xref: /openbmc/qemu/block/io.c (revision f6476697)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
39 
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                       bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61                                                    int *drained_end_counter)
62 {
63     assert(c->parent_quiesce_counter > 0);
64     c->parent_quiesce_counter--;
65     if (c->klass->drained_end) {
66         c->klass->drained_end(c, drained_end_counter);
67     }
68 }
69 
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72     int drained_end_counter = 0;
73     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
75 }
76 
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78                                     bool ignore_bds_parents,
79                                     int *drained_end_counter)
80 {
81     BdrvChild *c;
82 
83     QLIST_FOREACH(c, &bs->parents, next_parent) {
84         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85             continue;
86         }
87         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88     }
89 }
90 
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93     if (c->klass->drained_poll) {
94         return c->klass->drained_poll(c);
95     }
96     return false;
97 }
98 
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100                                      bool ignore_bds_parents)
101 {
102     BdrvChild *c, *next;
103     bool busy = false;
104 
105     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107             continue;
108         }
109         busy |= bdrv_parent_drained_poll_single(c);
110     }
111 
112     return busy;
113 }
114 
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117     c->parent_quiesce_counter++;
118     if (c->klass->drained_begin) {
119         c->klass->drained_begin(c);
120     }
121     if (poll) {
122         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123     }
124 }
125 
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131                                  src->opt_mem_alignment);
132     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133                                  src->min_mem_alignment);
134     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
135 }
136 
137 typedef struct BdrvRefreshLimitsState {
138     BlockDriverState *bs;
139     BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141 
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144     BdrvRefreshLimitsState *s = opaque;
145 
146     s->bs->bl = s->old_bl;
147 }
148 
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150     .abort = bdrv_refresh_limits_abort,
151     .clean = g_free,
152 };
153 
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157     ERRP_GUARD();
158     BlockDriver *drv = bs->drv;
159     BdrvChild *c;
160     bool have_limits;
161 
162     if (tran) {
163         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
164         *s = (BdrvRefreshLimitsState) {
165             .bs = bs,
166             .old_bl = bs->bl,
167         };
168         tran_add(tran, &bdrv_refresh_limits_drv, s);
169     }
170 
171     memset(&bs->bl, 0, sizeof(bs->bl));
172 
173     if (!drv) {
174         return;
175     }
176 
177     /* Default alignment based on whether driver has byte interface */
178     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
179                                 drv->bdrv_aio_preadv ||
180                                 drv->bdrv_co_preadv_part) ? 1 : 512;
181 
182     /* Take some limits from the children as a default */
183     have_limits = false;
184     QLIST_FOREACH(c, &bs->children, next) {
185         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
186         {
187             bdrv_refresh_limits(c->bs, tran, errp);
188             if (*errp) {
189                 return;
190             }
191             bdrv_merge_limits(&bs->bl, &c->bs->bl);
192             have_limits = true;
193         }
194     }
195 
196     if (!have_limits) {
197         bs->bl.min_mem_alignment = 512;
198         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
199 
200         /* Safe default since most protocols use readv()/writev()/etc */
201         bs->bl.max_iov = IOV_MAX;
202     }
203 
204     /* Then let the driver override it */
205     if (drv->bdrv_refresh_limits) {
206         drv->bdrv_refresh_limits(bs, errp);
207         if (*errp) {
208             return;
209         }
210     }
211 
212     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
213         error_setg(errp, "Driver requires too large request alignment");
214     }
215 }
216 
217 /**
218  * The copy-on-read flag is actually a reference count so multiple users may
219  * use the feature without worrying about clobbering its previous state.
220  * Copy-on-read stays enabled until all users have called to disable it.
221  */
222 void bdrv_enable_copy_on_read(BlockDriverState *bs)
223 {
224     qatomic_inc(&bs->copy_on_read);
225 }
226 
227 void bdrv_disable_copy_on_read(BlockDriverState *bs)
228 {
229     int old = qatomic_fetch_dec(&bs->copy_on_read);
230     assert(old >= 1);
231 }
232 
233 typedef struct {
234     Coroutine *co;
235     BlockDriverState *bs;
236     bool done;
237     bool begin;
238     bool recursive;
239     bool poll;
240     BdrvChild *parent;
241     bool ignore_bds_parents;
242     int *drained_end_counter;
243 } BdrvCoDrainData;
244 
245 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
246 {
247     BdrvCoDrainData *data = opaque;
248     BlockDriverState *bs = data->bs;
249 
250     if (data->begin) {
251         bs->drv->bdrv_co_drain_begin(bs);
252     } else {
253         bs->drv->bdrv_co_drain_end(bs);
254     }
255 
256     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
257     qatomic_mb_set(&data->done, true);
258     if (!data->begin) {
259         qatomic_dec(data->drained_end_counter);
260     }
261     bdrv_dec_in_flight(bs);
262 
263     g_free(data);
264 }
265 
266 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
267 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
268                               int *drained_end_counter)
269 {
270     BdrvCoDrainData *data;
271 
272     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
273             (!begin && !bs->drv->bdrv_co_drain_end)) {
274         return;
275     }
276 
277     data = g_new(BdrvCoDrainData, 1);
278     *data = (BdrvCoDrainData) {
279         .bs = bs,
280         .done = false,
281         .begin = begin,
282         .drained_end_counter = drained_end_counter,
283     };
284 
285     if (!begin) {
286         qatomic_inc(drained_end_counter);
287     }
288 
289     /* Make sure the driver callback completes during the polling phase for
290      * drain_begin. */
291     bdrv_inc_in_flight(bs);
292     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
293     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
294 }
295 
296 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
297 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
298                      BdrvChild *ignore_parent, bool ignore_bds_parents)
299 {
300     BdrvChild *child, *next;
301 
302     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
303         return true;
304     }
305 
306     if (qatomic_read(&bs->in_flight)) {
307         return true;
308     }
309 
310     if (recursive) {
311         assert(!ignore_bds_parents);
312         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
313             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
314                 return true;
315             }
316         }
317     }
318 
319     return false;
320 }
321 
322 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
323                                       BdrvChild *ignore_parent)
324 {
325     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
326 }
327 
328 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
329                                   BdrvChild *parent, bool ignore_bds_parents,
330                                   bool poll);
331 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
332                                 BdrvChild *parent, bool ignore_bds_parents,
333                                 int *drained_end_counter);
334 
335 static void bdrv_co_drain_bh_cb(void *opaque)
336 {
337     BdrvCoDrainData *data = opaque;
338     Coroutine *co = data->co;
339     BlockDriverState *bs = data->bs;
340 
341     if (bs) {
342         AioContext *ctx = bdrv_get_aio_context(bs);
343         aio_context_acquire(ctx);
344         bdrv_dec_in_flight(bs);
345         if (data->begin) {
346             assert(!data->drained_end_counter);
347             bdrv_do_drained_begin(bs, data->recursive, data->parent,
348                                   data->ignore_bds_parents, data->poll);
349         } else {
350             assert(!data->poll);
351             bdrv_do_drained_end(bs, data->recursive, data->parent,
352                                 data->ignore_bds_parents,
353                                 data->drained_end_counter);
354         }
355         aio_context_release(ctx);
356     } else {
357         assert(data->begin);
358         bdrv_drain_all_begin();
359     }
360 
361     data->done = true;
362     aio_co_wake(co);
363 }
364 
365 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
366                                                 bool begin, bool recursive,
367                                                 BdrvChild *parent,
368                                                 bool ignore_bds_parents,
369                                                 bool poll,
370                                                 int *drained_end_counter)
371 {
372     BdrvCoDrainData data;
373     Coroutine *self = qemu_coroutine_self();
374     AioContext *ctx = bdrv_get_aio_context(bs);
375     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
376 
377     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
378      * other coroutines run if they were queued by aio_co_enter(). */
379 
380     assert(qemu_in_coroutine());
381     data = (BdrvCoDrainData) {
382         .co = self,
383         .bs = bs,
384         .done = false,
385         .begin = begin,
386         .recursive = recursive,
387         .parent = parent,
388         .ignore_bds_parents = ignore_bds_parents,
389         .poll = poll,
390         .drained_end_counter = drained_end_counter,
391     };
392 
393     if (bs) {
394         bdrv_inc_in_flight(bs);
395     }
396 
397     /*
398      * Temporarily drop the lock across yield or we would get deadlocks.
399      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
400      *
401      * When we yield below, the lock for the current context will be
402      * released, so if this is actually the lock that protects bs, don't drop
403      * it a second time.
404      */
405     if (ctx != co_ctx) {
406         aio_context_release(ctx);
407     }
408     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
409 
410     qemu_coroutine_yield();
411     /* If we are resumed from some other event (such as an aio completion or a
412      * timer callback), it is a bug in the caller that should be fixed. */
413     assert(data.done);
414 
415     /* Reaquire the AioContext of bs if we dropped it */
416     if (ctx != co_ctx) {
417         aio_context_acquire(ctx);
418     }
419 }
420 
421 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
422                                    BdrvChild *parent, bool ignore_bds_parents)
423 {
424     assert(!qemu_in_coroutine());
425 
426     /* Stop things in parent-to-child order */
427     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
428         aio_disable_external(bdrv_get_aio_context(bs));
429     }
430 
431     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
432     bdrv_drain_invoke(bs, true, NULL);
433 }
434 
435 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
436                                   BdrvChild *parent, bool ignore_bds_parents,
437                                   bool poll)
438 {
439     BdrvChild *child, *next;
440 
441     if (qemu_in_coroutine()) {
442         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
443                                poll, NULL);
444         return;
445     }
446 
447     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
448 
449     if (recursive) {
450         assert(!ignore_bds_parents);
451         bs->recursive_quiesce_counter++;
452         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
453             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
454                                   false);
455         }
456     }
457 
458     /*
459      * Wait for drained requests to finish.
460      *
461      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
462      * call is needed so things in this AioContext can make progress even
463      * though we don't return to the main AioContext loop - this automatically
464      * includes other nodes in the same AioContext and therefore all child
465      * nodes.
466      */
467     if (poll) {
468         assert(!ignore_bds_parents);
469         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
470     }
471 }
472 
473 void bdrv_drained_begin(BlockDriverState *bs)
474 {
475     bdrv_do_drained_begin(bs, false, NULL, false, true);
476 }
477 
478 void bdrv_subtree_drained_begin(BlockDriverState *bs)
479 {
480     bdrv_do_drained_begin(bs, true, NULL, false, true);
481 }
482 
483 /**
484  * This function does not poll, nor must any of its recursively called
485  * functions.  The *drained_end_counter pointee will be incremented
486  * once for every background operation scheduled, and decremented once
487  * the operation settles.  Therefore, the pointer must remain valid
488  * until the pointee reaches 0.  That implies that whoever sets up the
489  * pointee has to poll until it is 0.
490  *
491  * We use atomic operations to access *drained_end_counter, because
492  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
493  *     @bs may contain nodes in different AioContexts,
494  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
495  *     regardless of which AioContext they are in.
496  */
497 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
498                                 BdrvChild *parent, bool ignore_bds_parents,
499                                 int *drained_end_counter)
500 {
501     BdrvChild *child;
502     int old_quiesce_counter;
503 
504     assert(drained_end_counter != NULL);
505 
506     if (qemu_in_coroutine()) {
507         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
508                                false, drained_end_counter);
509         return;
510     }
511     assert(bs->quiesce_counter > 0);
512 
513     /* Re-enable things in child-to-parent order */
514     bdrv_drain_invoke(bs, false, drained_end_counter);
515     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
516                             drained_end_counter);
517 
518     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
519     if (old_quiesce_counter == 1) {
520         aio_enable_external(bdrv_get_aio_context(bs));
521     }
522 
523     if (recursive) {
524         assert(!ignore_bds_parents);
525         bs->recursive_quiesce_counter--;
526         QLIST_FOREACH(child, &bs->children, next) {
527             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
528                                 drained_end_counter);
529         }
530     }
531 }
532 
533 void bdrv_drained_end(BlockDriverState *bs)
534 {
535     int drained_end_counter = 0;
536     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
537     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
538 }
539 
540 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
541 {
542     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
543 }
544 
545 void bdrv_subtree_drained_end(BlockDriverState *bs)
546 {
547     int drained_end_counter = 0;
548     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
549     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
550 }
551 
552 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
553 {
554     int i;
555 
556     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
557         bdrv_do_drained_begin(child->bs, true, child, false, true);
558     }
559 }
560 
561 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
562 {
563     int drained_end_counter = 0;
564     int i;
565 
566     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
567         bdrv_do_drained_end(child->bs, true, child, false,
568                             &drained_end_counter);
569     }
570 
571     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
572 }
573 
574 /*
575  * Wait for pending requests to complete on a single BlockDriverState subtree,
576  * and suspend block driver's internal I/O until next request arrives.
577  *
578  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
579  * AioContext.
580  */
581 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
582 {
583     assert(qemu_in_coroutine());
584     bdrv_drained_begin(bs);
585     bdrv_drained_end(bs);
586 }
587 
588 void bdrv_drain(BlockDriverState *bs)
589 {
590     bdrv_drained_begin(bs);
591     bdrv_drained_end(bs);
592 }
593 
594 static void bdrv_drain_assert_idle(BlockDriverState *bs)
595 {
596     BdrvChild *child, *next;
597 
598     assert(qatomic_read(&bs->in_flight) == 0);
599     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
600         bdrv_drain_assert_idle(child->bs);
601     }
602 }
603 
604 unsigned int bdrv_drain_all_count = 0;
605 
606 static bool bdrv_drain_all_poll(void)
607 {
608     BlockDriverState *bs = NULL;
609     bool result = false;
610 
611     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
612      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
613     while ((bs = bdrv_next_all_states(bs))) {
614         AioContext *aio_context = bdrv_get_aio_context(bs);
615         aio_context_acquire(aio_context);
616         result |= bdrv_drain_poll(bs, false, NULL, true);
617         aio_context_release(aio_context);
618     }
619 
620     return result;
621 }
622 
623 /*
624  * Wait for pending requests to complete across all BlockDriverStates
625  *
626  * This function does not flush data to disk, use bdrv_flush_all() for that
627  * after calling this function.
628  *
629  * This pauses all block jobs and disables external clients. It must
630  * be paired with bdrv_drain_all_end().
631  *
632  * NOTE: no new block jobs or BlockDriverStates can be created between
633  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
634  */
635 void bdrv_drain_all_begin(void)
636 {
637     BlockDriverState *bs = NULL;
638 
639     if (qemu_in_coroutine()) {
640         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
641         return;
642     }
643 
644     /*
645      * bdrv queue is managed by record/replay,
646      * waiting for finishing the I/O requests may
647      * be infinite
648      */
649     if (replay_events_enabled()) {
650         return;
651     }
652 
653     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
654      * loop AioContext, so make sure we're in the main context. */
655     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
656     assert(bdrv_drain_all_count < INT_MAX);
657     bdrv_drain_all_count++;
658 
659     /* Quiesce all nodes, without polling in-flight requests yet. The graph
660      * cannot change during this loop. */
661     while ((bs = bdrv_next_all_states(bs))) {
662         AioContext *aio_context = bdrv_get_aio_context(bs);
663 
664         aio_context_acquire(aio_context);
665         bdrv_do_drained_begin(bs, false, NULL, true, false);
666         aio_context_release(aio_context);
667     }
668 
669     /* Now poll the in-flight requests */
670     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
671 
672     while ((bs = bdrv_next_all_states(bs))) {
673         bdrv_drain_assert_idle(bs);
674     }
675 }
676 
677 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
678 {
679     int drained_end_counter = 0;
680 
681     g_assert(bs->quiesce_counter > 0);
682     g_assert(!bs->refcnt);
683 
684     while (bs->quiesce_counter) {
685         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
686     }
687     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
688 }
689 
690 void bdrv_drain_all_end(void)
691 {
692     BlockDriverState *bs = NULL;
693     int drained_end_counter = 0;
694 
695     /*
696      * bdrv queue is managed by record/replay,
697      * waiting for finishing the I/O requests may
698      * be endless
699      */
700     if (replay_events_enabled()) {
701         return;
702     }
703 
704     while ((bs = bdrv_next_all_states(bs))) {
705         AioContext *aio_context = bdrv_get_aio_context(bs);
706 
707         aio_context_acquire(aio_context);
708         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
709         aio_context_release(aio_context);
710     }
711 
712     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
713     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
714 
715     assert(bdrv_drain_all_count > 0);
716     bdrv_drain_all_count--;
717 }
718 
719 void bdrv_drain_all(void)
720 {
721     bdrv_drain_all_begin();
722     bdrv_drain_all_end();
723 }
724 
725 /**
726  * Remove an active request from the tracked requests list
727  *
728  * This function should be called when a tracked request is completing.
729  */
730 static void tracked_request_end(BdrvTrackedRequest *req)
731 {
732     if (req->serialising) {
733         qatomic_dec(&req->bs->serialising_in_flight);
734     }
735 
736     qemu_co_mutex_lock(&req->bs->reqs_lock);
737     QLIST_REMOVE(req, list);
738     qemu_co_queue_restart_all(&req->wait_queue);
739     qemu_co_mutex_unlock(&req->bs->reqs_lock);
740 }
741 
742 /**
743  * Add an active request to the tracked requests list
744  */
745 static void tracked_request_begin(BdrvTrackedRequest *req,
746                                   BlockDriverState *bs,
747                                   int64_t offset,
748                                   int64_t bytes,
749                                   enum BdrvTrackedRequestType type)
750 {
751     bdrv_check_request(offset, bytes, &error_abort);
752 
753     *req = (BdrvTrackedRequest){
754         .bs = bs,
755         .offset         = offset,
756         .bytes          = bytes,
757         .type           = type,
758         .co             = qemu_coroutine_self(),
759         .serialising    = false,
760         .overlap_offset = offset,
761         .overlap_bytes  = bytes,
762     };
763 
764     qemu_co_queue_init(&req->wait_queue);
765 
766     qemu_co_mutex_lock(&bs->reqs_lock);
767     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
768     qemu_co_mutex_unlock(&bs->reqs_lock);
769 }
770 
771 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
772                                      int64_t offset, int64_t bytes)
773 {
774     bdrv_check_request(offset, bytes, &error_abort);
775 
776     /*        aaaa   bbbb */
777     if (offset >= req->overlap_offset + req->overlap_bytes) {
778         return false;
779     }
780     /* bbbb   aaaa        */
781     if (req->overlap_offset >= offset + bytes) {
782         return false;
783     }
784     return true;
785 }
786 
787 /* Called with self->bs->reqs_lock held */
788 static BdrvTrackedRequest *
789 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
790 {
791     BdrvTrackedRequest *req;
792 
793     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
794         if (req == self || (!req->serialising && !self->serialising)) {
795             continue;
796         }
797         if (tracked_request_overlaps(req, self->overlap_offset,
798                                      self->overlap_bytes))
799         {
800             /*
801              * Hitting this means there was a reentrant request, for
802              * example, a block driver issuing nested requests.  This must
803              * never happen since it means deadlock.
804              */
805             assert(qemu_coroutine_self() != req->co);
806 
807             /*
808              * If the request is already (indirectly) waiting for us, or
809              * will wait for us as soon as it wakes up, then just go on
810              * (instead of producing a deadlock in the former case).
811              */
812             if (!req->waiting_for) {
813                 return req;
814             }
815         }
816     }
817 
818     return NULL;
819 }
820 
821 /* Called with self->bs->reqs_lock held */
822 static bool coroutine_fn
823 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
824 {
825     BdrvTrackedRequest *req;
826     bool waited = false;
827 
828     while ((req = bdrv_find_conflicting_request(self))) {
829         self->waiting_for = req;
830         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
831         self->waiting_for = NULL;
832         waited = true;
833     }
834 
835     return waited;
836 }
837 
838 /* Called with req->bs->reqs_lock held */
839 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
840                                             uint64_t align)
841 {
842     int64_t overlap_offset = req->offset & ~(align - 1);
843     int64_t overlap_bytes =
844         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
845 
846     bdrv_check_request(req->offset, req->bytes, &error_abort);
847 
848     if (!req->serialising) {
849         qatomic_inc(&req->bs->serialising_in_flight);
850         req->serialising = true;
851     }
852 
853     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
854     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
855 }
856 
857 /**
858  * Return the tracked request on @bs for the current coroutine, or
859  * NULL if there is none.
860  */
861 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
862 {
863     BdrvTrackedRequest *req;
864     Coroutine *self = qemu_coroutine_self();
865 
866     QLIST_FOREACH(req, &bs->tracked_requests, list) {
867         if (req->co == self) {
868             return req;
869         }
870     }
871 
872     return NULL;
873 }
874 
875 /**
876  * Round a region to cluster boundaries
877  */
878 void bdrv_round_to_clusters(BlockDriverState *bs,
879                             int64_t offset, int64_t bytes,
880                             int64_t *cluster_offset,
881                             int64_t *cluster_bytes)
882 {
883     BlockDriverInfo bdi;
884 
885     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
886         *cluster_offset = offset;
887         *cluster_bytes = bytes;
888     } else {
889         int64_t c = bdi.cluster_size;
890         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
891         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
892     }
893 }
894 
895 static int bdrv_get_cluster_size(BlockDriverState *bs)
896 {
897     BlockDriverInfo bdi;
898     int ret;
899 
900     ret = bdrv_get_info(bs, &bdi);
901     if (ret < 0 || bdi.cluster_size == 0) {
902         return bs->bl.request_alignment;
903     } else {
904         return bdi.cluster_size;
905     }
906 }
907 
908 void bdrv_inc_in_flight(BlockDriverState *bs)
909 {
910     qatomic_inc(&bs->in_flight);
911 }
912 
913 void bdrv_wakeup(BlockDriverState *bs)
914 {
915     aio_wait_kick();
916 }
917 
918 void bdrv_dec_in_flight(BlockDriverState *bs)
919 {
920     qatomic_dec(&bs->in_flight);
921     bdrv_wakeup(bs);
922 }
923 
924 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
925 {
926     BlockDriverState *bs = self->bs;
927     bool waited = false;
928 
929     if (!qatomic_read(&bs->serialising_in_flight)) {
930         return false;
931     }
932 
933     qemu_co_mutex_lock(&bs->reqs_lock);
934     waited = bdrv_wait_serialising_requests_locked(self);
935     qemu_co_mutex_unlock(&bs->reqs_lock);
936 
937     return waited;
938 }
939 
940 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
941                                                 uint64_t align)
942 {
943     bool waited;
944 
945     qemu_co_mutex_lock(&req->bs->reqs_lock);
946 
947     tracked_request_set_serialising(req, align);
948     waited = bdrv_wait_serialising_requests_locked(req);
949 
950     qemu_co_mutex_unlock(&req->bs->reqs_lock);
951 
952     return waited;
953 }
954 
955 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
956                                    QEMUIOVector *qiov, size_t qiov_offset,
957                                    Error **errp)
958 {
959     /*
960      * Check generic offset/bytes correctness
961      */
962 
963     if (offset < 0) {
964         error_setg(errp, "offset is negative: %" PRIi64, offset);
965         return -EIO;
966     }
967 
968     if (bytes < 0) {
969         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
970         return -EIO;
971     }
972 
973     if (bytes > BDRV_MAX_LENGTH) {
974         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
975                    bytes, BDRV_MAX_LENGTH);
976         return -EIO;
977     }
978 
979     if (offset > BDRV_MAX_LENGTH) {
980         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
981                    offset, BDRV_MAX_LENGTH);
982         return -EIO;
983     }
984 
985     if (offset > BDRV_MAX_LENGTH - bytes) {
986         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
987                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
988                    BDRV_MAX_LENGTH);
989         return -EIO;
990     }
991 
992     if (!qiov) {
993         return 0;
994     }
995 
996     /*
997      * Check qiov and qiov_offset
998      */
999 
1000     if (qiov_offset > qiov->size) {
1001         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1002                    qiov_offset, qiov->size);
1003         return -EIO;
1004     }
1005 
1006     if (bytes > qiov->size - qiov_offset) {
1007         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1008                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1009         return -EIO;
1010     }
1011 
1012     return 0;
1013 }
1014 
1015 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1016 {
1017     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1018 }
1019 
1020 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1021                                 QEMUIOVector *qiov, size_t qiov_offset)
1022 {
1023     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1024     if (ret < 0) {
1025         return ret;
1026     }
1027 
1028     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1029         return -EIO;
1030     }
1031 
1032     return 0;
1033 }
1034 
1035 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1036                        int64_t bytes, BdrvRequestFlags flags)
1037 {
1038     return bdrv_pwritev(child, offset, bytes, NULL,
1039                         BDRV_REQ_ZERO_WRITE | flags);
1040 }
1041 
1042 /*
1043  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1044  * The operation is sped up by checking the block status and only writing
1045  * zeroes to the device if they currently do not return zeroes. Optional
1046  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1047  * BDRV_REQ_FUA).
1048  *
1049  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1050  */
1051 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1052 {
1053     int ret;
1054     int64_t target_size, bytes, offset = 0;
1055     BlockDriverState *bs = child->bs;
1056 
1057     target_size = bdrv_getlength(bs);
1058     if (target_size < 0) {
1059         return target_size;
1060     }
1061 
1062     for (;;) {
1063         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1064         if (bytes <= 0) {
1065             return 0;
1066         }
1067         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1068         if (ret < 0) {
1069             return ret;
1070         }
1071         if (ret & BDRV_BLOCK_ZERO) {
1072             offset += bytes;
1073             continue;
1074         }
1075         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1076         if (ret < 0) {
1077             return ret;
1078         }
1079         offset += bytes;
1080     }
1081 }
1082 
1083 /* See bdrv_pwrite() for the return codes */
1084 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1085 {
1086     int ret;
1087     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1088 
1089     if (bytes < 0) {
1090         return -EINVAL;
1091     }
1092 
1093     ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
1094 
1095     return ret < 0 ? ret : bytes;
1096 }
1097 
1098 /* Return no. of bytes on success or < 0 on error. Important errors are:
1099   -EIO         generic I/O error (may happen for all errors)
1100   -ENOMEDIUM   No media inserted.
1101   -EINVAL      Invalid offset or number of bytes
1102   -EACCES      Trying to write a read-only device
1103 */
1104 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1105                 int64_t bytes)
1106 {
1107     int ret;
1108     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1109 
1110     if (bytes < 0) {
1111         return -EINVAL;
1112     }
1113 
1114     ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1115 
1116     return ret < 0 ? ret : bytes;
1117 }
1118 
1119 /*
1120  * Writes to the file and ensures that no writes are reordered across this
1121  * request (acts as a barrier)
1122  *
1123  * Returns 0 on success, -errno in error cases.
1124  */
1125 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1126                      const void *buf, int64_t count)
1127 {
1128     int ret;
1129 
1130     ret = bdrv_pwrite(child, offset, buf, count);
1131     if (ret < 0) {
1132         return ret;
1133     }
1134 
1135     ret = bdrv_flush(child->bs);
1136     if (ret < 0) {
1137         return ret;
1138     }
1139 
1140     return 0;
1141 }
1142 
1143 typedef struct CoroutineIOCompletion {
1144     Coroutine *coroutine;
1145     int ret;
1146 } CoroutineIOCompletion;
1147 
1148 static void bdrv_co_io_em_complete(void *opaque, int ret)
1149 {
1150     CoroutineIOCompletion *co = opaque;
1151 
1152     co->ret = ret;
1153     aio_co_wake(co->coroutine);
1154 }
1155 
1156 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1157                                            int64_t offset, int64_t bytes,
1158                                            QEMUIOVector *qiov,
1159                                            size_t qiov_offset, int flags)
1160 {
1161     BlockDriver *drv = bs->drv;
1162     int64_t sector_num;
1163     unsigned int nb_sectors;
1164     QEMUIOVector local_qiov;
1165     int ret;
1166 
1167     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1168     assert(!(flags & ~BDRV_REQ_MASK));
1169     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1170 
1171     if (!drv) {
1172         return -ENOMEDIUM;
1173     }
1174 
1175     if (drv->bdrv_co_preadv_part) {
1176         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1177                                         flags);
1178     }
1179 
1180     if (qiov_offset > 0 || bytes != qiov->size) {
1181         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1182         qiov = &local_qiov;
1183     }
1184 
1185     if (drv->bdrv_co_preadv) {
1186         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1187         goto out;
1188     }
1189 
1190     if (drv->bdrv_aio_preadv) {
1191         BlockAIOCB *acb;
1192         CoroutineIOCompletion co = {
1193             .coroutine = qemu_coroutine_self(),
1194         };
1195 
1196         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1197                                    bdrv_co_io_em_complete, &co);
1198         if (acb == NULL) {
1199             ret = -EIO;
1200             goto out;
1201         } else {
1202             qemu_coroutine_yield();
1203             ret = co.ret;
1204             goto out;
1205         }
1206     }
1207 
1208     sector_num = offset >> BDRV_SECTOR_BITS;
1209     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1210 
1211     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1212     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1213     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1214     assert(drv->bdrv_co_readv);
1215 
1216     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1217 
1218 out:
1219     if (qiov == &local_qiov) {
1220         qemu_iovec_destroy(&local_qiov);
1221     }
1222 
1223     return ret;
1224 }
1225 
1226 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1227                                             int64_t offset, int64_t bytes,
1228                                             QEMUIOVector *qiov,
1229                                             size_t qiov_offset, int flags)
1230 {
1231     BlockDriver *drv = bs->drv;
1232     int64_t sector_num;
1233     unsigned int nb_sectors;
1234     QEMUIOVector local_qiov;
1235     int ret;
1236 
1237     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1238     assert(!(flags & ~BDRV_REQ_MASK));
1239     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1240 
1241     if (!drv) {
1242         return -ENOMEDIUM;
1243     }
1244 
1245     if (drv->bdrv_co_pwritev_part) {
1246         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1247                                         flags & bs->supported_write_flags);
1248         flags &= ~bs->supported_write_flags;
1249         goto emulate_flags;
1250     }
1251 
1252     if (qiov_offset > 0 || bytes != qiov->size) {
1253         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1254         qiov = &local_qiov;
1255     }
1256 
1257     if (drv->bdrv_co_pwritev) {
1258         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1259                                    flags & bs->supported_write_flags);
1260         flags &= ~bs->supported_write_flags;
1261         goto emulate_flags;
1262     }
1263 
1264     if (drv->bdrv_aio_pwritev) {
1265         BlockAIOCB *acb;
1266         CoroutineIOCompletion co = {
1267             .coroutine = qemu_coroutine_self(),
1268         };
1269 
1270         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1271                                     flags & bs->supported_write_flags,
1272                                     bdrv_co_io_em_complete, &co);
1273         flags &= ~bs->supported_write_flags;
1274         if (acb == NULL) {
1275             ret = -EIO;
1276         } else {
1277             qemu_coroutine_yield();
1278             ret = co.ret;
1279         }
1280         goto emulate_flags;
1281     }
1282 
1283     sector_num = offset >> BDRV_SECTOR_BITS;
1284     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1285 
1286     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1287     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1288     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1289 
1290     assert(drv->bdrv_co_writev);
1291     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1292                               flags & bs->supported_write_flags);
1293     flags &= ~bs->supported_write_flags;
1294 
1295 emulate_flags:
1296     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1297         ret = bdrv_co_flush(bs);
1298     }
1299 
1300     if (qiov == &local_qiov) {
1301         qemu_iovec_destroy(&local_qiov);
1302     }
1303 
1304     return ret;
1305 }
1306 
1307 static int coroutine_fn
1308 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1309                                int64_t bytes, QEMUIOVector *qiov,
1310                                size_t qiov_offset)
1311 {
1312     BlockDriver *drv = bs->drv;
1313     QEMUIOVector local_qiov;
1314     int ret;
1315 
1316     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1317 
1318     if (!drv) {
1319         return -ENOMEDIUM;
1320     }
1321 
1322     if (!block_driver_can_compress(drv)) {
1323         return -ENOTSUP;
1324     }
1325 
1326     if (drv->bdrv_co_pwritev_compressed_part) {
1327         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1328                                                     qiov, qiov_offset);
1329     }
1330 
1331     if (qiov_offset == 0) {
1332         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1333     }
1334 
1335     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1336     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1337     qemu_iovec_destroy(&local_qiov);
1338 
1339     return ret;
1340 }
1341 
1342 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1343         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1344         size_t qiov_offset, int flags)
1345 {
1346     BlockDriverState *bs = child->bs;
1347 
1348     /* Perform I/O through a temporary buffer so that users who scribble over
1349      * their read buffer while the operation is in progress do not end up
1350      * modifying the image file.  This is critical for zero-copy guest I/O
1351      * where anything might happen inside guest memory.
1352      */
1353     void *bounce_buffer = NULL;
1354 
1355     BlockDriver *drv = bs->drv;
1356     int64_t cluster_offset;
1357     int64_t cluster_bytes;
1358     int64_t skip_bytes;
1359     int ret;
1360     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1361                                     BDRV_REQUEST_MAX_BYTES);
1362     int64_t progress = 0;
1363     bool skip_write;
1364 
1365     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1366 
1367     if (!drv) {
1368         return -ENOMEDIUM;
1369     }
1370 
1371     /*
1372      * Do not write anything when the BDS is inactive.  That is not
1373      * allowed, and it would not help.
1374      */
1375     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1376 
1377     /* FIXME We cannot require callers to have write permissions when all they
1378      * are doing is a read request. If we did things right, write permissions
1379      * would be obtained anyway, but internally by the copy-on-read code. As
1380      * long as it is implemented here rather than in a separate filter driver,
1381      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1382      * it could request permissions. Therefore we have to bypass the permission
1383      * system for the moment. */
1384     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1385 
1386     /* Cover entire cluster so no additional backing file I/O is required when
1387      * allocating cluster in the image file.  Note that this value may exceed
1388      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1389      * is one reason we loop rather than doing it all at once.
1390      */
1391     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1392     skip_bytes = offset - cluster_offset;
1393 
1394     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1395                                    cluster_offset, cluster_bytes);
1396 
1397     while (cluster_bytes) {
1398         int64_t pnum;
1399 
1400         if (skip_write) {
1401             ret = 1; /* "already allocated", so nothing will be copied */
1402             pnum = MIN(cluster_bytes, max_transfer);
1403         } else {
1404             ret = bdrv_is_allocated(bs, cluster_offset,
1405                                     MIN(cluster_bytes, max_transfer), &pnum);
1406             if (ret < 0) {
1407                 /*
1408                  * Safe to treat errors in querying allocation as if
1409                  * unallocated; we'll probably fail again soon on the
1410                  * read, but at least that will set a decent errno.
1411                  */
1412                 pnum = MIN(cluster_bytes, max_transfer);
1413             }
1414 
1415             /* Stop at EOF if the image ends in the middle of the cluster */
1416             if (ret == 0 && pnum == 0) {
1417                 assert(progress >= bytes);
1418                 break;
1419             }
1420 
1421             assert(skip_bytes < pnum);
1422         }
1423 
1424         if (ret <= 0) {
1425             QEMUIOVector local_qiov;
1426 
1427             /* Must copy-on-read; use the bounce buffer */
1428             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1429             if (!bounce_buffer) {
1430                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1431                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1432                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1433 
1434                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1435                 if (!bounce_buffer) {
1436                     ret = -ENOMEM;
1437                     goto err;
1438                 }
1439             }
1440             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1441 
1442             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1443                                      &local_qiov, 0, 0);
1444             if (ret < 0) {
1445                 goto err;
1446             }
1447 
1448             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1449             if (drv->bdrv_co_pwrite_zeroes &&
1450                 buffer_is_zero(bounce_buffer, pnum)) {
1451                 /* FIXME: Should we (perhaps conditionally) be setting
1452                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1453                  * that still correctly reads as zero? */
1454                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1455                                                BDRV_REQ_WRITE_UNCHANGED);
1456             } else {
1457                 /* This does not change the data on the disk, it is not
1458                  * necessary to flush even in cache=writethrough mode.
1459                  */
1460                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1461                                           &local_qiov, 0,
1462                                           BDRV_REQ_WRITE_UNCHANGED);
1463             }
1464 
1465             if (ret < 0) {
1466                 /* It might be okay to ignore write errors for guest
1467                  * requests.  If this is a deliberate copy-on-read
1468                  * then we don't want to ignore the error.  Simply
1469                  * report it in all cases.
1470                  */
1471                 goto err;
1472             }
1473 
1474             if (!(flags & BDRV_REQ_PREFETCH)) {
1475                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1476                                     bounce_buffer + skip_bytes,
1477                                     MIN(pnum - skip_bytes, bytes - progress));
1478             }
1479         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1480             /* Read directly into the destination */
1481             ret = bdrv_driver_preadv(bs, offset + progress,
1482                                      MIN(pnum - skip_bytes, bytes - progress),
1483                                      qiov, qiov_offset + progress, 0);
1484             if (ret < 0) {
1485                 goto err;
1486             }
1487         }
1488 
1489         cluster_offset += pnum;
1490         cluster_bytes -= pnum;
1491         progress += pnum - skip_bytes;
1492         skip_bytes = 0;
1493     }
1494     ret = 0;
1495 
1496 err:
1497     qemu_vfree(bounce_buffer);
1498     return ret;
1499 }
1500 
1501 /*
1502  * Forwards an already correctly aligned request to the BlockDriver. This
1503  * handles copy on read, zeroing after EOF, and fragmentation of large
1504  * reads; any other features must be implemented by the caller.
1505  */
1506 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1507     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1508     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1509 {
1510     BlockDriverState *bs = child->bs;
1511     int64_t total_bytes, max_bytes;
1512     int ret = 0;
1513     int64_t bytes_remaining = bytes;
1514     int max_transfer;
1515 
1516     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1517     assert(is_power_of_2(align));
1518     assert((offset & (align - 1)) == 0);
1519     assert((bytes & (align - 1)) == 0);
1520     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1521     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1522                                    align);
1523 
1524     /* TODO: We would need a per-BDS .supported_read_flags and
1525      * potential fallback support, if we ever implement any read flags
1526      * to pass through to drivers.  For now, there aren't any
1527      * passthrough flags.  */
1528     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1529 
1530     /* Handle Copy on Read and associated serialisation */
1531     if (flags & BDRV_REQ_COPY_ON_READ) {
1532         /* If we touch the same cluster it counts as an overlap.  This
1533          * guarantees that allocating writes will be serialized and not race
1534          * with each other for the same cluster.  For example, in copy-on-read
1535          * it ensures that the CoR read and write operations are atomic and
1536          * guest writes cannot interleave between them. */
1537         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1538     } else {
1539         bdrv_wait_serialising_requests(req);
1540     }
1541 
1542     if (flags & BDRV_REQ_COPY_ON_READ) {
1543         int64_t pnum;
1544 
1545         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1546         flags &= ~BDRV_REQ_COPY_ON_READ;
1547 
1548         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1549         if (ret < 0) {
1550             goto out;
1551         }
1552 
1553         if (!ret || pnum != bytes) {
1554             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1555                                            qiov, qiov_offset, flags);
1556             goto out;
1557         } else if (flags & BDRV_REQ_PREFETCH) {
1558             goto out;
1559         }
1560     }
1561 
1562     /* Forward the request to the BlockDriver, possibly fragmenting it */
1563     total_bytes = bdrv_getlength(bs);
1564     if (total_bytes < 0) {
1565         ret = total_bytes;
1566         goto out;
1567     }
1568 
1569     assert(!(flags & ~bs->supported_read_flags));
1570 
1571     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1572     if (bytes <= max_bytes && bytes <= max_transfer) {
1573         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1574         goto out;
1575     }
1576 
1577     while (bytes_remaining) {
1578         int64_t num;
1579 
1580         if (max_bytes) {
1581             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1582             assert(num);
1583 
1584             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1585                                      num, qiov,
1586                                      qiov_offset + bytes - bytes_remaining,
1587                                      flags);
1588             max_bytes -= num;
1589         } else {
1590             num = bytes_remaining;
1591             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1592                                     0, bytes_remaining);
1593         }
1594         if (ret < 0) {
1595             goto out;
1596         }
1597         bytes_remaining -= num;
1598     }
1599 
1600 out:
1601     return ret < 0 ? ret : 0;
1602 }
1603 
1604 /*
1605  * Request padding
1606  *
1607  *  |<---- align ----->|                     |<----- align ---->|
1608  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1609  *  |          |       |                     |     |            |
1610  * -*----------$-------*-------- ... --------*-----$------------*---
1611  *  |          |       |                     |     |            |
1612  *  |          offset  |                     |     end          |
1613  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1614  *  [buf   ... )                             [tail_buf          )
1615  *
1616  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1617  * is placed at the beginning of @buf and @tail at the @end.
1618  *
1619  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1620  * around tail, if tail exists.
1621  *
1622  * @merge_reads is true for small requests,
1623  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1624  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1625  */
1626 typedef struct BdrvRequestPadding {
1627     uint8_t *buf;
1628     size_t buf_len;
1629     uint8_t *tail_buf;
1630     size_t head;
1631     size_t tail;
1632     bool merge_reads;
1633     QEMUIOVector local_qiov;
1634 } BdrvRequestPadding;
1635 
1636 static bool bdrv_init_padding(BlockDriverState *bs,
1637                               int64_t offset, int64_t bytes,
1638                               BdrvRequestPadding *pad)
1639 {
1640     int64_t align = bs->bl.request_alignment;
1641     int64_t sum;
1642 
1643     bdrv_check_request(offset, bytes, &error_abort);
1644     assert(align <= INT_MAX); /* documented in block/block_int.h */
1645     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1646 
1647     memset(pad, 0, sizeof(*pad));
1648 
1649     pad->head = offset & (align - 1);
1650     pad->tail = ((offset + bytes) & (align - 1));
1651     if (pad->tail) {
1652         pad->tail = align - pad->tail;
1653     }
1654 
1655     if (!pad->head && !pad->tail) {
1656         return false;
1657     }
1658 
1659     assert(bytes); /* Nothing good in aligning zero-length requests */
1660 
1661     sum = pad->head + bytes + pad->tail;
1662     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1663     pad->buf = qemu_blockalign(bs, pad->buf_len);
1664     pad->merge_reads = sum == pad->buf_len;
1665     if (pad->tail) {
1666         pad->tail_buf = pad->buf + pad->buf_len - align;
1667     }
1668 
1669     return true;
1670 }
1671 
1672 static int bdrv_padding_rmw_read(BdrvChild *child,
1673                                  BdrvTrackedRequest *req,
1674                                  BdrvRequestPadding *pad,
1675                                  bool zero_middle)
1676 {
1677     QEMUIOVector local_qiov;
1678     BlockDriverState *bs = child->bs;
1679     uint64_t align = bs->bl.request_alignment;
1680     int ret;
1681 
1682     assert(req->serialising && pad->buf);
1683 
1684     if (pad->head || pad->merge_reads) {
1685         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1686 
1687         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1688 
1689         if (pad->head) {
1690             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1691         }
1692         if (pad->merge_reads && pad->tail) {
1693             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1694         }
1695         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1696                                   align, &local_qiov, 0, 0);
1697         if (ret < 0) {
1698             return ret;
1699         }
1700         if (pad->head) {
1701             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1702         }
1703         if (pad->merge_reads && pad->tail) {
1704             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1705         }
1706 
1707         if (pad->merge_reads) {
1708             goto zero_mem;
1709         }
1710     }
1711 
1712     if (pad->tail) {
1713         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1714 
1715         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1716         ret = bdrv_aligned_preadv(
1717                 child, req,
1718                 req->overlap_offset + req->overlap_bytes - align,
1719                 align, align, &local_qiov, 0, 0);
1720         if (ret < 0) {
1721             return ret;
1722         }
1723         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1724     }
1725 
1726 zero_mem:
1727     if (zero_middle) {
1728         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1729     }
1730 
1731     return 0;
1732 }
1733 
1734 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1735 {
1736     if (pad->buf) {
1737         qemu_vfree(pad->buf);
1738         qemu_iovec_destroy(&pad->local_qiov);
1739     }
1740     memset(pad, 0, sizeof(*pad));
1741 }
1742 
1743 /*
1744  * bdrv_pad_request
1745  *
1746  * Exchange request parameters with padded request if needed. Don't include RMW
1747  * read of padding, bdrv_padding_rmw_read() should be called separately if
1748  * needed.
1749  *
1750  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1751  *  - on function start they represent original request
1752  *  - on failure or when padding is not needed they are unchanged
1753  *  - on success when padding is needed they represent padded request
1754  */
1755 static int bdrv_pad_request(BlockDriverState *bs,
1756                             QEMUIOVector **qiov, size_t *qiov_offset,
1757                             int64_t *offset, int64_t *bytes,
1758                             BdrvRequestPadding *pad, bool *padded)
1759 {
1760     int ret;
1761 
1762     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1763 
1764     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1765         if (padded) {
1766             *padded = false;
1767         }
1768         return 0;
1769     }
1770 
1771     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1772                                    *qiov, *qiov_offset, *bytes,
1773                                    pad->buf + pad->buf_len - pad->tail,
1774                                    pad->tail);
1775     if (ret < 0) {
1776         bdrv_padding_destroy(pad);
1777         return ret;
1778     }
1779     *bytes += pad->head + pad->tail;
1780     *offset -= pad->head;
1781     *qiov = &pad->local_qiov;
1782     *qiov_offset = 0;
1783     if (padded) {
1784         *padded = true;
1785     }
1786 
1787     return 0;
1788 }
1789 
1790 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1791     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1792     BdrvRequestFlags flags)
1793 {
1794     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1795 }
1796 
1797 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1798     int64_t offset, int64_t bytes,
1799     QEMUIOVector *qiov, size_t qiov_offset,
1800     BdrvRequestFlags flags)
1801 {
1802     BlockDriverState *bs = child->bs;
1803     BdrvTrackedRequest req;
1804     BdrvRequestPadding pad;
1805     int ret;
1806 
1807     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1808 
1809     if (!bdrv_is_inserted(bs)) {
1810         return -ENOMEDIUM;
1811     }
1812 
1813     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1814     if (ret < 0) {
1815         return ret;
1816     }
1817 
1818     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1819         /*
1820          * Aligning zero request is nonsense. Even if driver has special meaning
1821          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1822          * it to driver due to request_alignment.
1823          *
1824          * Still, no reason to return an error if someone do unaligned
1825          * zero-length read occasionally.
1826          */
1827         return 0;
1828     }
1829 
1830     bdrv_inc_in_flight(bs);
1831 
1832     /* Don't do copy-on-read if we read data before write operation */
1833     if (qatomic_read(&bs->copy_on_read)) {
1834         flags |= BDRV_REQ_COPY_ON_READ;
1835     }
1836 
1837     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1838                            NULL);
1839     if (ret < 0) {
1840         return ret;
1841     }
1842 
1843     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1844     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1845                               bs->bl.request_alignment,
1846                               qiov, qiov_offset, flags);
1847     tracked_request_end(&req);
1848     bdrv_dec_in_flight(bs);
1849 
1850     bdrv_padding_destroy(&pad);
1851 
1852     return ret;
1853 }
1854 
1855 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1856     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1857 {
1858     BlockDriver *drv = bs->drv;
1859     QEMUIOVector qiov;
1860     void *buf = NULL;
1861     int ret = 0;
1862     bool need_flush = false;
1863     int head = 0;
1864     int tail = 0;
1865 
1866     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1867     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1868                         bs->bl.request_alignment);
1869     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1870 
1871     bdrv_check_request(offset, bytes, &error_abort);
1872 
1873     if (!drv) {
1874         return -ENOMEDIUM;
1875     }
1876 
1877     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1878         return -ENOTSUP;
1879     }
1880 
1881     assert(alignment % bs->bl.request_alignment == 0);
1882     head = offset % alignment;
1883     tail = (offset + bytes) % alignment;
1884     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1885     assert(max_write_zeroes >= bs->bl.request_alignment);
1886 
1887     while (bytes > 0 && !ret) {
1888         int64_t num = bytes;
1889 
1890         /* Align request.  Block drivers can expect the "bulk" of the request
1891          * to be aligned, and that unaligned requests do not cross cluster
1892          * boundaries.
1893          */
1894         if (head) {
1895             /* Make a small request up to the first aligned sector. For
1896              * convenience, limit this request to max_transfer even if
1897              * we don't need to fall back to writes.  */
1898             num = MIN(MIN(bytes, max_transfer), alignment - head);
1899             head = (head + num) % alignment;
1900             assert(num < max_write_zeroes);
1901         } else if (tail && num > alignment) {
1902             /* Shorten the request to the last aligned sector.  */
1903             num -= tail;
1904         }
1905 
1906         /* limit request size */
1907         if (num > max_write_zeroes) {
1908             num = max_write_zeroes;
1909         }
1910 
1911         ret = -ENOTSUP;
1912         /* First try the efficient write zeroes operation */
1913         if (drv->bdrv_co_pwrite_zeroes) {
1914             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1915                                              flags & bs->supported_zero_flags);
1916             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1917                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1918                 need_flush = true;
1919             }
1920         } else {
1921             assert(!bs->supported_zero_flags);
1922         }
1923 
1924         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1925             /* Fall back to bounce buffer if write zeroes is unsupported */
1926             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1927 
1928             if ((flags & BDRV_REQ_FUA) &&
1929                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1930                 /* No need for bdrv_driver_pwrite() to do a fallback
1931                  * flush on each chunk; use just one at the end */
1932                 write_flags &= ~BDRV_REQ_FUA;
1933                 need_flush = true;
1934             }
1935             num = MIN(num, max_transfer);
1936             if (buf == NULL) {
1937                 buf = qemu_try_blockalign0(bs, num);
1938                 if (buf == NULL) {
1939                     ret = -ENOMEM;
1940                     goto fail;
1941                 }
1942             }
1943             qemu_iovec_init_buf(&qiov, buf, num);
1944 
1945             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1946 
1947             /* Keep bounce buffer around if it is big enough for all
1948              * all future requests.
1949              */
1950             if (num < max_transfer) {
1951                 qemu_vfree(buf);
1952                 buf = NULL;
1953             }
1954         }
1955 
1956         offset += num;
1957         bytes -= num;
1958     }
1959 
1960 fail:
1961     if (ret == 0 && need_flush) {
1962         ret = bdrv_co_flush(bs);
1963     }
1964     qemu_vfree(buf);
1965     return ret;
1966 }
1967 
1968 static inline int coroutine_fn
1969 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1970                           BdrvTrackedRequest *req, int flags)
1971 {
1972     BlockDriverState *bs = child->bs;
1973 
1974     bdrv_check_request(offset, bytes, &error_abort);
1975 
1976     if (bdrv_is_read_only(bs)) {
1977         return -EPERM;
1978     }
1979 
1980     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1981     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1982     assert(!(flags & ~BDRV_REQ_MASK));
1983     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1984 
1985     if (flags & BDRV_REQ_SERIALISING) {
1986         QEMU_LOCK_GUARD(&bs->reqs_lock);
1987 
1988         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1989 
1990         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1991             return -EBUSY;
1992         }
1993 
1994         bdrv_wait_serialising_requests_locked(req);
1995     } else {
1996         bdrv_wait_serialising_requests(req);
1997     }
1998 
1999     assert(req->overlap_offset <= offset);
2000     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2001     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2002            child->perm & BLK_PERM_RESIZE);
2003 
2004     switch (req->type) {
2005     case BDRV_TRACKED_WRITE:
2006     case BDRV_TRACKED_DISCARD:
2007         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2008             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2009         } else {
2010             assert(child->perm & BLK_PERM_WRITE);
2011         }
2012         bdrv_write_threshold_check_write(bs, offset, bytes);
2013         return 0;
2014     case BDRV_TRACKED_TRUNCATE:
2015         assert(child->perm & BLK_PERM_RESIZE);
2016         return 0;
2017     default:
2018         abort();
2019     }
2020 }
2021 
2022 static inline void coroutine_fn
2023 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2024                          BdrvTrackedRequest *req, int ret)
2025 {
2026     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2027     BlockDriverState *bs = child->bs;
2028 
2029     bdrv_check_request(offset, bytes, &error_abort);
2030 
2031     qatomic_inc(&bs->write_gen);
2032 
2033     /*
2034      * Discard cannot extend the image, but in error handling cases, such as
2035      * when reverting a qcow2 cluster allocation, the discarded range can pass
2036      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2037      * here. Instead, just skip it, since semantically a discard request
2038      * beyond EOF cannot expand the image anyway.
2039      */
2040     if (ret == 0 &&
2041         (req->type == BDRV_TRACKED_TRUNCATE ||
2042          end_sector > bs->total_sectors) &&
2043         req->type != BDRV_TRACKED_DISCARD) {
2044         bs->total_sectors = end_sector;
2045         bdrv_parent_cb_resize(bs);
2046         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2047     }
2048     if (req->bytes) {
2049         switch (req->type) {
2050         case BDRV_TRACKED_WRITE:
2051             stat64_max(&bs->wr_highest_offset, offset + bytes);
2052             /* fall through, to set dirty bits */
2053         case BDRV_TRACKED_DISCARD:
2054             bdrv_set_dirty(bs, offset, bytes);
2055             break;
2056         default:
2057             break;
2058         }
2059     }
2060 }
2061 
2062 /*
2063  * Forwards an already correctly aligned write request to the BlockDriver,
2064  * after possibly fragmenting it.
2065  */
2066 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2067     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2068     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2069 {
2070     BlockDriverState *bs = child->bs;
2071     BlockDriver *drv = bs->drv;
2072     int ret;
2073 
2074     int64_t bytes_remaining = bytes;
2075     int max_transfer;
2076 
2077     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2078 
2079     if (!drv) {
2080         return -ENOMEDIUM;
2081     }
2082 
2083     if (bdrv_has_readonly_bitmaps(bs)) {
2084         return -EPERM;
2085     }
2086 
2087     assert(is_power_of_2(align));
2088     assert((offset & (align - 1)) == 0);
2089     assert((bytes & (align - 1)) == 0);
2090     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2091                                    align);
2092 
2093     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2094 
2095     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2096         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2097         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2098         flags |= BDRV_REQ_ZERO_WRITE;
2099         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2100             flags |= BDRV_REQ_MAY_UNMAP;
2101         }
2102     }
2103 
2104     if (ret < 0) {
2105         /* Do nothing, write notifier decided to fail this request */
2106     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2107         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2108         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2109     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2110         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2111                                              qiov, qiov_offset);
2112     } else if (bytes <= max_transfer) {
2113         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2114         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2115     } else {
2116         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2117         while (bytes_remaining) {
2118             int num = MIN(bytes_remaining, max_transfer);
2119             int local_flags = flags;
2120 
2121             assert(num);
2122             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2123                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2124                 /* If FUA is going to be emulated by flush, we only
2125                  * need to flush on the last iteration */
2126                 local_flags &= ~BDRV_REQ_FUA;
2127             }
2128 
2129             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2130                                       num, qiov,
2131                                       qiov_offset + bytes - bytes_remaining,
2132                                       local_flags);
2133             if (ret < 0) {
2134                 break;
2135             }
2136             bytes_remaining -= num;
2137         }
2138     }
2139     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2140 
2141     if (ret >= 0) {
2142         ret = 0;
2143     }
2144     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2145 
2146     return ret;
2147 }
2148 
2149 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2150                                                 int64_t offset,
2151                                                 int64_t bytes,
2152                                                 BdrvRequestFlags flags,
2153                                                 BdrvTrackedRequest *req)
2154 {
2155     BlockDriverState *bs = child->bs;
2156     QEMUIOVector local_qiov;
2157     uint64_t align = bs->bl.request_alignment;
2158     int ret = 0;
2159     bool padding;
2160     BdrvRequestPadding pad;
2161 
2162     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2163     if (padding) {
2164         bdrv_make_request_serialising(req, align);
2165 
2166         bdrv_padding_rmw_read(child, req, &pad, true);
2167 
2168         if (pad.head || pad.merge_reads) {
2169             int64_t aligned_offset = offset & ~(align - 1);
2170             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2171 
2172             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2173             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2174                                        align, &local_qiov, 0,
2175                                        flags & ~BDRV_REQ_ZERO_WRITE);
2176             if (ret < 0 || pad.merge_reads) {
2177                 /* Error or all work is done */
2178                 goto out;
2179             }
2180             offset += write_bytes - pad.head;
2181             bytes -= write_bytes - pad.head;
2182         }
2183     }
2184 
2185     assert(!bytes || (offset & (align - 1)) == 0);
2186     if (bytes >= align) {
2187         /* Write the aligned part in the middle. */
2188         int64_t aligned_bytes = bytes & ~(align - 1);
2189         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2190                                    NULL, 0, flags);
2191         if (ret < 0) {
2192             goto out;
2193         }
2194         bytes -= aligned_bytes;
2195         offset += aligned_bytes;
2196     }
2197 
2198     assert(!bytes || (offset & (align - 1)) == 0);
2199     if (bytes) {
2200         assert(align == pad.tail + bytes);
2201 
2202         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2203         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2204                                    &local_qiov, 0,
2205                                    flags & ~BDRV_REQ_ZERO_WRITE);
2206     }
2207 
2208 out:
2209     bdrv_padding_destroy(&pad);
2210 
2211     return ret;
2212 }
2213 
2214 /*
2215  * Handle a write request in coroutine context
2216  */
2217 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2218     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2219     BdrvRequestFlags flags)
2220 {
2221     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2222 }
2223 
2224 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2225     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2226     BdrvRequestFlags flags)
2227 {
2228     BlockDriverState *bs = child->bs;
2229     BdrvTrackedRequest req;
2230     uint64_t align = bs->bl.request_alignment;
2231     BdrvRequestPadding pad;
2232     int ret;
2233     bool padded = false;
2234 
2235     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2236 
2237     if (!bdrv_is_inserted(bs)) {
2238         return -ENOMEDIUM;
2239     }
2240 
2241     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2242     if (ret < 0) {
2243         return ret;
2244     }
2245 
2246     /* If the request is misaligned then we can't make it efficient */
2247     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2248         !QEMU_IS_ALIGNED(offset | bytes, align))
2249     {
2250         return -ENOTSUP;
2251     }
2252 
2253     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2254         /*
2255          * Aligning zero request is nonsense. Even if driver has special meaning
2256          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2257          * it to driver due to request_alignment.
2258          *
2259          * Still, no reason to return an error if someone do unaligned
2260          * zero-length write occasionally.
2261          */
2262         return 0;
2263     }
2264 
2265     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2266         /*
2267          * Pad request for following read-modify-write cycle.
2268          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2269          * alignment only if there is no ZERO flag.
2270          */
2271         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2272                                &padded);
2273         if (ret < 0) {
2274             return ret;
2275         }
2276     }
2277 
2278     bdrv_inc_in_flight(bs);
2279     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2280 
2281     if (flags & BDRV_REQ_ZERO_WRITE) {
2282         assert(!padded);
2283         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2284         goto out;
2285     }
2286 
2287     if (padded) {
2288         /*
2289          * Request was unaligned to request_alignment and therefore
2290          * padded.  We are going to do read-modify-write, and must
2291          * serialize the request to prevent interactions of the
2292          * widened region with other transactions.
2293          */
2294         bdrv_make_request_serialising(&req, align);
2295         bdrv_padding_rmw_read(child, &req, &pad, false);
2296     }
2297 
2298     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2299                                qiov, qiov_offset, flags);
2300 
2301     bdrv_padding_destroy(&pad);
2302 
2303 out:
2304     tracked_request_end(&req);
2305     bdrv_dec_in_flight(bs);
2306 
2307     return ret;
2308 }
2309 
2310 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2311                                        int64_t bytes, BdrvRequestFlags flags)
2312 {
2313     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2314 
2315     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2316         flags &= ~BDRV_REQ_MAY_UNMAP;
2317     }
2318 
2319     return bdrv_co_pwritev(child, offset, bytes, NULL,
2320                            BDRV_REQ_ZERO_WRITE | flags);
2321 }
2322 
2323 /*
2324  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2325  */
2326 int bdrv_flush_all(void)
2327 {
2328     BdrvNextIterator it;
2329     BlockDriverState *bs = NULL;
2330     int result = 0;
2331 
2332     /*
2333      * bdrv queue is managed by record/replay,
2334      * creating new flush request for stopping
2335      * the VM may break the determinism
2336      */
2337     if (replay_events_enabled()) {
2338         return result;
2339     }
2340 
2341     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2342         AioContext *aio_context = bdrv_get_aio_context(bs);
2343         int ret;
2344 
2345         aio_context_acquire(aio_context);
2346         ret = bdrv_flush(bs);
2347         if (ret < 0 && !result) {
2348             result = ret;
2349         }
2350         aio_context_release(aio_context);
2351     }
2352 
2353     return result;
2354 }
2355 
2356 /*
2357  * Returns the allocation status of the specified sectors.
2358  * Drivers not implementing the functionality are assumed to not support
2359  * backing files, hence all their sectors are reported as allocated.
2360  *
2361  * If 'want_zero' is true, the caller is querying for mapping
2362  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2363  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2364  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2365  *
2366  * If 'offset' is beyond the end of the disk image the return value is
2367  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2368  *
2369  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2370  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2371  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2372  *
2373  * 'pnum' is set to the number of bytes (including and immediately
2374  * following the specified offset) that are easily known to be in the
2375  * same allocated/unallocated state.  Note that a second call starting
2376  * at the original offset plus returned pnum may have the same status.
2377  * The returned value is non-zero on success except at end-of-file.
2378  *
2379  * Returns negative errno on failure.  Otherwise, if the
2380  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2381  * set to the host mapping and BDS corresponding to the guest offset.
2382  */
2383 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2384                                              bool want_zero,
2385                                              int64_t offset, int64_t bytes,
2386                                              int64_t *pnum, int64_t *map,
2387                                              BlockDriverState **file)
2388 {
2389     int64_t total_size;
2390     int64_t n; /* bytes */
2391     int ret;
2392     int64_t local_map = 0;
2393     BlockDriverState *local_file = NULL;
2394     int64_t aligned_offset, aligned_bytes;
2395     uint32_t align;
2396     bool has_filtered_child;
2397 
2398     assert(pnum);
2399     *pnum = 0;
2400     total_size = bdrv_getlength(bs);
2401     if (total_size < 0) {
2402         ret = total_size;
2403         goto early_out;
2404     }
2405 
2406     if (offset >= total_size) {
2407         ret = BDRV_BLOCK_EOF;
2408         goto early_out;
2409     }
2410     if (!bytes) {
2411         ret = 0;
2412         goto early_out;
2413     }
2414 
2415     n = total_size - offset;
2416     if (n < bytes) {
2417         bytes = n;
2418     }
2419 
2420     /* Must be non-NULL or bdrv_getlength() would have failed */
2421     assert(bs->drv);
2422     has_filtered_child = bdrv_filter_child(bs);
2423     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2424         *pnum = bytes;
2425         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2426         if (offset + bytes == total_size) {
2427             ret |= BDRV_BLOCK_EOF;
2428         }
2429         if (bs->drv->protocol_name) {
2430             ret |= BDRV_BLOCK_OFFSET_VALID;
2431             local_map = offset;
2432             local_file = bs;
2433         }
2434         goto early_out;
2435     }
2436 
2437     bdrv_inc_in_flight(bs);
2438 
2439     /* Round out to request_alignment boundaries */
2440     align = bs->bl.request_alignment;
2441     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2442     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2443 
2444     if (bs->drv->bdrv_co_block_status) {
2445         ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2446                                             aligned_bytes, pnum, &local_map,
2447                                             &local_file);
2448     } else {
2449         /* Default code for filters */
2450 
2451         local_file = bdrv_filter_bs(bs);
2452         assert(local_file);
2453 
2454         *pnum = aligned_bytes;
2455         local_map = aligned_offset;
2456         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2457     }
2458     if (ret < 0) {
2459         *pnum = 0;
2460         goto out;
2461     }
2462 
2463     /*
2464      * The driver's result must be a non-zero multiple of request_alignment.
2465      * Clamp pnum and adjust map to original request.
2466      */
2467     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2468            align > offset - aligned_offset);
2469     if (ret & BDRV_BLOCK_RECURSE) {
2470         assert(ret & BDRV_BLOCK_DATA);
2471         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2472         assert(!(ret & BDRV_BLOCK_ZERO));
2473     }
2474 
2475     *pnum -= offset - aligned_offset;
2476     if (*pnum > bytes) {
2477         *pnum = bytes;
2478     }
2479     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2480         local_map += offset - aligned_offset;
2481     }
2482 
2483     if (ret & BDRV_BLOCK_RAW) {
2484         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2485         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2486                                    *pnum, pnum, &local_map, &local_file);
2487         goto out;
2488     }
2489 
2490     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2491         ret |= BDRV_BLOCK_ALLOCATED;
2492     } else if (bs->drv->supports_backing) {
2493         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2494 
2495         if (!cow_bs) {
2496             ret |= BDRV_BLOCK_ZERO;
2497         } else if (want_zero) {
2498             int64_t size2 = bdrv_getlength(cow_bs);
2499 
2500             if (size2 >= 0 && offset >= size2) {
2501                 ret |= BDRV_BLOCK_ZERO;
2502             }
2503         }
2504     }
2505 
2506     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2507         local_file && local_file != bs &&
2508         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2509         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2510         int64_t file_pnum;
2511         int ret2;
2512 
2513         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2514                                     *pnum, &file_pnum, NULL, NULL);
2515         if (ret2 >= 0) {
2516             /* Ignore errors.  This is just providing extra information, it
2517              * is useful but not necessary.
2518              */
2519             if (ret2 & BDRV_BLOCK_EOF &&
2520                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2521                 /*
2522                  * It is valid for the format block driver to read
2523                  * beyond the end of the underlying file's current
2524                  * size; such areas read as zero.
2525                  */
2526                 ret |= BDRV_BLOCK_ZERO;
2527             } else {
2528                 /* Limit request to the range reported by the protocol driver */
2529                 *pnum = file_pnum;
2530                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2531             }
2532         }
2533     }
2534 
2535 out:
2536     bdrv_dec_in_flight(bs);
2537     if (ret >= 0 && offset + *pnum == total_size) {
2538         ret |= BDRV_BLOCK_EOF;
2539     }
2540 early_out:
2541     if (file) {
2542         *file = local_file;
2543     }
2544     if (map) {
2545         *map = local_map;
2546     }
2547     return ret;
2548 }
2549 
2550 int coroutine_fn
2551 bdrv_co_common_block_status_above(BlockDriverState *bs,
2552                                   BlockDriverState *base,
2553                                   bool include_base,
2554                                   bool want_zero,
2555                                   int64_t offset,
2556                                   int64_t bytes,
2557                                   int64_t *pnum,
2558                                   int64_t *map,
2559                                   BlockDriverState **file,
2560                                   int *depth)
2561 {
2562     int ret;
2563     BlockDriverState *p;
2564     int64_t eof = 0;
2565     int dummy;
2566 
2567     assert(!include_base || base); /* Can't include NULL base */
2568 
2569     if (!depth) {
2570         depth = &dummy;
2571     }
2572     *depth = 0;
2573 
2574     if (!include_base && bs == base) {
2575         *pnum = bytes;
2576         return 0;
2577     }
2578 
2579     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2580     ++*depth;
2581     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2582         return ret;
2583     }
2584 
2585     if (ret & BDRV_BLOCK_EOF) {
2586         eof = offset + *pnum;
2587     }
2588 
2589     assert(*pnum <= bytes);
2590     bytes = *pnum;
2591 
2592     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2593          p = bdrv_filter_or_cow_bs(p))
2594     {
2595         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2596                                    file);
2597         ++*depth;
2598         if (ret < 0) {
2599             return ret;
2600         }
2601         if (*pnum == 0) {
2602             /*
2603              * The top layer deferred to this layer, and because this layer is
2604              * short, any zeroes that we synthesize beyond EOF behave as if they
2605              * were allocated at this layer.
2606              *
2607              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2608              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2609              * below.
2610              */
2611             assert(ret & BDRV_BLOCK_EOF);
2612             *pnum = bytes;
2613             if (file) {
2614                 *file = p;
2615             }
2616             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2617             break;
2618         }
2619         if (ret & BDRV_BLOCK_ALLOCATED) {
2620             /*
2621              * We've found the node and the status, we must break.
2622              *
2623              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2624              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2625              * below.
2626              */
2627             ret &= ~BDRV_BLOCK_EOF;
2628             break;
2629         }
2630 
2631         if (p == base) {
2632             assert(include_base);
2633             break;
2634         }
2635 
2636         /*
2637          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2638          * let's continue the diving.
2639          */
2640         assert(*pnum <= bytes);
2641         bytes = *pnum;
2642     }
2643 
2644     if (offset + *pnum == eof) {
2645         ret |= BDRV_BLOCK_EOF;
2646     }
2647 
2648     return ret;
2649 }
2650 
2651 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2652                             int64_t offset, int64_t bytes, int64_t *pnum,
2653                             int64_t *map, BlockDriverState **file)
2654 {
2655     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2656                                           pnum, map, file, NULL);
2657 }
2658 
2659 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2660                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2661 {
2662     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2663                                    offset, bytes, pnum, map, file);
2664 }
2665 
2666 /*
2667  * Check @bs (and its backing chain) to see if the range defined
2668  * by @offset and @bytes is known to read as zeroes.
2669  * Return 1 if that is the case, 0 otherwise and -errno on error.
2670  * This test is meant to be fast rather than accurate so returning 0
2671  * does not guarantee non-zero data.
2672  */
2673 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2674                                       int64_t bytes)
2675 {
2676     int ret;
2677     int64_t pnum = bytes;
2678 
2679     if (!bytes) {
2680         return 1;
2681     }
2682 
2683     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2684                                          bytes, &pnum, NULL, NULL, NULL);
2685 
2686     if (ret < 0) {
2687         return ret;
2688     }
2689 
2690     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2691 }
2692 
2693 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2694                                    int64_t bytes, int64_t *pnum)
2695 {
2696     int ret;
2697     int64_t dummy;
2698 
2699     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2700                                          bytes, pnum ? pnum : &dummy, NULL,
2701                                          NULL, NULL);
2702     if (ret < 0) {
2703         return ret;
2704     }
2705     return !!(ret & BDRV_BLOCK_ALLOCATED);
2706 }
2707 
2708 /*
2709  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2710  *
2711  * Return a positive depth if (a prefix of) the given range is allocated
2712  * in any image between BASE and TOP (BASE is only included if include_base
2713  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2714  * BASE can be NULL to check if the given offset is allocated in any
2715  * image of the chain.  Return 0 otherwise, or negative errno on
2716  * failure.
2717  *
2718  * 'pnum' is set to the number of bytes (including and immediately
2719  * following the specified offset) that are known to be in the same
2720  * allocated/unallocated state.  Note that a subsequent call starting
2721  * at 'offset + *pnum' may return the same allocation status (in other
2722  * words, the result is not necessarily the maximum possible range);
2723  * but 'pnum' will only be 0 when end of file is reached.
2724  */
2725 int bdrv_is_allocated_above(BlockDriverState *top,
2726                             BlockDriverState *base,
2727                             bool include_base, int64_t offset,
2728                             int64_t bytes, int64_t *pnum)
2729 {
2730     int depth;
2731     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2732                                              offset, bytes, pnum, NULL, NULL,
2733                                              &depth);
2734     if (ret < 0) {
2735         return ret;
2736     }
2737 
2738     if (ret & BDRV_BLOCK_ALLOCATED) {
2739         return depth;
2740     }
2741     return 0;
2742 }
2743 
2744 int coroutine_fn
2745 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2746 {
2747     BlockDriver *drv = bs->drv;
2748     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2749     int ret = -ENOTSUP;
2750 
2751     if (!drv) {
2752         return -ENOMEDIUM;
2753     }
2754 
2755     bdrv_inc_in_flight(bs);
2756 
2757     if (drv->bdrv_load_vmstate) {
2758         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2759     } else if (child_bs) {
2760         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2761     }
2762 
2763     bdrv_dec_in_flight(bs);
2764 
2765     return ret;
2766 }
2767 
2768 int coroutine_fn
2769 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2770 {
2771     BlockDriver *drv = bs->drv;
2772     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2773     int ret = -ENOTSUP;
2774 
2775     if (!drv) {
2776         return -ENOMEDIUM;
2777     }
2778 
2779     bdrv_inc_in_flight(bs);
2780 
2781     if (drv->bdrv_save_vmstate) {
2782         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2783     } else if (child_bs) {
2784         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2785     }
2786 
2787     bdrv_dec_in_flight(bs);
2788 
2789     return ret;
2790 }
2791 
2792 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2793                       int64_t pos, int size)
2794 {
2795     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2796     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2797 
2798     return ret < 0 ? ret : size;
2799 }
2800 
2801 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2802                       int64_t pos, int size)
2803 {
2804     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2805     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2806 
2807     return ret < 0 ? ret : size;
2808 }
2809 
2810 /**************************************************************/
2811 /* async I/Os */
2812 
2813 void bdrv_aio_cancel(BlockAIOCB *acb)
2814 {
2815     qemu_aio_ref(acb);
2816     bdrv_aio_cancel_async(acb);
2817     while (acb->refcnt > 1) {
2818         if (acb->aiocb_info->get_aio_context) {
2819             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2820         } else if (acb->bs) {
2821             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2822              * assert that we're not using an I/O thread.  Thread-safe
2823              * code should use bdrv_aio_cancel_async exclusively.
2824              */
2825             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2826             aio_poll(bdrv_get_aio_context(acb->bs), true);
2827         } else {
2828             abort();
2829         }
2830     }
2831     qemu_aio_unref(acb);
2832 }
2833 
2834 /* Async version of aio cancel. The caller is not blocked if the acb implements
2835  * cancel_async, otherwise we do nothing and let the request normally complete.
2836  * In either case the completion callback must be called. */
2837 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2838 {
2839     if (acb->aiocb_info->cancel_async) {
2840         acb->aiocb_info->cancel_async(acb);
2841     }
2842 }
2843 
2844 /**************************************************************/
2845 /* Coroutine block device emulation */
2846 
2847 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2848 {
2849     BdrvChild *primary_child = bdrv_primary_child(bs);
2850     BdrvChild *child;
2851     int current_gen;
2852     int ret = 0;
2853 
2854     bdrv_inc_in_flight(bs);
2855 
2856     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2857         bdrv_is_sg(bs)) {
2858         goto early_exit;
2859     }
2860 
2861     qemu_co_mutex_lock(&bs->reqs_lock);
2862     current_gen = qatomic_read(&bs->write_gen);
2863 
2864     /* Wait until any previous flushes are completed */
2865     while (bs->active_flush_req) {
2866         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2867     }
2868 
2869     /* Flushes reach this point in nondecreasing current_gen order.  */
2870     bs->active_flush_req = true;
2871     qemu_co_mutex_unlock(&bs->reqs_lock);
2872 
2873     /* Write back all layers by calling one driver function */
2874     if (bs->drv->bdrv_co_flush) {
2875         ret = bs->drv->bdrv_co_flush(bs);
2876         goto out;
2877     }
2878 
2879     /* Write back cached data to the OS even with cache=unsafe */
2880     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2881     if (bs->drv->bdrv_co_flush_to_os) {
2882         ret = bs->drv->bdrv_co_flush_to_os(bs);
2883         if (ret < 0) {
2884             goto out;
2885         }
2886     }
2887 
2888     /* But don't actually force it to the disk with cache=unsafe */
2889     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2890         goto flush_children;
2891     }
2892 
2893     /* Check if we really need to flush anything */
2894     if (bs->flushed_gen == current_gen) {
2895         goto flush_children;
2896     }
2897 
2898     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2899     if (!bs->drv) {
2900         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2901          * (even in case of apparent success) */
2902         ret = -ENOMEDIUM;
2903         goto out;
2904     }
2905     if (bs->drv->bdrv_co_flush_to_disk) {
2906         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2907     } else if (bs->drv->bdrv_aio_flush) {
2908         BlockAIOCB *acb;
2909         CoroutineIOCompletion co = {
2910             .coroutine = qemu_coroutine_self(),
2911         };
2912 
2913         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2914         if (acb == NULL) {
2915             ret = -EIO;
2916         } else {
2917             qemu_coroutine_yield();
2918             ret = co.ret;
2919         }
2920     } else {
2921         /*
2922          * Some block drivers always operate in either writethrough or unsafe
2923          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2924          * know how the server works (because the behaviour is hardcoded or
2925          * depends on server-side configuration), so we can't ensure that
2926          * everything is safe on disk. Returning an error doesn't work because
2927          * that would break guests even if the server operates in writethrough
2928          * mode.
2929          *
2930          * Let's hope the user knows what he's doing.
2931          */
2932         ret = 0;
2933     }
2934 
2935     if (ret < 0) {
2936         goto out;
2937     }
2938 
2939     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2940      * in the case of cache=unsafe, so there are no useless flushes.
2941      */
2942 flush_children:
2943     ret = 0;
2944     QLIST_FOREACH(child, &bs->children, next) {
2945         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2946             int this_child_ret = bdrv_co_flush(child->bs);
2947             if (!ret) {
2948                 ret = this_child_ret;
2949             }
2950         }
2951     }
2952 
2953 out:
2954     /* Notify any pending flushes that we have completed */
2955     if (ret == 0) {
2956         bs->flushed_gen = current_gen;
2957     }
2958 
2959     qemu_co_mutex_lock(&bs->reqs_lock);
2960     bs->active_flush_req = false;
2961     /* Return value is ignored - it's ok if wait queue is empty */
2962     qemu_co_queue_next(&bs->flush_queue);
2963     qemu_co_mutex_unlock(&bs->reqs_lock);
2964 
2965 early_exit:
2966     bdrv_dec_in_flight(bs);
2967     return ret;
2968 }
2969 
2970 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2971                                   int64_t bytes)
2972 {
2973     BdrvTrackedRequest req;
2974     int max_pdiscard, ret;
2975     int head, tail, align;
2976     BlockDriverState *bs = child->bs;
2977 
2978     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2979         return -ENOMEDIUM;
2980     }
2981 
2982     if (bdrv_has_readonly_bitmaps(bs)) {
2983         return -EPERM;
2984     }
2985 
2986     ret = bdrv_check_request(offset, bytes, NULL);
2987     if (ret < 0) {
2988         return ret;
2989     }
2990 
2991     /* Do nothing if disabled.  */
2992     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2993         return 0;
2994     }
2995 
2996     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2997         return 0;
2998     }
2999 
3000     /* Discard is advisory, but some devices track and coalesce
3001      * unaligned requests, so we must pass everything down rather than
3002      * round here.  Still, most devices will just silently ignore
3003      * unaligned requests (by returning -ENOTSUP), so we must fragment
3004      * the request accordingly.  */
3005     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3006     assert(align % bs->bl.request_alignment == 0);
3007     head = offset % align;
3008     tail = (offset + bytes) % align;
3009 
3010     bdrv_inc_in_flight(bs);
3011     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3012 
3013     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3014     if (ret < 0) {
3015         goto out;
3016     }
3017 
3018     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
3019                                    align);
3020     assert(max_pdiscard >= bs->bl.request_alignment);
3021 
3022     while (bytes > 0) {
3023         int64_t num = bytes;
3024 
3025         if (head) {
3026             /* Make small requests to get to alignment boundaries. */
3027             num = MIN(bytes, align - head);
3028             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3029                 num %= bs->bl.request_alignment;
3030             }
3031             head = (head + num) % align;
3032             assert(num < max_pdiscard);
3033         } else if (tail) {
3034             if (num > align) {
3035                 /* Shorten the request to the last aligned cluster.  */
3036                 num -= tail;
3037             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3038                        tail > bs->bl.request_alignment) {
3039                 tail %= bs->bl.request_alignment;
3040                 num -= tail;
3041             }
3042         }
3043         /* limit request size */
3044         if (num > max_pdiscard) {
3045             num = max_pdiscard;
3046         }
3047 
3048         if (!bs->drv) {
3049             ret = -ENOMEDIUM;
3050             goto out;
3051         }
3052         if (bs->drv->bdrv_co_pdiscard) {
3053             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3054         } else {
3055             BlockAIOCB *acb;
3056             CoroutineIOCompletion co = {
3057                 .coroutine = qemu_coroutine_self(),
3058             };
3059 
3060             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3061                                              bdrv_co_io_em_complete, &co);
3062             if (acb == NULL) {
3063                 ret = -EIO;
3064                 goto out;
3065             } else {
3066                 qemu_coroutine_yield();
3067                 ret = co.ret;
3068             }
3069         }
3070         if (ret && ret != -ENOTSUP) {
3071             goto out;
3072         }
3073 
3074         offset += num;
3075         bytes -= num;
3076     }
3077     ret = 0;
3078 out:
3079     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3080     tracked_request_end(&req);
3081     bdrv_dec_in_flight(bs);
3082     return ret;
3083 }
3084 
3085 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3086 {
3087     BlockDriver *drv = bs->drv;
3088     CoroutineIOCompletion co = {
3089         .coroutine = qemu_coroutine_self(),
3090     };
3091     BlockAIOCB *acb;
3092 
3093     bdrv_inc_in_flight(bs);
3094     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3095         co.ret = -ENOTSUP;
3096         goto out;
3097     }
3098 
3099     if (drv->bdrv_co_ioctl) {
3100         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3101     } else {
3102         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3103         if (!acb) {
3104             co.ret = -ENOTSUP;
3105             goto out;
3106         }
3107         qemu_coroutine_yield();
3108     }
3109 out:
3110     bdrv_dec_in_flight(bs);
3111     return co.ret;
3112 }
3113 
3114 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3115 {
3116     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3117 }
3118 
3119 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3120 {
3121     return memset(qemu_blockalign(bs, size), 0, size);
3122 }
3123 
3124 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3125 {
3126     size_t align = bdrv_opt_mem_align(bs);
3127 
3128     /* Ensure that NULL is never returned on success */
3129     assert(align > 0);
3130     if (size == 0) {
3131         size = align;
3132     }
3133 
3134     return qemu_try_memalign(align, size);
3135 }
3136 
3137 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3138 {
3139     void *mem = qemu_try_blockalign(bs, size);
3140 
3141     if (mem) {
3142         memset(mem, 0, size);
3143     }
3144 
3145     return mem;
3146 }
3147 
3148 /*
3149  * Check if all memory in this vector is sector aligned.
3150  */
3151 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3152 {
3153     int i;
3154     size_t alignment = bdrv_min_mem_align(bs);
3155 
3156     for (i = 0; i < qiov->niov; i++) {
3157         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3158             return false;
3159         }
3160         if (qiov->iov[i].iov_len % alignment) {
3161             return false;
3162         }
3163     }
3164 
3165     return true;
3166 }
3167 
3168 void bdrv_io_plug(BlockDriverState *bs)
3169 {
3170     BdrvChild *child;
3171 
3172     QLIST_FOREACH(child, &bs->children, next) {
3173         bdrv_io_plug(child->bs);
3174     }
3175 
3176     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3177         BlockDriver *drv = bs->drv;
3178         if (drv && drv->bdrv_io_plug) {
3179             drv->bdrv_io_plug(bs);
3180         }
3181     }
3182 }
3183 
3184 void bdrv_io_unplug(BlockDriverState *bs)
3185 {
3186     BdrvChild *child;
3187 
3188     assert(bs->io_plugged);
3189     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3190         BlockDriver *drv = bs->drv;
3191         if (drv && drv->bdrv_io_unplug) {
3192             drv->bdrv_io_unplug(bs);
3193         }
3194     }
3195 
3196     QLIST_FOREACH(child, &bs->children, next) {
3197         bdrv_io_unplug(child->bs);
3198     }
3199 }
3200 
3201 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3202 {
3203     BdrvChild *child;
3204 
3205     if (bs->drv && bs->drv->bdrv_register_buf) {
3206         bs->drv->bdrv_register_buf(bs, host, size);
3207     }
3208     QLIST_FOREACH(child, &bs->children, next) {
3209         bdrv_register_buf(child->bs, host, size);
3210     }
3211 }
3212 
3213 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3214 {
3215     BdrvChild *child;
3216 
3217     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3218         bs->drv->bdrv_unregister_buf(bs, host);
3219     }
3220     QLIST_FOREACH(child, &bs->children, next) {
3221         bdrv_unregister_buf(child->bs, host);
3222     }
3223 }
3224 
3225 static int coroutine_fn bdrv_co_copy_range_internal(
3226         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3227         int64_t dst_offset, int64_t bytes,
3228         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3229         bool recurse_src)
3230 {
3231     BdrvTrackedRequest req;
3232     int ret;
3233 
3234     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3235     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3236     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3237 
3238     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3239         return -ENOMEDIUM;
3240     }
3241     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3242     if (ret) {
3243         return ret;
3244     }
3245     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3246         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3247     }
3248 
3249     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3250         return -ENOMEDIUM;
3251     }
3252     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3253     if (ret) {
3254         return ret;
3255     }
3256 
3257     if (!src->bs->drv->bdrv_co_copy_range_from
3258         || !dst->bs->drv->bdrv_co_copy_range_to
3259         || src->bs->encrypted || dst->bs->encrypted) {
3260         return -ENOTSUP;
3261     }
3262 
3263     if (recurse_src) {
3264         bdrv_inc_in_flight(src->bs);
3265         tracked_request_begin(&req, src->bs, src_offset, bytes,
3266                               BDRV_TRACKED_READ);
3267 
3268         /* BDRV_REQ_SERIALISING is only for write operation */
3269         assert(!(read_flags & BDRV_REQ_SERIALISING));
3270         bdrv_wait_serialising_requests(&req);
3271 
3272         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3273                                                     src, src_offset,
3274                                                     dst, dst_offset,
3275                                                     bytes,
3276                                                     read_flags, write_flags);
3277 
3278         tracked_request_end(&req);
3279         bdrv_dec_in_flight(src->bs);
3280     } else {
3281         bdrv_inc_in_flight(dst->bs);
3282         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3283                               BDRV_TRACKED_WRITE);
3284         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3285                                         write_flags);
3286         if (!ret) {
3287             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3288                                                       src, src_offset,
3289                                                       dst, dst_offset,
3290                                                       bytes,
3291                                                       read_flags, write_flags);
3292         }
3293         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3294         tracked_request_end(&req);
3295         bdrv_dec_in_flight(dst->bs);
3296     }
3297 
3298     return ret;
3299 }
3300 
3301 /* Copy range from @src to @dst.
3302  *
3303  * See the comment of bdrv_co_copy_range for the parameter and return value
3304  * semantics. */
3305 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3306                                          BdrvChild *dst, int64_t dst_offset,
3307                                          int64_t bytes,
3308                                          BdrvRequestFlags read_flags,
3309                                          BdrvRequestFlags write_flags)
3310 {
3311     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3312                                   read_flags, write_flags);
3313     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3314                                        bytes, read_flags, write_flags, true);
3315 }
3316 
3317 /* Copy range from @src to @dst.
3318  *
3319  * See the comment of bdrv_co_copy_range for the parameter and return value
3320  * semantics. */
3321 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3322                                        BdrvChild *dst, int64_t dst_offset,
3323                                        int64_t bytes,
3324                                        BdrvRequestFlags read_flags,
3325                                        BdrvRequestFlags write_flags)
3326 {
3327     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3328                                 read_flags, write_flags);
3329     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3330                                        bytes, read_flags, write_flags, false);
3331 }
3332 
3333 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3334                                     BdrvChild *dst, int64_t dst_offset,
3335                                     int64_t bytes, BdrvRequestFlags read_flags,
3336                                     BdrvRequestFlags write_flags)
3337 {
3338     return bdrv_co_copy_range_from(src, src_offset,
3339                                    dst, dst_offset,
3340                                    bytes, read_flags, write_flags);
3341 }
3342 
3343 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3344 {
3345     BdrvChild *c;
3346     QLIST_FOREACH(c, &bs->parents, next_parent) {
3347         if (c->klass->resize) {
3348             c->klass->resize(c);
3349         }
3350     }
3351 }
3352 
3353 /**
3354  * Truncate file to 'offset' bytes (needed only for file protocols)
3355  *
3356  * If 'exact' is true, the file must be resized to exactly the given
3357  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3358  * 'offset' bytes in length.
3359  */
3360 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3361                                   PreallocMode prealloc, BdrvRequestFlags flags,
3362                                   Error **errp)
3363 {
3364     BlockDriverState *bs = child->bs;
3365     BdrvChild *filtered, *backing;
3366     BlockDriver *drv = bs->drv;
3367     BdrvTrackedRequest req;
3368     int64_t old_size, new_bytes;
3369     int ret;
3370 
3371 
3372     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3373     if (!drv) {
3374         error_setg(errp, "No medium inserted");
3375         return -ENOMEDIUM;
3376     }
3377     if (offset < 0) {
3378         error_setg(errp, "Image size cannot be negative");
3379         return -EINVAL;
3380     }
3381 
3382     ret = bdrv_check_request(offset, 0, errp);
3383     if (ret < 0) {
3384         return ret;
3385     }
3386 
3387     old_size = bdrv_getlength(bs);
3388     if (old_size < 0) {
3389         error_setg_errno(errp, -old_size, "Failed to get old image size");
3390         return old_size;
3391     }
3392 
3393     if (offset > old_size) {
3394         new_bytes = offset - old_size;
3395     } else {
3396         new_bytes = 0;
3397     }
3398 
3399     bdrv_inc_in_flight(bs);
3400     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3401                           BDRV_TRACKED_TRUNCATE);
3402 
3403     /* If we are growing the image and potentially using preallocation for the
3404      * new area, we need to make sure that no write requests are made to it
3405      * concurrently or they might be overwritten by preallocation. */
3406     if (new_bytes) {
3407         bdrv_make_request_serialising(&req, 1);
3408     }
3409     if (bdrv_is_read_only(bs)) {
3410         error_setg(errp, "Image is read-only");
3411         ret = -EACCES;
3412         goto out;
3413     }
3414     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3415                                     0);
3416     if (ret < 0) {
3417         error_setg_errno(errp, -ret,
3418                          "Failed to prepare request for truncation");
3419         goto out;
3420     }
3421 
3422     filtered = bdrv_filter_child(bs);
3423     backing = bdrv_cow_child(bs);
3424 
3425     /*
3426      * If the image has a backing file that is large enough that it would
3427      * provide data for the new area, we cannot leave it unallocated because
3428      * then the backing file content would become visible. Instead, zero-fill
3429      * the new area.
3430      *
3431      * Note that if the image has a backing file, but was opened without the
3432      * backing file, taking care of keeping things consistent with that backing
3433      * file is the user's responsibility.
3434      */
3435     if (new_bytes && backing) {
3436         int64_t backing_len;
3437 
3438         backing_len = bdrv_getlength(backing->bs);
3439         if (backing_len < 0) {
3440             ret = backing_len;
3441             error_setg_errno(errp, -ret, "Could not get backing file size");
3442             goto out;
3443         }
3444 
3445         if (backing_len > old_size) {
3446             flags |= BDRV_REQ_ZERO_WRITE;
3447         }
3448     }
3449 
3450     if (drv->bdrv_co_truncate) {
3451         if (flags & ~bs->supported_truncate_flags) {
3452             error_setg(errp, "Block driver does not support requested flags");
3453             ret = -ENOTSUP;
3454             goto out;
3455         }
3456         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3457     } else if (filtered) {
3458         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3459     } else {
3460         error_setg(errp, "Image format driver does not support resize");
3461         ret = -ENOTSUP;
3462         goto out;
3463     }
3464     if (ret < 0) {
3465         goto out;
3466     }
3467 
3468     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3469     if (ret < 0) {
3470         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3471     } else {
3472         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3473     }
3474     /* It's possible that truncation succeeded but refresh_total_sectors
3475      * failed, but the latter doesn't affect how we should finish the request.
3476      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3477     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3478 
3479 out:
3480     tracked_request_end(&req);
3481     bdrv_dec_in_flight(bs);
3482 
3483     return ret;
3484 }
3485 
3486 void bdrv_cancel_in_flight(BlockDriverState *bs)
3487 {
3488     if (!bs || !bs->drv) {
3489         return;
3490     }
3491 
3492     if (bs->drv->bdrv_cancel_in_flight) {
3493         bs->drv->bdrv_cancel_in_flight(bs);
3494     }
3495 }
3496