xref: /openbmc/qemu/block/io.c (revision f363d039)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
37 
38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
39 
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int bytes, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                       bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61                                                    int *drained_end_counter)
62 {
63     assert(c->parent_quiesce_counter > 0);
64     c->parent_quiesce_counter--;
65     if (c->role->drained_end) {
66         c->role->drained_end(c, drained_end_counter);
67     }
68 }
69 
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72     int drained_end_counter = 0;
73     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74     BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
75 }
76 
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78                                     bool ignore_bds_parents,
79                                     int *drained_end_counter)
80 {
81     BdrvChild *c;
82 
83     QLIST_FOREACH(c, &bs->parents, next_parent) {
84         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
85             continue;
86         }
87         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88     }
89 }
90 
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93     if (c->role->drained_poll) {
94         return c->role->drained_poll(c);
95     }
96     return false;
97 }
98 
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100                                      bool ignore_bds_parents)
101 {
102     BdrvChild *c, *next;
103     bool busy = false;
104 
105     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
107             continue;
108         }
109         busy |= bdrv_parent_drained_poll_single(c);
110     }
111 
112     return busy;
113 }
114 
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117     c->parent_quiesce_counter++;
118     if (c->role->drained_begin) {
119         c->role->drained_begin(c);
120     }
121     if (poll) {
122         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123     }
124 }
125 
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131                                  src->opt_mem_alignment);
132     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133                                  src->min_mem_alignment);
134     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
135 }
136 
137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
138 {
139     BlockDriver *drv = bs->drv;
140     Error *local_err = NULL;
141 
142     memset(&bs->bl, 0, sizeof(bs->bl));
143 
144     if (!drv) {
145         return;
146     }
147 
148     /* Default alignment based on whether driver has byte interface */
149     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
150                                 drv->bdrv_aio_preadv ||
151                                 drv->bdrv_co_preadv_part) ? 1 : 512;
152 
153     /* Take some limits from the children as a default */
154     if (bs->file) {
155         bdrv_refresh_limits(bs->file->bs, &local_err);
156         if (local_err) {
157             error_propagate(errp, local_err);
158             return;
159         }
160         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
161     } else {
162         bs->bl.min_mem_alignment = 512;
163         bs->bl.opt_mem_alignment = getpagesize();
164 
165         /* Safe default since most protocols use readv()/writev()/etc */
166         bs->bl.max_iov = IOV_MAX;
167     }
168 
169     if (bs->backing) {
170         bdrv_refresh_limits(bs->backing->bs, &local_err);
171         if (local_err) {
172             error_propagate(errp, local_err);
173             return;
174         }
175         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
176     }
177 
178     /* Then let the driver override it */
179     if (drv->bdrv_refresh_limits) {
180         drv->bdrv_refresh_limits(bs, errp);
181     }
182 }
183 
184 /**
185  * The copy-on-read flag is actually a reference count so multiple users may
186  * use the feature without worrying about clobbering its previous state.
187  * Copy-on-read stays enabled until all users have called to disable it.
188  */
189 void bdrv_enable_copy_on_read(BlockDriverState *bs)
190 {
191     atomic_inc(&bs->copy_on_read);
192 }
193 
194 void bdrv_disable_copy_on_read(BlockDriverState *bs)
195 {
196     int old = atomic_fetch_dec(&bs->copy_on_read);
197     assert(old >= 1);
198 }
199 
200 typedef struct {
201     Coroutine *co;
202     BlockDriverState *bs;
203     bool done;
204     bool begin;
205     bool recursive;
206     bool poll;
207     BdrvChild *parent;
208     bool ignore_bds_parents;
209     int *drained_end_counter;
210 } BdrvCoDrainData;
211 
212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
213 {
214     BdrvCoDrainData *data = opaque;
215     BlockDriverState *bs = data->bs;
216 
217     if (data->begin) {
218         bs->drv->bdrv_co_drain_begin(bs);
219     } else {
220         bs->drv->bdrv_co_drain_end(bs);
221     }
222 
223     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
224     atomic_mb_set(&data->done, true);
225     if (!data->begin) {
226         atomic_dec(data->drained_end_counter);
227     }
228     bdrv_dec_in_flight(bs);
229 
230     g_free(data);
231 }
232 
233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
235                               int *drained_end_counter)
236 {
237     BdrvCoDrainData *data;
238 
239     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
240             (!begin && !bs->drv->bdrv_co_drain_end)) {
241         return;
242     }
243 
244     data = g_new(BdrvCoDrainData, 1);
245     *data = (BdrvCoDrainData) {
246         .bs = bs,
247         .done = false,
248         .begin = begin,
249         .drained_end_counter = drained_end_counter,
250     };
251 
252     if (!begin) {
253         atomic_inc(drained_end_counter);
254     }
255 
256     /* Make sure the driver callback completes during the polling phase for
257      * drain_begin. */
258     bdrv_inc_in_flight(bs);
259     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
260     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
261 }
262 
263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
265                      BdrvChild *ignore_parent, bool ignore_bds_parents)
266 {
267     BdrvChild *child, *next;
268 
269     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
270         return true;
271     }
272 
273     if (atomic_read(&bs->in_flight)) {
274         return true;
275     }
276 
277     if (recursive) {
278         assert(!ignore_bds_parents);
279         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
280             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
281                 return true;
282             }
283         }
284     }
285 
286     return false;
287 }
288 
289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
290                                       BdrvChild *ignore_parent)
291 {
292     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
293 }
294 
295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
296                                   BdrvChild *parent, bool ignore_bds_parents,
297                                   bool poll);
298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
299                                 BdrvChild *parent, bool ignore_bds_parents,
300                                 int *drained_end_counter);
301 
302 static void bdrv_co_drain_bh_cb(void *opaque)
303 {
304     BdrvCoDrainData *data = opaque;
305     Coroutine *co = data->co;
306     BlockDriverState *bs = data->bs;
307 
308     if (bs) {
309         AioContext *ctx = bdrv_get_aio_context(bs);
310         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
311 
312         /*
313          * When the coroutine yielded, the lock for its home context was
314          * released, so we need to re-acquire it here. If it explicitly
315          * acquired a different context, the lock is still held and we don't
316          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
317          */
318         if (ctx == co_ctx) {
319             aio_context_acquire(ctx);
320         }
321         bdrv_dec_in_flight(bs);
322         if (data->begin) {
323             assert(!data->drained_end_counter);
324             bdrv_do_drained_begin(bs, data->recursive, data->parent,
325                                   data->ignore_bds_parents, data->poll);
326         } else {
327             assert(!data->poll);
328             bdrv_do_drained_end(bs, data->recursive, data->parent,
329                                 data->ignore_bds_parents,
330                                 data->drained_end_counter);
331         }
332         if (ctx == co_ctx) {
333             aio_context_release(ctx);
334         }
335     } else {
336         assert(data->begin);
337         bdrv_drain_all_begin();
338     }
339 
340     data->done = true;
341     aio_co_wake(co);
342 }
343 
344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
345                                                 bool begin, bool recursive,
346                                                 BdrvChild *parent,
347                                                 bool ignore_bds_parents,
348                                                 bool poll,
349                                                 int *drained_end_counter)
350 {
351     BdrvCoDrainData data;
352 
353     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
354      * other coroutines run if they were queued by aio_co_enter(). */
355 
356     assert(qemu_in_coroutine());
357     data = (BdrvCoDrainData) {
358         .co = qemu_coroutine_self(),
359         .bs = bs,
360         .done = false,
361         .begin = begin,
362         .recursive = recursive,
363         .parent = parent,
364         .ignore_bds_parents = ignore_bds_parents,
365         .poll = poll,
366         .drained_end_counter = drained_end_counter,
367     };
368 
369     if (bs) {
370         bdrv_inc_in_flight(bs);
371     }
372     replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
373                                      bdrv_co_drain_bh_cb, &data);
374 
375     qemu_coroutine_yield();
376     /* If we are resumed from some other event (such as an aio completion or a
377      * timer callback), it is a bug in the caller that should be fixed. */
378     assert(data.done);
379 }
380 
381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
382                                    BdrvChild *parent, bool ignore_bds_parents)
383 {
384     assert(!qemu_in_coroutine());
385 
386     /* Stop things in parent-to-child order */
387     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
388         aio_disable_external(bdrv_get_aio_context(bs));
389     }
390 
391     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
392     bdrv_drain_invoke(bs, true, NULL);
393 }
394 
395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
396                                   BdrvChild *parent, bool ignore_bds_parents,
397                                   bool poll)
398 {
399     BdrvChild *child, *next;
400 
401     if (qemu_in_coroutine()) {
402         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
403                                poll, NULL);
404         return;
405     }
406 
407     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
408 
409     if (recursive) {
410         assert(!ignore_bds_parents);
411         bs->recursive_quiesce_counter++;
412         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
413             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
414                                   false);
415         }
416     }
417 
418     /*
419      * Wait for drained requests to finish.
420      *
421      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
422      * call is needed so things in this AioContext can make progress even
423      * though we don't return to the main AioContext loop - this automatically
424      * includes other nodes in the same AioContext and therefore all child
425      * nodes.
426      */
427     if (poll) {
428         assert(!ignore_bds_parents);
429         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
430     }
431 }
432 
433 void bdrv_drained_begin(BlockDriverState *bs)
434 {
435     bdrv_do_drained_begin(bs, false, NULL, false, true);
436 }
437 
438 void bdrv_subtree_drained_begin(BlockDriverState *bs)
439 {
440     bdrv_do_drained_begin(bs, true, NULL, false, true);
441 }
442 
443 /**
444  * This function does not poll, nor must any of its recursively called
445  * functions.  The *drained_end_counter pointee will be incremented
446  * once for every background operation scheduled, and decremented once
447  * the operation settles.  Therefore, the pointer must remain valid
448  * until the pointee reaches 0.  That implies that whoever sets up the
449  * pointee has to poll until it is 0.
450  *
451  * We use atomic operations to access *drained_end_counter, because
452  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
453  *     @bs may contain nodes in different AioContexts,
454  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
455  *     regardless of which AioContext they are in.
456  */
457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
458                                 BdrvChild *parent, bool ignore_bds_parents,
459                                 int *drained_end_counter)
460 {
461     BdrvChild *child;
462     int old_quiesce_counter;
463 
464     assert(drained_end_counter != NULL);
465 
466     if (qemu_in_coroutine()) {
467         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
468                                false, drained_end_counter);
469         return;
470     }
471     assert(bs->quiesce_counter > 0);
472 
473     /* Re-enable things in child-to-parent order */
474     bdrv_drain_invoke(bs, false, drained_end_counter);
475     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
476                             drained_end_counter);
477 
478     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
479     if (old_quiesce_counter == 1) {
480         aio_enable_external(bdrv_get_aio_context(bs));
481     }
482 
483     if (recursive) {
484         assert(!ignore_bds_parents);
485         bs->recursive_quiesce_counter--;
486         QLIST_FOREACH(child, &bs->children, next) {
487             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
488                                 drained_end_counter);
489         }
490     }
491 }
492 
493 void bdrv_drained_end(BlockDriverState *bs)
494 {
495     int drained_end_counter = 0;
496     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
497     BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
498 }
499 
500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
501 {
502     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
503 }
504 
505 void bdrv_subtree_drained_end(BlockDriverState *bs)
506 {
507     int drained_end_counter = 0;
508     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
509     BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
510 }
511 
512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
513 {
514     int i;
515 
516     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
517         bdrv_do_drained_begin(child->bs, true, child, false, true);
518     }
519 }
520 
521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
522 {
523     int drained_end_counter = 0;
524     int i;
525 
526     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
527         bdrv_do_drained_end(child->bs, true, child, false,
528                             &drained_end_counter);
529     }
530 
531     BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
532 }
533 
534 /*
535  * Wait for pending requests to complete on a single BlockDriverState subtree,
536  * and suspend block driver's internal I/O until next request arrives.
537  *
538  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
539  * AioContext.
540  */
541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
542 {
543     assert(qemu_in_coroutine());
544     bdrv_drained_begin(bs);
545     bdrv_drained_end(bs);
546 }
547 
548 void bdrv_drain(BlockDriverState *bs)
549 {
550     bdrv_drained_begin(bs);
551     bdrv_drained_end(bs);
552 }
553 
554 static void bdrv_drain_assert_idle(BlockDriverState *bs)
555 {
556     BdrvChild *child, *next;
557 
558     assert(atomic_read(&bs->in_flight) == 0);
559     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
560         bdrv_drain_assert_idle(child->bs);
561     }
562 }
563 
564 unsigned int bdrv_drain_all_count = 0;
565 
566 static bool bdrv_drain_all_poll(void)
567 {
568     BlockDriverState *bs = NULL;
569     bool result = false;
570 
571     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
572      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
573     while ((bs = bdrv_next_all_states(bs))) {
574         AioContext *aio_context = bdrv_get_aio_context(bs);
575         aio_context_acquire(aio_context);
576         result |= bdrv_drain_poll(bs, false, NULL, true);
577         aio_context_release(aio_context);
578     }
579 
580     return result;
581 }
582 
583 /*
584  * Wait for pending requests to complete across all BlockDriverStates
585  *
586  * This function does not flush data to disk, use bdrv_flush_all() for that
587  * after calling this function.
588  *
589  * This pauses all block jobs and disables external clients. It must
590  * be paired with bdrv_drain_all_end().
591  *
592  * NOTE: no new block jobs or BlockDriverStates can be created between
593  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
594  */
595 void bdrv_drain_all_begin(void)
596 {
597     BlockDriverState *bs = NULL;
598 
599     if (qemu_in_coroutine()) {
600         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
601         return;
602     }
603 
604     /*
605      * bdrv queue is managed by record/replay,
606      * waiting for finishing the I/O requests may
607      * be infinite
608      */
609     if (replay_events_enabled()) {
610         return;
611     }
612 
613     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
614      * loop AioContext, so make sure we're in the main context. */
615     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
616     assert(bdrv_drain_all_count < INT_MAX);
617     bdrv_drain_all_count++;
618 
619     /* Quiesce all nodes, without polling in-flight requests yet. The graph
620      * cannot change during this loop. */
621     while ((bs = bdrv_next_all_states(bs))) {
622         AioContext *aio_context = bdrv_get_aio_context(bs);
623 
624         aio_context_acquire(aio_context);
625         bdrv_do_drained_begin(bs, false, NULL, true, false);
626         aio_context_release(aio_context);
627     }
628 
629     /* Now poll the in-flight requests */
630     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
631 
632     while ((bs = bdrv_next_all_states(bs))) {
633         bdrv_drain_assert_idle(bs);
634     }
635 }
636 
637 void bdrv_drain_all_end(void)
638 {
639     BlockDriverState *bs = NULL;
640     int drained_end_counter = 0;
641 
642     /*
643      * bdrv queue is managed by record/replay,
644      * waiting for finishing the I/O requests may
645      * be endless
646      */
647     if (replay_events_enabled()) {
648         return;
649     }
650 
651     while ((bs = bdrv_next_all_states(bs))) {
652         AioContext *aio_context = bdrv_get_aio_context(bs);
653 
654         aio_context_acquire(aio_context);
655         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
656         aio_context_release(aio_context);
657     }
658 
659     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660     AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
661 
662     assert(bdrv_drain_all_count > 0);
663     bdrv_drain_all_count--;
664 }
665 
666 void bdrv_drain_all(void)
667 {
668     bdrv_drain_all_begin();
669     bdrv_drain_all_end();
670 }
671 
672 /**
673  * Remove an active request from the tracked requests list
674  *
675  * This function should be called when a tracked request is completing.
676  */
677 static void tracked_request_end(BdrvTrackedRequest *req)
678 {
679     if (req->serialising) {
680         atomic_dec(&req->bs->serialising_in_flight);
681     }
682 
683     qemu_co_mutex_lock(&req->bs->reqs_lock);
684     QLIST_REMOVE(req, list);
685     qemu_co_queue_restart_all(&req->wait_queue);
686     qemu_co_mutex_unlock(&req->bs->reqs_lock);
687 }
688 
689 /**
690  * Add an active request to the tracked requests list
691  */
692 static void tracked_request_begin(BdrvTrackedRequest *req,
693                                   BlockDriverState *bs,
694                                   int64_t offset,
695                                   uint64_t bytes,
696                                   enum BdrvTrackedRequestType type)
697 {
698     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
699 
700     *req = (BdrvTrackedRequest){
701         .bs = bs,
702         .offset         = offset,
703         .bytes          = bytes,
704         .type           = type,
705         .co             = qemu_coroutine_self(),
706         .serialising    = false,
707         .overlap_offset = offset,
708         .overlap_bytes  = bytes,
709     };
710 
711     qemu_co_queue_init(&req->wait_queue);
712 
713     qemu_co_mutex_lock(&bs->reqs_lock);
714     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
715     qemu_co_mutex_unlock(&bs->reqs_lock);
716 }
717 
718 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
719 {
720     int64_t overlap_offset = req->offset & ~(align - 1);
721     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
722                                - overlap_offset;
723 
724     if (!req->serialising) {
725         atomic_inc(&req->bs->serialising_in_flight);
726         req->serialising = true;
727     }
728 
729     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
730     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
731 }
732 
733 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
734 {
735     /*
736      * If the request is serialising, overlap_offset and overlap_bytes are set,
737      * so we can check if the request is aligned. Otherwise, don't care and
738      * return false.
739      */
740 
741     return req->serialising && (req->offset == req->overlap_offset) &&
742            (req->bytes == req->overlap_bytes);
743 }
744 
745 /**
746  * Round a region to cluster boundaries
747  */
748 void bdrv_round_to_clusters(BlockDriverState *bs,
749                             int64_t offset, int64_t bytes,
750                             int64_t *cluster_offset,
751                             int64_t *cluster_bytes)
752 {
753     BlockDriverInfo bdi;
754 
755     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
756         *cluster_offset = offset;
757         *cluster_bytes = bytes;
758     } else {
759         int64_t c = bdi.cluster_size;
760         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
761         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
762     }
763 }
764 
765 static int bdrv_get_cluster_size(BlockDriverState *bs)
766 {
767     BlockDriverInfo bdi;
768     int ret;
769 
770     ret = bdrv_get_info(bs, &bdi);
771     if (ret < 0 || bdi.cluster_size == 0) {
772         return bs->bl.request_alignment;
773     } else {
774         return bdi.cluster_size;
775     }
776 }
777 
778 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
779                                      int64_t offset, uint64_t bytes)
780 {
781     /*        aaaa   bbbb */
782     if (offset >= req->overlap_offset + req->overlap_bytes) {
783         return false;
784     }
785     /* bbbb   aaaa        */
786     if (req->overlap_offset >= offset + bytes) {
787         return false;
788     }
789     return true;
790 }
791 
792 void bdrv_inc_in_flight(BlockDriverState *bs)
793 {
794     atomic_inc(&bs->in_flight);
795 }
796 
797 void bdrv_wakeup(BlockDriverState *bs)
798 {
799     aio_wait_kick();
800 }
801 
802 void bdrv_dec_in_flight(BlockDriverState *bs)
803 {
804     atomic_dec(&bs->in_flight);
805     bdrv_wakeup(bs);
806 }
807 
808 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
809 {
810     BlockDriverState *bs = self->bs;
811     BdrvTrackedRequest *req;
812     bool retry;
813     bool waited = false;
814 
815     if (!atomic_read(&bs->serialising_in_flight)) {
816         return false;
817     }
818 
819     do {
820         retry = false;
821         qemu_co_mutex_lock(&bs->reqs_lock);
822         QLIST_FOREACH(req, &bs->tracked_requests, list) {
823             if (req == self || (!req->serialising && !self->serialising)) {
824                 continue;
825             }
826             if (tracked_request_overlaps(req, self->overlap_offset,
827                                          self->overlap_bytes))
828             {
829                 /* Hitting this means there was a reentrant request, for
830                  * example, a block driver issuing nested requests.  This must
831                  * never happen since it means deadlock.
832                  */
833                 assert(qemu_coroutine_self() != req->co);
834 
835                 /* If the request is already (indirectly) waiting for us, or
836                  * will wait for us as soon as it wakes up, then just go on
837                  * (instead of producing a deadlock in the former case). */
838                 if (!req->waiting_for) {
839                     self->waiting_for = req;
840                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
841                     self->waiting_for = NULL;
842                     retry = true;
843                     waited = true;
844                     break;
845                 }
846             }
847         }
848         qemu_co_mutex_unlock(&bs->reqs_lock);
849     } while (retry);
850 
851     return waited;
852 }
853 
854 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
855                                    size_t size)
856 {
857     if (size > BDRV_REQUEST_MAX_BYTES) {
858         return -EIO;
859     }
860 
861     if (!bdrv_is_inserted(bs)) {
862         return -ENOMEDIUM;
863     }
864 
865     if (offset < 0) {
866         return -EIO;
867     }
868 
869     return 0;
870 }
871 
872 typedef struct RwCo {
873     BdrvChild *child;
874     int64_t offset;
875     QEMUIOVector *qiov;
876     bool is_write;
877     int ret;
878     BdrvRequestFlags flags;
879 } RwCo;
880 
881 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
882 {
883     RwCo *rwco = opaque;
884 
885     if (!rwco->is_write) {
886         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
887                                    rwco->qiov->size, rwco->qiov,
888                                    rwco->flags);
889     } else {
890         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
891                                     rwco->qiov->size, rwco->qiov,
892                                     rwco->flags);
893     }
894     aio_wait_kick();
895 }
896 
897 /*
898  * Process a vectored synchronous request using coroutines
899  */
900 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
901                         QEMUIOVector *qiov, bool is_write,
902                         BdrvRequestFlags flags)
903 {
904     Coroutine *co;
905     RwCo rwco = {
906         .child = child,
907         .offset = offset,
908         .qiov = qiov,
909         .is_write = is_write,
910         .ret = NOT_DONE,
911         .flags = flags,
912     };
913 
914     if (qemu_in_coroutine()) {
915         /* Fast-path if already in coroutine context */
916         bdrv_rw_co_entry(&rwco);
917     } else {
918         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
919         bdrv_coroutine_enter(child->bs, co);
920         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
921     }
922     return rwco.ret;
923 }
924 
925 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
926                        int bytes, BdrvRequestFlags flags)
927 {
928     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
929 
930     return bdrv_prwv_co(child, offset, &qiov, true,
931                         BDRV_REQ_ZERO_WRITE | flags);
932 }
933 
934 /*
935  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
936  * The operation is sped up by checking the block status and only writing
937  * zeroes to the device if they currently do not return zeroes. Optional
938  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
939  * BDRV_REQ_FUA).
940  *
941  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
942  */
943 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
944 {
945     int ret;
946     int64_t target_size, bytes, offset = 0;
947     BlockDriverState *bs = child->bs;
948 
949     target_size = bdrv_getlength(bs);
950     if (target_size < 0) {
951         return target_size;
952     }
953 
954     for (;;) {
955         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
956         if (bytes <= 0) {
957             return 0;
958         }
959         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
960         if (ret < 0) {
961             return ret;
962         }
963         if (ret & BDRV_BLOCK_ZERO) {
964             offset += bytes;
965             continue;
966         }
967         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
968         if (ret < 0) {
969             return ret;
970         }
971         offset += bytes;
972     }
973 }
974 
975 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
976 {
977     int ret;
978 
979     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
980     if (ret < 0) {
981         return ret;
982     }
983 
984     return qiov->size;
985 }
986 
987 /* See bdrv_pwrite() for the return codes */
988 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
989 {
990     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
991 
992     if (bytes < 0) {
993         return -EINVAL;
994     }
995 
996     return bdrv_preadv(child, offset, &qiov);
997 }
998 
999 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1000 {
1001     int ret;
1002 
1003     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1004     if (ret < 0) {
1005         return ret;
1006     }
1007 
1008     return qiov->size;
1009 }
1010 
1011 /* Return no. of bytes on success or < 0 on error. Important errors are:
1012   -EIO         generic I/O error (may happen for all errors)
1013   -ENOMEDIUM   No media inserted.
1014   -EINVAL      Invalid offset or number of bytes
1015   -EACCES      Trying to write a read-only device
1016 */
1017 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1018 {
1019     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1020 
1021     if (bytes < 0) {
1022         return -EINVAL;
1023     }
1024 
1025     return bdrv_pwritev(child, offset, &qiov);
1026 }
1027 
1028 /*
1029  * Writes to the file and ensures that no writes are reordered across this
1030  * request (acts as a barrier)
1031  *
1032  * Returns 0 on success, -errno in error cases.
1033  */
1034 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1035                      const void *buf, int count)
1036 {
1037     int ret;
1038 
1039     ret = bdrv_pwrite(child, offset, buf, count);
1040     if (ret < 0) {
1041         return ret;
1042     }
1043 
1044     ret = bdrv_flush(child->bs);
1045     if (ret < 0) {
1046         return ret;
1047     }
1048 
1049     return 0;
1050 }
1051 
1052 typedef struct CoroutineIOCompletion {
1053     Coroutine *coroutine;
1054     int ret;
1055 } CoroutineIOCompletion;
1056 
1057 static void bdrv_co_io_em_complete(void *opaque, int ret)
1058 {
1059     CoroutineIOCompletion *co = opaque;
1060 
1061     co->ret = ret;
1062     aio_co_wake(co->coroutine);
1063 }
1064 
1065 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1066                                            uint64_t offset, uint64_t bytes,
1067                                            QEMUIOVector *qiov,
1068                                            size_t qiov_offset, int flags)
1069 {
1070     BlockDriver *drv = bs->drv;
1071     int64_t sector_num;
1072     unsigned int nb_sectors;
1073     QEMUIOVector local_qiov;
1074     int ret;
1075 
1076     assert(!(flags & ~BDRV_REQ_MASK));
1077     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1078 
1079     if (!drv) {
1080         return -ENOMEDIUM;
1081     }
1082 
1083     if (drv->bdrv_co_preadv_part) {
1084         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1085                                         flags);
1086     }
1087 
1088     if (qiov_offset > 0 || bytes != qiov->size) {
1089         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1090         qiov = &local_qiov;
1091     }
1092 
1093     if (drv->bdrv_co_preadv) {
1094         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1095         goto out;
1096     }
1097 
1098     if (drv->bdrv_aio_preadv) {
1099         BlockAIOCB *acb;
1100         CoroutineIOCompletion co = {
1101             .coroutine = qemu_coroutine_self(),
1102         };
1103 
1104         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1105                                    bdrv_co_io_em_complete, &co);
1106         if (acb == NULL) {
1107             ret = -EIO;
1108             goto out;
1109         } else {
1110             qemu_coroutine_yield();
1111             ret = co.ret;
1112             goto out;
1113         }
1114     }
1115 
1116     sector_num = offset >> BDRV_SECTOR_BITS;
1117     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1118 
1119     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1120     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1121     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1122     assert(drv->bdrv_co_readv);
1123 
1124     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1125 
1126 out:
1127     if (qiov == &local_qiov) {
1128         qemu_iovec_destroy(&local_qiov);
1129     }
1130 
1131     return ret;
1132 }
1133 
1134 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1135                                             uint64_t offset, uint64_t bytes,
1136                                             QEMUIOVector *qiov,
1137                                             size_t qiov_offset, int flags)
1138 {
1139     BlockDriver *drv = bs->drv;
1140     int64_t sector_num;
1141     unsigned int nb_sectors;
1142     QEMUIOVector local_qiov;
1143     int ret;
1144 
1145     assert(!(flags & ~BDRV_REQ_MASK));
1146     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1147 
1148     if (!drv) {
1149         return -ENOMEDIUM;
1150     }
1151 
1152     if (drv->bdrv_co_pwritev_part) {
1153         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1154                                         flags & bs->supported_write_flags);
1155         flags &= ~bs->supported_write_flags;
1156         goto emulate_flags;
1157     }
1158 
1159     if (qiov_offset > 0 || bytes != qiov->size) {
1160         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1161         qiov = &local_qiov;
1162     }
1163 
1164     if (drv->bdrv_co_pwritev) {
1165         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1166                                    flags & bs->supported_write_flags);
1167         flags &= ~bs->supported_write_flags;
1168         goto emulate_flags;
1169     }
1170 
1171     if (drv->bdrv_aio_pwritev) {
1172         BlockAIOCB *acb;
1173         CoroutineIOCompletion co = {
1174             .coroutine = qemu_coroutine_self(),
1175         };
1176 
1177         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1178                                     flags & bs->supported_write_flags,
1179                                     bdrv_co_io_em_complete, &co);
1180         flags &= ~bs->supported_write_flags;
1181         if (acb == NULL) {
1182             ret = -EIO;
1183         } else {
1184             qemu_coroutine_yield();
1185             ret = co.ret;
1186         }
1187         goto emulate_flags;
1188     }
1189 
1190     sector_num = offset >> BDRV_SECTOR_BITS;
1191     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1192 
1193     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1194     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1195     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1196 
1197     assert(drv->bdrv_co_writev);
1198     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1199                               flags & bs->supported_write_flags);
1200     flags &= ~bs->supported_write_flags;
1201 
1202 emulate_flags:
1203     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1204         ret = bdrv_co_flush(bs);
1205     }
1206 
1207     if (qiov == &local_qiov) {
1208         qemu_iovec_destroy(&local_qiov);
1209     }
1210 
1211     return ret;
1212 }
1213 
1214 static int coroutine_fn
1215 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1216                                uint64_t bytes, QEMUIOVector *qiov,
1217                                size_t qiov_offset)
1218 {
1219     BlockDriver *drv = bs->drv;
1220     QEMUIOVector local_qiov;
1221     int ret;
1222 
1223     if (!drv) {
1224         return -ENOMEDIUM;
1225     }
1226 
1227     if (!block_driver_can_compress(drv)) {
1228         return -ENOTSUP;
1229     }
1230 
1231     if (drv->bdrv_co_pwritev_compressed_part) {
1232         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1233                                                     qiov, qiov_offset);
1234     }
1235 
1236     if (qiov_offset == 0) {
1237         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1238     }
1239 
1240     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1241     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1242     qemu_iovec_destroy(&local_qiov);
1243 
1244     return ret;
1245 }
1246 
1247 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1248         int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1249         size_t qiov_offset, int flags)
1250 {
1251     BlockDriverState *bs = child->bs;
1252 
1253     /* Perform I/O through a temporary buffer so that users who scribble over
1254      * their read buffer while the operation is in progress do not end up
1255      * modifying the image file.  This is critical for zero-copy guest I/O
1256      * where anything might happen inside guest memory.
1257      */
1258     void *bounce_buffer = NULL;
1259 
1260     BlockDriver *drv = bs->drv;
1261     int64_t cluster_offset;
1262     int64_t cluster_bytes;
1263     size_t skip_bytes;
1264     int ret;
1265     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1266                                     BDRV_REQUEST_MAX_BYTES);
1267     unsigned int progress = 0;
1268     bool skip_write;
1269 
1270     if (!drv) {
1271         return -ENOMEDIUM;
1272     }
1273 
1274     /*
1275      * Do not write anything when the BDS is inactive.  That is not
1276      * allowed, and it would not help.
1277      */
1278     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1279 
1280     /* FIXME We cannot require callers to have write permissions when all they
1281      * are doing is a read request. If we did things right, write permissions
1282      * would be obtained anyway, but internally by the copy-on-read code. As
1283      * long as it is implemented here rather than in a separate filter driver,
1284      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1285      * it could request permissions. Therefore we have to bypass the permission
1286      * system for the moment. */
1287     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1288 
1289     /* Cover entire cluster so no additional backing file I/O is required when
1290      * allocating cluster in the image file.  Note that this value may exceed
1291      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1292      * is one reason we loop rather than doing it all at once.
1293      */
1294     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1295     skip_bytes = offset - cluster_offset;
1296 
1297     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1298                                    cluster_offset, cluster_bytes);
1299 
1300     while (cluster_bytes) {
1301         int64_t pnum;
1302 
1303         if (skip_write) {
1304             ret = 1; /* "already allocated", so nothing will be copied */
1305             pnum = MIN(cluster_bytes, max_transfer);
1306         } else {
1307             ret = bdrv_is_allocated(bs, cluster_offset,
1308                                     MIN(cluster_bytes, max_transfer), &pnum);
1309             if (ret < 0) {
1310                 /*
1311                  * Safe to treat errors in querying allocation as if
1312                  * unallocated; we'll probably fail again soon on the
1313                  * read, but at least that will set a decent errno.
1314                  */
1315                 pnum = MIN(cluster_bytes, max_transfer);
1316             }
1317 
1318             /* Stop at EOF if the image ends in the middle of the cluster */
1319             if (ret == 0 && pnum == 0) {
1320                 assert(progress >= bytes);
1321                 break;
1322             }
1323 
1324             assert(skip_bytes < pnum);
1325         }
1326 
1327         if (ret <= 0) {
1328             QEMUIOVector local_qiov;
1329 
1330             /* Must copy-on-read; use the bounce buffer */
1331             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1332             if (!bounce_buffer) {
1333                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1334                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1335                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1336 
1337                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1338                 if (!bounce_buffer) {
1339                     ret = -ENOMEM;
1340                     goto err;
1341                 }
1342             }
1343             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1344 
1345             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1346                                      &local_qiov, 0, 0);
1347             if (ret < 0) {
1348                 goto err;
1349             }
1350 
1351             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1352             if (drv->bdrv_co_pwrite_zeroes &&
1353                 buffer_is_zero(bounce_buffer, pnum)) {
1354                 /* FIXME: Should we (perhaps conditionally) be setting
1355                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1356                  * that still correctly reads as zero? */
1357                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1358                                                BDRV_REQ_WRITE_UNCHANGED);
1359             } else {
1360                 /* This does not change the data on the disk, it is not
1361                  * necessary to flush even in cache=writethrough mode.
1362                  */
1363                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1364                                           &local_qiov, 0,
1365                                           BDRV_REQ_WRITE_UNCHANGED);
1366             }
1367 
1368             if (ret < 0) {
1369                 /* It might be okay to ignore write errors for guest
1370                  * requests.  If this is a deliberate copy-on-read
1371                  * then we don't want to ignore the error.  Simply
1372                  * report it in all cases.
1373                  */
1374                 goto err;
1375             }
1376 
1377             if (!(flags & BDRV_REQ_PREFETCH)) {
1378                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1379                                     bounce_buffer + skip_bytes,
1380                                     pnum - skip_bytes);
1381             }
1382         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1383             /* Read directly into the destination */
1384             ret = bdrv_driver_preadv(bs, offset + progress,
1385                                      MIN(pnum - skip_bytes, bytes - progress),
1386                                      qiov, qiov_offset + progress, 0);
1387             if (ret < 0) {
1388                 goto err;
1389             }
1390         }
1391 
1392         cluster_offset += pnum;
1393         cluster_bytes -= pnum;
1394         progress += pnum - skip_bytes;
1395         skip_bytes = 0;
1396     }
1397     ret = 0;
1398 
1399 err:
1400     qemu_vfree(bounce_buffer);
1401     return ret;
1402 }
1403 
1404 /*
1405  * Forwards an already correctly aligned request to the BlockDriver. This
1406  * handles copy on read, zeroing after EOF, and fragmentation of large
1407  * reads; any other features must be implemented by the caller.
1408  */
1409 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1410     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1411     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1412 {
1413     BlockDriverState *bs = child->bs;
1414     int64_t total_bytes, max_bytes;
1415     int ret = 0;
1416     uint64_t bytes_remaining = bytes;
1417     int max_transfer;
1418 
1419     assert(is_power_of_2(align));
1420     assert((offset & (align - 1)) == 0);
1421     assert((bytes & (align - 1)) == 0);
1422     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1423     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1424                                    align);
1425 
1426     /* TODO: We would need a per-BDS .supported_read_flags and
1427      * potential fallback support, if we ever implement any read flags
1428      * to pass through to drivers.  For now, there aren't any
1429      * passthrough flags.  */
1430     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
1431                        BDRV_REQ_PREFETCH)));
1432 
1433     /* Handle Copy on Read and associated serialisation */
1434     if (flags & BDRV_REQ_COPY_ON_READ) {
1435         /* If we touch the same cluster it counts as an overlap.  This
1436          * guarantees that allocating writes will be serialized and not race
1437          * with each other for the same cluster.  For example, in copy-on-read
1438          * it ensures that the CoR read and write operations are atomic and
1439          * guest writes cannot interleave between them. */
1440         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1441     }
1442 
1443     /* BDRV_REQ_SERIALISING is only for write operation */
1444     assert(!(flags & BDRV_REQ_SERIALISING));
1445 
1446     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1447         wait_serialising_requests(req);
1448     }
1449 
1450     if (flags & BDRV_REQ_COPY_ON_READ) {
1451         int64_t pnum;
1452 
1453         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1454         if (ret < 0) {
1455             goto out;
1456         }
1457 
1458         if (!ret || pnum != bytes) {
1459             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1460                                            qiov, qiov_offset, flags);
1461             goto out;
1462         } else if (flags & BDRV_REQ_PREFETCH) {
1463             goto out;
1464         }
1465     }
1466 
1467     /* Forward the request to the BlockDriver, possibly fragmenting it */
1468     total_bytes = bdrv_getlength(bs);
1469     if (total_bytes < 0) {
1470         ret = total_bytes;
1471         goto out;
1472     }
1473 
1474     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1475     if (bytes <= max_bytes && bytes <= max_transfer) {
1476         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1477         goto out;
1478     }
1479 
1480     while (bytes_remaining) {
1481         int num;
1482 
1483         if (max_bytes) {
1484             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1485             assert(num);
1486 
1487             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1488                                      num, qiov, bytes - bytes_remaining, 0);
1489             max_bytes -= num;
1490         } else {
1491             num = bytes_remaining;
1492             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1493                                     bytes_remaining);
1494         }
1495         if (ret < 0) {
1496             goto out;
1497         }
1498         bytes_remaining -= num;
1499     }
1500 
1501 out:
1502     return ret < 0 ? ret : 0;
1503 }
1504 
1505 /*
1506  * Request padding
1507  *
1508  *  |<---- align ----->|                     |<----- align ---->|
1509  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1510  *  |          |       |                     |     |            |
1511  * -*----------$-------*-------- ... --------*-----$------------*---
1512  *  |          |       |                     |     |            |
1513  *  |          offset  |                     |     end          |
1514  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1515  *  [buf   ... )                             [tail_buf          )
1516  *
1517  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1518  * is placed at the beginning of @buf and @tail at the @end.
1519  *
1520  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1521  * around tail, if tail exists.
1522  *
1523  * @merge_reads is true for small requests,
1524  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1525  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1526  */
1527 typedef struct BdrvRequestPadding {
1528     uint8_t *buf;
1529     size_t buf_len;
1530     uint8_t *tail_buf;
1531     size_t head;
1532     size_t tail;
1533     bool merge_reads;
1534     QEMUIOVector local_qiov;
1535 } BdrvRequestPadding;
1536 
1537 static bool bdrv_init_padding(BlockDriverState *bs,
1538                               int64_t offset, int64_t bytes,
1539                               BdrvRequestPadding *pad)
1540 {
1541     uint64_t align = bs->bl.request_alignment;
1542     size_t sum;
1543 
1544     memset(pad, 0, sizeof(*pad));
1545 
1546     pad->head = offset & (align - 1);
1547     pad->tail = ((offset + bytes) & (align - 1));
1548     if (pad->tail) {
1549         pad->tail = align - pad->tail;
1550     }
1551 
1552     if ((!pad->head && !pad->tail) || !bytes) {
1553         return false;
1554     }
1555 
1556     sum = pad->head + bytes + pad->tail;
1557     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1558     pad->buf = qemu_blockalign(bs, pad->buf_len);
1559     pad->merge_reads = sum == pad->buf_len;
1560     if (pad->tail) {
1561         pad->tail_buf = pad->buf + pad->buf_len - align;
1562     }
1563 
1564     return true;
1565 }
1566 
1567 static int bdrv_padding_rmw_read(BdrvChild *child,
1568                                  BdrvTrackedRequest *req,
1569                                  BdrvRequestPadding *pad,
1570                                  bool zero_middle)
1571 {
1572     QEMUIOVector local_qiov;
1573     BlockDriverState *bs = child->bs;
1574     uint64_t align = bs->bl.request_alignment;
1575     int ret;
1576 
1577     assert(req->serialising && pad->buf);
1578 
1579     if (pad->head || pad->merge_reads) {
1580         uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1581 
1582         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1583 
1584         if (pad->head) {
1585             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1586         }
1587         if (pad->merge_reads && pad->tail) {
1588             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1589         }
1590         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1591                                   align, &local_qiov, 0, 0);
1592         if (ret < 0) {
1593             return ret;
1594         }
1595         if (pad->head) {
1596             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1597         }
1598         if (pad->merge_reads && pad->tail) {
1599             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1600         }
1601 
1602         if (pad->merge_reads) {
1603             goto zero_mem;
1604         }
1605     }
1606 
1607     if (pad->tail) {
1608         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1609 
1610         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1611         ret = bdrv_aligned_preadv(
1612                 child, req,
1613                 req->overlap_offset + req->overlap_bytes - align,
1614                 align, align, &local_qiov, 0, 0);
1615         if (ret < 0) {
1616             return ret;
1617         }
1618         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1619     }
1620 
1621 zero_mem:
1622     if (zero_middle) {
1623         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1624     }
1625 
1626     return 0;
1627 }
1628 
1629 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1630 {
1631     if (pad->buf) {
1632         qemu_vfree(pad->buf);
1633         qemu_iovec_destroy(&pad->local_qiov);
1634     }
1635 }
1636 
1637 /*
1638  * bdrv_pad_request
1639  *
1640  * Exchange request parameters with padded request if needed. Don't include RMW
1641  * read of padding, bdrv_padding_rmw_read() should be called separately if
1642  * needed.
1643  *
1644  * All parameters except @bs are in-out: they represent original request at
1645  * function call and padded (if padding needed) at function finish.
1646  *
1647  * Function always succeeds.
1648  */
1649 static bool bdrv_pad_request(BlockDriverState *bs,
1650                              QEMUIOVector **qiov, size_t *qiov_offset,
1651                              int64_t *offset, unsigned int *bytes,
1652                              BdrvRequestPadding *pad)
1653 {
1654     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1655         return false;
1656     }
1657 
1658     qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1659                              *qiov, *qiov_offset, *bytes,
1660                              pad->buf + pad->buf_len - pad->tail, pad->tail);
1661     *bytes += pad->head + pad->tail;
1662     *offset -= pad->head;
1663     *qiov = &pad->local_qiov;
1664     *qiov_offset = 0;
1665 
1666     return true;
1667 }
1668 
1669 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1670     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1671     BdrvRequestFlags flags)
1672 {
1673     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1674 }
1675 
1676 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1677     int64_t offset, unsigned int bytes,
1678     QEMUIOVector *qiov, size_t qiov_offset,
1679     BdrvRequestFlags flags)
1680 {
1681     BlockDriverState *bs = child->bs;
1682     BdrvTrackedRequest req;
1683     BdrvRequestPadding pad;
1684     int ret;
1685 
1686     trace_bdrv_co_preadv(bs, offset, bytes, flags);
1687 
1688     ret = bdrv_check_byte_request(bs, offset, bytes);
1689     if (ret < 0) {
1690         return ret;
1691     }
1692 
1693     bdrv_inc_in_flight(bs);
1694 
1695     /* Don't do copy-on-read if we read data before write operation */
1696     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1697         flags |= BDRV_REQ_COPY_ON_READ;
1698     }
1699 
1700     bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1701 
1702     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1703     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1704                               bs->bl.request_alignment,
1705                               qiov, qiov_offset, flags);
1706     tracked_request_end(&req);
1707     bdrv_dec_in_flight(bs);
1708 
1709     bdrv_padding_destroy(&pad);
1710 
1711     return ret;
1712 }
1713 
1714 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1715     int64_t offset, int bytes, BdrvRequestFlags flags)
1716 {
1717     BlockDriver *drv = bs->drv;
1718     QEMUIOVector qiov;
1719     void *buf = NULL;
1720     int ret = 0;
1721     bool need_flush = false;
1722     int head = 0;
1723     int tail = 0;
1724 
1725     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1726     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1727                         bs->bl.request_alignment);
1728     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1729 
1730     if (!drv) {
1731         return -ENOMEDIUM;
1732     }
1733 
1734     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1735         return -ENOTSUP;
1736     }
1737 
1738     assert(alignment % bs->bl.request_alignment == 0);
1739     head = offset % alignment;
1740     tail = (offset + bytes) % alignment;
1741     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1742     assert(max_write_zeroes >= bs->bl.request_alignment);
1743 
1744     while (bytes > 0 && !ret) {
1745         int num = bytes;
1746 
1747         /* Align request.  Block drivers can expect the "bulk" of the request
1748          * to be aligned, and that unaligned requests do not cross cluster
1749          * boundaries.
1750          */
1751         if (head) {
1752             /* Make a small request up to the first aligned sector. For
1753              * convenience, limit this request to max_transfer even if
1754              * we don't need to fall back to writes.  */
1755             num = MIN(MIN(bytes, max_transfer), alignment - head);
1756             head = (head + num) % alignment;
1757             assert(num < max_write_zeroes);
1758         } else if (tail && num > alignment) {
1759             /* Shorten the request to the last aligned sector.  */
1760             num -= tail;
1761         }
1762 
1763         /* limit request size */
1764         if (num > max_write_zeroes) {
1765             num = max_write_zeroes;
1766         }
1767 
1768         ret = -ENOTSUP;
1769         /* First try the efficient write zeroes operation */
1770         if (drv->bdrv_co_pwrite_zeroes) {
1771             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1772                                              flags & bs->supported_zero_flags);
1773             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1774                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1775                 need_flush = true;
1776             }
1777         } else {
1778             assert(!bs->supported_zero_flags);
1779         }
1780 
1781         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1782             /* Fall back to bounce buffer if write zeroes is unsupported */
1783             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1784 
1785             if ((flags & BDRV_REQ_FUA) &&
1786                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1787                 /* No need for bdrv_driver_pwrite() to do a fallback
1788                  * flush on each chunk; use just one at the end */
1789                 write_flags &= ~BDRV_REQ_FUA;
1790                 need_flush = true;
1791             }
1792             num = MIN(num, max_transfer);
1793             if (buf == NULL) {
1794                 buf = qemu_try_blockalign0(bs, num);
1795                 if (buf == NULL) {
1796                     ret = -ENOMEM;
1797                     goto fail;
1798                 }
1799             }
1800             qemu_iovec_init_buf(&qiov, buf, num);
1801 
1802             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1803 
1804             /* Keep bounce buffer around if it is big enough for all
1805              * all future requests.
1806              */
1807             if (num < max_transfer) {
1808                 qemu_vfree(buf);
1809                 buf = NULL;
1810             }
1811         }
1812 
1813         offset += num;
1814         bytes -= num;
1815     }
1816 
1817 fail:
1818     if (ret == 0 && need_flush) {
1819         ret = bdrv_co_flush(bs);
1820     }
1821     qemu_vfree(buf);
1822     return ret;
1823 }
1824 
1825 static inline int coroutine_fn
1826 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1827                           BdrvTrackedRequest *req, int flags)
1828 {
1829     BlockDriverState *bs = child->bs;
1830     bool waited;
1831     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1832 
1833     if (bs->read_only) {
1834         return -EPERM;
1835     }
1836 
1837     /* BDRV_REQ_NO_SERIALISING is only for read operation */
1838     assert(!(flags & BDRV_REQ_NO_SERIALISING));
1839     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1840     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1841     assert(!(flags & ~BDRV_REQ_MASK));
1842 
1843     if (flags & BDRV_REQ_SERIALISING) {
1844         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1845     }
1846 
1847     waited = wait_serialising_requests(req);
1848 
1849     assert(!waited || !req->serialising ||
1850            is_request_serialising_and_aligned(req));
1851     assert(req->overlap_offset <= offset);
1852     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1853     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1854 
1855     switch (req->type) {
1856     case BDRV_TRACKED_WRITE:
1857     case BDRV_TRACKED_DISCARD:
1858         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1859             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1860         } else {
1861             assert(child->perm & BLK_PERM_WRITE);
1862         }
1863         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1864                                                 req);
1865     case BDRV_TRACKED_TRUNCATE:
1866         assert(child->perm & BLK_PERM_RESIZE);
1867         return 0;
1868     default:
1869         abort();
1870     }
1871 }
1872 
1873 static inline void coroutine_fn
1874 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1875                          BdrvTrackedRequest *req, int ret)
1876 {
1877     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1878     BlockDriverState *bs = child->bs;
1879 
1880     atomic_inc(&bs->write_gen);
1881 
1882     /*
1883      * Discard cannot extend the image, but in error handling cases, such as
1884      * when reverting a qcow2 cluster allocation, the discarded range can pass
1885      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1886      * here. Instead, just skip it, since semantically a discard request
1887      * beyond EOF cannot expand the image anyway.
1888      */
1889     if (ret == 0 &&
1890         (req->type == BDRV_TRACKED_TRUNCATE ||
1891          end_sector > bs->total_sectors) &&
1892         req->type != BDRV_TRACKED_DISCARD) {
1893         bs->total_sectors = end_sector;
1894         bdrv_parent_cb_resize(bs);
1895         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1896     }
1897     if (req->bytes) {
1898         switch (req->type) {
1899         case BDRV_TRACKED_WRITE:
1900             stat64_max(&bs->wr_highest_offset, offset + bytes);
1901             /* fall through, to set dirty bits */
1902         case BDRV_TRACKED_DISCARD:
1903             bdrv_set_dirty(bs, offset, bytes);
1904             break;
1905         default:
1906             break;
1907         }
1908     }
1909 }
1910 
1911 /*
1912  * Forwards an already correctly aligned write request to the BlockDriver,
1913  * after possibly fragmenting it.
1914  */
1915 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1916     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1917     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1918 {
1919     BlockDriverState *bs = child->bs;
1920     BlockDriver *drv = bs->drv;
1921     int ret;
1922 
1923     uint64_t bytes_remaining = bytes;
1924     int max_transfer;
1925 
1926     if (!drv) {
1927         return -ENOMEDIUM;
1928     }
1929 
1930     if (bdrv_has_readonly_bitmaps(bs)) {
1931         return -EPERM;
1932     }
1933 
1934     assert(is_power_of_2(align));
1935     assert((offset & (align - 1)) == 0);
1936     assert((bytes & (align - 1)) == 0);
1937     assert(!qiov || qiov_offset + bytes <= qiov->size);
1938     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1939                                    align);
1940 
1941     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1942 
1943     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1944         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1945         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1946         flags |= BDRV_REQ_ZERO_WRITE;
1947         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1948             flags |= BDRV_REQ_MAY_UNMAP;
1949         }
1950     }
1951 
1952     if (ret < 0) {
1953         /* Do nothing, write notifier decided to fail this request */
1954     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1955         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1956         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1957     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1958         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1959                                              qiov, qiov_offset);
1960     } else if (bytes <= max_transfer) {
1961         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1962         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1963     } else {
1964         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1965         while (bytes_remaining) {
1966             int num = MIN(bytes_remaining, max_transfer);
1967             int local_flags = flags;
1968 
1969             assert(num);
1970             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1971                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1972                 /* If FUA is going to be emulated by flush, we only
1973                  * need to flush on the last iteration */
1974                 local_flags &= ~BDRV_REQ_FUA;
1975             }
1976 
1977             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1978                                       num, qiov, bytes - bytes_remaining,
1979                                       local_flags);
1980             if (ret < 0) {
1981                 break;
1982             }
1983             bytes_remaining -= num;
1984         }
1985     }
1986     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1987 
1988     if (ret >= 0) {
1989         ret = 0;
1990     }
1991     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1992 
1993     return ret;
1994 }
1995 
1996 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1997                                                 int64_t offset,
1998                                                 unsigned int bytes,
1999                                                 BdrvRequestFlags flags,
2000                                                 BdrvTrackedRequest *req)
2001 {
2002     BlockDriverState *bs = child->bs;
2003     QEMUIOVector local_qiov;
2004     uint64_t align = bs->bl.request_alignment;
2005     int ret = 0;
2006     bool padding;
2007     BdrvRequestPadding pad;
2008 
2009     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2010     if (padding) {
2011         mark_request_serialising(req, align);
2012         wait_serialising_requests(req);
2013 
2014         bdrv_padding_rmw_read(child, req, &pad, true);
2015 
2016         if (pad.head || pad.merge_reads) {
2017             int64_t aligned_offset = offset & ~(align - 1);
2018             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2019 
2020             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2021             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2022                                        align, &local_qiov, 0,
2023                                        flags & ~BDRV_REQ_ZERO_WRITE);
2024             if (ret < 0 || pad.merge_reads) {
2025                 /* Error or all work is done */
2026                 goto out;
2027             }
2028             offset += write_bytes - pad.head;
2029             bytes -= write_bytes - pad.head;
2030         }
2031     }
2032 
2033     assert(!bytes || (offset & (align - 1)) == 0);
2034     if (bytes >= align) {
2035         /* Write the aligned part in the middle. */
2036         uint64_t aligned_bytes = bytes & ~(align - 1);
2037         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2038                                    NULL, 0, flags);
2039         if (ret < 0) {
2040             goto out;
2041         }
2042         bytes -= aligned_bytes;
2043         offset += aligned_bytes;
2044     }
2045 
2046     assert(!bytes || (offset & (align - 1)) == 0);
2047     if (bytes) {
2048         assert(align == pad.tail + bytes);
2049 
2050         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2051         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2052                                    &local_qiov, 0,
2053                                    flags & ~BDRV_REQ_ZERO_WRITE);
2054     }
2055 
2056 out:
2057     bdrv_padding_destroy(&pad);
2058 
2059     return ret;
2060 }
2061 
2062 /*
2063  * Handle a write request in coroutine context
2064  */
2065 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2066     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2067     BdrvRequestFlags flags)
2068 {
2069     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2070 }
2071 
2072 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2073     int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2074     BdrvRequestFlags flags)
2075 {
2076     BlockDriverState *bs = child->bs;
2077     BdrvTrackedRequest req;
2078     uint64_t align = bs->bl.request_alignment;
2079     BdrvRequestPadding pad;
2080     int ret;
2081 
2082     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2083 
2084     if (!bs->drv) {
2085         return -ENOMEDIUM;
2086     }
2087 
2088     ret = bdrv_check_byte_request(bs, offset, bytes);
2089     if (ret < 0) {
2090         return ret;
2091     }
2092 
2093     /* If the request is misaligned then we can't make it efficient */
2094     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2095         !QEMU_IS_ALIGNED(offset | bytes, align))
2096     {
2097         return -ENOTSUP;
2098     }
2099 
2100     bdrv_inc_in_flight(bs);
2101     /*
2102      * Align write if necessary by performing a read-modify-write cycle.
2103      * Pad qiov with the read parts and be sure to have a tracked request not
2104      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2105      */
2106     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2107 
2108     if (flags & BDRV_REQ_ZERO_WRITE) {
2109         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2110         goto out;
2111     }
2112 
2113     if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2114         mark_request_serialising(&req, align);
2115         wait_serialising_requests(&req);
2116         bdrv_padding_rmw_read(child, &req, &pad, false);
2117     }
2118 
2119     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2120                                qiov, qiov_offset, flags);
2121 
2122     bdrv_padding_destroy(&pad);
2123 
2124 out:
2125     tracked_request_end(&req);
2126     bdrv_dec_in_flight(bs);
2127 
2128     return ret;
2129 }
2130 
2131 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2132                                        int bytes, BdrvRequestFlags flags)
2133 {
2134     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2135 
2136     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2137         flags &= ~BDRV_REQ_MAY_UNMAP;
2138     }
2139 
2140     return bdrv_co_pwritev(child, offset, bytes, NULL,
2141                            BDRV_REQ_ZERO_WRITE | flags);
2142 }
2143 
2144 /*
2145  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2146  */
2147 int bdrv_flush_all(void)
2148 {
2149     BdrvNextIterator it;
2150     BlockDriverState *bs = NULL;
2151     int result = 0;
2152 
2153     /*
2154      * bdrv queue is managed by record/replay,
2155      * creating new flush request for stopping
2156      * the VM may break the determinism
2157      */
2158     if (replay_events_enabled()) {
2159         return result;
2160     }
2161 
2162     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2163         AioContext *aio_context = bdrv_get_aio_context(bs);
2164         int ret;
2165 
2166         aio_context_acquire(aio_context);
2167         ret = bdrv_flush(bs);
2168         if (ret < 0 && !result) {
2169             result = ret;
2170         }
2171         aio_context_release(aio_context);
2172     }
2173 
2174     return result;
2175 }
2176 
2177 
2178 typedef struct BdrvCoBlockStatusData {
2179     BlockDriverState *bs;
2180     BlockDriverState *base;
2181     bool want_zero;
2182     int64_t offset;
2183     int64_t bytes;
2184     int64_t *pnum;
2185     int64_t *map;
2186     BlockDriverState **file;
2187     int ret;
2188     bool done;
2189 } BdrvCoBlockStatusData;
2190 
2191 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2192                                                 bool want_zero,
2193                                                 int64_t offset,
2194                                                 int64_t bytes,
2195                                                 int64_t *pnum,
2196                                                 int64_t *map,
2197                                                 BlockDriverState **file)
2198 {
2199     assert(bs->file && bs->file->bs);
2200     *pnum = bytes;
2201     *map = offset;
2202     *file = bs->file->bs;
2203     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2204 }
2205 
2206 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2207                                                    bool want_zero,
2208                                                    int64_t offset,
2209                                                    int64_t bytes,
2210                                                    int64_t *pnum,
2211                                                    int64_t *map,
2212                                                    BlockDriverState **file)
2213 {
2214     assert(bs->backing && bs->backing->bs);
2215     *pnum = bytes;
2216     *map = offset;
2217     *file = bs->backing->bs;
2218     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2219 }
2220 
2221 /*
2222  * Returns the allocation status of the specified sectors.
2223  * Drivers not implementing the functionality are assumed to not support
2224  * backing files, hence all their sectors are reported as allocated.
2225  *
2226  * If 'want_zero' is true, the caller is querying for mapping
2227  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2228  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2229  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2230  *
2231  * If 'offset' is beyond the end of the disk image the return value is
2232  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2233  *
2234  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2235  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2236  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2237  *
2238  * 'pnum' is set to the number of bytes (including and immediately
2239  * following the specified offset) that are easily known to be in the
2240  * same allocated/unallocated state.  Note that a second call starting
2241  * at the original offset plus returned pnum may have the same status.
2242  * The returned value is non-zero on success except at end-of-file.
2243  *
2244  * Returns negative errno on failure.  Otherwise, if the
2245  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2246  * set to the host mapping and BDS corresponding to the guest offset.
2247  */
2248 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2249                                              bool want_zero,
2250                                              int64_t offset, int64_t bytes,
2251                                              int64_t *pnum, int64_t *map,
2252                                              BlockDriverState **file)
2253 {
2254     int64_t total_size;
2255     int64_t n; /* bytes */
2256     int ret;
2257     int64_t local_map = 0;
2258     BlockDriverState *local_file = NULL;
2259     int64_t aligned_offset, aligned_bytes;
2260     uint32_t align;
2261 
2262     assert(pnum);
2263     *pnum = 0;
2264     total_size = bdrv_getlength(bs);
2265     if (total_size < 0) {
2266         ret = total_size;
2267         goto early_out;
2268     }
2269 
2270     if (offset >= total_size) {
2271         ret = BDRV_BLOCK_EOF;
2272         goto early_out;
2273     }
2274     if (!bytes) {
2275         ret = 0;
2276         goto early_out;
2277     }
2278 
2279     n = total_size - offset;
2280     if (n < bytes) {
2281         bytes = n;
2282     }
2283 
2284     /* Must be non-NULL or bdrv_getlength() would have failed */
2285     assert(bs->drv);
2286     if (!bs->drv->bdrv_co_block_status) {
2287         *pnum = bytes;
2288         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2289         if (offset + bytes == total_size) {
2290             ret |= BDRV_BLOCK_EOF;
2291         }
2292         if (bs->drv->protocol_name) {
2293             ret |= BDRV_BLOCK_OFFSET_VALID;
2294             local_map = offset;
2295             local_file = bs;
2296         }
2297         goto early_out;
2298     }
2299 
2300     bdrv_inc_in_flight(bs);
2301 
2302     /* Round out to request_alignment boundaries */
2303     align = bs->bl.request_alignment;
2304     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2305     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2306 
2307     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2308                                         aligned_bytes, pnum, &local_map,
2309                                         &local_file);
2310     if (ret < 0) {
2311         *pnum = 0;
2312         goto out;
2313     }
2314 
2315     /*
2316      * The driver's result must be a non-zero multiple of request_alignment.
2317      * Clamp pnum and adjust map to original request.
2318      */
2319     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2320            align > offset - aligned_offset);
2321     if (ret & BDRV_BLOCK_RECURSE) {
2322         assert(ret & BDRV_BLOCK_DATA);
2323         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2324         assert(!(ret & BDRV_BLOCK_ZERO));
2325     }
2326 
2327     *pnum -= offset - aligned_offset;
2328     if (*pnum > bytes) {
2329         *pnum = bytes;
2330     }
2331     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2332         local_map += offset - aligned_offset;
2333     }
2334 
2335     if (ret & BDRV_BLOCK_RAW) {
2336         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2337         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2338                                    *pnum, pnum, &local_map, &local_file);
2339         goto out;
2340     }
2341 
2342     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2343         ret |= BDRV_BLOCK_ALLOCATED;
2344     } else if (want_zero) {
2345         if (bdrv_unallocated_blocks_are_zero(bs)) {
2346             ret |= BDRV_BLOCK_ZERO;
2347         } else if (bs->backing) {
2348             BlockDriverState *bs2 = bs->backing->bs;
2349             int64_t size2 = bdrv_getlength(bs2);
2350 
2351             if (size2 >= 0 && offset >= size2) {
2352                 ret |= BDRV_BLOCK_ZERO;
2353             }
2354         }
2355     }
2356 
2357     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2358         local_file && local_file != bs &&
2359         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2360         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2361         int64_t file_pnum;
2362         int ret2;
2363 
2364         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2365                                     *pnum, &file_pnum, NULL, NULL);
2366         if (ret2 >= 0) {
2367             /* Ignore errors.  This is just providing extra information, it
2368              * is useful but not necessary.
2369              */
2370             if (ret2 & BDRV_BLOCK_EOF &&
2371                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2372                 /*
2373                  * It is valid for the format block driver to read
2374                  * beyond the end of the underlying file's current
2375                  * size; such areas read as zero.
2376                  */
2377                 ret |= BDRV_BLOCK_ZERO;
2378             } else {
2379                 /* Limit request to the range reported by the protocol driver */
2380                 *pnum = file_pnum;
2381                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2382             }
2383         }
2384     }
2385 
2386 out:
2387     bdrv_dec_in_flight(bs);
2388     if (ret >= 0 && offset + *pnum == total_size) {
2389         ret |= BDRV_BLOCK_EOF;
2390     }
2391 early_out:
2392     if (file) {
2393         *file = local_file;
2394     }
2395     if (map) {
2396         *map = local_map;
2397     }
2398     return ret;
2399 }
2400 
2401 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2402                                                    BlockDriverState *base,
2403                                                    bool want_zero,
2404                                                    int64_t offset,
2405                                                    int64_t bytes,
2406                                                    int64_t *pnum,
2407                                                    int64_t *map,
2408                                                    BlockDriverState **file)
2409 {
2410     BlockDriverState *p;
2411     int ret = 0;
2412     bool first = true;
2413 
2414     assert(bs != base);
2415     for (p = bs; p != base; p = backing_bs(p)) {
2416         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2417                                    file);
2418         if (ret < 0) {
2419             break;
2420         }
2421         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2422             /*
2423              * Reading beyond the end of the file continues to read
2424              * zeroes, but we can only widen the result to the
2425              * unallocated length we learned from an earlier
2426              * iteration.
2427              */
2428             *pnum = bytes;
2429         }
2430         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2431             break;
2432         }
2433         /* [offset, pnum] unallocated on this layer, which could be only
2434          * the first part of [offset, bytes].  */
2435         bytes = MIN(bytes, *pnum);
2436         first = false;
2437     }
2438     return ret;
2439 }
2440 
2441 /* Coroutine wrapper for bdrv_block_status_above() */
2442 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2443 {
2444     BdrvCoBlockStatusData *data = opaque;
2445 
2446     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2447                                            data->want_zero,
2448                                            data->offset, data->bytes,
2449                                            data->pnum, data->map, data->file);
2450     data->done = true;
2451     aio_wait_kick();
2452 }
2453 
2454 /*
2455  * Synchronous wrapper around bdrv_co_block_status_above().
2456  *
2457  * See bdrv_co_block_status_above() for details.
2458  */
2459 static int bdrv_common_block_status_above(BlockDriverState *bs,
2460                                           BlockDriverState *base,
2461                                           bool want_zero, int64_t offset,
2462                                           int64_t bytes, int64_t *pnum,
2463                                           int64_t *map,
2464                                           BlockDriverState **file)
2465 {
2466     Coroutine *co;
2467     BdrvCoBlockStatusData data = {
2468         .bs = bs,
2469         .base = base,
2470         .want_zero = want_zero,
2471         .offset = offset,
2472         .bytes = bytes,
2473         .pnum = pnum,
2474         .map = map,
2475         .file = file,
2476         .done = false,
2477     };
2478 
2479     if (qemu_in_coroutine()) {
2480         /* Fast-path if already in coroutine context */
2481         bdrv_block_status_above_co_entry(&data);
2482     } else {
2483         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2484         bdrv_coroutine_enter(bs, co);
2485         BDRV_POLL_WHILE(bs, !data.done);
2486     }
2487     return data.ret;
2488 }
2489 
2490 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2491                             int64_t offset, int64_t bytes, int64_t *pnum,
2492                             int64_t *map, BlockDriverState **file)
2493 {
2494     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2495                                           pnum, map, file);
2496 }
2497 
2498 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2499                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2500 {
2501     return bdrv_block_status_above(bs, backing_bs(bs),
2502                                    offset, bytes, pnum, map, file);
2503 }
2504 
2505 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2506                                    int64_t bytes, int64_t *pnum)
2507 {
2508     int ret;
2509     int64_t dummy;
2510 
2511     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2512                                          bytes, pnum ? pnum : &dummy, NULL,
2513                                          NULL);
2514     if (ret < 0) {
2515         return ret;
2516     }
2517     return !!(ret & BDRV_BLOCK_ALLOCATED);
2518 }
2519 
2520 /*
2521  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2522  *
2523  * Return 1 if (a prefix of) the given range is allocated in any image
2524  * between BASE and TOP (BASE is only included if include_base is set).
2525  * BASE can be NULL to check if the given offset is allocated in any
2526  * image of the chain.  Return 0 otherwise, or negative errno on
2527  * failure.
2528  *
2529  * 'pnum' is set to the number of bytes (including and immediately
2530  * following the specified offset) that are known to be in the same
2531  * allocated/unallocated state.  Note that a subsequent call starting
2532  * at 'offset + *pnum' may return the same allocation status (in other
2533  * words, the result is not necessarily the maximum possible range);
2534  * but 'pnum' will only be 0 when end of file is reached.
2535  *
2536  */
2537 int bdrv_is_allocated_above(BlockDriverState *top,
2538                             BlockDriverState *base,
2539                             bool include_base, int64_t offset,
2540                             int64_t bytes, int64_t *pnum)
2541 {
2542     BlockDriverState *intermediate;
2543     int ret;
2544     int64_t n = bytes;
2545 
2546     assert(base || !include_base);
2547 
2548     intermediate = top;
2549     while (include_base || intermediate != base) {
2550         int64_t pnum_inter;
2551         int64_t size_inter;
2552 
2553         assert(intermediate);
2554         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2555         if (ret < 0) {
2556             return ret;
2557         }
2558         if (ret) {
2559             *pnum = pnum_inter;
2560             return 1;
2561         }
2562 
2563         size_inter = bdrv_getlength(intermediate);
2564         if (size_inter < 0) {
2565             return size_inter;
2566         }
2567         if (n > pnum_inter &&
2568             (intermediate == top || offset + pnum_inter < size_inter)) {
2569             n = pnum_inter;
2570         }
2571 
2572         if (intermediate == base) {
2573             break;
2574         }
2575 
2576         intermediate = backing_bs(intermediate);
2577     }
2578 
2579     *pnum = n;
2580     return 0;
2581 }
2582 
2583 typedef struct BdrvVmstateCo {
2584     BlockDriverState    *bs;
2585     QEMUIOVector        *qiov;
2586     int64_t             pos;
2587     bool                is_read;
2588     int                 ret;
2589 } BdrvVmstateCo;
2590 
2591 static int coroutine_fn
2592 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2593                    bool is_read)
2594 {
2595     BlockDriver *drv = bs->drv;
2596     int ret = -ENOTSUP;
2597 
2598     bdrv_inc_in_flight(bs);
2599 
2600     if (!drv) {
2601         ret = -ENOMEDIUM;
2602     } else if (drv->bdrv_load_vmstate) {
2603         if (is_read) {
2604             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2605         } else {
2606             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2607         }
2608     } else if (bs->file) {
2609         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2610     }
2611 
2612     bdrv_dec_in_flight(bs);
2613     return ret;
2614 }
2615 
2616 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2617 {
2618     BdrvVmstateCo *co = opaque;
2619     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2620     aio_wait_kick();
2621 }
2622 
2623 static inline int
2624 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2625                 bool is_read)
2626 {
2627     if (qemu_in_coroutine()) {
2628         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2629     } else {
2630         BdrvVmstateCo data = {
2631             .bs         = bs,
2632             .qiov       = qiov,
2633             .pos        = pos,
2634             .is_read    = is_read,
2635             .ret        = -EINPROGRESS,
2636         };
2637         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2638 
2639         bdrv_coroutine_enter(bs, co);
2640         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2641         return data.ret;
2642     }
2643 }
2644 
2645 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2646                       int64_t pos, int size)
2647 {
2648     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2649     int ret;
2650 
2651     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2652     if (ret < 0) {
2653         return ret;
2654     }
2655 
2656     return size;
2657 }
2658 
2659 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2660 {
2661     return bdrv_rw_vmstate(bs, qiov, pos, false);
2662 }
2663 
2664 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2665                       int64_t pos, int size)
2666 {
2667     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2668     int ret;
2669 
2670     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2671     if (ret < 0) {
2672         return ret;
2673     }
2674 
2675     return size;
2676 }
2677 
2678 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2679 {
2680     return bdrv_rw_vmstate(bs, qiov, pos, true);
2681 }
2682 
2683 /**************************************************************/
2684 /* async I/Os */
2685 
2686 void bdrv_aio_cancel(BlockAIOCB *acb)
2687 {
2688     qemu_aio_ref(acb);
2689     bdrv_aio_cancel_async(acb);
2690     while (acb->refcnt > 1) {
2691         if (acb->aiocb_info->get_aio_context) {
2692             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2693         } else if (acb->bs) {
2694             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2695              * assert that we're not using an I/O thread.  Thread-safe
2696              * code should use bdrv_aio_cancel_async exclusively.
2697              */
2698             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2699             aio_poll(bdrv_get_aio_context(acb->bs), true);
2700         } else {
2701             abort();
2702         }
2703     }
2704     qemu_aio_unref(acb);
2705 }
2706 
2707 /* Async version of aio cancel. The caller is not blocked if the acb implements
2708  * cancel_async, otherwise we do nothing and let the request normally complete.
2709  * In either case the completion callback must be called. */
2710 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2711 {
2712     if (acb->aiocb_info->cancel_async) {
2713         acb->aiocb_info->cancel_async(acb);
2714     }
2715 }
2716 
2717 /**************************************************************/
2718 /* Coroutine block device emulation */
2719 
2720 typedef struct FlushCo {
2721     BlockDriverState *bs;
2722     int ret;
2723 } FlushCo;
2724 
2725 
2726 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2727 {
2728     FlushCo *rwco = opaque;
2729 
2730     rwco->ret = bdrv_co_flush(rwco->bs);
2731     aio_wait_kick();
2732 }
2733 
2734 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2735 {
2736     int current_gen;
2737     int ret = 0;
2738 
2739     bdrv_inc_in_flight(bs);
2740 
2741     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2742         bdrv_is_sg(bs)) {
2743         goto early_exit;
2744     }
2745 
2746     qemu_co_mutex_lock(&bs->reqs_lock);
2747     current_gen = atomic_read(&bs->write_gen);
2748 
2749     /* Wait until any previous flushes are completed */
2750     while (bs->active_flush_req) {
2751         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2752     }
2753 
2754     /* Flushes reach this point in nondecreasing current_gen order.  */
2755     bs->active_flush_req = true;
2756     qemu_co_mutex_unlock(&bs->reqs_lock);
2757 
2758     /* Write back all layers by calling one driver function */
2759     if (bs->drv->bdrv_co_flush) {
2760         ret = bs->drv->bdrv_co_flush(bs);
2761         goto out;
2762     }
2763 
2764     /* Write back cached data to the OS even with cache=unsafe */
2765     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2766     if (bs->drv->bdrv_co_flush_to_os) {
2767         ret = bs->drv->bdrv_co_flush_to_os(bs);
2768         if (ret < 0) {
2769             goto out;
2770         }
2771     }
2772 
2773     /* But don't actually force it to the disk with cache=unsafe */
2774     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2775         goto flush_parent;
2776     }
2777 
2778     /* Check if we really need to flush anything */
2779     if (bs->flushed_gen == current_gen) {
2780         goto flush_parent;
2781     }
2782 
2783     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2784     if (!bs->drv) {
2785         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2786          * (even in case of apparent success) */
2787         ret = -ENOMEDIUM;
2788         goto out;
2789     }
2790     if (bs->drv->bdrv_co_flush_to_disk) {
2791         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2792     } else if (bs->drv->bdrv_aio_flush) {
2793         BlockAIOCB *acb;
2794         CoroutineIOCompletion co = {
2795             .coroutine = qemu_coroutine_self(),
2796         };
2797 
2798         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2799         if (acb == NULL) {
2800             ret = -EIO;
2801         } else {
2802             qemu_coroutine_yield();
2803             ret = co.ret;
2804         }
2805     } else {
2806         /*
2807          * Some block drivers always operate in either writethrough or unsafe
2808          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2809          * know how the server works (because the behaviour is hardcoded or
2810          * depends on server-side configuration), so we can't ensure that
2811          * everything is safe on disk. Returning an error doesn't work because
2812          * that would break guests even if the server operates in writethrough
2813          * mode.
2814          *
2815          * Let's hope the user knows what he's doing.
2816          */
2817         ret = 0;
2818     }
2819 
2820     if (ret < 0) {
2821         goto out;
2822     }
2823 
2824     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2825      * in the case of cache=unsafe, so there are no useless flushes.
2826      */
2827 flush_parent:
2828     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2829 out:
2830     /* Notify any pending flushes that we have completed */
2831     if (ret == 0) {
2832         bs->flushed_gen = current_gen;
2833     }
2834 
2835     qemu_co_mutex_lock(&bs->reqs_lock);
2836     bs->active_flush_req = false;
2837     /* Return value is ignored - it's ok if wait queue is empty */
2838     qemu_co_queue_next(&bs->flush_queue);
2839     qemu_co_mutex_unlock(&bs->reqs_lock);
2840 
2841 early_exit:
2842     bdrv_dec_in_flight(bs);
2843     return ret;
2844 }
2845 
2846 int bdrv_flush(BlockDriverState *bs)
2847 {
2848     Coroutine *co;
2849     FlushCo flush_co = {
2850         .bs = bs,
2851         .ret = NOT_DONE,
2852     };
2853 
2854     if (qemu_in_coroutine()) {
2855         /* Fast-path if already in coroutine context */
2856         bdrv_flush_co_entry(&flush_co);
2857     } else {
2858         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2859         bdrv_coroutine_enter(bs, co);
2860         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2861     }
2862 
2863     return flush_co.ret;
2864 }
2865 
2866 typedef struct DiscardCo {
2867     BdrvChild *child;
2868     int64_t offset;
2869     int64_t bytes;
2870     int ret;
2871 } DiscardCo;
2872 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2873 {
2874     DiscardCo *rwco = opaque;
2875 
2876     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2877     aio_wait_kick();
2878 }
2879 
2880 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2881                                   int64_t bytes)
2882 {
2883     BdrvTrackedRequest req;
2884     int max_pdiscard, ret;
2885     int head, tail, align;
2886     BlockDriverState *bs = child->bs;
2887 
2888     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2889         return -ENOMEDIUM;
2890     }
2891 
2892     if (bdrv_has_readonly_bitmaps(bs)) {
2893         return -EPERM;
2894     }
2895 
2896     if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2897         return -EIO;
2898     }
2899 
2900     /* Do nothing if disabled.  */
2901     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2902         return 0;
2903     }
2904 
2905     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2906         return 0;
2907     }
2908 
2909     /* Discard is advisory, but some devices track and coalesce
2910      * unaligned requests, so we must pass everything down rather than
2911      * round here.  Still, most devices will just silently ignore
2912      * unaligned requests (by returning -ENOTSUP), so we must fragment
2913      * the request accordingly.  */
2914     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2915     assert(align % bs->bl.request_alignment == 0);
2916     head = offset % align;
2917     tail = (offset + bytes) % align;
2918 
2919     bdrv_inc_in_flight(bs);
2920     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2921 
2922     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2923     if (ret < 0) {
2924         goto out;
2925     }
2926 
2927     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2928                                    align);
2929     assert(max_pdiscard >= bs->bl.request_alignment);
2930 
2931     while (bytes > 0) {
2932         int64_t num = bytes;
2933 
2934         if (head) {
2935             /* Make small requests to get to alignment boundaries. */
2936             num = MIN(bytes, align - head);
2937             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2938                 num %= bs->bl.request_alignment;
2939             }
2940             head = (head + num) % align;
2941             assert(num < max_pdiscard);
2942         } else if (tail) {
2943             if (num > align) {
2944                 /* Shorten the request to the last aligned cluster.  */
2945                 num -= tail;
2946             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2947                        tail > bs->bl.request_alignment) {
2948                 tail %= bs->bl.request_alignment;
2949                 num -= tail;
2950             }
2951         }
2952         /* limit request size */
2953         if (num > max_pdiscard) {
2954             num = max_pdiscard;
2955         }
2956 
2957         if (!bs->drv) {
2958             ret = -ENOMEDIUM;
2959             goto out;
2960         }
2961         if (bs->drv->bdrv_co_pdiscard) {
2962             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2963         } else {
2964             BlockAIOCB *acb;
2965             CoroutineIOCompletion co = {
2966                 .coroutine = qemu_coroutine_self(),
2967             };
2968 
2969             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2970                                              bdrv_co_io_em_complete, &co);
2971             if (acb == NULL) {
2972                 ret = -EIO;
2973                 goto out;
2974             } else {
2975                 qemu_coroutine_yield();
2976                 ret = co.ret;
2977             }
2978         }
2979         if (ret && ret != -ENOTSUP) {
2980             goto out;
2981         }
2982 
2983         offset += num;
2984         bytes -= num;
2985     }
2986     ret = 0;
2987 out:
2988     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2989     tracked_request_end(&req);
2990     bdrv_dec_in_flight(bs);
2991     return ret;
2992 }
2993 
2994 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
2995 {
2996     Coroutine *co;
2997     DiscardCo rwco = {
2998         .child = child,
2999         .offset = offset,
3000         .bytes = bytes,
3001         .ret = NOT_DONE,
3002     };
3003 
3004     if (qemu_in_coroutine()) {
3005         /* Fast-path if already in coroutine context */
3006         bdrv_pdiscard_co_entry(&rwco);
3007     } else {
3008         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
3009         bdrv_coroutine_enter(child->bs, co);
3010         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
3011     }
3012 
3013     return rwco.ret;
3014 }
3015 
3016 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3017 {
3018     BlockDriver *drv = bs->drv;
3019     CoroutineIOCompletion co = {
3020         .coroutine = qemu_coroutine_self(),
3021     };
3022     BlockAIOCB *acb;
3023 
3024     bdrv_inc_in_flight(bs);
3025     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3026         co.ret = -ENOTSUP;
3027         goto out;
3028     }
3029 
3030     if (drv->bdrv_co_ioctl) {
3031         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3032     } else {
3033         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3034         if (!acb) {
3035             co.ret = -ENOTSUP;
3036             goto out;
3037         }
3038         qemu_coroutine_yield();
3039     }
3040 out:
3041     bdrv_dec_in_flight(bs);
3042     return co.ret;
3043 }
3044 
3045 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3046 {
3047     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3048 }
3049 
3050 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3051 {
3052     return memset(qemu_blockalign(bs, size), 0, size);
3053 }
3054 
3055 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3056 {
3057     size_t align = bdrv_opt_mem_align(bs);
3058 
3059     /* Ensure that NULL is never returned on success */
3060     assert(align > 0);
3061     if (size == 0) {
3062         size = align;
3063     }
3064 
3065     return qemu_try_memalign(align, size);
3066 }
3067 
3068 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3069 {
3070     void *mem = qemu_try_blockalign(bs, size);
3071 
3072     if (mem) {
3073         memset(mem, 0, size);
3074     }
3075 
3076     return mem;
3077 }
3078 
3079 /*
3080  * Check if all memory in this vector is sector aligned.
3081  */
3082 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3083 {
3084     int i;
3085     size_t alignment = bdrv_min_mem_align(bs);
3086 
3087     for (i = 0; i < qiov->niov; i++) {
3088         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3089             return false;
3090         }
3091         if (qiov->iov[i].iov_len % alignment) {
3092             return false;
3093         }
3094     }
3095 
3096     return true;
3097 }
3098 
3099 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3100                                     NotifierWithReturn *notifier)
3101 {
3102     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3103 }
3104 
3105 void bdrv_io_plug(BlockDriverState *bs)
3106 {
3107     BdrvChild *child;
3108 
3109     QLIST_FOREACH(child, &bs->children, next) {
3110         bdrv_io_plug(child->bs);
3111     }
3112 
3113     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3114         BlockDriver *drv = bs->drv;
3115         if (drv && drv->bdrv_io_plug) {
3116             drv->bdrv_io_plug(bs);
3117         }
3118     }
3119 }
3120 
3121 void bdrv_io_unplug(BlockDriverState *bs)
3122 {
3123     BdrvChild *child;
3124 
3125     assert(bs->io_plugged);
3126     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3127         BlockDriver *drv = bs->drv;
3128         if (drv && drv->bdrv_io_unplug) {
3129             drv->bdrv_io_unplug(bs);
3130         }
3131     }
3132 
3133     QLIST_FOREACH(child, &bs->children, next) {
3134         bdrv_io_unplug(child->bs);
3135     }
3136 }
3137 
3138 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3139 {
3140     BdrvChild *child;
3141 
3142     if (bs->drv && bs->drv->bdrv_register_buf) {
3143         bs->drv->bdrv_register_buf(bs, host, size);
3144     }
3145     QLIST_FOREACH(child, &bs->children, next) {
3146         bdrv_register_buf(child->bs, host, size);
3147     }
3148 }
3149 
3150 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3151 {
3152     BdrvChild *child;
3153 
3154     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3155         bs->drv->bdrv_unregister_buf(bs, host);
3156     }
3157     QLIST_FOREACH(child, &bs->children, next) {
3158         bdrv_unregister_buf(child->bs, host);
3159     }
3160 }
3161 
3162 static int coroutine_fn bdrv_co_copy_range_internal(
3163         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3164         uint64_t dst_offset, uint64_t bytes,
3165         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3166         bool recurse_src)
3167 {
3168     BdrvTrackedRequest req;
3169     int ret;
3170 
3171     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3172     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3173     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3174 
3175     if (!dst || !dst->bs) {
3176         return -ENOMEDIUM;
3177     }
3178     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3179     if (ret) {
3180         return ret;
3181     }
3182     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3183         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3184     }
3185 
3186     if (!src || !src->bs) {
3187         return -ENOMEDIUM;
3188     }
3189     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3190     if (ret) {
3191         return ret;
3192     }
3193 
3194     if (!src->bs->drv->bdrv_co_copy_range_from
3195         || !dst->bs->drv->bdrv_co_copy_range_to
3196         || src->bs->encrypted || dst->bs->encrypted) {
3197         return -ENOTSUP;
3198     }
3199 
3200     if (recurse_src) {
3201         bdrv_inc_in_flight(src->bs);
3202         tracked_request_begin(&req, src->bs, src_offset, bytes,
3203                               BDRV_TRACKED_READ);
3204 
3205         /* BDRV_REQ_SERIALISING is only for write operation */
3206         assert(!(read_flags & BDRV_REQ_SERIALISING));
3207         if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3208             wait_serialising_requests(&req);
3209         }
3210 
3211         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3212                                                     src, src_offset,
3213                                                     dst, dst_offset,
3214                                                     bytes,
3215                                                     read_flags, write_flags);
3216 
3217         tracked_request_end(&req);
3218         bdrv_dec_in_flight(src->bs);
3219     } else {
3220         bdrv_inc_in_flight(dst->bs);
3221         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3222                               BDRV_TRACKED_WRITE);
3223         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3224                                         write_flags);
3225         if (!ret) {
3226             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3227                                                       src, src_offset,
3228                                                       dst, dst_offset,
3229                                                       bytes,
3230                                                       read_flags, write_flags);
3231         }
3232         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3233         tracked_request_end(&req);
3234         bdrv_dec_in_flight(dst->bs);
3235     }
3236 
3237     return ret;
3238 }
3239 
3240 /* Copy range from @src to @dst.
3241  *
3242  * See the comment of bdrv_co_copy_range for the parameter and return value
3243  * semantics. */
3244 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3245                                          BdrvChild *dst, uint64_t dst_offset,
3246                                          uint64_t bytes,
3247                                          BdrvRequestFlags read_flags,
3248                                          BdrvRequestFlags write_flags)
3249 {
3250     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3251                                   read_flags, write_flags);
3252     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3253                                        bytes, read_flags, write_flags, true);
3254 }
3255 
3256 /* Copy range from @src to @dst.
3257  *
3258  * See the comment of bdrv_co_copy_range for the parameter and return value
3259  * semantics. */
3260 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3261                                        BdrvChild *dst, uint64_t dst_offset,
3262                                        uint64_t bytes,
3263                                        BdrvRequestFlags read_flags,
3264                                        BdrvRequestFlags write_flags)
3265 {
3266     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3267                                 read_flags, write_flags);
3268     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3269                                        bytes, read_flags, write_flags, false);
3270 }
3271 
3272 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3273                                     BdrvChild *dst, uint64_t dst_offset,
3274                                     uint64_t bytes, BdrvRequestFlags read_flags,
3275                                     BdrvRequestFlags write_flags)
3276 {
3277     return bdrv_co_copy_range_from(src, src_offset,
3278                                    dst, dst_offset,
3279                                    bytes, read_flags, write_flags);
3280 }
3281 
3282 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3283 {
3284     BdrvChild *c;
3285     QLIST_FOREACH(c, &bs->parents, next_parent) {
3286         if (c->role->resize) {
3287             c->role->resize(c);
3288         }
3289     }
3290 }
3291 
3292 /**
3293  * Truncate file to 'offset' bytes (needed only for file protocols)
3294  */
3295 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3296                                   PreallocMode prealloc, Error **errp)
3297 {
3298     BlockDriverState *bs = child->bs;
3299     BlockDriver *drv = bs->drv;
3300     BdrvTrackedRequest req;
3301     int64_t old_size, new_bytes;
3302     int ret;
3303 
3304 
3305     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3306     if (!drv) {
3307         error_setg(errp, "No medium inserted");
3308         return -ENOMEDIUM;
3309     }
3310     if (offset < 0) {
3311         error_setg(errp, "Image size cannot be negative");
3312         return -EINVAL;
3313     }
3314 
3315     old_size = bdrv_getlength(bs);
3316     if (old_size < 0) {
3317         error_setg_errno(errp, -old_size, "Failed to get old image size");
3318         return old_size;
3319     }
3320 
3321     if (offset > old_size) {
3322         new_bytes = offset - old_size;
3323     } else {
3324         new_bytes = 0;
3325     }
3326 
3327     bdrv_inc_in_flight(bs);
3328     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3329                           BDRV_TRACKED_TRUNCATE);
3330 
3331     /* If we are growing the image and potentially using preallocation for the
3332      * new area, we need to make sure that no write requests are made to it
3333      * concurrently or they might be overwritten by preallocation. */
3334     if (new_bytes) {
3335         mark_request_serialising(&req, 1);
3336     }
3337     if (bs->read_only) {
3338         error_setg(errp, "Image is read-only");
3339         ret = -EACCES;
3340         goto out;
3341     }
3342     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3343                                     0);
3344     if (ret < 0) {
3345         error_setg_errno(errp, -ret,
3346                          "Failed to prepare request for truncation");
3347         goto out;
3348     }
3349 
3350     if (!drv->bdrv_co_truncate) {
3351         if (bs->file && drv->is_filter) {
3352             ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3353             goto out;
3354         }
3355         error_setg(errp, "Image format driver does not support resize");
3356         ret = -ENOTSUP;
3357         goto out;
3358     }
3359 
3360     ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3361     if (ret < 0) {
3362         goto out;
3363     }
3364     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3365     if (ret < 0) {
3366         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3367     } else {
3368         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3369     }
3370     /* It's possible that truncation succeeded but refresh_total_sectors
3371      * failed, but the latter doesn't affect how we should finish the request.
3372      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3373     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3374 
3375 out:
3376     tracked_request_end(&req);
3377     bdrv_dec_in_flight(bs);
3378 
3379     return ret;
3380 }
3381 
3382 typedef struct TruncateCo {
3383     BdrvChild *child;
3384     int64_t offset;
3385     PreallocMode prealloc;
3386     Error **errp;
3387     int ret;
3388 } TruncateCo;
3389 
3390 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3391 {
3392     TruncateCo *tco = opaque;
3393     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3394                                 tco->errp);
3395     aio_wait_kick();
3396 }
3397 
3398 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3399                   Error **errp)
3400 {
3401     Coroutine *co;
3402     TruncateCo tco = {
3403         .child      = child,
3404         .offset     = offset,
3405         .prealloc   = prealloc,
3406         .errp       = errp,
3407         .ret        = NOT_DONE,
3408     };
3409 
3410     if (qemu_in_coroutine()) {
3411         /* Fast-path if already in coroutine context */
3412         bdrv_truncate_co_entry(&tco);
3413     } else {
3414         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3415         bdrv_coroutine_enter(child->bs, co);
3416         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3417     }
3418 
3419     return tco.ret;
3420 }
3421