1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 38 int64_t offset, int bytes, BdrvRequestFlags flags); 39 40 void bdrv_parent_drained_begin(BlockDriverState *bs) 41 { 42 BdrvChild *c; 43 44 QLIST_FOREACH(c, &bs->parents, next_parent) { 45 if (c->role->drained_begin) { 46 c->role->drained_begin(c); 47 } 48 } 49 } 50 51 void bdrv_parent_drained_end(BlockDriverState *bs) 52 { 53 BdrvChild *c; 54 55 QLIST_FOREACH(c, &bs->parents, next_parent) { 56 if (c->role->drained_end) { 57 c->role->drained_end(c); 58 } 59 } 60 } 61 62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 63 { 64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 67 src->opt_mem_alignment); 68 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 69 src->min_mem_alignment); 70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 71 } 72 73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 74 { 75 BlockDriver *drv = bs->drv; 76 Error *local_err = NULL; 77 78 memset(&bs->bl, 0, sizeof(bs->bl)); 79 80 if (!drv) { 81 return; 82 } 83 84 /* Default alignment based on whether driver has byte interface */ 85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 86 87 /* Take some limits from the children as a default */ 88 if (bs->file) { 89 bdrv_refresh_limits(bs->file->bs, &local_err); 90 if (local_err) { 91 error_propagate(errp, local_err); 92 return; 93 } 94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 95 } else { 96 bs->bl.min_mem_alignment = 512; 97 bs->bl.opt_mem_alignment = getpagesize(); 98 99 /* Safe default since most protocols use readv()/writev()/etc */ 100 bs->bl.max_iov = IOV_MAX; 101 } 102 103 if (bs->backing) { 104 bdrv_refresh_limits(bs->backing->bs, &local_err); 105 if (local_err) { 106 error_propagate(errp, local_err); 107 return; 108 } 109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 110 } 111 112 /* Then let the driver override it */ 113 if (drv->bdrv_refresh_limits) { 114 drv->bdrv_refresh_limits(bs, errp); 115 } 116 } 117 118 /** 119 * The copy-on-read flag is actually a reference count so multiple users may 120 * use the feature without worrying about clobbering its previous state. 121 * Copy-on-read stays enabled until all users have called to disable it. 122 */ 123 void bdrv_enable_copy_on_read(BlockDriverState *bs) 124 { 125 atomic_inc(&bs->copy_on_read); 126 } 127 128 void bdrv_disable_copy_on_read(BlockDriverState *bs) 129 { 130 int old = atomic_fetch_dec(&bs->copy_on_read); 131 assert(old >= 1); 132 } 133 134 /* Check if any requests are in-flight (including throttled requests) */ 135 bool bdrv_requests_pending(BlockDriverState *bs) 136 { 137 BdrvChild *child; 138 139 if (atomic_read(&bs->in_flight)) { 140 return true; 141 } 142 143 QLIST_FOREACH(child, &bs->children, next) { 144 if (bdrv_requests_pending(child->bs)) { 145 return true; 146 } 147 } 148 149 return false; 150 } 151 152 static bool bdrv_drain_recurse(BlockDriverState *bs) 153 { 154 BdrvChild *child, *tmp; 155 bool waited; 156 157 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 158 159 if (bs->drv && bs->drv->bdrv_drain) { 160 bs->drv->bdrv_drain(bs); 161 } 162 163 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 164 BlockDriverState *bs = child->bs; 165 bool in_main_loop = 166 qemu_get_current_aio_context() == qemu_get_aio_context(); 167 assert(bs->refcnt > 0); 168 if (in_main_loop) { 169 /* In case the recursive bdrv_drain_recurse processes a 170 * block_job_defer_to_main_loop BH and modifies the graph, 171 * let's hold a reference to bs until we are done. 172 * 173 * IOThread doesn't have such a BH, and it is not safe to call 174 * bdrv_unref without BQL, so skip doing it there. 175 */ 176 bdrv_ref(bs); 177 } 178 waited |= bdrv_drain_recurse(bs); 179 if (in_main_loop) { 180 bdrv_unref(bs); 181 } 182 } 183 184 return waited; 185 } 186 187 typedef struct { 188 Coroutine *co; 189 BlockDriverState *bs; 190 bool done; 191 } BdrvCoDrainData; 192 193 static void bdrv_co_drain_bh_cb(void *opaque) 194 { 195 BdrvCoDrainData *data = opaque; 196 Coroutine *co = data->co; 197 BlockDriverState *bs = data->bs; 198 199 bdrv_dec_in_flight(bs); 200 bdrv_drained_begin(bs); 201 data->done = true; 202 aio_co_wake(co); 203 } 204 205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 206 { 207 BdrvCoDrainData data; 208 209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 210 * other coroutines run if they were queued from 211 * qemu_co_queue_run_restart(). */ 212 213 assert(qemu_in_coroutine()); 214 data = (BdrvCoDrainData) { 215 .co = qemu_coroutine_self(), 216 .bs = bs, 217 .done = false, 218 }; 219 bdrv_inc_in_flight(bs); 220 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 221 bdrv_co_drain_bh_cb, &data); 222 223 qemu_coroutine_yield(); 224 /* If we are resumed from some other event (such as an aio completion or a 225 * timer callback), it is a bug in the caller that should be fixed. */ 226 assert(data.done); 227 } 228 229 void bdrv_drained_begin(BlockDriverState *bs) 230 { 231 if (qemu_in_coroutine()) { 232 bdrv_co_yield_to_drain(bs); 233 return; 234 } 235 236 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 237 aio_disable_external(bdrv_get_aio_context(bs)); 238 bdrv_parent_drained_begin(bs); 239 } 240 241 bdrv_drain_recurse(bs); 242 } 243 244 void bdrv_drained_end(BlockDriverState *bs) 245 { 246 assert(bs->quiesce_counter > 0); 247 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 248 return; 249 } 250 251 bdrv_parent_drained_end(bs); 252 aio_enable_external(bdrv_get_aio_context(bs)); 253 } 254 255 /* 256 * Wait for pending requests to complete on a single BlockDriverState subtree, 257 * and suspend block driver's internal I/O until next request arrives. 258 * 259 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 260 * AioContext. 261 * 262 * Only this BlockDriverState's AioContext is run, so in-flight requests must 263 * not depend on events in other AioContexts. In that case, use 264 * bdrv_drain_all() instead. 265 */ 266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 267 { 268 assert(qemu_in_coroutine()); 269 bdrv_drained_begin(bs); 270 bdrv_drained_end(bs); 271 } 272 273 void bdrv_drain(BlockDriverState *bs) 274 { 275 bdrv_drained_begin(bs); 276 bdrv_drained_end(bs); 277 } 278 279 /* 280 * Wait for pending requests to complete across all BlockDriverStates 281 * 282 * This function does not flush data to disk, use bdrv_flush_all() for that 283 * after calling this function. 284 * 285 * This pauses all block jobs and disables external clients. It must 286 * be paired with bdrv_drain_all_end(). 287 * 288 * NOTE: no new block jobs or BlockDriverStates can be created between 289 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 290 */ 291 void bdrv_drain_all_begin(void) 292 { 293 /* Always run first iteration so any pending completion BHs run */ 294 bool waited = true; 295 BlockDriverState *bs; 296 BdrvNextIterator it; 297 GSList *aio_ctxs = NULL, *ctx; 298 299 block_job_pause_all(); 300 301 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 302 AioContext *aio_context = bdrv_get_aio_context(bs); 303 304 aio_context_acquire(aio_context); 305 bdrv_parent_drained_begin(bs); 306 aio_disable_external(aio_context); 307 aio_context_release(aio_context); 308 309 if (!g_slist_find(aio_ctxs, aio_context)) { 310 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 311 } 312 } 313 314 /* Note that completion of an asynchronous I/O operation can trigger any 315 * number of other I/O operations on other devices---for example a 316 * coroutine can submit an I/O request to another device in response to 317 * request completion. Therefore we must keep looping until there was no 318 * more activity rather than simply draining each device independently. 319 */ 320 while (waited) { 321 waited = false; 322 323 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 324 AioContext *aio_context = ctx->data; 325 326 aio_context_acquire(aio_context); 327 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 328 if (aio_context == bdrv_get_aio_context(bs)) { 329 waited |= bdrv_drain_recurse(bs); 330 } 331 } 332 aio_context_release(aio_context); 333 } 334 } 335 336 g_slist_free(aio_ctxs); 337 } 338 339 void bdrv_drain_all_end(void) 340 { 341 BlockDriverState *bs; 342 BdrvNextIterator it; 343 344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 345 AioContext *aio_context = bdrv_get_aio_context(bs); 346 347 aio_context_acquire(aio_context); 348 aio_enable_external(aio_context); 349 bdrv_parent_drained_end(bs); 350 aio_context_release(aio_context); 351 } 352 353 block_job_resume_all(); 354 } 355 356 void bdrv_drain_all(void) 357 { 358 bdrv_drain_all_begin(); 359 bdrv_drain_all_end(); 360 } 361 362 /** 363 * Remove an active request from the tracked requests list 364 * 365 * This function should be called when a tracked request is completing. 366 */ 367 static void tracked_request_end(BdrvTrackedRequest *req) 368 { 369 if (req->serialising) { 370 atomic_dec(&req->bs->serialising_in_flight); 371 } 372 373 qemu_co_mutex_lock(&req->bs->reqs_lock); 374 QLIST_REMOVE(req, list); 375 qemu_co_queue_restart_all(&req->wait_queue); 376 qemu_co_mutex_unlock(&req->bs->reqs_lock); 377 } 378 379 /** 380 * Add an active request to the tracked requests list 381 */ 382 static void tracked_request_begin(BdrvTrackedRequest *req, 383 BlockDriverState *bs, 384 int64_t offset, 385 unsigned int bytes, 386 enum BdrvTrackedRequestType type) 387 { 388 *req = (BdrvTrackedRequest){ 389 .bs = bs, 390 .offset = offset, 391 .bytes = bytes, 392 .type = type, 393 .co = qemu_coroutine_self(), 394 .serialising = false, 395 .overlap_offset = offset, 396 .overlap_bytes = bytes, 397 }; 398 399 qemu_co_queue_init(&req->wait_queue); 400 401 qemu_co_mutex_lock(&bs->reqs_lock); 402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 403 qemu_co_mutex_unlock(&bs->reqs_lock); 404 } 405 406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 407 { 408 int64_t overlap_offset = req->offset & ~(align - 1); 409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 410 - overlap_offset; 411 412 if (!req->serialising) { 413 atomic_inc(&req->bs->serialising_in_flight); 414 req->serialising = true; 415 } 416 417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 419 } 420 421 /** 422 * Round a region to cluster boundaries (sector-based) 423 */ 424 void bdrv_round_sectors_to_clusters(BlockDriverState *bs, 425 int64_t sector_num, int nb_sectors, 426 int64_t *cluster_sector_num, 427 int *cluster_nb_sectors) 428 { 429 BlockDriverInfo bdi; 430 431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 432 *cluster_sector_num = sector_num; 433 *cluster_nb_sectors = nb_sectors; 434 } else { 435 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 436 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 437 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 438 nb_sectors, c); 439 } 440 } 441 442 /** 443 * Round a region to cluster boundaries 444 */ 445 void bdrv_round_to_clusters(BlockDriverState *bs, 446 int64_t offset, unsigned int bytes, 447 int64_t *cluster_offset, 448 unsigned int *cluster_bytes) 449 { 450 BlockDriverInfo bdi; 451 452 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 453 *cluster_offset = offset; 454 *cluster_bytes = bytes; 455 } else { 456 int64_t c = bdi.cluster_size; 457 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 458 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 459 } 460 } 461 462 static int bdrv_get_cluster_size(BlockDriverState *bs) 463 { 464 BlockDriverInfo bdi; 465 int ret; 466 467 ret = bdrv_get_info(bs, &bdi); 468 if (ret < 0 || bdi.cluster_size == 0) { 469 return bs->bl.request_alignment; 470 } else { 471 return bdi.cluster_size; 472 } 473 } 474 475 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 476 int64_t offset, unsigned int bytes) 477 { 478 /* aaaa bbbb */ 479 if (offset >= req->overlap_offset + req->overlap_bytes) { 480 return false; 481 } 482 /* bbbb aaaa */ 483 if (req->overlap_offset >= offset + bytes) { 484 return false; 485 } 486 return true; 487 } 488 489 void bdrv_inc_in_flight(BlockDriverState *bs) 490 { 491 atomic_inc(&bs->in_flight); 492 } 493 494 static void dummy_bh_cb(void *opaque) 495 { 496 } 497 498 void bdrv_wakeup(BlockDriverState *bs) 499 { 500 /* The barrier (or an atomic op) is in the caller. */ 501 if (atomic_read(&bs->wakeup)) { 502 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 503 } 504 } 505 506 void bdrv_dec_in_flight(BlockDriverState *bs) 507 { 508 atomic_dec(&bs->in_flight); 509 bdrv_wakeup(bs); 510 } 511 512 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 513 { 514 BlockDriverState *bs = self->bs; 515 BdrvTrackedRequest *req; 516 bool retry; 517 bool waited = false; 518 519 if (!atomic_read(&bs->serialising_in_flight)) { 520 return false; 521 } 522 523 do { 524 retry = false; 525 qemu_co_mutex_lock(&bs->reqs_lock); 526 QLIST_FOREACH(req, &bs->tracked_requests, list) { 527 if (req == self || (!req->serialising && !self->serialising)) { 528 continue; 529 } 530 if (tracked_request_overlaps(req, self->overlap_offset, 531 self->overlap_bytes)) 532 { 533 /* Hitting this means there was a reentrant request, for 534 * example, a block driver issuing nested requests. This must 535 * never happen since it means deadlock. 536 */ 537 assert(qemu_coroutine_self() != req->co); 538 539 /* If the request is already (indirectly) waiting for us, or 540 * will wait for us as soon as it wakes up, then just go on 541 * (instead of producing a deadlock in the former case). */ 542 if (!req->waiting_for) { 543 self->waiting_for = req; 544 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 545 self->waiting_for = NULL; 546 retry = true; 547 waited = true; 548 break; 549 } 550 } 551 } 552 qemu_co_mutex_unlock(&bs->reqs_lock); 553 } while (retry); 554 555 return waited; 556 } 557 558 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 559 size_t size) 560 { 561 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 562 return -EIO; 563 } 564 565 if (!bdrv_is_inserted(bs)) { 566 return -ENOMEDIUM; 567 } 568 569 if (offset < 0) { 570 return -EIO; 571 } 572 573 return 0; 574 } 575 576 typedef struct RwCo { 577 BdrvChild *child; 578 int64_t offset; 579 QEMUIOVector *qiov; 580 bool is_write; 581 int ret; 582 BdrvRequestFlags flags; 583 } RwCo; 584 585 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 586 { 587 RwCo *rwco = opaque; 588 589 if (!rwco->is_write) { 590 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 591 rwco->qiov->size, rwco->qiov, 592 rwco->flags); 593 } else { 594 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 595 rwco->qiov->size, rwco->qiov, 596 rwco->flags); 597 } 598 } 599 600 /* 601 * Process a vectored synchronous request using coroutines 602 */ 603 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 604 QEMUIOVector *qiov, bool is_write, 605 BdrvRequestFlags flags) 606 { 607 Coroutine *co; 608 RwCo rwco = { 609 .child = child, 610 .offset = offset, 611 .qiov = qiov, 612 .is_write = is_write, 613 .ret = NOT_DONE, 614 .flags = flags, 615 }; 616 617 if (qemu_in_coroutine()) { 618 /* Fast-path if already in coroutine context */ 619 bdrv_rw_co_entry(&rwco); 620 } else { 621 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 622 bdrv_coroutine_enter(child->bs, co); 623 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 624 } 625 return rwco.ret; 626 } 627 628 /* 629 * Process a synchronous request using coroutines 630 */ 631 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 632 int nb_sectors, bool is_write, BdrvRequestFlags flags) 633 { 634 QEMUIOVector qiov; 635 struct iovec iov = { 636 .iov_base = (void *)buf, 637 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 638 }; 639 640 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 641 return -EINVAL; 642 } 643 644 qemu_iovec_init_external(&qiov, &iov, 1); 645 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 646 &qiov, is_write, flags); 647 } 648 649 /* return < 0 if error. See bdrv_write() for the return codes */ 650 int bdrv_read(BdrvChild *child, int64_t sector_num, 651 uint8_t *buf, int nb_sectors) 652 { 653 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 654 } 655 656 /* Return < 0 if error. Important errors are: 657 -EIO generic I/O error (may happen for all errors) 658 -ENOMEDIUM No media inserted. 659 -EINVAL Invalid sector number or nb_sectors 660 -EACCES Trying to write a read-only device 661 */ 662 int bdrv_write(BdrvChild *child, int64_t sector_num, 663 const uint8_t *buf, int nb_sectors) 664 { 665 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 666 } 667 668 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 669 int bytes, BdrvRequestFlags flags) 670 { 671 QEMUIOVector qiov; 672 struct iovec iov = { 673 .iov_base = NULL, 674 .iov_len = bytes, 675 }; 676 677 qemu_iovec_init_external(&qiov, &iov, 1); 678 return bdrv_prwv_co(child, offset, &qiov, true, 679 BDRV_REQ_ZERO_WRITE | flags); 680 } 681 682 /* 683 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 684 * The operation is sped up by checking the block status and only writing 685 * zeroes to the device if they currently do not return zeroes. Optional 686 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 687 * BDRV_REQ_FUA). 688 * 689 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 690 */ 691 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 692 { 693 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 694 BlockDriverState *bs = child->bs; 695 BlockDriverState *file; 696 int n; 697 698 target_sectors = bdrv_nb_sectors(bs); 699 if (target_sectors < 0) { 700 return target_sectors; 701 } 702 703 for (;;) { 704 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 705 if (nb_sectors <= 0) { 706 return 0; 707 } 708 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 709 if (ret < 0) { 710 error_report("error getting block status at sector %" PRId64 ": %s", 711 sector_num, strerror(-ret)); 712 return ret; 713 } 714 if (ret & BDRV_BLOCK_ZERO) { 715 sector_num += n; 716 continue; 717 } 718 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 719 n << BDRV_SECTOR_BITS, flags); 720 if (ret < 0) { 721 error_report("error writing zeroes at sector %" PRId64 ": %s", 722 sector_num, strerror(-ret)); 723 return ret; 724 } 725 sector_num += n; 726 } 727 } 728 729 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 730 { 731 int ret; 732 733 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 734 if (ret < 0) { 735 return ret; 736 } 737 738 return qiov->size; 739 } 740 741 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 742 { 743 QEMUIOVector qiov; 744 struct iovec iov = { 745 .iov_base = (void *)buf, 746 .iov_len = bytes, 747 }; 748 749 if (bytes < 0) { 750 return -EINVAL; 751 } 752 753 qemu_iovec_init_external(&qiov, &iov, 1); 754 return bdrv_preadv(child, offset, &qiov); 755 } 756 757 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 758 { 759 int ret; 760 761 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 762 if (ret < 0) { 763 return ret; 764 } 765 766 return qiov->size; 767 } 768 769 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 770 { 771 QEMUIOVector qiov; 772 struct iovec iov = { 773 .iov_base = (void *) buf, 774 .iov_len = bytes, 775 }; 776 777 if (bytes < 0) { 778 return -EINVAL; 779 } 780 781 qemu_iovec_init_external(&qiov, &iov, 1); 782 return bdrv_pwritev(child, offset, &qiov); 783 } 784 785 /* 786 * Writes to the file and ensures that no writes are reordered across this 787 * request (acts as a barrier) 788 * 789 * Returns 0 on success, -errno in error cases. 790 */ 791 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 792 const void *buf, int count) 793 { 794 int ret; 795 796 ret = bdrv_pwrite(child, offset, buf, count); 797 if (ret < 0) { 798 return ret; 799 } 800 801 ret = bdrv_flush(child->bs); 802 if (ret < 0) { 803 return ret; 804 } 805 806 return 0; 807 } 808 809 typedef struct CoroutineIOCompletion { 810 Coroutine *coroutine; 811 int ret; 812 } CoroutineIOCompletion; 813 814 static void bdrv_co_io_em_complete(void *opaque, int ret) 815 { 816 CoroutineIOCompletion *co = opaque; 817 818 co->ret = ret; 819 aio_co_wake(co->coroutine); 820 } 821 822 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 823 uint64_t offset, uint64_t bytes, 824 QEMUIOVector *qiov, int flags) 825 { 826 BlockDriver *drv = bs->drv; 827 int64_t sector_num; 828 unsigned int nb_sectors; 829 830 assert(!(flags & ~BDRV_REQ_MASK)); 831 832 if (drv->bdrv_co_preadv) { 833 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 834 } 835 836 sector_num = offset >> BDRV_SECTOR_BITS; 837 nb_sectors = bytes >> BDRV_SECTOR_BITS; 838 839 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 840 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 841 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 842 843 if (drv->bdrv_co_readv) { 844 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 845 } else { 846 BlockAIOCB *acb; 847 CoroutineIOCompletion co = { 848 .coroutine = qemu_coroutine_self(), 849 }; 850 851 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 852 bdrv_co_io_em_complete, &co); 853 if (acb == NULL) { 854 return -EIO; 855 } else { 856 qemu_coroutine_yield(); 857 return co.ret; 858 } 859 } 860 } 861 862 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 863 uint64_t offset, uint64_t bytes, 864 QEMUIOVector *qiov, int flags) 865 { 866 BlockDriver *drv = bs->drv; 867 int64_t sector_num; 868 unsigned int nb_sectors; 869 int ret; 870 871 assert(!(flags & ~BDRV_REQ_MASK)); 872 873 if (drv->bdrv_co_pwritev) { 874 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 875 flags & bs->supported_write_flags); 876 flags &= ~bs->supported_write_flags; 877 goto emulate_flags; 878 } 879 880 sector_num = offset >> BDRV_SECTOR_BITS; 881 nb_sectors = bytes >> BDRV_SECTOR_BITS; 882 883 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 884 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 885 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 886 887 if (drv->bdrv_co_writev_flags) { 888 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 889 flags & bs->supported_write_flags); 890 flags &= ~bs->supported_write_flags; 891 } else if (drv->bdrv_co_writev) { 892 assert(!bs->supported_write_flags); 893 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 894 } else { 895 BlockAIOCB *acb; 896 CoroutineIOCompletion co = { 897 .coroutine = qemu_coroutine_self(), 898 }; 899 900 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 901 bdrv_co_io_em_complete, &co); 902 if (acb == NULL) { 903 ret = -EIO; 904 } else { 905 qemu_coroutine_yield(); 906 ret = co.ret; 907 } 908 } 909 910 emulate_flags: 911 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 912 ret = bdrv_co_flush(bs); 913 } 914 915 return ret; 916 } 917 918 static int coroutine_fn 919 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 920 uint64_t bytes, QEMUIOVector *qiov) 921 { 922 BlockDriver *drv = bs->drv; 923 924 if (!drv->bdrv_co_pwritev_compressed) { 925 return -ENOTSUP; 926 } 927 928 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 929 } 930 931 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 932 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 933 { 934 BlockDriverState *bs = child->bs; 935 936 /* Perform I/O through a temporary buffer so that users who scribble over 937 * their read buffer while the operation is in progress do not end up 938 * modifying the image file. This is critical for zero-copy guest I/O 939 * where anything might happen inside guest memory. 940 */ 941 void *bounce_buffer; 942 943 BlockDriver *drv = bs->drv; 944 struct iovec iov; 945 QEMUIOVector bounce_qiov; 946 int64_t cluster_offset; 947 unsigned int cluster_bytes; 948 size_t skip_bytes; 949 int ret; 950 951 /* FIXME We cannot require callers to have write permissions when all they 952 * are doing is a read request. If we did things right, write permissions 953 * would be obtained anyway, but internally by the copy-on-read code. As 954 * long as it is implemented here rather than in a separat filter driver, 955 * the copy-on-read code doesn't have its own BdrvChild, however, for which 956 * it could request permissions. Therefore we have to bypass the permission 957 * system for the moment. */ 958 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 959 960 /* Cover entire cluster so no additional backing file I/O is required when 961 * allocating cluster in the image file. 962 */ 963 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 964 965 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 966 cluster_offset, cluster_bytes); 967 968 iov.iov_len = cluster_bytes; 969 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 970 if (bounce_buffer == NULL) { 971 ret = -ENOMEM; 972 goto err; 973 } 974 975 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 976 977 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 978 &bounce_qiov, 0); 979 if (ret < 0) { 980 goto err; 981 } 982 983 if (drv->bdrv_co_pwrite_zeroes && 984 buffer_is_zero(bounce_buffer, iov.iov_len)) { 985 /* FIXME: Should we (perhaps conditionally) be setting 986 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 987 * that still correctly reads as zero? */ 988 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 989 } else { 990 /* This does not change the data on the disk, it is not necessary 991 * to flush even in cache=writethrough mode. 992 */ 993 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 994 &bounce_qiov, 0); 995 } 996 997 if (ret < 0) { 998 /* It might be okay to ignore write errors for guest requests. If this 999 * is a deliberate copy-on-read then we don't want to ignore the error. 1000 * Simply report it in all cases. 1001 */ 1002 goto err; 1003 } 1004 1005 skip_bytes = offset - cluster_offset; 1006 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 1007 1008 err: 1009 qemu_vfree(bounce_buffer); 1010 return ret; 1011 } 1012 1013 /* 1014 * Forwards an already correctly aligned request to the BlockDriver. This 1015 * handles copy on read, zeroing after EOF, and fragmentation of large 1016 * reads; any other features must be implemented by the caller. 1017 */ 1018 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1019 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1020 int64_t align, QEMUIOVector *qiov, int flags) 1021 { 1022 BlockDriverState *bs = child->bs; 1023 int64_t total_bytes, max_bytes; 1024 int ret = 0; 1025 uint64_t bytes_remaining = bytes; 1026 int max_transfer; 1027 1028 assert(is_power_of_2(align)); 1029 assert((offset & (align - 1)) == 0); 1030 assert((bytes & (align - 1)) == 0); 1031 assert(!qiov || bytes == qiov->size); 1032 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1033 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1034 align); 1035 1036 /* TODO: We would need a per-BDS .supported_read_flags and 1037 * potential fallback support, if we ever implement any read flags 1038 * to pass through to drivers. For now, there aren't any 1039 * passthrough flags. */ 1040 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1041 1042 /* Handle Copy on Read and associated serialisation */ 1043 if (flags & BDRV_REQ_COPY_ON_READ) { 1044 /* If we touch the same cluster it counts as an overlap. This 1045 * guarantees that allocating writes will be serialized and not race 1046 * with each other for the same cluster. For example, in copy-on-read 1047 * it ensures that the CoR read and write operations are atomic and 1048 * guest writes cannot interleave between them. */ 1049 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1050 } 1051 1052 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1053 wait_serialising_requests(req); 1054 } 1055 1056 if (flags & BDRV_REQ_COPY_ON_READ) { 1057 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1058 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1059 unsigned int nb_sectors = end_sector - start_sector; 1060 int pnum; 1061 1062 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum); 1063 if (ret < 0) { 1064 goto out; 1065 } 1066 1067 if (!ret || pnum != nb_sectors) { 1068 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1069 goto out; 1070 } 1071 } 1072 1073 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1074 total_bytes = bdrv_getlength(bs); 1075 if (total_bytes < 0) { 1076 ret = total_bytes; 1077 goto out; 1078 } 1079 1080 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1081 if (bytes <= max_bytes && bytes <= max_transfer) { 1082 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1083 goto out; 1084 } 1085 1086 while (bytes_remaining) { 1087 int num; 1088 1089 if (max_bytes) { 1090 QEMUIOVector local_qiov; 1091 1092 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1093 assert(num); 1094 qemu_iovec_init(&local_qiov, qiov->niov); 1095 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1096 1097 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1098 num, &local_qiov, 0); 1099 max_bytes -= num; 1100 qemu_iovec_destroy(&local_qiov); 1101 } else { 1102 num = bytes_remaining; 1103 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1104 bytes_remaining); 1105 } 1106 if (ret < 0) { 1107 goto out; 1108 } 1109 bytes_remaining -= num; 1110 } 1111 1112 out: 1113 return ret < 0 ? ret : 0; 1114 } 1115 1116 /* 1117 * Handle a read request in coroutine context 1118 */ 1119 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1120 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1121 BdrvRequestFlags flags) 1122 { 1123 BlockDriverState *bs = child->bs; 1124 BlockDriver *drv = bs->drv; 1125 BdrvTrackedRequest req; 1126 1127 uint64_t align = bs->bl.request_alignment; 1128 uint8_t *head_buf = NULL; 1129 uint8_t *tail_buf = NULL; 1130 QEMUIOVector local_qiov; 1131 bool use_local_qiov = false; 1132 int ret; 1133 1134 if (!drv) { 1135 return -ENOMEDIUM; 1136 } 1137 1138 ret = bdrv_check_byte_request(bs, offset, bytes); 1139 if (ret < 0) { 1140 return ret; 1141 } 1142 1143 bdrv_inc_in_flight(bs); 1144 1145 /* Don't do copy-on-read if we read data before write operation */ 1146 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1147 flags |= BDRV_REQ_COPY_ON_READ; 1148 } 1149 1150 /* Align read if necessary by padding qiov */ 1151 if (offset & (align - 1)) { 1152 head_buf = qemu_blockalign(bs, align); 1153 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1154 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1155 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1156 use_local_qiov = true; 1157 1158 bytes += offset & (align - 1); 1159 offset = offset & ~(align - 1); 1160 } 1161 1162 if ((offset + bytes) & (align - 1)) { 1163 if (!use_local_qiov) { 1164 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1165 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1166 use_local_qiov = true; 1167 } 1168 tail_buf = qemu_blockalign(bs, align); 1169 qemu_iovec_add(&local_qiov, tail_buf, 1170 align - ((offset + bytes) & (align - 1))); 1171 1172 bytes = ROUND_UP(bytes, align); 1173 } 1174 1175 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1176 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1177 use_local_qiov ? &local_qiov : qiov, 1178 flags); 1179 tracked_request_end(&req); 1180 bdrv_dec_in_flight(bs); 1181 1182 if (use_local_qiov) { 1183 qemu_iovec_destroy(&local_qiov); 1184 qemu_vfree(head_buf); 1185 qemu_vfree(tail_buf); 1186 } 1187 1188 return ret; 1189 } 1190 1191 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1192 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1193 BdrvRequestFlags flags) 1194 { 1195 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1196 return -EINVAL; 1197 } 1198 1199 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1200 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1201 } 1202 1203 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1204 int nb_sectors, QEMUIOVector *qiov) 1205 { 1206 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors); 1207 1208 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1209 } 1210 1211 /* Maximum buffer for write zeroes fallback, in bytes */ 1212 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1213 1214 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1215 int64_t offset, int bytes, BdrvRequestFlags flags) 1216 { 1217 BlockDriver *drv = bs->drv; 1218 QEMUIOVector qiov; 1219 struct iovec iov = {0}; 1220 int ret = 0; 1221 bool need_flush = false; 1222 int head = 0; 1223 int tail = 0; 1224 1225 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1226 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1227 bs->bl.request_alignment); 1228 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1229 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1230 1231 assert(alignment % bs->bl.request_alignment == 0); 1232 head = offset % alignment; 1233 tail = (offset + bytes) % alignment; 1234 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1235 assert(max_write_zeroes >= bs->bl.request_alignment); 1236 1237 while (bytes > 0 && !ret) { 1238 int num = bytes; 1239 1240 /* Align request. Block drivers can expect the "bulk" of the request 1241 * to be aligned, and that unaligned requests do not cross cluster 1242 * boundaries. 1243 */ 1244 if (head) { 1245 /* Make a small request up to the first aligned sector. For 1246 * convenience, limit this request to max_transfer even if 1247 * we don't need to fall back to writes. */ 1248 num = MIN(MIN(bytes, max_transfer), alignment - head); 1249 head = (head + num) % alignment; 1250 assert(num < max_write_zeroes); 1251 } else if (tail && num > alignment) { 1252 /* Shorten the request to the last aligned sector. */ 1253 num -= tail; 1254 } 1255 1256 /* limit request size */ 1257 if (num > max_write_zeroes) { 1258 num = max_write_zeroes; 1259 } 1260 1261 ret = -ENOTSUP; 1262 /* First try the efficient write zeroes operation */ 1263 if (drv->bdrv_co_pwrite_zeroes) { 1264 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1265 flags & bs->supported_zero_flags); 1266 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1267 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1268 need_flush = true; 1269 } 1270 } else { 1271 assert(!bs->supported_zero_flags); 1272 } 1273 1274 if (ret == -ENOTSUP) { 1275 /* Fall back to bounce buffer if write zeroes is unsupported */ 1276 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1277 1278 if ((flags & BDRV_REQ_FUA) && 1279 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1280 /* No need for bdrv_driver_pwrite() to do a fallback 1281 * flush on each chunk; use just one at the end */ 1282 write_flags &= ~BDRV_REQ_FUA; 1283 need_flush = true; 1284 } 1285 num = MIN(num, max_transfer); 1286 iov.iov_len = num; 1287 if (iov.iov_base == NULL) { 1288 iov.iov_base = qemu_try_blockalign(bs, num); 1289 if (iov.iov_base == NULL) { 1290 ret = -ENOMEM; 1291 goto fail; 1292 } 1293 memset(iov.iov_base, 0, num); 1294 } 1295 qemu_iovec_init_external(&qiov, &iov, 1); 1296 1297 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1298 1299 /* Keep bounce buffer around if it is big enough for all 1300 * all future requests. 1301 */ 1302 if (num < max_transfer) { 1303 qemu_vfree(iov.iov_base); 1304 iov.iov_base = NULL; 1305 } 1306 } 1307 1308 offset += num; 1309 bytes -= num; 1310 } 1311 1312 fail: 1313 if (ret == 0 && need_flush) { 1314 ret = bdrv_co_flush(bs); 1315 } 1316 qemu_vfree(iov.iov_base); 1317 return ret; 1318 } 1319 1320 /* 1321 * Forwards an already correctly aligned write request to the BlockDriver, 1322 * after possibly fragmenting it. 1323 */ 1324 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1325 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1326 int64_t align, QEMUIOVector *qiov, int flags) 1327 { 1328 BlockDriverState *bs = child->bs; 1329 BlockDriver *drv = bs->drv; 1330 bool waited; 1331 int ret; 1332 1333 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1334 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1335 uint64_t bytes_remaining = bytes; 1336 int max_transfer; 1337 1338 assert(is_power_of_2(align)); 1339 assert((offset & (align - 1)) == 0); 1340 assert((bytes & (align - 1)) == 0); 1341 assert(!qiov || bytes == qiov->size); 1342 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1343 assert(!(flags & ~BDRV_REQ_MASK)); 1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1345 align); 1346 1347 waited = wait_serialising_requests(req); 1348 assert(!waited || !req->serialising); 1349 assert(req->overlap_offset <= offset); 1350 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1351 assert(child->perm & BLK_PERM_WRITE); 1352 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1353 1354 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1355 1356 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1357 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1358 qemu_iovec_is_zero(qiov)) { 1359 flags |= BDRV_REQ_ZERO_WRITE; 1360 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1361 flags |= BDRV_REQ_MAY_UNMAP; 1362 } 1363 } 1364 1365 if (ret < 0) { 1366 /* Do nothing, write notifier decided to fail this request */ 1367 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1368 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1369 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1370 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1371 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1372 } else if (bytes <= max_transfer) { 1373 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1374 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1375 } else { 1376 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1377 while (bytes_remaining) { 1378 int num = MIN(bytes_remaining, max_transfer); 1379 QEMUIOVector local_qiov; 1380 int local_flags = flags; 1381 1382 assert(num); 1383 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1384 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1385 /* If FUA is going to be emulated by flush, we only 1386 * need to flush on the last iteration */ 1387 local_flags &= ~BDRV_REQ_FUA; 1388 } 1389 qemu_iovec_init(&local_qiov, qiov->niov); 1390 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1391 1392 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1393 num, &local_qiov, local_flags); 1394 qemu_iovec_destroy(&local_qiov); 1395 if (ret < 0) { 1396 break; 1397 } 1398 bytes_remaining -= num; 1399 } 1400 } 1401 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1402 1403 atomic_inc(&bs->write_gen); 1404 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1405 1406 stat64_max(&bs->wr_highest_offset, offset + bytes); 1407 1408 if (ret >= 0) { 1409 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1410 ret = 0; 1411 } 1412 1413 return ret; 1414 } 1415 1416 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1417 int64_t offset, 1418 unsigned int bytes, 1419 BdrvRequestFlags flags, 1420 BdrvTrackedRequest *req) 1421 { 1422 BlockDriverState *bs = child->bs; 1423 uint8_t *buf = NULL; 1424 QEMUIOVector local_qiov; 1425 struct iovec iov; 1426 uint64_t align = bs->bl.request_alignment; 1427 unsigned int head_padding_bytes, tail_padding_bytes; 1428 int ret = 0; 1429 1430 head_padding_bytes = offset & (align - 1); 1431 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1432 1433 1434 assert(flags & BDRV_REQ_ZERO_WRITE); 1435 if (head_padding_bytes || tail_padding_bytes) { 1436 buf = qemu_blockalign(bs, align); 1437 iov = (struct iovec) { 1438 .iov_base = buf, 1439 .iov_len = align, 1440 }; 1441 qemu_iovec_init_external(&local_qiov, &iov, 1); 1442 } 1443 if (head_padding_bytes) { 1444 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1445 1446 /* RMW the unaligned part before head. */ 1447 mark_request_serialising(req, align); 1448 wait_serialising_requests(req); 1449 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1450 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1451 align, &local_qiov, 0); 1452 if (ret < 0) { 1453 goto fail; 1454 } 1455 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1456 1457 memset(buf + head_padding_bytes, 0, zero_bytes); 1458 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1459 align, &local_qiov, 1460 flags & ~BDRV_REQ_ZERO_WRITE); 1461 if (ret < 0) { 1462 goto fail; 1463 } 1464 offset += zero_bytes; 1465 bytes -= zero_bytes; 1466 } 1467 1468 assert(!bytes || (offset & (align - 1)) == 0); 1469 if (bytes >= align) { 1470 /* Write the aligned part in the middle. */ 1471 uint64_t aligned_bytes = bytes & ~(align - 1); 1472 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1473 NULL, flags); 1474 if (ret < 0) { 1475 goto fail; 1476 } 1477 bytes -= aligned_bytes; 1478 offset += aligned_bytes; 1479 } 1480 1481 assert(!bytes || (offset & (align - 1)) == 0); 1482 if (bytes) { 1483 assert(align == tail_padding_bytes + bytes); 1484 /* RMW the unaligned part after tail. */ 1485 mark_request_serialising(req, align); 1486 wait_serialising_requests(req); 1487 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1488 ret = bdrv_aligned_preadv(child, req, offset, align, 1489 align, &local_qiov, 0); 1490 if (ret < 0) { 1491 goto fail; 1492 } 1493 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1494 1495 memset(buf, 0, bytes); 1496 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1497 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1498 } 1499 fail: 1500 qemu_vfree(buf); 1501 return ret; 1502 1503 } 1504 1505 /* 1506 * Handle a write request in coroutine context 1507 */ 1508 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1509 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1510 BdrvRequestFlags flags) 1511 { 1512 BlockDriverState *bs = child->bs; 1513 BdrvTrackedRequest req; 1514 uint64_t align = bs->bl.request_alignment; 1515 uint8_t *head_buf = NULL; 1516 uint8_t *tail_buf = NULL; 1517 QEMUIOVector local_qiov; 1518 bool use_local_qiov = false; 1519 int ret; 1520 1521 if (!bs->drv) { 1522 return -ENOMEDIUM; 1523 } 1524 if (bs->read_only) { 1525 return -EPERM; 1526 } 1527 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1528 1529 ret = bdrv_check_byte_request(bs, offset, bytes); 1530 if (ret < 0) { 1531 return ret; 1532 } 1533 1534 bdrv_inc_in_flight(bs); 1535 /* 1536 * Align write if necessary by performing a read-modify-write cycle. 1537 * Pad qiov with the read parts and be sure to have a tracked request not 1538 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1539 */ 1540 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1541 1542 if (!qiov) { 1543 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1544 goto out; 1545 } 1546 1547 if (offset & (align - 1)) { 1548 QEMUIOVector head_qiov; 1549 struct iovec head_iov; 1550 1551 mark_request_serialising(&req, align); 1552 wait_serialising_requests(&req); 1553 1554 head_buf = qemu_blockalign(bs, align); 1555 head_iov = (struct iovec) { 1556 .iov_base = head_buf, 1557 .iov_len = align, 1558 }; 1559 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1560 1561 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1562 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1563 align, &head_qiov, 0); 1564 if (ret < 0) { 1565 goto fail; 1566 } 1567 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1568 1569 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1570 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1571 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1572 use_local_qiov = true; 1573 1574 bytes += offset & (align - 1); 1575 offset = offset & ~(align - 1); 1576 1577 /* We have read the tail already if the request is smaller 1578 * than one aligned block. 1579 */ 1580 if (bytes < align) { 1581 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1582 bytes = align; 1583 } 1584 } 1585 1586 if ((offset + bytes) & (align - 1)) { 1587 QEMUIOVector tail_qiov; 1588 struct iovec tail_iov; 1589 size_t tail_bytes; 1590 bool waited; 1591 1592 mark_request_serialising(&req, align); 1593 waited = wait_serialising_requests(&req); 1594 assert(!waited || !use_local_qiov); 1595 1596 tail_buf = qemu_blockalign(bs, align); 1597 tail_iov = (struct iovec) { 1598 .iov_base = tail_buf, 1599 .iov_len = align, 1600 }; 1601 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1602 1603 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1604 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1605 align, align, &tail_qiov, 0); 1606 if (ret < 0) { 1607 goto fail; 1608 } 1609 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1610 1611 if (!use_local_qiov) { 1612 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1613 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1614 use_local_qiov = true; 1615 } 1616 1617 tail_bytes = (offset + bytes) & (align - 1); 1618 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1619 1620 bytes = ROUND_UP(bytes, align); 1621 } 1622 1623 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1624 use_local_qiov ? &local_qiov : qiov, 1625 flags); 1626 1627 fail: 1628 1629 if (use_local_qiov) { 1630 qemu_iovec_destroy(&local_qiov); 1631 } 1632 qemu_vfree(head_buf); 1633 qemu_vfree(tail_buf); 1634 out: 1635 tracked_request_end(&req); 1636 bdrv_dec_in_flight(bs); 1637 return ret; 1638 } 1639 1640 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1641 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1642 BdrvRequestFlags flags) 1643 { 1644 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1645 return -EINVAL; 1646 } 1647 1648 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1649 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1650 } 1651 1652 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1653 int nb_sectors, QEMUIOVector *qiov) 1654 { 1655 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors); 1656 1657 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1658 } 1659 1660 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1661 int bytes, BdrvRequestFlags flags) 1662 { 1663 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1664 1665 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1666 flags &= ~BDRV_REQ_MAY_UNMAP; 1667 } 1668 1669 return bdrv_co_pwritev(child, offset, bytes, NULL, 1670 BDRV_REQ_ZERO_WRITE | flags); 1671 } 1672 1673 /* 1674 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1675 */ 1676 int bdrv_flush_all(void) 1677 { 1678 BdrvNextIterator it; 1679 BlockDriverState *bs = NULL; 1680 int result = 0; 1681 1682 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1683 AioContext *aio_context = bdrv_get_aio_context(bs); 1684 int ret; 1685 1686 aio_context_acquire(aio_context); 1687 ret = bdrv_flush(bs); 1688 if (ret < 0 && !result) { 1689 result = ret; 1690 } 1691 aio_context_release(aio_context); 1692 } 1693 1694 return result; 1695 } 1696 1697 1698 typedef struct BdrvCoGetBlockStatusData { 1699 BlockDriverState *bs; 1700 BlockDriverState *base; 1701 BlockDriverState **file; 1702 int64_t sector_num; 1703 int nb_sectors; 1704 int *pnum; 1705 int64_t ret; 1706 bool done; 1707 } BdrvCoGetBlockStatusData; 1708 1709 /* 1710 * Returns the allocation status of the specified sectors. 1711 * Drivers not implementing the functionality are assumed to not support 1712 * backing files, hence all their sectors are reported as allocated. 1713 * 1714 * If 'sector_num' is beyond the end of the disk image the return value is 1715 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1716 * 1717 * 'pnum' is set to the number of sectors (including and immediately following 1718 * the specified sector) that are known to be in the same 1719 * allocated/unallocated state. 1720 * 1721 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1722 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1723 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1724 * 1725 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1726 * points to the BDS which the sector range is allocated in. 1727 */ 1728 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1729 int64_t sector_num, 1730 int nb_sectors, int *pnum, 1731 BlockDriverState **file) 1732 { 1733 int64_t total_sectors; 1734 int64_t n; 1735 int64_t ret, ret2; 1736 1737 total_sectors = bdrv_nb_sectors(bs); 1738 if (total_sectors < 0) { 1739 return total_sectors; 1740 } 1741 1742 if (sector_num >= total_sectors) { 1743 *pnum = 0; 1744 return BDRV_BLOCK_EOF; 1745 } 1746 1747 n = total_sectors - sector_num; 1748 if (n < nb_sectors) { 1749 nb_sectors = n; 1750 } 1751 1752 if (!bs->drv->bdrv_co_get_block_status) { 1753 *pnum = nb_sectors; 1754 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1755 if (sector_num + nb_sectors == total_sectors) { 1756 ret |= BDRV_BLOCK_EOF; 1757 } 1758 if (bs->drv->protocol_name) { 1759 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1760 } 1761 return ret; 1762 } 1763 1764 *file = NULL; 1765 bdrv_inc_in_flight(bs); 1766 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1767 file); 1768 if (ret < 0) { 1769 *pnum = 0; 1770 goto out; 1771 } 1772 1773 if (ret & BDRV_BLOCK_RAW) { 1774 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1775 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1776 *pnum, pnum, file); 1777 goto out; 1778 } 1779 1780 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1781 ret |= BDRV_BLOCK_ALLOCATED; 1782 } else { 1783 if (bdrv_unallocated_blocks_are_zero(bs)) { 1784 ret |= BDRV_BLOCK_ZERO; 1785 } else if (bs->backing) { 1786 BlockDriverState *bs2 = bs->backing->bs; 1787 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1788 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1789 ret |= BDRV_BLOCK_ZERO; 1790 } 1791 } 1792 } 1793 1794 if (*file && *file != bs && 1795 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1796 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1797 BlockDriverState *file2; 1798 int file_pnum; 1799 1800 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1801 *pnum, &file_pnum, &file2); 1802 if (ret2 >= 0) { 1803 /* Ignore errors. This is just providing extra information, it 1804 * is useful but not necessary. 1805 */ 1806 if (ret2 & BDRV_BLOCK_EOF && 1807 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1808 /* 1809 * It is valid for the format block driver to read 1810 * beyond the end of the underlying file's current 1811 * size; such areas read as zero. 1812 */ 1813 ret |= BDRV_BLOCK_ZERO; 1814 } else { 1815 /* Limit request to the range reported by the protocol driver */ 1816 *pnum = file_pnum; 1817 ret |= (ret2 & BDRV_BLOCK_ZERO); 1818 } 1819 } 1820 } 1821 1822 out: 1823 bdrv_dec_in_flight(bs); 1824 if (ret >= 0 && sector_num + *pnum == total_sectors) { 1825 ret |= BDRV_BLOCK_EOF; 1826 } 1827 return ret; 1828 } 1829 1830 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1831 BlockDriverState *base, 1832 int64_t sector_num, 1833 int nb_sectors, 1834 int *pnum, 1835 BlockDriverState **file) 1836 { 1837 BlockDriverState *p; 1838 int64_t ret = 0; 1839 bool first = true; 1840 1841 assert(bs != base); 1842 for (p = bs; p != base; p = backing_bs(p)) { 1843 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1844 if (ret < 0) { 1845 break; 1846 } 1847 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 1848 /* 1849 * Reading beyond the end of the file continues to read 1850 * zeroes, but we can only widen the result to the 1851 * unallocated length we learned from an earlier 1852 * iteration. 1853 */ 1854 *pnum = nb_sectors; 1855 } 1856 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 1857 break; 1858 } 1859 /* [sector_num, pnum] unallocated on this layer, which could be only 1860 * the first part of [sector_num, nb_sectors]. */ 1861 nb_sectors = MIN(nb_sectors, *pnum); 1862 first = false; 1863 } 1864 return ret; 1865 } 1866 1867 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1868 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1869 { 1870 BdrvCoGetBlockStatusData *data = opaque; 1871 1872 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1873 data->sector_num, 1874 data->nb_sectors, 1875 data->pnum, 1876 data->file); 1877 data->done = true; 1878 } 1879 1880 /* 1881 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1882 * 1883 * See bdrv_co_get_block_status_above() for details. 1884 */ 1885 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1886 BlockDriverState *base, 1887 int64_t sector_num, 1888 int nb_sectors, int *pnum, 1889 BlockDriverState **file) 1890 { 1891 Coroutine *co; 1892 BdrvCoGetBlockStatusData data = { 1893 .bs = bs, 1894 .base = base, 1895 .file = file, 1896 .sector_num = sector_num, 1897 .nb_sectors = nb_sectors, 1898 .pnum = pnum, 1899 .done = false, 1900 }; 1901 1902 if (qemu_in_coroutine()) { 1903 /* Fast-path if already in coroutine context */ 1904 bdrv_get_block_status_above_co_entry(&data); 1905 } else { 1906 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1907 &data); 1908 bdrv_coroutine_enter(bs, co); 1909 BDRV_POLL_WHILE(bs, !data.done); 1910 } 1911 return data.ret; 1912 } 1913 1914 int64_t bdrv_get_block_status(BlockDriverState *bs, 1915 int64_t sector_num, 1916 int nb_sectors, int *pnum, 1917 BlockDriverState **file) 1918 { 1919 return bdrv_get_block_status_above(bs, backing_bs(bs), 1920 sector_num, nb_sectors, pnum, file); 1921 } 1922 1923 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1924 int nb_sectors, int *pnum) 1925 { 1926 BlockDriverState *file; 1927 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1928 &file); 1929 if (ret < 0) { 1930 return ret; 1931 } 1932 return !!(ret & BDRV_BLOCK_ALLOCATED); 1933 } 1934 1935 /* 1936 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1937 * 1938 * Return true if the given sector is allocated in any image between 1939 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1940 * sector is allocated in any image of the chain. Return false otherwise. 1941 * 1942 * 'pnum' is set to the number of sectors (including and immediately following 1943 * the specified sector) that are known to be in the same 1944 * allocated/unallocated state. 1945 * 1946 */ 1947 int bdrv_is_allocated_above(BlockDriverState *top, 1948 BlockDriverState *base, 1949 int64_t sector_num, 1950 int nb_sectors, int *pnum) 1951 { 1952 BlockDriverState *intermediate; 1953 int ret, n = nb_sectors; 1954 1955 intermediate = top; 1956 while (intermediate && intermediate != base) { 1957 int pnum_inter; 1958 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1959 &pnum_inter); 1960 if (ret < 0) { 1961 return ret; 1962 } else if (ret) { 1963 *pnum = pnum_inter; 1964 return 1; 1965 } 1966 1967 /* 1968 * [sector_num, nb_sectors] is unallocated on top but intermediate 1969 * might have 1970 * 1971 * [sector_num+x, nr_sectors] allocated. 1972 */ 1973 if (n > pnum_inter && 1974 (intermediate == top || 1975 sector_num + pnum_inter < intermediate->total_sectors)) { 1976 n = pnum_inter; 1977 } 1978 1979 intermediate = backing_bs(intermediate); 1980 } 1981 1982 *pnum = n; 1983 return 0; 1984 } 1985 1986 typedef struct BdrvVmstateCo { 1987 BlockDriverState *bs; 1988 QEMUIOVector *qiov; 1989 int64_t pos; 1990 bool is_read; 1991 int ret; 1992 } BdrvVmstateCo; 1993 1994 static int coroutine_fn 1995 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1996 bool is_read) 1997 { 1998 BlockDriver *drv = bs->drv; 1999 int ret = -ENOTSUP; 2000 2001 bdrv_inc_in_flight(bs); 2002 2003 if (!drv) { 2004 ret = -ENOMEDIUM; 2005 } else if (drv->bdrv_load_vmstate) { 2006 if (is_read) { 2007 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2008 } else { 2009 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2010 } 2011 } else if (bs->file) { 2012 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2013 } 2014 2015 bdrv_dec_in_flight(bs); 2016 return ret; 2017 } 2018 2019 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2020 { 2021 BdrvVmstateCo *co = opaque; 2022 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2023 } 2024 2025 static inline int 2026 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2027 bool is_read) 2028 { 2029 if (qemu_in_coroutine()) { 2030 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2031 } else { 2032 BdrvVmstateCo data = { 2033 .bs = bs, 2034 .qiov = qiov, 2035 .pos = pos, 2036 .is_read = is_read, 2037 .ret = -EINPROGRESS, 2038 }; 2039 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2040 2041 bdrv_coroutine_enter(bs, co); 2042 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2043 return data.ret; 2044 } 2045 } 2046 2047 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2048 int64_t pos, int size) 2049 { 2050 QEMUIOVector qiov; 2051 struct iovec iov = { 2052 .iov_base = (void *) buf, 2053 .iov_len = size, 2054 }; 2055 int ret; 2056 2057 qemu_iovec_init_external(&qiov, &iov, 1); 2058 2059 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2060 if (ret < 0) { 2061 return ret; 2062 } 2063 2064 return size; 2065 } 2066 2067 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2068 { 2069 return bdrv_rw_vmstate(bs, qiov, pos, false); 2070 } 2071 2072 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2073 int64_t pos, int size) 2074 { 2075 QEMUIOVector qiov; 2076 struct iovec iov = { 2077 .iov_base = buf, 2078 .iov_len = size, 2079 }; 2080 int ret; 2081 2082 qemu_iovec_init_external(&qiov, &iov, 1); 2083 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2084 if (ret < 0) { 2085 return ret; 2086 } 2087 2088 return size; 2089 } 2090 2091 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2092 { 2093 return bdrv_rw_vmstate(bs, qiov, pos, true); 2094 } 2095 2096 /**************************************************************/ 2097 /* async I/Os */ 2098 2099 void bdrv_aio_cancel(BlockAIOCB *acb) 2100 { 2101 qemu_aio_ref(acb); 2102 bdrv_aio_cancel_async(acb); 2103 while (acb->refcnt > 1) { 2104 if (acb->aiocb_info->get_aio_context) { 2105 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2106 } else if (acb->bs) { 2107 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2108 * assert that we're not using an I/O thread. Thread-safe 2109 * code should use bdrv_aio_cancel_async exclusively. 2110 */ 2111 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2112 aio_poll(bdrv_get_aio_context(acb->bs), true); 2113 } else { 2114 abort(); 2115 } 2116 } 2117 qemu_aio_unref(acb); 2118 } 2119 2120 /* Async version of aio cancel. The caller is not blocked if the acb implements 2121 * cancel_async, otherwise we do nothing and let the request normally complete. 2122 * In either case the completion callback must be called. */ 2123 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2124 { 2125 if (acb->aiocb_info->cancel_async) { 2126 acb->aiocb_info->cancel_async(acb); 2127 } 2128 } 2129 2130 /**************************************************************/ 2131 /* Coroutine block device emulation */ 2132 2133 typedef struct FlushCo { 2134 BlockDriverState *bs; 2135 int ret; 2136 } FlushCo; 2137 2138 2139 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2140 { 2141 FlushCo *rwco = opaque; 2142 2143 rwco->ret = bdrv_co_flush(rwco->bs); 2144 } 2145 2146 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2147 { 2148 int current_gen; 2149 int ret = 0; 2150 2151 bdrv_inc_in_flight(bs); 2152 2153 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2154 bdrv_is_sg(bs)) { 2155 goto early_exit; 2156 } 2157 2158 qemu_co_mutex_lock(&bs->reqs_lock); 2159 current_gen = atomic_read(&bs->write_gen); 2160 2161 /* Wait until any previous flushes are completed */ 2162 while (bs->active_flush_req) { 2163 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2164 } 2165 2166 /* Flushes reach this point in nondecreasing current_gen order. */ 2167 bs->active_flush_req = true; 2168 qemu_co_mutex_unlock(&bs->reqs_lock); 2169 2170 /* Write back all layers by calling one driver function */ 2171 if (bs->drv->bdrv_co_flush) { 2172 ret = bs->drv->bdrv_co_flush(bs); 2173 goto out; 2174 } 2175 2176 /* Write back cached data to the OS even with cache=unsafe */ 2177 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2178 if (bs->drv->bdrv_co_flush_to_os) { 2179 ret = bs->drv->bdrv_co_flush_to_os(bs); 2180 if (ret < 0) { 2181 goto out; 2182 } 2183 } 2184 2185 /* But don't actually force it to the disk with cache=unsafe */ 2186 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2187 goto flush_parent; 2188 } 2189 2190 /* Check if we really need to flush anything */ 2191 if (bs->flushed_gen == current_gen) { 2192 goto flush_parent; 2193 } 2194 2195 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2196 if (bs->drv->bdrv_co_flush_to_disk) { 2197 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2198 } else if (bs->drv->bdrv_aio_flush) { 2199 BlockAIOCB *acb; 2200 CoroutineIOCompletion co = { 2201 .coroutine = qemu_coroutine_self(), 2202 }; 2203 2204 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2205 if (acb == NULL) { 2206 ret = -EIO; 2207 } else { 2208 qemu_coroutine_yield(); 2209 ret = co.ret; 2210 } 2211 } else { 2212 /* 2213 * Some block drivers always operate in either writethrough or unsafe 2214 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2215 * know how the server works (because the behaviour is hardcoded or 2216 * depends on server-side configuration), so we can't ensure that 2217 * everything is safe on disk. Returning an error doesn't work because 2218 * that would break guests even if the server operates in writethrough 2219 * mode. 2220 * 2221 * Let's hope the user knows what he's doing. 2222 */ 2223 ret = 0; 2224 } 2225 2226 if (ret < 0) { 2227 goto out; 2228 } 2229 2230 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2231 * in the case of cache=unsafe, so there are no useless flushes. 2232 */ 2233 flush_parent: 2234 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2235 out: 2236 /* Notify any pending flushes that we have completed */ 2237 if (ret == 0) { 2238 bs->flushed_gen = current_gen; 2239 } 2240 2241 qemu_co_mutex_lock(&bs->reqs_lock); 2242 bs->active_flush_req = false; 2243 /* Return value is ignored - it's ok if wait queue is empty */ 2244 qemu_co_queue_next(&bs->flush_queue); 2245 qemu_co_mutex_unlock(&bs->reqs_lock); 2246 2247 early_exit: 2248 bdrv_dec_in_flight(bs); 2249 return ret; 2250 } 2251 2252 int bdrv_flush(BlockDriverState *bs) 2253 { 2254 Coroutine *co; 2255 FlushCo flush_co = { 2256 .bs = bs, 2257 .ret = NOT_DONE, 2258 }; 2259 2260 if (qemu_in_coroutine()) { 2261 /* Fast-path if already in coroutine context */ 2262 bdrv_flush_co_entry(&flush_co); 2263 } else { 2264 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2265 bdrv_coroutine_enter(bs, co); 2266 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2267 } 2268 2269 return flush_co.ret; 2270 } 2271 2272 typedef struct DiscardCo { 2273 BlockDriverState *bs; 2274 int64_t offset; 2275 int bytes; 2276 int ret; 2277 } DiscardCo; 2278 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2279 { 2280 DiscardCo *rwco = opaque; 2281 2282 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2283 } 2284 2285 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2286 int bytes) 2287 { 2288 BdrvTrackedRequest req; 2289 int max_pdiscard, ret; 2290 int head, tail, align; 2291 2292 if (!bs->drv) { 2293 return -ENOMEDIUM; 2294 } 2295 2296 ret = bdrv_check_byte_request(bs, offset, bytes); 2297 if (ret < 0) { 2298 return ret; 2299 } else if (bs->read_only) { 2300 return -EPERM; 2301 } 2302 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2303 2304 /* Do nothing if disabled. */ 2305 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2306 return 0; 2307 } 2308 2309 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2310 return 0; 2311 } 2312 2313 /* Discard is advisory, but some devices track and coalesce 2314 * unaligned requests, so we must pass everything down rather than 2315 * round here. Still, most devices will just silently ignore 2316 * unaligned requests (by returning -ENOTSUP), so we must fragment 2317 * the request accordingly. */ 2318 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2319 assert(align % bs->bl.request_alignment == 0); 2320 head = offset % align; 2321 tail = (offset + bytes) % align; 2322 2323 bdrv_inc_in_flight(bs); 2324 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2325 2326 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2327 if (ret < 0) { 2328 goto out; 2329 } 2330 2331 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2332 align); 2333 assert(max_pdiscard >= bs->bl.request_alignment); 2334 2335 while (bytes > 0) { 2336 int ret; 2337 int num = bytes; 2338 2339 if (head) { 2340 /* Make small requests to get to alignment boundaries. */ 2341 num = MIN(bytes, align - head); 2342 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2343 num %= bs->bl.request_alignment; 2344 } 2345 head = (head + num) % align; 2346 assert(num < max_pdiscard); 2347 } else if (tail) { 2348 if (num > align) { 2349 /* Shorten the request to the last aligned cluster. */ 2350 num -= tail; 2351 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2352 tail > bs->bl.request_alignment) { 2353 tail %= bs->bl.request_alignment; 2354 num -= tail; 2355 } 2356 } 2357 /* limit request size */ 2358 if (num > max_pdiscard) { 2359 num = max_pdiscard; 2360 } 2361 2362 if (bs->drv->bdrv_co_pdiscard) { 2363 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2364 } else { 2365 BlockAIOCB *acb; 2366 CoroutineIOCompletion co = { 2367 .coroutine = qemu_coroutine_self(), 2368 }; 2369 2370 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2371 bdrv_co_io_em_complete, &co); 2372 if (acb == NULL) { 2373 ret = -EIO; 2374 goto out; 2375 } else { 2376 qemu_coroutine_yield(); 2377 ret = co.ret; 2378 } 2379 } 2380 if (ret && ret != -ENOTSUP) { 2381 goto out; 2382 } 2383 2384 offset += num; 2385 bytes -= num; 2386 } 2387 ret = 0; 2388 out: 2389 atomic_inc(&bs->write_gen); 2390 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2391 req.bytes >> BDRV_SECTOR_BITS); 2392 tracked_request_end(&req); 2393 bdrv_dec_in_flight(bs); 2394 return ret; 2395 } 2396 2397 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2398 { 2399 Coroutine *co; 2400 DiscardCo rwco = { 2401 .bs = bs, 2402 .offset = offset, 2403 .bytes = bytes, 2404 .ret = NOT_DONE, 2405 }; 2406 2407 if (qemu_in_coroutine()) { 2408 /* Fast-path if already in coroutine context */ 2409 bdrv_pdiscard_co_entry(&rwco); 2410 } else { 2411 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2412 bdrv_coroutine_enter(bs, co); 2413 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2414 } 2415 2416 return rwco.ret; 2417 } 2418 2419 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2420 { 2421 BlockDriver *drv = bs->drv; 2422 CoroutineIOCompletion co = { 2423 .coroutine = qemu_coroutine_self(), 2424 }; 2425 BlockAIOCB *acb; 2426 2427 bdrv_inc_in_flight(bs); 2428 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2429 co.ret = -ENOTSUP; 2430 goto out; 2431 } 2432 2433 if (drv->bdrv_co_ioctl) { 2434 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2435 } else { 2436 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2437 if (!acb) { 2438 co.ret = -ENOTSUP; 2439 goto out; 2440 } 2441 qemu_coroutine_yield(); 2442 } 2443 out: 2444 bdrv_dec_in_flight(bs); 2445 return co.ret; 2446 } 2447 2448 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2449 { 2450 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2451 } 2452 2453 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2454 { 2455 return memset(qemu_blockalign(bs, size), 0, size); 2456 } 2457 2458 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2459 { 2460 size_t align = bdrv_opt_mem_align(bs); 2461 2462 /* Ensure that NULL is never returned on success */ 2463 assert(align > 0); 2464 if (size == 0) { 2465 size = align; 2466 } 2467 2468 return qemu_try_memalign(align, size); 2469 } 2470 2471 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2472 { 2473 void *mem = qemu_try_blockalign(bs, size); 2474 2475 if (mem) { 2476 memset(mem, 0, size); 2477 } 2478 2479 return mem; 2480 } 2481 2482 /* 2483 * Check if all memory in this vector is sector aligned. 2484 */ 2485 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2486 { 2487 int i; 2488 size_t alignment = bdrv_min_mem_align(bs); 2489 2490 for (i = 0; i < qiov->niov; i++) { 2491 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2492 return false; 2493 } 2494 if (qiov->iov[i].iov_len % alignment) { 2495 return false; 2496 } 2497 } 2498 2499 return true; 2500 } 2501 2502 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2503 NotifierWithReturn *notifier) 2504 { 2505 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2506 } 2507 2508 void bdrv_io_plug(BlockDriverState *bs) 2509 { 2510 BdrvChild *child; 2511 2512 QLIST_FOREACH(child, &bs->children, next) { 2513 bdrv_io_plug(child->bs); 2514 } 2515 2516 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2517 BlockDriver *drv = bs->drv; 2518 if (drv && drv->bdrv_io_plug) { 2519 drv->bdrv_io_plug(bs); 2520 } 2521 } 2522 } 2523 2524 void bdrv_io_unplug(BlockDriverState *bs) 2525 { 2526 BdrvChild *child; 2527 2528 assert(bs->io_plugged); 2529 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2530 BlockDriver *drv = bs->drv; 2531 if (drv && drv->bdrv_io_unplug) { 2532 drv->bdrv_io_unplug(bs); 2533 } 2534 } 2535 2536 QLIST_FOREACH(child, &bs->children, next) { 2537 bdrv_io_unplug(child->bs); 2538 } 2539 } 2540