, req.bytes); 2610 tracked_request_end(&req); 2611 bdrv_dec_in_flight(bs); 2612 return ret; 2613 } 2614 2615 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2616 { 2617 Coroutine *co; 2618 DiscardCo rwco = { 2619 .bs = bs, 2620 .offset = offset, 2621 .bytes = bytes, 2622 .ret = NOT_DONE, 2623 }; 2624 2625 if (qemu_in_coroutine()) { 2626 /* Fast-path if already in coroutine context */ 2627 bdrv_pdiscard_co_entry(&rwco); 2628 } else { 2629 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2630 bdrv_coroutine_enter(bs, co); 2631 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2632 } 2633 2634 return rwco.ret; 2635 } 2636 2637 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2638 { 2639 BlockDriver *drv = bs->drv; 2640 CoroutineIOCompletion co = { 2641 .coroutine = qemu_coroutine_self(), 2642 }; 2643 BlockAIOCB *acb; 2644 2645 bdrv_inc_in_flight(bs); 2646 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2647 co.ret = -ENOTSUP; 2648 goto out; 2649 } 2650 2651 if (drv->bdrv_co_ioctl) { 2652 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2653 } else { 2654 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2655 if (!acb) { 2656 co.ret = -ENOTSUP; 2657 goto out; 2658 } 2659 qemu_coroutine_yield(); 2660 } 2661 out: 2662 bdrv_dec_in_flight(bs); 2663 return co.ret; 2664 } 2665 2666 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2667 { 2668 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2669 } 2670 2671 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2672 { 2673 return memset(qemu_blockalign(bs, size), 0, size); 2674 } 2675 2676 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2677 { 2678 size_t align = bdrv_opt_mem_align(bs); 2679 2680 /* Ensure that NULL is never returned on success */ 2681 assert(align > 0); 2682 if (size == 0) { 2683 size = align; 2684 } 2685 2686 return qemu_try_memalign(align, size); 2687 } 2688 2689 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2690 { 2691 void *mem = qemu_try_blockalign(bs, size); 2692 2693 if (mem) { 2694 memset(mem, 0, size); 2695 } 2696 2697 return mem; 2698 } 2699 2700 /* 2701 * Check if all memory in this vector is sector aligned. 2702 */ 2703 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2704 { 2705 int i; 2706 size_t alignment = bdrv_min_mem_align(bs); 2707 2708 for (i = 0; i < qiov->niov; i++) { 2709 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2710 return false; 2711 } 2712 if (qiov->iov[i].iov_len % alignment) { 2713 return false; 2714 } 2715 } 2716 2717 return true; 2718 } 2719 2720 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2721 NotifierWithReturn *notifier) 2722 { 2723 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2724 } 2725 2726 void bdrv_io_plug(BlockDriverState *bs) 2727 { 2728 BdrvChild *child; 2729 2730 QLIST_FOREACH(child, &bs->children, next) { 2731 bdrv_io_plug(child->bs); 2732 } 2733 2734 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2735 BlockDriver *drv = bs->drv; 2736 if (drv && drv->bdrv_io_plug) { 2737 drv->bdrv_io_plug(bs); 2738 } 2739 } 2740 } 2741 2742 void bdrv_io_unplug(BlockDriverState *bs) 2743 { 2744 BdrvChild *child; 2745 2746 assert(bs->io_plugged); 2747 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2748 BlockDriver *drv = bs->drv; 2749 if (drv && drv->bdrv_io_unplug) { 2750 drv->bdrv_io_unplug(bs); 2751 } 2752 } 2753 2754 QLIST_FOREACH(child, &bs->children, next) { 2755 bdrv_io_unplug(child->bs); 2756 } 2757 } 2758