1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "sysemu/replay.h" 37 38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->role->drained_end) { 66 c->role->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 75 } 76 77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 78 bool ignore_bds_parents, 79 int *drained_end_counter) 80 { 81 BdrvChild *c; 82 83 QLIST_FOREACH(c, &bs->parents, next_parent) { 84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 85 continue; 86 } 87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 88 } 89 } 90 91 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 92 { 93 if (c->role->drained_poll) { 94 return c->role->drained_poll(c); 95 } 96 return false; 97 } 98 99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 100 bool ignore_bds_parents) 101 { 102 BdrvChild *c, *next; 103 bool busy = false; 104 105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 107 continue; 108 } 109 busy |= bdrv_parent_drained_poll_single(c); 110 } 111 112 return busy; 113 } 114 115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 116 { 117 c->parent_quiesce_counter++; 118 if (c->role->drained_begin) { 119 c->role->drained_begin(c); 120 } 121 if (poll) { 122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 123 } 124 } 125 126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 127 { 128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 131 src->opt_mem_alignment); 132 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 133 src->min_mem_alignment); 134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 135 } 136 137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 138 { 139 BlockDriver *drv = bs->drv; 140 Error *local_err = NULL; 141 142 memset(&bs->bl, 0, sizeof(bs->bl)); 143 144 if (!drv) { 145 return; 146 } 147 148 /* Default alignment based on whether driver has byte interface */ 149 bs->bl.request_alignment = (drv->bdrv_co_preadv || 150 drv->bdrv_aio_preadv || 151 drv->bdrv_co_preadv_part) ? 1 : 512; 152 153 /* Take some limits from the children as a default */ 154 if (bs->file) { 155 bdrv_refresh_limits(bs->file->bs, &local_err); 156 if (local_err) { 157 error_propagate(errp, local_err); 158 return; 159 } 160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 161 } else { 162 bs->bl.min_mem_alignment = 512; 163 bs->bl.opt_mem_alignment = getpagesize(); 164 165 /* Safe default since most protocols use readv()/writev()/etc */ 166 bs->bl.max_iov = IOV_MAX; 167 } 168 169 if (bs->backing) { 170 bdrv_refresh_limits(bs->backing->bs, &local_err); 171 if (local_err) { 172 error_propagate(errp, local_err); 173 return; 174 } 175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 176 } 177 178 /* Then let the driver override it */ 179 if (drv->bdrv_refresh_limits) { 180 drv->bdrv_refresh_limits(bs, errp); 181 } 182 } 183 184 /** 185 * The copy-on-read flag is actually a reference count so multiple users may 186 * use the feature without worrying about clobbering its previous state. 187 * Copy-on-read stays enabled until all users have called to disable it. 188 */ 189 void bdrv_enable_copy_on_read(BlockDriverState *bs) 190 { 191 atomic_inc(&bs->copy_on_read); 192 } 193 194 void bdrv_disable_copy_on_read(BlockDriverState *bs) 195 { 196 int old = atomic_fetch_dec(&bs->copy_on_read); 197 assert(old >= 1); 198 } 199 200 typedef struct { 201 Coroutine *co; 202 BlockDriverState *bs; 203 bool done; 204 bool begin; 205 bool recursive; 206 bool poll; 207 BdrvChild *parent; 208 bool ignore_bds_parents; 209 int *drained_end_counter; 210 } BdrvCoDrainData; 211 212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 213 { 214 BdrvCoDrainData *data = opaque; 215 BlockDriverState *bs = data->bs; 216 217 if (data->begin) { 218 bs->drv->bdrv_co_drain_begin(bs); 219 } else { 220 bs->drv->bdrv_co_drain_end(bs); 221 } 222 223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 224 atomic_mb_set(&data->done, true); 225 if (!data->begin) { 226 atomic_dec(data->drained_end_counter); 227 } 228 bdrv_dec_in_flight(bs); 229 230 g_free(data); 231 } 232 233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 235 int *drained_end_counter) 236 { 237 BdrvCoDrainData *data; 238 239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 240 (!begin && !bs->drv->bdrv_co_drain_end)) { 241 return; 242 } 243 244 data = g_new(BdrvCoDrainData, 1); 245 *data = (BdrvCoDrainData) { 246 .bs = bs, 247 .done = false, 248 .begin = begin, 249 .drained_end_counter = drained_end_counter, 250 }; 251 252 if (!begin) { 253 atomic_inc(drained_end_counter); 254 } 255 256 /* Make sure the driver callback completes during the polling phase for 257 * drain_begin. */ 258 bdrv_inc_in_flight(bs); 259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 260 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 261 } 262 263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 265 BdrvChild *ignore_parent, bool ignore_bds_parents) 266 { 267 BdrvChild *child, *next; 268 269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 270 return true; 271 } 272 273 if (atomic_read(&bs->in_flight)) { 274 return true; 275 } 276 277 if (recursive) { 278 assert(!ignore_bds_parents); 279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 280 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 281 return true; 282 } 283 } 284 } 285 286 return false; 287 } 288 289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 290 BdrvChild *ignore_parent) 291 { 292 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 293 } 294 295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 296 BdrvChild *parent, bool ignore_bds_parents, 297 bool poll); 298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 299 BdrvChild *parent, bool ignore_bds_parents, 300 int *drained_end_counter); 301 302 static void bdrv_co_drain_bh_cb(void *opaque) 303 { 304 BdrvCoDrainData *data = opaque; 305 Coroutine *co = data->co; 306 BlockDriverState *bs = data->bs; 307 308 if (bs) { 309 AioContext *ctx = bdrv_get_aio_context(bs); 310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 311 312 /* 313 * When the coroutine yielded, the lock for its home context was 314 * released, so we need to re-acquire it here. If it explicitly 315 * acquired a different context, the lock is still held and we don't 316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 317 */ 318 if (ctx == co_ctx) { 319 aio_context_acquire(ctx); 320 } 321 bdrv_dec_in_flight(bs); 322 if (data->begin) { 323 assert(!data->drained_end_counter); 324 bdrv_do_drained_begin(bs, data->recursive, data->parent, 325 data->ignore_bds_parents, data->poll); 326 } else { 327 assert(!data->poll); 328 bdrv_do_drained_end(bs, data->recursive, data->parent, 329 data->ignore_bds_parents, 330 data->drained_end_counter); 331 } 332 if (ctx == co_ctx) { 333 aio_context_release(ctx); 334 } 335 } else { 336 assert(data->begin); 337 bdrv_drain_all_begin(); 338 } 339 340 data->done = true; 341 aio_co_wake(co); 342 } 343 344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 345 bool begin, bool recursive, 346 BdrvChild *parent, 347 bool ignore_bds_parents, 348 bool poll, 349 int *drained_end_counter) 350 { 351 BdrvCoDrainData data; 352 353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 354 * other coroutines run if they were queued by aio_co_enter(). */ 355 356 assert(qemu_in_coroutine()); 357 data = (BdrvCoDrainData) { 358 .co = qemu_coroutine_self(), 359 .bs = bs, 360 .done = false, 361 .begin = begin, 362 .recursive = recursive, 363 .parent = parent, 364 .ignore_bds_parents = ignore_bds_parents, 365 .poll = poll, 366 .drained_end_counter = drained_end_counter, 367 }; 368 369 if (bs) { 370 bdrv_inc_in_flight(bs); 371 } 372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs), 373 bdrv_co_drain_bh_cb, &data); 374 375 qemu_coroutine_yield(); 376 /* If we are resumed from some other event (such as an aio completion or a 377 * timer callback), it is a bug in the caller that should be fixed. */ 378 assert(data.done); 379 } 380 381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 382 BdrvChild *parent, bool ignore_bds_parents) 383 { 384 assert(!qemu_in_coroutine()); 385 386 /* Stop things in parent-to-child order */ 387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 388 aio_disable_external(bdrv_get_aio_context(bs)); 389 } 390 391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 392 bdrv_drain_invoke(bs, true, NULL); 393 } 394 395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 396 BdrvChild *parent, bool ignore_bds_parents, 397 bool poll) 398 { 399 BdrvChild *child, *next; 400 401 if (qemu_in_coroutine()) { 402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 403 poll, NULL); 404 return; 405 } 406 407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 408 409 if (recursive) { 410 assert(!ignore_bds_parents); 411 bs->recursive_quiesce_counter++; 412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 414 false); 415 } 416 } 417 418 /* 419 * Wait for drained requests to finish. 420 * 421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 422 * call is needed so things in this AioContext can make progress even 423 * though we don't return to the main AioContext loop - this automatically 424 * includes other nodes in the same AioContext and therefore all child 425 * nodes. 426 */ 427 if (poll) { 428 assert(!ignore_bds_parents); 429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 430 } 431 } 432 433 void bdrv_drained_begin(BlockDriverState *bs) 434 { 435 bdrv_do_drained_begin(bs, false, NULL, false, true); 436 } 437 438 void bdrv_subtree_drained_begin(BlockDriverState *bs) 439 { 440 bdrv_do_drained_begin(bs, true, NULL, false, true); 441 } 442 443 /** 444 * This function does not poll, nor must any of its recursively called 445 * functions. The *drained_end_counter pointee will be incremented 446 * once for every background operation scheduled, and decremented once 447 * the operation settles. Therefore, the pointer must remain valid 448 * until the pointee reaches 0. That implies that whoever sets up the 449 * pointee has to poll until it is 0. 450 * 451 * We use atomic operations to access *drained_end_counter, because 452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 453 * @bs may contain nodes in different AioContexts, 454 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 455 * regardless of which AioContext they are in. 456 */ 457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 458 BdrvChild *parent, bool ignore_bds_parents, 459 int *drained_end_counter) 460 { 461 BdrvChild *child; 462 int old_quiesce_counter; 463 464 assert(drained_end_counter != NULL); 465 466 if (qemu_in_coroutine()) { 467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 468 false, drained_end_counter); 469 return; 470 } 471 assert(bs->quiesce_counter > 0); 472 473 /* Re-enable things in child-to-parent order */ 474 bdrv_drain_invoke(bs, false, drained_end_counter); 475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 476 drained_end_counter); 477 478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 479 if (old_quiesce_counter == 1) { 480 aio_enable_external(bdrv_get_aio_context(bs)); 481 } 482 483 if (recursive) { 484 assert(!ignore_bds_parents); 485 bs->recursive_quiesce_counter--; 486 QLIST_FOREACH(child, &bs->children, next) { 487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 488 drained_end_counter); 489 } 490 } 491 } 492 493 void bdrv_drained_end(BlockDriverState *bs) 494 { 495 int drained_end_counter = 0; 496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 498 } 499 500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 501 { 502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 503 } 504 505 void bdrv_subtree_drained_end(BlockDriverState *bs) 506 { 507 int drained_end_counter = 0; 508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 510 } 511 512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 513 { 514 int i; 515 516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 517 bdrv_do_drained_begin(child->bs, true, child, false, true); 518 } 519 } 520 521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 522 { 523 int drained_end_counter = 0; 524 int i; 525 526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 527 bdrv_do_drained_end(child->bs, true, child, false, 528 &drained_end_counter); 529 } 530 531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 532 } 533 534 /* 535 * Wait for pending requests to complete on a single BlockDriverState subtree, 536 * and suspend block driver's internal I/O until next request arrives. 537 * 538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 539 * AioContext. 540 */ 541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 542 { 543 assert(qemu_in_coroutine()); 544 bdrv_drained_begin(bs); 545 bdrv_drained_end(bs); 546 } 547 548 void bdrv_drain(BlockDriverState *bs) 549 { 550 bdrv_drained_begin(bs); 551 bdrv_drained_end(bs); 552 } 553 554 static void bdrv_drain_assert_idle(BlockDriverState *bs) 555 { 556 BdrvChild *child, *next; 557 558 assert(atomic_read(&bs->in_flight) == 0); 559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 560 bdrv_drain_assert_idle(child->bs); 561 } 562 } 563 564 unsigned int bdrv_drain_all_count = 0; 565 566 static bool bdrv_drain_all_poll(void) 567 { 568 BlockDriverState *bs = NULL; 569 bool result = false; 570 571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 573 while ((bs = bdrv_next_all_states(bs))) { 574 AioContext *aio_context = bdrv_get_aio_context(bs); 575 aio_context_acquire(aio_context); 576 result |= bdrv_drain_poll(bs, false, NULL, true); 577 aio_context_release(aio_context); 578 } 579 580 return result; 581 } 582 583 /* 584 * Wait for pending requests to complete across all BlockDriverStates 585 * 586 * This function does not flush data to disk, use bdrv_flush_all() for that 587 * after calling this function. 588 * 589 * This pauses all block jobs and disables external clients. It must 590 * be paired with bdrv_drain_all_end(). 591 * 592 * NOTE: no new block jobs or BlockDriverStates can be created between 593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 594 */ 595 void bdrv_drain_all_begin(void) 596 { 597 BlockDriverState *bs = NULL; 598 599 if (qemu_in_coroutine()) { 600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 601 return; 602 } 603 604 /* 605 * bdrv queue is managed by record/replay, 606 * waiting for finishing the I/O requests may 607 * be infinite 608 */ 609 if (replay_events_enabled()) { 610 return; 611 } 612 613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 614 * loop AioContext, so make sure we're in the main context. */ 615 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 616 assert(bdrv_drain_all_count < INT_MAX); 617 bdrv_drain_all_count++; 618 619 /* Quiesce all nodes, without polling in-flight requests yet. The graph 620 * cannot change during this loop. */ 621 while ((bs = bdrv_next_all_states(bs))) { 622 AioContext *aio_context = bdrv_get_aio_context(bs); 623 624 aio_context_acquire(aio_context); 625 bdrv_do_drained_begin(bs, false, NULL, true, false); 626 aio_context_release(aio_context); 627 } 628 629 /* Now poll the in-flight requests */ 630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 631 632 while ((bs = bdrv_next_all_states(bs))) { 633 bdrv_drain_assert_idle(bs); 634 } 635 } 636 637 void bdrv_drain_all_end(void) 638 { 639 BlockDriverState *bs = NULL; 640 int drained_end_counter = 0; 641 642 /* 643 * bdrv queue is managed by record/replay, 644 * waiting for finishing the I/O requests may 645 * be endless 646 */ 647 if (replay_events_enabled()) { 648 return; 649 } 650 651 while ((bs = bdrv_next_all_states(bs))) { 652 AioContext *aio_context = bdrv_get_aio_context(bs); 653 654 aio_context_acquire(aio_context); 655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 656 aio_context_release(aio_context); 657 } 658 659 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 661 662 assert(bdrv_drain_all_count > 0); 663 bdrv_drain_all_count--; 664 } 665 666 void bdrv_drain_all(void) 667 { 668 bdrv_drain_all_begin(); 669 bdrv_drain_all_end(); 670 } 671 672 /** 673 * Remove an active request from the tracked requests list 674 * 675 * This function should be called when a tracked request is completing. 676 */ 677 static void tracked_request_end(BdrvTrackedRequest *req) 678 { 679 if (req->serialising) { 680 atomic_dec(&req->bs->serialising_in_flight); 681 } 682 683 qemu_co_mutex_lock(&req->bs->reqs_lock); 684 QLIST_REMOVE(req, list); 685 qemu_co_queue_restart_all(&req->wait_queue); 686 qemu_co_mutex_unlock(&req->bs->reqs_lock); 687 } 688 689 /** 690 * Add an active request to the tracked requests list 691 */ 692 static void tracked_request_begin(BdrvTrackedRequest *req, 693 BlockDriverState *bs, 694 int64_t offset, 695 uint64_t bytes, 696 enum BdrvTrackedRequestType type) 697 { 698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 699 700 *req = (BdrvTrackedRequest){ 701 .bs = bs, 702 .offset = offset, 703 .bytes = bytes, 704 .type = type, 705 .co = qemu_coroutine_self(), 706 .serialising = false, 707 .overlap_offset = offset, 708 .overlap_bytes = bytes, 709 }; 710 711 qemu_co_queue_init(&req->wait_queue); 712 713 qemu_co_mutex_lock(&bs->reqs_lock); 714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 715 qemu_co_mutex_unlock(&bs->reqs_lock); 716 } 717 718 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 719 { 720 int64_t overlap_offset = req->offset & ~(align - 1); 721 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 722 - overlap_offset; 723 724 if (!req->serialising) { 725 atomic_inc(&req->bs->serialising_in_flight); 726 req->serialising = true; 727 } 728 729 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 730 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 731 } 732 733 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 734 { 735 /* 736 * If the request is serialising, overlap_offset and overlap_bytes are set, 737 * so we can check if the request is aligned. Otherwise, don't care and 738 * return false. 739 */ 740 741 return req->serialising && (req->offset == req->overlap_offset) && 742 (req->bytes == req->overlap_bytes); 743 } 744 745 /** 746 * Round a region to cluster boundaries 747 */ 748 void bdrv_round_to_clusters(BlockDriverState *bs, 749 int64_t offset, int64_t bytes, 750 int64_t *cluster_offset, 751 int64_t *cluster_bytes) 752 { 753 BlockDriverInfo bdi; 754 755 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 756 *cluster_offset = offset; 757 *cluster_bytes = bytes; 758 } else { 759 int64_t c = bdi.cluster_size; 760 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 761 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 762 } 763 } 764 765 static int bdrv_get_cluster_size(BlockDriverState *bs) 766 { 767 BlockDriverInfo bdi; 768 int ret; 769 770 ret = bdrv_get_info(bs, &bdi); 771 if (ret < 0 || bdi.cluster_size == 0) { 772 return bs->bl.request_alignment; 773 } else { 774 return bdi.cluster_size; 775 } 776 } 777 778 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 779 int64_t offset, uint64_t bytes) 780 { 781 /* aaaa bbbb */ 782 if (offset >= req->overlap_offset + req->overlap_bytes) { 783 return false; 784 } 785 /* bbbb aaaa */ 786 if (req->overlap_offset >= offset + bytes) { 787 return false; 788 } 789 return true; 790 } 791 792 void bdrv_inc_in_flight(BlockDriverState *bs) 793 { 794 atomic_inc(&bs->in_flight); 795 } 796 797 void bdrv_wakeup(BlockDriverState *bs) 798 { 799 aio_wait_kick(); 800 } 801 802 void bdrv_dec_in_flight(BlockDriverState *bs) 803 { 804 atomic_dec(&bs->in_flight); 805 bdrv_wakeup(bs); 806 } 807 808 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 809 { 810 BlockDriverState *bs = self->bs; 811 BdrvTrackedRequest *req; 812 bool retry; 813 bool waited = false; 814 815 if (!atomic_read(&bs->serialising_in_flight)) { 816 return false; 817 } 818 819 do { 820 retry = false; 821 qemu_co_mutex_lock(&bs->reqs_lock); 822 QLIST_FOREACH(req, &bs->tracked_requests, list) { 823 if (req == self || (!req->serialising && !self->serialising)) { 824 continue; 825 } 826 if (tracked_request_overlaps(req, self->overlap_offset, 827 self->overlap_bytes)) 828 { 829 /* Hitting this means there was a reentrant request, for 830 * example, a block driver issuing nested requests. This must 831 * never happen since it means deadlock. 832 */ 833 assert(qemu_coroutine_self() != req->co); 834 835 /* If the request is already (indirectly) waiting for us, or 836 * will wait for us as soon as it wakes up, then just go on 837 * (instead of producing a deadlock in the former case). */ 838 if (!req->waiting_for) { 839 self->waiting_for = req; 840 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 841 self->waiting_for = NULL; 842 retry = true; 843 waited = true; 844 break; 845 } 846 } 847 } 848 qemu_co_mutex_unlock(&bs->reqs_lock); 849 } while (retry); 850 851 return waited; 852 } 853 854 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 855 size_t size) 856 { 857 if (size > BDRV_REQUEST_MAX_BYTES) { 858 return -EIO; 859 } 860 861 if (!bdrv_is_inserted(bs)) { 862 return -ENOMEDIUM; 863 } 864 865 if (offset < 0) { 866 return -EIO; 867 } 868 869 return 0; 870 } 871 872 typedef struct RwCo { 873 BdrvChild *child; 874 int64_t offset; 875 QEMUIOVector *qiov; 876 bool is_write; 877 int ret; 878 BdrvRequestFlags flags; 879 } RwCo; 880 881 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 882 { 883 RwCo *rwco = opaque; 884 885 if (!rwco->is_write) { 886 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 887 rwco->qiov->size, rwco->qiov, 888 rwco->flags); 889 } else { 890 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 891 rwco->qiov->size, rwco->qiov, 892 rwco->flags); 893 } 894 aio_wait_kick(); 895 } 896 897 /* 898 * Process a vectored synchronous request using coroutines 899 */ 900 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 901 QEMUIOVector *qiov, bool is_write, 902 BdrvRequestFlags flags) 903 { 904 Coroutine *co; 905 RwCo rwco = { 906 .child = child, 907 .offset = offset, 908 .qiov = qiov, 909 .is_write = is_write, 910 .ret = NOT_DONE, 911 .flags = flags, 912 }; 913 914 if (qemu_in_coroutine()) { 915 /* Fast-path if already in coroutine context */ 916 bdrv_rw_co_entry(&rwco); 917 } else { 918 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 919 bdrv_coroutine_enter(child->bs, co); 920 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 921 } 922 return rwco.ret; 923 } 924 925 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 926 int bytes, BdrvRequestFlags flags) 927 { 928 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 929 930 return bdrv_prwv_co(child, offset, &qiov, true, 931 BDRV_REQ_ZERO_WRITE | flags); 932 } 933 934 /* 935 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 936 * The operation is sped up by checking the block status and only writing 937 * zeroes to the device if they currently do not return zeroes. Optional 938 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 939 * BDRV_REQ_FUA). 940 * 941 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 942 */ 943 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 944 { 945 int ret; 946 int64_t target_size, bytes, offset = 0; 947 BlockDriverState *bs = child->bs; 948 949 target_size = bdrv_getlength(bs); 950 if (target_size < 0) { 951 return target_size; 952 } 953 954 for (;;) { 955 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 956 if (bytes <= 0) { 957 return 0; 958 } 959 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 960 if (ret < 0) { 961 return ret; 962 } 963 if (ret & BDRV_BLOCK_ZERO) { 964 offset += bytes; 965 continue; 966 } 967 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 968 if (ret < 0) { 969 return ret; 970 } 971 offset += bytes; 972 } 973 } 974 975 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 976 { 977 int ret; 978 979 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 980 if (ret < 0) { 981 return ret; 982 } 983 984 return qiov->size; 985 } 986 987 /* See bdrv_pwrite() for the return codes */ 988 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 989 { 990 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 991 992 if (bytes < 0) { 993 return -EINVAL; 994 } 995 996 return bdrv_preadv(child, offset, &qiov); 997 } 998 999 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 1000 { 1001 int ret; 1002 1003 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 1004 if (ret < 0) { 1005 return ret; 1006 } 1007 1008 return qiov->size; 1009 } 1010 1011 /* Return no. of bytes on success or < 0 on error. Important errors are: 1012 -EIO generic I/O error (may happen for all errors) 1013 -ENOMEDIUM No media inserted. 1014 -EINVAL Invalid offset or number of bytes 1015 -EACCES Trying to write a read-only device 1016 */ 1017 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 1018 { 1019 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1020 1021 if (bytes < 0) { 1022 return -EINVAL; 1023 } 1024 1025 return bdrv_pwritev(child, offset, &qiov); 1026 } 1027 1028 /* 1029 * Writes to the file and ensures that no writes are reordered across this 1030 * request (acts as a barrier) 1031 * 1032 * Returns 0 on success, -errno in error cases. 1033 */ 1034 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1035 const void *buf, int count) 1036 { 1037 int ret; 1038 1039 ret = bdrv_pwrite(child, offset, buf, count); 1040 if (ret < 0) { 1041 return ret; 1042 } 1043 1044 ret = bdrv_flush(child->bs); 1045 if (ret < 0) { 1046 return ret; 1047 } 1048 1049 return 0; 1050 } 1051 1052 typedef struct CoroutineIOCompletion { 1053 Coroutine *coroutine; 1054 int ret; 1055 } CoroutineIOCompletion; 1056 1057 static void bdrv_co_io_em_complete(void *opaque, int ret) 1058 { 1059 CoroutineIOCompletion *co = opaque; 1060 1061 co->ret = ret; 1062 aio_co_wake(co->coroutine); 1063 } 1064 1065 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1066 uint64_t offset, uint64_t bytes, 1067 QEMUIOVector *qiov, 1068 size_t qiov_offset, int flags) 1069 { 1070 BlockDriver *drv = bs->drv; 1071 int64_t sector_num; 1072 unsigned int nb_sectors; 1073 QEMUIOVector local_qiov; 1074 int ret; 1075 1076 assert(!(flags & ~BDRV_REQ_MASK)); 1077 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1078 1079 if (!drv) { 1080 return -ENOMEDIUM; 1081 } 1082 1083 if (drv->bdrv_co_preadv_part) { 1084 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1085 flags); 1086 } 1087 1088 if (qiov_offset > 0 || bytes != qiov->size) { 1089 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1090 qiov = &local_qiov; 1091 } 1092 1093 if (drv->bdrv_co_preadv) { 1094 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1095 goto out; 1096 } 1097 1098 if (drv->bdrv_aio_preadv) { 1099 BlockAIOCB *acb; 1100 CoroutineIOCompletion co = { 1101 .coroutine = qemu_coroutine_self(), 1102 }; 1103 1104 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1105 bdrv_co_io_em_complete, &co); 1106 if (acb == NULL) { 1107 ret = -EIO; 1108 goto out; 1109 } else { 1110 qemu_coroutine_yield(); 1111 ret = co.ret; 1112 goto out; 1113 } 1114 } 1115 1116 sector_num = offset >> BDRV_SECTOR_BITS; 1117 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1118 1119 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1120 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1121 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1122 assert(drv->bdrv_co_readv); 1123 1124 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1125 1126 out: 1127 if (qiov == &local_qiov) { 1128 qemu_iovec_destroy(&local_qiov); 1129 } 1130 1131 return ret; 1132 } 1133 1134 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1135 uint64_t offset, uint64_t bytes, 1136 QEMUIOVector *qiov, 1137 size_t qiov_offset, int flags) 1138 { 1139 BlockDriver *drv = bs->drv; 1140 int64_t sector_num; 1141 unsigned int nb_sectors; 1142 QEMUIOVector local_qiov; 1143 int ret; 1144 1145 assert(!(flags & ~BDRV_REQ_MASK)); 1146 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1147 1148 if (!drv) { 1149 return -ENOMEDIUM; 1150 } 1151 1152 if (drv->bdrv_co_pwritev_part) { 1153 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1154 flags & bs->supported_write_flags); 1155 flags &= ~bs->supported_write_flags; 1156 goto emulate_flags; 1157 } 1158 1159 if (qiov_offset > 0 || bytes != qiov->size) { 1160 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1161 qiov = &local_qiov; 1162 } 1163 1164 if (drv->bdrv_co_pwritev) { 1165 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1166 flags & bs->supported_write_flags); 1167 flags &= ~bs->supported_write_flags; 1168 goto emulate_flags; 1169 } 1170 1171 if (drv->bdrv_aio_pwritev) { 1172 BlockAIOCB *acb; 1173 CoroutineIOCompletion co = { 1174 .coroutine = qemu_coroutine_self(), 1175 }; 1176 1177 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1178 flags & bs->supported_write_flags, 1179 bdrv_co_io_em_complete, &co); 1180 flags &= ~bs->supported_write_flags; 1181 if (acb == NULL) { 1182 ret = -EIO; 1183 } else { 1184 qemu_coroutine_yield(); 1185 ret = co.ret; 1186 } 1187 goto emulate_flags; 1188 } 1189 1190 sector_num = offset >> BDRV_SECTOR_BITS; 1191 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1192 1193 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1194 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1195 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1196 1197 assert(drv->bdrv_co_writev); 1198 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1199 flags & bs->supported_write_flags); 1200 flags &= ~bs->supported_write_flags; 1201 1202 emulate_flags: 1203 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1204 ret = bdrv_co_flush(bs); 1205 } 1206 1207 if (qiov == &local_qiov) { 1208 qemu_iovec_destroy(&local_qiov); 1209 } 1210 1211 return ret; 1212 } 1213 1214 static int coroutine_fn 1215 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1216 uint64_t bytes, QEMUIOVector *qiov, 1217 size_t qiov_offset) 1218 { 1219 BlockDriver *drv = bs->drv; 1220 QEMUIOVector local_qiov; 1221 int ret; 1222 1223 if (!drv) { 1224 return -ENOMEDIUM; 1225 } 1226 1227 if (!block_driver_can_compress(drv)) { 1228 return -ENOTSUP; 1229 } 1230 1231 if (drv->bdrv_co_pwritev_compressed_part) { 1232 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1233 qiov, qiov_offset); 1234 } 1235 1236 if (qiov_offset == 0) { 1237 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1238 } 1239 1240 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1241 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1242 qemu_iovec_destroy(&local_qiov); 1243 1244 return ret; 1245 } 1246 1247 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1248 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1249 size_t qiov_offset, int flags) 1250 { 1251 BlockDriverState *bs = child->bs; 1252 1253 /* Perform I/O through a temporary buffer so that users who scribble over 1254 * their read buffer while the operation is in progress do not end up 1255 * modifying the image file. This is critical for zero-copy guest I/O 1256 * where anything might happen inside guest memory. 1257 */ 1258 void *bounce_buffer = NULL; 1259 1260 BlockDriver *drv = bs->drv; 1261 int64_t cluster_offset; 1262 int64_t cluster_bytes; 1263 size_t skip_bytes; 1264 int ret; 1265 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1266 BDRV_REQUEST_MAX_BYTES); 1267 unsigned int progress = 0; 1268 bool skip_write; 1269 1270 if (!drv) { 1271 return -ENOMEDIUM; 1272 } 1273 1274 /* 1275 * Do not write anything when the BDS is inactive. That is not 1276 * allowed, and it would not help. 1277 */ 1278 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1279 1280 /* FIXME We cannot require callers to have write permissions when all they 1281 * are doing is a read request. If we did things right, write permissions 1282 * would be obtained anyway, but internally by the copy-on-read code. As 1283 * long as it is implemented here rather than in a separate filter driver, 1284 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1285 * it could request permissions. Therefore we have to bypass the permission 1286 * system for the moment. */ 1287 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1288 1289 /* Cover entire cluster so no additional backing file I/O is required when 1290 * allocating cluster in the image file. Note that this value may exceed 1291 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1292 * is one reason we loop rather than doing it all at once. 1293 */ 1294 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1295 skip_bytes = offset - cluster_offset; 1296 1297 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1298 cluster_offset, cluster_bytes); 1299 1300 while (cluster_bytes) { 1301 int64_t pnum; 1302 1303 if (skip_write) { 1304 ret = 1; /* "already allocated", so nothing will be copied */ 1305 pnum = MIN(cluster_bytes, max_transfer); 1306 } else { 1307 ret = bdrv_is_allocated(bs, cluster_offset, 1308 MIN(cluster_bytes, max_transfer), &pnum); 1309 if (ret < 0) { 1310 /* 1311 * Safe to treat errors in querying allocation as if 1312 * unallocated; we'll probably fail again soon on the 1313 * read, but at least that will set a decent errno. 1314 */ 1315 pnum = MIN(cluster_bytes, max_transfer); 1316 } 1317 1318 /* Stop at EOF if the image ends in the middle of the cluster */ 1319 if (ret == 0 && pnum == 0) { 1320 assert(progress >= bytes); 1321 break; 1322 } 1323 1324 assert(skip_bytes < pnum); 1325 } 1326 1327 if (ret <= 0) { 1328 QEMUIOVector local_qiov; 1329 1330 /* Must copy-on-read; use the bounce buffer */ 1331 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1332 if (!bounce_buffer) { 1333 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1334 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1335 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1336 1337 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1338 if (!bounce_buffer) { 1339 ret = -ENOMEM; 1340 goto err; 1341 } 1342 } 1343 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1344 1345 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1346 &local_qiov, 0, 0); 1347 if (ret < 0) { 1348 goto err; 1349 } 1350 1351 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1352 if (drv->bdrv_co_pwrite_zeroes && 1353 buffer_is_zero(bounce_buffer, pnum)) { 1354 /* FIXME: Should we (perhaps conditionally) be setting 1355 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1356 * that still correctly reads as zero? */ 1357 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1358 BDRV_REQ_WRITE_UNCHANGED); 1359 } else { 1360 /* This does not change the data on the disk, it is not 1361 * necessary to flush even in cache=writethrough mode. 1362 */ 1363 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1364 &local_qiov, 0, 1365 BDRV_REQ_WRITE_UNCHANGED); 1366 } 1367 1368 if (ret < 0) { 1369 /* It might be okay to ignore write errors for guest 1370 * requests. If this is a deliberate copy-on-read 1371 * then we don't want to ignore the error. Simply 1372 * report it in all cases. 1373 */ 1374 goto err; 1375 } 1376 1377 if (!(flags & BDRV_REQ_PREFETCH)) { 1378 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1379 bounce_buffer + skip_bytes, 1380 pnum - skip_bytes); 1381 } 1382 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1383 /* Read directly into the destination */ 1384 ret = bdrv_driver_preadv(bs, offset + progress, 1385 MIN(pnum - skip_bytes, bytes - progress), 1386 qiov, qiov_offset + progress, 0); 1387 if (ret < 0) { 1388 goto err; 1389 } 1390 } 1391 1392 cluster_offset += pnum; 1393 cluster_bytes -= pnum; 1394 progress += pnum - skip_bytes; 1395 skip_bytes = 0; 1396 } 1397 ret = 0; 1398 1399 err: 1400 qemu_vfree(bounce_buffer); 1401 return ret; 1402 } 1403 1404 /* 1405 * Forwards an already correctly aligned request to the BlockDriver. This 1406 * handles copy on read, zeroing after EOF, and fragmentation of large 1407 * reads; any other features must be implemented by the caller. 1408 */ 1409 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1410 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1411 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1412 { 1413 BlockDriverState *bs = child->bs; 1414 int64_t total_bytes, max_bytes; 1415 int ret = 0; 1416 uint64_t bytes_remaining = bytes; 1417 int max_transfer; 1418 1419 assert(is_power_of_2(align)); 1420 assert((offset & (align - 1)) == 0); 1421 assert((bytes & (align - 1)) == 0); 1422 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1423 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1424 align); 1425 1426 /* TODO: We would need a per-BDS .supported_read_flags and 1427 * potential fallback support, if we ever implement any read flags 1428 * to pass through to drivers. For now, there aren't any 1429 * passthrough flags. */ 1430 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ | 1431 BDRV_REQ_PREFETCH))); 1432 1433 /* Handle Copy on Read and associated serialisation */ 1434 if (flags & BDRV_REQ_COPY_ON_READ) { 1435 /* If we touch the same cluster it counts as an overlap. This 1436 * guarantees that allocating writes will be serialized and not race 1437 * with each other for the same cluster. For example, in copy-on-read 1438 * it ensures that the CoR read and write operations are atomic and 1439 * guest writes cannot interleave between them. */ 1440 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1441 } 1442 1443 /* BDRV_REQ_SERIALISING is only for write operation */ 1444 assert(!(flags & BDRV_REQ_SERIALISING)); 1445 1446 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1447 wait_serialising_requests(req); 1448 } 1449 1450 if (flags & BDRV_REQ_COPY_ON_READ) { 1451 int64_t pnum; 1452 1453 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1454 if (ret < 0) { 1455 goto out; 1456 } 1457 1458 if (!ret || pnum != bytes) { 1459 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1460 qiov, qiov_offset, flags); 1461 goto out; 1462 } else if (flags & BDRV_REQ_PREFETCH) { 1463 goto out; 1464 } 1465 } 1466 1467 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1468 total_bytes = bdrv_getlength(bs); 1469 if (total_bytes < 0) { 1470 ret = total_bytes; 1471 goto out; 1472 } 1473 1474 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1475 if (bytes <= max_bytes && bytes <= max_transfer) { 1476 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0); 1477 goto out; 1478 } 1479 1480 while (bytes_remaining) { 1481 int num; 1482 1483 if (max_bytes) { 1484 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1485 assert(num); 1486 1487 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1488 num, qiov, bytes - bytes_remaining, 0); 1489 max_bytes -= num; 1490 } else { 1491 num = bytes_remaining; 1492 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1493 bytes_remaining); 1494 } 1495 if (ret < 0) { 1496 goto out; 1497 } 1498 bytes_remaining -= num; 1499 } 1500 1501 out: 1502 return ret < 0 ? ret : 0; 1503 } 1504 1505 /* 1506 * Request padding 1507 * 1508 * |<---- align ----->| |<----- align ---->| 1509 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1510 * | | | | | | 1511 * -*----------$-------*-------- ... --------*-----$------------*--- 1512 * | | | | | | 1513 * | offset | | end | 1514 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1515 * [buf ... ) [tail_buf ) 1516 * 1517 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1518 * is placed at the beginning of @buf and @tail at the @end. 1519 * 1520 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1521 * around tail, if tail exists. 1522 * 1523 * @merge_reads is true for small requests, 1524 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1525 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1526 */ 1527 typedef struct BdrvRequestPadding { 1528 uint8_t *buf; 1529 size_t buf_len; 1530 uint8_t *tail_buf; 1531 size_t head; 1532 size_t tail; 1533 bool merge_reads; 1534 QEMUIOVector local_qiov; 1535 } BdrvRequestPadding; 1536 1537 static bool bdrv_init_padding(BlockDriverState *bs, 1538 int64_t offset, int64_t bytes, 1539 BdrvRequestPadding *pad) 1540 { 1541 uint64_t align = bs->bl.request_alignment; 1542 size_t sum; 1543 1544 memset(pad, 0, sizeof(*pad)); 1545 1546 pad->head = offset & (align - 1); 1547 pad->tail = ((offset + bytes) & (align - 1)); 1548 if (pad->tail) { 1549 pad->tail = align - pad->tail; 1550 } 1551 1552 if ((!pad->head && !pad->tail) || !bytes) { 1553 return false; 1554 } 1555 1556 sum = pad->head + bytes + pad->tail; 1557 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1558 pad->buf = qemu_blockalign(bs, pad->buf_len); 1559 pad->merge_reads = sum == pad->buf_len; 1560 if (pad->tail) { 1561 pad->tail_buf = pad->buf + pad->buf_len - align; 1562 } 1563 1564 return true; 1565 } 1566 1567 static int bdrv_padding_rmw_read(BdrvChild *child, 1568 BdrvTrackedRequest *req, 1569 BdrvRequestPadding *pad, 1570 bool zero_middle) 1571 { 1572 QEMUIOVector local_qiov; 1573 BlockDriverState *bs = child->bs; 1574 uint64_t align = bs->bl.request_alignment; 1575 int ret; 1576 1577 assert(req->serialising && pad->buf); 1578 1579 if (pad->head || pad->merge_reads) { 1580 uint64_t bytes = pad->merge_reads ? pad->buf_len : align; 1581 1582 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1583 1584 if (pad->head) { 1585 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1586 } 1587 if (pad->merge_reads && pad->tail) { 1588 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1589 } 1590 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1591 align, &local_qiov, 0, 0); 1592 if (ret < 0) { 1593 return ret; 1594 } 1595 if (pad->head) { 1596 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1597 } 1598 if (pad->merge_reads && pad->tail) { 1599 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1600 } 1601 1602 if (pad->merge_reads) { 1603 goto zero_mem; 1604 } 1605 } 1606 1607 if (pad->tail) { 1608 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1609 1610 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1611 ret = bdrv_aligned_preadv( 1612 child, req, 1613 req->overlap_offset + req->overlap_bytes - align, 1614 align, align, &local_qiov, 0, 0); 1615 if (ret < 0) { 1616 return ret; 1617 } 1618 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1619 } 1620 1621 zero_mem: 1622 if (zero_middle) { 1623 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1624 } 1625 1626 return 0; 1627 } 1628 1629 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1630 { 1631 if (pad->buf) { 1632 qemu_vfree(pad->buf); 1633 qemu_iovec_destroy(&pad->local_qiov); 1634 } 1635 } 1636 1637 /* 1638 * bdrv_pad_request 1639 * 1640 * Exchange request parameters with padded request if needed. Don't include RMW 1641 * read of padding, bdrv_padding_rmw_read() should be called separately if 1642 * needed. 1643 * 1644 * All parameters except @bs are in-out: they represent original request at 1645 * function call and padded (if padding needed) at function finish. 1646 * 1647 * Function always succeeds. 1648 */ 1649 static bool bdrv_pad_request(BlockDriverState *bs, 1650 QEMUIOVector **qiov, size_t *qiov_offset, 1651 int64_t *offset, unsigned int *bytes, 1652 BdrvRequestPadding *pad) 1653 { 1654 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1655 return false; 1656 } 1657 1658 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1659 *qiov, *qiov_offset, *bytes, 1660 pad->buf + pad->buf_len - pad->tail, pad->tail); 1661 *bytes += pad->head + pad->tail; 1662 *offset -= pad->head; 1663 *qiov = &pad->local_qiov; 1664 *qiov_offset = 0; 1665 1666 return true; 1667 } 1668 1669 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1670 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1671 BdrvRequestFlags flags) 1672 { 1673 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1674 } 1675 1676 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1677 int64_t offset, unsigned int bytes, 1678 QEMUIOVector *qiov, size_t qiov_offset, 1679 BdrvRequestFlags flags) 1680 { 1681 BlockDriverState *bs = child->bs; 1682 BdrvTrackedRequest req; 1683 BdrvRequestPadding pad; 1684 int ret; 1685 1686 trace_bdrv_co_preadv(bs, offset, bytes, flags); 1687 1688 ret = bdrv_check_byte_request(bs, offset, bytes); 1689 if (ret < 0) { 1690 return ret; 1691 } 1692 1693 bdrv_inc_in_flight(bs); 1694 1695 /* Don't do copy-on-read if we read data before write operation */ 1696 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1697 flags |= BDRV_REQ_COPY_ON_READ; 1698 } 1699 1700 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad); 1701 1702 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1703 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1704 bs->bl.request_alignment, 1705 qiov, qiov_offset, flags); 1706 tracked_request_end(&req); 1707 bdrv_dec_in_flight(bs); 1708 1709 bdrv_padding_destroy(&pad); 1710 1711 return ret; 1712 } 1713 1714 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1715 int64_t offset, int bytes, BdrvRequestFlags flags) 1716 { 1717 BlockDriver *drv = bs->drv; 1718 QEMUIOVector qiov; 1719 void *buf = NULL; 1720 int ret = 0; 1721 bool need_flush = false; 1722 int head = 0; 1723 int tail = 0; 1724 1725 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1726 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1727 bs->bl.request_alignment); 1728 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1729 1730 if (!drv) { 1731 return -ENOMEDIUM; 1732 } 1733 1734 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1735 return -ENOTSUP; 1736 } 1737 1738 assert(alignment % bs->bl.request_alignment == 0); 1739 head = offset % alignment; 1740 tail = (offset + bytes) % alignment; 1741 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1742 assert(max_write_zeroes >= bs->bl.request_alignment); 1743 1744 while (bytes > 0 && !ret) { 1745 int num = bytes; 1746 1747 /* Align request. Block drivers can expect the "bulk" of the request 1748 * to be aligned, and that unaligned requests do not cross cluster 1749 * boundaries. 1750 */ 1751 if (head) { 1752 /* Make a small request up to the first aligned sector. For 1753 * convenience, limit this request to max_transfer even if 1754 * we don't need to fall back to writes. */ 1755 num = MIN(MIN(bytes, max_transfer), alignment - head); 1756 head = (head + num) % alignment; 1757 assert(num < max_write_zeroes); 1758 } else if (tail && num > alignment) { 1759 /* Shorten the request to the last aligned sector. */ 1760 num -= tail; 1761 } 1762 1763 /* limit request size */ 1764 if (num > max_write_zeroes) { 1765 num = max_write_zeroes; 1766 } 1767 1768 ret = -ENOTSUP; 1769 /* First try the efficient write zeroes operation */ 1770 if (drv->bdrv_co_pwrite_zeroes) { 1771 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1772 flags & bs->supported_zero_flags); 1773 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1774 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1775 need_flush = true; 1776 } 1777 } else { 1778 assert(!bs->supported_zero_flags); 1779 } 1780 1781 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1782 /* Fall back to bounce buffer if write zeroes is unsupported */ 1783 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1784 1785 if ((flags & BDRV_REQ_FUA) && 1786 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1787 /* No need for bdrv_driver_pwrite() to do a fallback 1788 * flush on each chunk; use just one at the end */ 1789 write_flags &= ~BDRV_REQ_FUA; 1790 need_flush = true; 1791 } 1792 num = MIN(num, max_transfer); 1793 if (buf == NULL) { 1794 buf = qemu_try_blockalign0(bs, num); 1795 if (buf == NULL) { 1796 ret = -ENOMEM; 1797 goto fail; 1798 } 1799 } 1800 qemu_iovec_init_buf(&qiov, buf, num); 1801 1802 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1803 1804 /* Keep bounce buffer around if it is big enough for all 1805 * all future requests. 1806 */ 1807 if (num < max_transfer) { 1808 qemu_vfree(buf); 1809 buf = NULL; 1810 } 1811 } 1812 1813 offset += num; 1814 bytes -= num; 1815 } 1816 1817 fail: 1818 if (ret == 0 && need_flush) { 1819 ret = bdrv_co_flush(bs); 1820 } 1821 qemu_vfree(buf); 1822 return ret; 1823 } 1824 1825 static inline int coroutine_fn 1826 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1827 BdrvTrackedRequest *req, int flags) 1828 { 1829 BlockDriverState *bs = child->bs; 1830 bool waited; 1831 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1832 1833 if (bs->read_only) { 1834 return -EPERM; 1835 } 1836 1837 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1838 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1839 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1840 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1841 assert(!(flags & ~BDRV_REQ_MASK)); 1842 1843 if (flags & BDRV_REQ_SERIALISING) { 1844 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1845 } 1846 1847 waited = wait_serialising_requests(req); 1848 1849 assert(!waited || !req->serialising || 1850 is_request_serialising_and_aligned(req)); 1851 assert(req->overlap_offset <= offset); 1852 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1853 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1854 1855 switch (req->type) { 1856 case BDRV_TRACKED_WRITE: 1857 case BDRV_TRACKED_DISCARD: 1858 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1859 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1860 } else { 1861 assert(child->perm & BLK_PERM_WRITE); 1862 } 1863 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1864 req); 1865 case BDRV_TRACKED_TRUNCATE: 1866 assert(child->perm & BLK_PERM_RESIZE); 1867 return 0; 1868 default: 1869 abort(); 1870 } 1871 } 1872 1873 static inline void coroutine_fn 1874 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1875 BdrvTrackedRequest *req, int ret) 1876 { 1877 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1878 BlockDriverState *bs = child->bs; 1879 1880 atomic_inc(&bs->write_gen); 1881 1882 /* 1883 * Discard cannot extend the image, but in error handling cases, such as 1884 * when reverting a qcow2 cluster allocation, the discarded range can pass 1885 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1886 * here. Instead, just skip it, since semantically a discard request 1887 * beyond EOF cannot expand the image anyway. 1888 */ 1889 if (ret == 0 && 1890 (req->type == BDRV_TRACKED_TRUNCATE || 1891 end_sector > bs->total_sectors) && 1892 req->type != BDRV_TRACKED_DISCARD) { 1893 bs->total_sectors = end_sector; 1894 bdrv_parent_cb_resize(bs); 1895 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1896 } 1897 if (req->bytes) { 1898 switch (req->type) { 1899 case BDRV_TRACKED_WRITE: 1900 stat64_max(&bs->wr_highest_offset, offset + bytes); 1901 /* fall through, to set dirty bits */ 1902 case BDRV_TRACKED_DISCARD: 1903 bdrv_set_dirty(bs, offset, bytes); 1904 break; 1905 default: 1906 break; 1907 } 1908 } 1909 } 1910 1911 /* 1912 * Forwards an already correctly aligned write request to the BlockDriver, 1913 * after possibly fragmenting it. 1914 */ 1915 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1916 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1917 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1918 { 1919 BlockDriverState *bs = child->bs; 1920 BlockDriver *drv = bs->drv; 1921 int ret; 1922 1923 uint64_t bytes_remaining = bytes; 1924 int max_transfer; 1925 1926 if (!drv) { 1927 return -ENOMEDIUM; 1928 } 1929 1930 if (bdrv_has_readonly_bitmaps(bs)) { 1931 return -EPERM; 1932 } 1933 1934 assert(is_power_of_2(align)); 1935 assert((offset & (align - 1)) == 0); 1936 assert((bytes & (align - 1)) == 0); 1937 assert(!qiov || qiov_offset + bytes <= qiov->size); 1938 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1939 align); 1940 1941 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1942 1943 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1944 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1945 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1946 flags |= BDRV_REQ_ZERO_WRITE; 1947 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1948 flags |= BDRV_REQ_MAY_UNMAP; 1949 } 1950 } 1951 1952 if (ret < 0) { 1953 /* Do nothing, write notifier decided to fail this request */ 1954 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1955 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1956 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1957 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1958 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1959 qiov, qiov_offset); 1960 } else if (bytes <= max_transfer) { 1961 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1962 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1963 } else { 1964 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1965 while (bytes_remaining) { 1966 int num = MIN(bytes_remaining, max_transfer); 1967 int local_flags = flags; 1968 1969 assert(num); 1970 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1971 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1972 /* If FUA is going to be emulated by flush, we only 1973 * need to flush on the last iteration */ 1974 local_flags &= ~BDRV_REQ_FUA; 1975 } 1976 1977 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1978 num, qiov, bytes - bytes_remaining, 1979 local_flags); 1980 if (ret < 0) { 1981 break; 1982 } 1983 bytes_remaining -= num; 1984 } 1985 } 1986 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1987 1988 if (ret >= 0) { 1989 ret = 0; 1990 } 1991 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1992 1993 return ret; 1994 } 1995 1996 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1997 int64_t offset, 1998 unsigned int bytes, 1999 BdrvRequestFlags flags, 2000 BdrvTrackedRequest *req) 2001 { 2002 BlockDriverState *bs = child->bs; 2003 QEMUIOVector local_qiov; 2004 uint64_t align = bs->bl.request_alignment; 2005 int ret = 0; 2006 bool padding; 2007 BdrvRequestPadding pad; 2008 2009 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2010 if (padding) { 2011 mark_request_serialising(req, align); 2012 wait_serialising_requests(req); 2013 2014 bdrv_padding_rmw_read(child, req, &pad, true); 2015 2016 if (pad.head || pad.merge_reads) { 2017 int64_t aligned_offset = offset & ~(align - 1); 2018 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2019 2020 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2021 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2022 align, &local_qiov, 0, 2023 flags & ~BDRV_REQ_ZERO_WRITE); 2024 if (ret < 0 || pad.merge_reads) { 2025 /* Error or all work is done */ 2026 goto out; 2027 } 2028 offset += write_bytes - pad.head; 2029 bytes -= write_bytes - pad.head; 2030 } 2031 } 2032 2033 assert(!bytes || (offset & (align - 1)) == 0); 2034 if (bytes >= align) { 2035 /* Write the aligned part in the middle. */ 2036 uint64_t aligned_bytes = bytes & ~(align - 1); 2037 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2038 NULL, 0, flags); 2039 if (ret < 0) { 2040 goto out; 2041 } 2042 bytes -= aligned_bytes; 2043 offset += aligned_bytes; 2044 } 2045 2046 assert(!bytes || (offset & (align - 1)) == 0); 2047 if (bytes) { 2048 assert(align == pad.tail + bytes); 2049 2050 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2051 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2052 &local_qiov, 0, 2053 flags & ~BDRV_REQ_ZERO_WRITE); 2054 } 2055 2056 out: 2057 bdrv_padding_destroy(&pad); 2058 2059 return ret; 2060 } 2061 2062 /* 2063 * Handle a write request in coroutine context 2064 */ 2065 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2066 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 2067 BdrvRequestFlags flags) 2068 { 2069 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2070 } 2071 2072 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2073 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset, 2074 BdrvRequestFlags flags) 2075 { 2076 BlockDriverState *bs = child->bs; 2077 BdrvTrackedRequest req; 2078 uint64_t align = bs->bl.request_alignment; 2079 BdrvRequestPadding pad; 2080 int ret; 2081 2082 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 2083 2084 if (!bs->drv) { 2085 return -ENOMEDIUM; 2086 } 2087 2088 ret = bdrv_check_byte_request(bs, offset, bytes); 2089 if (ret < 0) { 2090 return ret; 2091 } 2092 2093 /* If the request is misaligned then we can't make it efficient */ 2094 if ((flags & BDRV_REQ_NO_FALLBACK) && 2095 !QEMU_IS_ALIGNED(offset | bytes, align)) 2096 { 2097 return -ENOTSUP; 2098 } 2099 2100 bdrv_inc_in_flight(bs); 2101 /* 2102 * Align write if necessary by performing a read-modify-write cycle. 2103 * Pad qiov with the read parts and be sure to have a tracked request not 2104 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 2105 */ 2106 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2107 2108 if (flags & BDRV_REQ_ZERO_WRITE) { 2109 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2110 goto out; 2111 } 2112 2113 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) { 2114 mark_request_serialising(&req, align); 2115 wait_serialising_requests(&req); 2116 bdrv_padding_rmw_read(child, &req, &pad, false); 2117 } 2118 2119 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2120 qiov, qiov_offset, flags); 2121 2122 bdrv_padding_destroy(&pad); 2123 2124 out: 2125 tracked_request_end(&req); 2126 bdrv_dec_in_flight(bs); 2127 2128 return ret; 2129 } 2130 2131 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2132 int bytes, BdrvRequestFlags flags) 2133 { 2134 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2135 2136 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2137 flags &= ~BDRV_REQ_MAY_UNMAP; 2138 } 2139 2140 return bdrv_co_pwritev(child, offset, bytes, NULL, 2141 BDRV_REQ_ZERO_WRITE | flags); 2142 } 2143 2144 /* 2145 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2146 */ 2147 int bdrv_flush_all(void) 2148 { 2149 BdrvNextIterator it; 2150 BlockDriverState *bs = NULL; 2151 int result = 0; 2152 2153 /* 2154 * bdrv queue is managed by record/replay, 2155 * creating new flush request for stopping 2156 * the VM may break the determinism 2157 */ 2158 if (replay_events_enabled()) { 2159 return result; 2160 } 2161 2162 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2163 AioContext *aio_context = bdrv_get_aio_context(bs); 2164 int ret; 2165 2166 aio_context_acquire(aio_context); 2167 ret = bdrv_flush(bs); 2168 if (ret < 0 && !result) { 2169 result = ret; 2170 } 2171 aio_context_release(aio_context); 2172 } 2173 2174 return result; 2175 } 2176 2177 2178 typedef struct BdrvCoBlockStatusData { 2179 BlockDriverState *bs; 2180 BlockDriverState *base; 2181 bool want_zero; 2182 int64_t offset; 2183 int64_t bytes; 2184 int64_t *pnum; 2185 int64_t *map; 2186 BlockDriverState **file; 2187 int ret; 2188 bool done; 2189 } BdrvCoBlockStatusData; 2190 2191 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2192 bool want_zero, 2193 int64_t offset, 2194 int64_t bytes, 2195 int64_t *pnum, 2196 int64_t *map, 2197 BlockDriverState **file) 2198 { 2199 assert(bs->file && bs->file->bs); 2200 *pnum = bytes; 2201 *map = offset; 2202 *file = bs->file->bs; 2203 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2204 } 2205 2206 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2207 bool want_zero, 2208 int64_t offset, 2209 int64_t bytes, 2210 int64_t *pnum, 2211 int64_t *map, 2212 BlockDriverState **file) 2213 { 2214 assert(bs->backing && bs->backing->bs); 2215 *pnum = bytes; 2216 *map = offset; 2217 *file = bs->backing->bs; 2218 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2219 } 2220 2221 /* 2222 * Returns the allocation status of the specified sectors. 2223 * Drivers not implementing the functionality are assumed to not support 2224 * backing files, hence all their sectors are reported as allocated. 2225 * 2226 * If 'want_zero' is true, the caller is querying for mapping 2227 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2228 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2229 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2230 * 2231 * If 'offset' is beyond the end of the disk image the return value is 2232 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2233 * 2234 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2235 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2236 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2237 * 2238 * 'pnum' is set to the number of bytes (including and immediately 2239 * following the specified offset) that are easily known to be in the 2240 * same allocated/unallocated state. Note that a second call starting 2241 * at the original offset plus returned pnum may have the same status. 2242 * The returned value is non-zero on success except at end-of-file. 2243 * 2244 * Returns negative errno on failure. Otherwise, if the 2245 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2246 * set to the host mapping and BDS corresponding to the guest offset. 2247 */ 2248 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2249 bool want_zero, 2250 int64_t offset, int64_t bytes, 2251 int64_t *pnum, int64_t *map, 2252 BlockDriverState **file) 2253 { 2254 int64_t total_size; 2255 int64_t n; /* bytes */ 2256 int ret; 2257 int64_t local_map = 0; 2258 BlockDriverState *local_file = NULL; 2259 int64_t aligned_offset, aligned_bytes; 2260 uint32_t align; 2261 2262 assert(pnum); 2263 *pnum = 0; 2264 total_size = bdrv_getlength(bs); 2265 if (total_size < 0) { 2266 ret = total_size; 2267 goto early_out; 2268 } 2269 2270 if (offset >= total_size) { 2271 ret = BDRV_BLOCK_EOF; 2272 goto early_out; 2273 } 2274 if (!bytes) { 2275 ret = 0; 2276 goto early_out; 2277 } 2278 2279 n = total_size - offset; 2280 if (n < bytes) { 2281 bytes = n; 2282 } 2283 2284 /* Must be non-NULL or bdrv_getlength() would have failed */ 2285 assert(bs->drv); 2286 if (!bs->drv->bdrv_co_block_status) { 2287 *pnum = bytes; 2288 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2289 if (offset + bytes == total_size) { 2290 ret |= BDRV_BLOCK_EOF; 2291 } 2292 if (bs->drv->protocol_name) { 2293 ret |= BDRV_BLOCK_OFFSET_VALID; 2294 local_map = offset; 2295 local_file = bs; 2296 } 2297 goto early_out; 2298 } 2299 2300 bdrv_inc_in_flight(bs); 2301 2302 /* Round out to request_alignment boundaries */ 2303 align = bs->bl.request_alignment; 2304 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2305 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2306 2307 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2308 aligned_bytes, pnum, &local_map, 2309 &local_file); 2310 if (ret < 0) { 2311 *pnum = 0; 2312 goto out; 2313 } 2314 2315 /* 2316 * The driver's result must be a non-zero multiple of request_alignment. 2317 * Clamp pnum and adjust map to original request. 2318 */ 2319 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2320 align > offset - aligned_offset); 2321 if (ret & BDRV_BLOCK_RECURSE) { 2322 assert(ret & BDRV_BLOCK_DATA); 2323 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2324 assert(!(ret & BDRV_BLOCK_ZERO)); 2325 } 2326 2327 *pnum -= offset - aligned_offset; 2328 if (*pnum > bytes) { 2329 *pnum = bytes; 2330 } 2331 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2332 local_map += offset - aligned_offset; 2333 } 2334 2335 if (ret & BDRV_BLOCK_RAW) { 2336 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2337 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2338 *pnum, pnum, &local_map, &local_file); 2339 goto out; 2340 } 2341 2342 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2343 ret |= BDRV_BLOCK_ALLOCATED; 2344 } else if (want_zero) { 2345 if (bdrv_unallocated_blocks_are_zero(bs)) { 2346 ret |= BDRV_BLOCK_ZERO; 2347 } else if (bs->backing) { 2348 BlockDriverState *bs2 = bs->backing->bs; 2349 int64_t size2 = bdrv_getlength(bs2); 2350 2351 if (size2 >= 0 && offset >= size2) { 2352 ret |= BDRV_BLOCK_ZERO; 2353 } 2354 } 2355 } 2356 2357 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2358 local_file && local_file != bs && 2359 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2360 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2361 int64_t file_pnum; 2362 int ret2; 2363 2364 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2365 *pnum, &file_pnum, NULL, NULL); 2366 if (ret2 >= 0) { 2367 /* Ignore errors. This is just providing extra information, it 2368 * is useful but not necessary. 2369 */ 2370 if (ret2 & BDRV_BLOCK_EOF && 2371 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2372 /* 2373 * It is valid for the format block driver to read 2374 * beyond the end of the underlying file's current 2375 * size; such areas read as zero. 2376 */ 2377 ret |= BDRV_BLOCK_ZERO; 2378 } else { 2379 /* Limit request to the range reported by the protocol driver */ 2380 *pnum = file_pnum; 2381 ret |= (ret2 & BDRV_BLOCK_ZERO); 2382 } 2383 } 2384 } 2385 2386 out: 2387 bdrv_dec_in_flight(bs); 2388 if (ret >= 0 && offset + *pnum == total_size) { 2389 ret |= BDRV_BLOCK_EOF; 2390 } 2391 early_out: 2392 if (file) { 2393 *file = local_file; 2394 } 2395 if (map) { 2396 *map = local_map; 2397 } 2398 return ret; 2399 } 2400 2401 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2402 BlockDriverState *base, 2403 bool want_zero, 2404 int64_t offset, 2405 int64_t bytes, 2406 int64_t *pnum, 2407 int64_t *map, 2408 BlockDriverState **file) 2409 { 2410 BlockDriverState *p; 2411 int ret = 0; 2412 bool first = true; 2413 2414 assert(bs != base); 2415 for (p = bs; p != base; p = backing_bs(p)) { 2416 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2417 file); 2418 if (ret < 0) { 2419 break; 2420 } 2421 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2422 /* 2423 * Reading beyond the end of the file continues to read 2424 * zeroes, but we can only widen the result to the 2425 * unallocated length we learned from an earlier 2426 * iteration. 2427 */ 2428 *pnum = bytes; 2429 } 2430 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2431 break; 2432 } 2433 /* [offset, pnum] unallocated on this layer, which could be only 2434 * the first part of [offset, bytes]. */ 2435 bytes = MIN(bytes, *pnum); 2436 first = false; 2437 } 2438 return ret; 2439 } 2440 2441 /* Coroutine wrapper for bdrv_block_status_above() */ 2442 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2443 { 2444 BdrvCoBlockStatusData *data = opaque; 2445 2446 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2447 data->want_zero, 2448 data->offset, data->bytes, 2449 data->pnum, data->map, data->file); 2450 data->done = true; 2451 aio_wait_kick(); 2452 } 2453 2454 /* 2455 * Synchronous wrapper around bdrv_co_block_status_above(). 2456 * 2457 * See bdrv_co_block_status_above() for details. 2458 */ 2459 static int bdrv_common_block_status_above(BlockDriverState *bs, 2460 BlockDriverState *base, 2461 bool want_zero, int64_t offset, 2462 int64_t bytes, int64_t *pnum, 2463 int64_t *map, 2464 BlockDriverState **file) 2465 { 2466 Coroutine *co; 2467 BdrvCoBlockStatusData data = { 2468 .bs = bs, 2469 .base = base, 2470 .want_zero = want_zero, 2471 .offset = offset, 2472 .bytes = bytes, 2473 .pnum = pnum, 2474 .map = map, 2475 .file = file, 2476 .done = false, 2477 }; 2478 2479 if (qemu_in_coroutine()) { 2480 /* Fast-path if already in coroutine context */ 2481 bdrv_block_status_above_co_entry(&data); 2482 } else { 2483 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2484 bdrv_coroutine_enter(bs, co); 2485 BDRV_POLL_WHILE(bs, !data.done); 2486 } 2487 return data.ret; 2488 } 2489 2490 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2491 int64_t offset, int64_t bytes, int64_t *pnum, 2492 int64_t *map, BlockDriverState **file) 2493 { 2494 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2495 pnum, map, file); 2496 } 2497 2498 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2499 int64_t *pnum, int64_t *map, BlockDriverState **file) 2500 { 2501 return bdrv_block_status_above(bs, backing_bs(bs), 2502 offset, bytes, pnum, map, file); 2503 } 2504 2505 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2506 int64_t bytes, int64_t *pnum) 2507 { 2508 int ret; 2509 int64_t dummy; 2510 2511 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2512 bytes, pnum ? pnum : &dummy, NULL, 2513 NULL); 2514 if (ret < 0) { 2515 return ret; 2516 } 2517 return !!(ret & BDRV_BLOCK_ALLOCATED); 2518 } 2519 2520 /* 2521 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2522 * 2523 * Return 1 if (a prefix of) the given range is allocated in any image 2524 * between BASE and TOP (BASE is only included if include_base is set). 2525 * BASE can be NULL to check if the given offset is allocated in any 2526 * image of the chain. Return 0 otherwise, or negative errno on 2527 * failure. 2528 * 2529 * 'pnum' is set to the number of bytes (including and immediately 2530 * following the specified offset) that are known to be in the same 2531 * allocated/unallocated state. Note that a subsequent call starting 2532 * at 'offset + *pnum' may return the same allocation status (in other 2533 * words, the result is not necessarily the maximum possible range); 2534 * but 'pnum' will only be 0 when end of file is reached. 2535 * 2536 */ 2537 int bdrv_is_allocated_above(BlockDriverState *top, 2538 BlockDriverState *base, 2539 bool include_base, int64_t offset, 2540 int64_t bytes, int64_t *pnum) 2541 { 2542 BlockDriverState *intermediate; 2543 int ret; 2544 int64_t n = bytes; 2545 2546 assert(base || !include_base); 2547 2548 intermediate = top; 2549 while (include_base || intermediate != base) { 2550 int64_t pnum_inter; 2551 int64_t size_inter; 2552 2553 assert(intermediate); 2554 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2555 if (ret < 0) { 2556 return ret; 2557 } 2558 if (ret) { 2559 *pnum = pnum_inter; 2560 return 1; 2561 } 2562 2563 size_inter = bdrv_getlength(intermediate); 2564 if (size_inter < 0) { 2565 return size_inter; 2566 } 2567 if (n > pnum_inter && 2568 (intermediate == top || offset + pnum_inter < size_inter)) { 2569 n = pnum_inter; 2570 } 2571 2572 if (intermediate == base) { 2573 break; 2574 } 2575 2576 intermediate = backing_bs(intermediate); 2577 } 2578 2579 *pnum = n; 2580 return 0; 2581 } 2582 2583 typedef struct BdrvVmstateCo { 2584 BlockDriverState *bs; 2585 QEMUIOVector *qiov; 2586 int64_t pos; 2587 bool is_read; 2588 int ret; 2589 } BdrvVmstateCo; 2590 2591 static int coroutine_fn 2592 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2593 bool is_read) 2594 { 2595 BlockDriver *drv = bs->drv; 2596 int ret = -ENOTSUP; 2597 2598 bdrv_inc_in_flight(bs); 2599 2600 if (!drv) { 2601 ret = -ENOMEDIUM; 2602 } else if (drv->bdrv_load_vmstate) { 2603 if (is_read) { 2604 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2605 } else { 2606 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2607 } 2608 } else if (bs->file) { 2609 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2610 } 2611 2612 bdrv_dec_in_flight(bs); 2613 return ret; 2614 } 2615 2616 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2617 { 2618 BdrvVmstateCo *co = opaque; 2619 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2620 aio_wait_kick(); 2621 } 2622 2623 static inline int 2624 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2625 bool is_read) 2626 { 2627 if (qemu_in_coroutine()) { 2628 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2629 } else { 2630 BdrvVmstateCo data = { 2631 .bs = bs, 2632 .qiov = qiov, 2633 .pos = pos, 2634 .is_read = is_read, 2635 .ret = -EINPROGRESS, 2636 }; 2637 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2638 2639 bdrv_coroutine_enter(bs, co); 2640 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2641 return data.ret; 2642 } 2643 } 2644 2645 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2646 int64_t pos, int size) 2647 { 2648 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2649 int ret; 2650 2651 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2652 if (ret < 0) { 2653 return ret; 2654 } 2655 2656 return size; 2657 } 2658 2659 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2660 { 2661 return bdrv_rw_vmstate(bs, qiov, pos, false); 2662 } 2663 2664 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2665 int64_t pos, int size) 2666 { 2667 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2668 int ret; 2669 2670 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2671 if (ret < 0) { 2672 return ret; 2673 } 2674 2675 return size; 2676 } 2677 2678 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2679 { 2680 return bdrv_rw_vmstate(bs, qiov, pos, true); 2681 } 2682 2683 /**************************************************************/ 2684 /* async I/Os */ 2685 2686 void bdrv_aio_cancel(BlockAIOCB *acb) 2687 { 2688 qemu_aio_ref(acb); 2689 bdrv_aio_cancel_async(acb); 2690 while (acb->refcnt > 1) { 2691 if (acb->aiocb_info->get_aio_context) { 2692 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2693 } else if (acb->bs) { 2694 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2695 * assert that we're not using an I/O thread. Thread-safe 2696 * code should use bdrv_aio_cancel_async exclusively. 2697 */ 2698 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2699 aio_poll(bdrv_get_aio_context(acb->bs), true); 2700 } else { 2701 abort(); 2702 } 2703 } 2704 qemu_aio_unref(acb); 2705 } 2706 2707 /* Async version of aio cancel. The caller is not blocked if the acb implements 2708 * cancel_async, otherwise we do nothing and let the request normally complete. 2709 * In either case the completion callback must be called. */ 2710 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2711 { 2712 if (acb->aiocb_info->cancel_async) { 2713 acb->aiocb_info->cancel_async(acb); 2714 } 2715 } 2716 2717 /**************************************************************/ 2718 /* Coroutine block device emulation */ 2719 2720 typedef struct FlushCo { 2721 BlockDriverState *bs; 2722 int ret; 2723 } FlushCo; 2724 2725 2726 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2727 { 2728 FlushCo *rwco = opaque; 2729 2730 rwco->ret = bdrv_co_flush(rwco->bs); 2731 aio_wait_kick(); 2732 } 2733 2734 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2735 { 2736 int current_gen; 2737 int ret = 0; 2738 2739 bdrv_inc_in_flight(bs); 2740 2741 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2742 bdrv_is_sg(bs)) { 2743 goto early_exit; 2744 } 2745 2746 qemu_co_mutex_lock(&bs->reqs_lock); 2747 current_gen = atomic_read(&bs->write_gen); 2748 2749 /* Wait until any previous flushes are completed */ 2750 while (bs->active_flush_req) { 2751 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2752 } 2753 2754 /* Flushes reach this point in nondecreasing current_gen order. */ 2755 bs->active_flush_req = true; 2756 qemu_co_mutex_unlock(&bs->reqs_lock); 2757 2758 /* Write back all layers by calling one driver function */ 2759 if (bs->drv->bdrv_co_flush) { 2760 ret = bs->drv->bdrv_co_flush(bs); 2761 goto out; 2762 } 2763 2764 /* Write back cached data to the OS even with cache=unsafe */ 2765 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2766 if (bs->drv->bdrv_co_flush_to_os) { 2767 ret = bs->drv->bdrv_co_flush_to_os(bs); 2768 if (ret < 0) { 2769 goto out; 2770 } 2771 } 2772 2773 /* But don't actually force it to the disk with cache=unsafe */ 2774 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2775 goto flush_parent; 2776 } 2777 2778 /* Check if we really need to flush anything */ 2779 if (bs->flushed_gen == current_gen) { 2780 goto flush_parent; 2781 } 2782 2783 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2784 if (!bs->drv) { 2785 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2786 * (even in case of apparent success) */ 2787 ret = -ENOMEDIUM; 2788 goto out; 2789 } 2790 if (bs->drv->bdrv_co_flush_to_disk) { 2791 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2792 } else if (bs->drv->bdrv_aio_flush) { 2793 BlockAIOCB *acb; 2794 CoroutineIOCompletion co = { 2795 .coroutine = qemu_coroutine_self(), 2796 }; 2797 2798 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2799 if (acb == NULL) { 2800 ret = -EIO; 2801 } else { 2802 qemu_coroutine_yield(); 2803 ret = co.ret; 2804 } 2805 } else { 2806 /* 2807 * Some block drivers always operate in either writethrough or unsafe 2808 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2809 * know how the server works (because the behaviour is hardcoded or 2810 * depends on server-side configuration), so we can't ensure that 2811 * everything is safe on disk. Returning an error doesn't work because 2812 * that would break guests even if the server operates in writethrough 2813 * mode. 2814 * 2815 * Let's hope the user knows what he's doing. 2816 */ 2817 ret = 0; 2818 } 2819 2820 if (ret < 0) { 2821 goto out; 2822 } 2823 2824 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2825 * in the case of cache=unsafe, so there are no useless flushes. 2826 */ 2827 flush_parent: 2828 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2829 out: 2830 /* Notify any pending flushes that we have completed */ 2831 if (ret == 0) { 2832 bs->flushed_gen = current_gen; 2833 } 2834 2835 qemu_co_mutex_lock(&bs->reqs_lock); 2836 bs->active_flush_req = false; 2837 /* Return value is ignored - it's ok if wait queue is empty */ 2838 qemu_co_queue_next(&bs->flush_queue); 2839 qemu_co_mutex_unlock(&bs->reqs_lock); 2840 2841 early_exit: 2842 bdrv_dec_in_flight(bs); 2843 return ret; 2844 } 2845 2846 int bdrv_flush(BlockDriverState *bs) 2847 { 2848 Coroutine *co; 2849 FlushCo flush_co = { 2850 .bs = bs, 2851 .ret = NOT_DONE, 2852 }; 2853 2854 if (qemu_in_coroutine()) { 2855 /* Fast-path if already in coroutine context */ 2856 bdrv_flush_co_entry(&flush_co); 2857 } else { 2858 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2859 bdrv_coroutine_enter(bs, co); 2860 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2861 } 2862 2863 return flush_co.ret; 2864 } 2865 2866 typedef struct DiscardCo { 2867 BdrvChild *child; 2868 int64_t offset; 2869 int64_t bytes; 2870 int ret; 2871 } DiscardCo; 2872 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2873 { 2874 DiscardCo *rwco = opaque; 2875 2876 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2877 aio_wait_kick(); 2878 } 2879 2880 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2881 int64_t bytes) 2882 { 2883 BdrvTrackedRequest req; 2884 int max_pdiscard, ret; 2885 int head, tail, align; 2886 BlockDriverState *bs = child->bs; 2887 2888 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2889 return -ENOMEDIUM; 2890 } 2891 2892 if (bdrv_has_readonly_bitmaps(bs)) { 2893 return -EPERM; 2894 } 2895 2896 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2897 return -EIO; 2898 } 2899 2900 /* Do nothing if disabled. */ 2901 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2902 return 0; 2903 } 2904 2905 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2906 return 0; 2907 } 2908 2909 /* Discard is advisory, but some devices track and coalesce 2910 * unaligned requests, so we must pass everything down rather than 2911 * round here. Still, most devices will just silently ignore 2912 * unaligned requests (by returning -ENOTSUP), so we must fragment 2913 * the request accordingly. */ 2914 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2915 assert(align % bs->bl.request_alignment == 0); 2916 head = offset % align; 2917 tail = (offset + bytes) % align; 2918 2919 bdrv_inc_in_flight(bs); 2920 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2921 2922 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2923 if (ret < 0) { 2924 goto out; 2925 } 2926 2927 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2928 align); 2929 assert(max_pdiscard >= bs->bl.request_alignment); 2930 2931 while (bytes > 0) { 2932 int64_t num = bytes; 2933 2934 if (head) { 2935 /* Make small requests to get to alignment boundaries. */ 2936 num = MIN(bytes, align - head); 2937 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2938 num %= bs->bl.request_alignment; 2939 } 2940 head = (head + num) % align; 2941 assert(num < max_pdiscard); 2942 } else if (tail) { 2943 if (num > align) { 2944 /* Shorten the request to the last aligned cluster. */ 2945 num -= tail; 2946 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2947 tail > bs->bl.request_alignment) { 2948 tail %= bs->bl.request_alignment; 2949 num -= tail; 2950 } 2951 } 2952 /* limit request size */ 2953 if (num > max_pdiscard) { 2954 num = max_pdiscard; 2955 } 2956 2957 if (!bs->drv) { 2958 ret = -ENOMEDIUM; 2959 goto out; 2960 } 2961 if (bs->drv->bdrv_co_pdiscard) { 2962 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2963 } else { 2964 BlockAIOCB *acb; 2965 CoroutineIOCompletion co = { 2966 .coroutine = qemu_coroutine_self(), 2967 }; 2968 2969 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2970 bdrv_co_io_em_complete, &co); 2971 if (acb == NULL) { 2972 ret = -EIO; 2973 goto out; 2974 } else { 2975 qemu_coroutine_yield(); 2976 ret = co.ret; 2977 } 2978 } 2979 if (ret && ret != -ENOTSUP) { 2980 goto out; 2981 } 2982 2983 offset += num; 2984 bytes -= num; 2985 } 2986 ret = 0; 2987 out: 2988 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2989 tracked_request_end(&req); 2990 bdrv_dec_in_flight(bs); 2991 return ret; 2992 } 2993 2994 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 2995 { 2996 Coroutine *co; 2997 DiscardCo rwco = { 2998 .child = child, 2999 .offset = offset, 3000 .bytes = bytes, 3001 .ret = NOT_DONE, 3002 }; 3003 3004 if (qemu_in_coroutine()) { 3005 /* Fast-path if already in coroutine context */ 3006 bdrv_pdiscard_co_entry(&rwco); 3007 } else { 3008 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 3009 bdrv_coroutine_enter(child->bs, co); 3010 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 3011 } 3012 3013 return rwco.ret; 3014 } 3015 3016 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3017 { 3018 BlockDriver *drv = bs->drv; 3019 CoroutineIOCompletion co = { 3020 .coroutine = qemu_coroutine_self(), 3021 }; 3022 BlockAIOCB *acb; 3023 3024 bdrv_inc_in_flight(bs); 3025 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3026 co.ret = -ENOTSUP; 3027 goto out; 3028 } 3029 3030 if (drv->bdrv_co_ioctl) { 3031 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3032 } else { 3033 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3034 if (!acb) { 3035 co.ret = -ENOTSUP; 3036 goto out; 3037 } 3038 qemu_coroutine_yield(); 3039 } 3040 out: 3041 bdrv_dec_in_flight(bs); 3042 return co.ret; 3043 } 3044 3045 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3046 { 3047 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3048 } 3049 3050 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3051 { 3052 return memset(qemu_blockalign(bs, size), 0, size); 3053 } 3054 3055 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3056 { 3057 size_t align = bdrv_opt_mem_align(bs); 3058 3059 /* Ensure that NULL is never returned on success */ 3060 assert(align > 0); 3061 if (size == 0) { 3062 size = align; 3063 } 3064 3065 return qemu_try_memalign(align, size); 3066 } 3067 3068 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3069 { 3070 void *mem = qemu_try_blockalign(bs, size); 3071 3072 if (mem) { 3073 memset(mem, 0, size); 3074 } 3075 3076 return mem; 3077 } 3078 3079 /* 3080 * Check if all memory in this vector is sector aligned. 3081 */ 3082 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3083 { 3084 int i; 3085 size_t alignment = bdrv_min_mem_align(bs); 3086 3087 for (i = 0; i < qiov->niov; i++) { 3088 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3089 return false; 3090 } 3091 if (qiov->iov[i].iov_len % alignment) { 3092 return false; 3093 } 3094 } 3095 3096 return true; 3097 } 3098 3099 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3100 NotifierWithReturn *notifier) 3101 { 3102 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3103 } 3104 3105 void bdrv_io_plug(BlockDriverState *bs) 3106 { 3107 BdrvChild *child; 3108 3109 QLIST_FOREACH(child, &bs->children, next) { 3110 bdrv_io_plug(child->bs); 3111 } 3112 3113 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 3114 BlockDriver *drv = bs->drv; 3115 if (drv && drv->bdrv_io_plug) { 3116 drv->bdrv_io_plug(bs); 3117 } 3118 } 3119 } 3120 3121 void bdrv_io_unplug(BlockDriverState *bs) 3122 { 3123 BdrvChild *child; 3124 3125 assert(bs->io_plugged); 3126 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 3127 BlockDriver *drv = bs->drv; 3128 if (drv && drv->bdrv_io_unplug) { 3129 drv->bdrv_io_unplug(bs); 3130 } 3131 } 3132 3133 QLIST_FOREACH(child, &bs->children, next) { 3134 bdrv_io_unplug(child->bs); 3135 } 3136 } 3137 3138 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3139 { 3140 BdrvChild *child; 3141 3142 if (bs->drv && bs->drv->bdrv_register_buf) { 3143 bs->drv->bdrv_register_buf(bs, host, size); 3144 } 3145 QLIST_FOREACH(child, &bs->children, next) { 3146 bdrv_register_buf(child->bs, host, size); 3147 } 3148 } 3149 3150 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3151 { 3152 BdrvChild *child; 3153 3154 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3155 bs->drv->bdrv_unregister_buf(bs, host); 3156 } 3157 QLIST_FOREACH(child, &bs->children, next) { 3158 bdrv_unregister_buf(child->bs, host); 3159 } 3160 } 3161 3162 static int coroutine_fn bdrv_co_copy_range_internal( 3163 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3164 uint64_t dst_offset, uint64_t bytes, 3165 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3166 bool recurse_src) 3167 { 3168 BdrvTrackedRequest req; 3169 int ret; 3170 3171 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3172 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3173 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3174 3175 if (!dst || !dst->bs) { 3176 return -ENOMEDIUM; 3177 } 3178 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3179 if (ret) { 3180 return ret; 3181 } 3182 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3183 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3184 } 3185 3186 if (!src || !src->bs) { 3187 return -ENOMEDIUM; 3188 } 3189 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3190 if (ret) { 3191 return ret; 3192 } 3193 3194 if (!src->bs->drv->bdrv_co_copy_range_from 3195 || !dst->bs->drv->bdrv_co_copy_range_to 3196 || src->bs->encrypted || dst->bs->encrypted) { 3197 return -ENOTSUP; 3198 } 3199 3200 if (recurse_src) { 3201 bdrv_inc_in_flight(src->bs); 3202 tracked_request_begin(&req, src->bs, src_offset, bytes, 3203 BDRV_TRACKED_READ); 3204 3205 /* BDRV_REQ_SERIALISING is only for write operation */ 3206 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3207 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3208 wait_serialising_requests(&req); 3209 } 3210 3211 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3212 src, src_offset, 3213 dst, dst_offset, 3214 bytes, 3215 read_flags, write_flags); 3216 3217 tracked_request_end(&req); 3218 bdrv_dec_in_flight(src->bs); 3219 } else { 3220 bdrv_inc_in_flight(dst->bs); 3221 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3222 BDRV_TRACKED_WRITE); 3223 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3224 write_flags); 3225 if (!ret) { 3226 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3227 src, src_offset, 3228 dst, dst_offset, 3229 bytes, 3230 read_flags, write_flags); 3231 } 3232 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3233 tracked_request_end(&req); 3234 bdrv_dec_in_flight(dst->bs); 3235 } 3236 3237 return ret; 3238 } 3239 3240 /* Copy range from @src to @dst. 3241 * 3242 * See the comment of bdrv_co_copy_range for the parameter and return value 3243 * semantics. */ 3244 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3245 BdrvChild *dst, uint64_t dst_offset, 3246 uint64_t bytes, 3247 BdrvRequestFlags read_flags, 3248 BdrvRequestFlags write_flags) 3249 { 3250 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3251 read_flags, write_flags); 3252 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3253 bytes, read_flags, write_flags, true); 3254 } 3255 3256 /* Copy range from @src to @dst. 3257 * 3258 * See the comment of bdrv_co_copy_range for the parameter and return value 3259 * semantics. */ 3260 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3261 BdrvChild *dst, uint64_t dst_offset, 3262 uint64_t bytes, 3263 BdrvRequestFlags read_flags, 3264 BdrvRequestFlags write_flags) 3265 { 3266 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3267 read_flags, write_flags); 3268 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3269 bytes, read_flags, write_flags, false); 3270 } 3271 3272 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3273 BdrvChild *dst, uint64_t dst_offset, 3274 uint64_t bytes, BdrvRequestFlags read_flags, 3275 BdrvRequestFlags write_flags) 3276 { 3277 return bdrv_co_copy_range_from(src, src_offset, 3278 dst, dst_offset, 3279 bytes, read_flags, write_flags); 3280 } 3281 3282 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3283 { 3284 BdrvChild *c; 3285 QLIST_FOREACH(c, &bs->parents, next_parent) { 3286 if (c->role->resize) { 3287 c->role->resize(c); 3288 } 3289 } 3290 } 3291 3292 /** 3293 * Truncate file to 'offset' bytes (needed only for file protocols) 3294 */ 3295 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3296 PreallocMode prealloc, Error **errp) 3297 { 3298 BlockDriverState *bs = child->bs; 3299 BlockDriver *drv = bs->drv; 3300 BdrvTrackedRequest req; 3301 int64_t old_size, new_bytes; 3302 int ret; 3303 3304 3305 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3306 if (!drv) { 3307 error_setg(errp, "No medium inserted"); 3308 return -ENOMEDIUM; 3309 } 3310 if (offset < 0) { 3311 error_setg(errp, "Image size cannot be negative"); 3312 return -EINVAL; 3313 } 3314 3315 old_size = bdrv_getlength(bs); 3316 if (old_size < 0) { 3317 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3318 return old_size; 3319 } 3320 3321 if (offset > old_size) { 3322 new_bytes = offset - old_size; 3323 } else { 3324 new_bytes = 0; 3325 } 3326 3327 bdrv_inc_in_flight(bs); 3328 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3329 BDRV_TRACKED_TRUNCATE); 3330 3331 /* If we are growing the image and potentially using preallocation for the 3332 * new area, we need to make sure that no write requests are made to it 3333 * concurrently or they might be overwritten by preallocation. */ 3334 if (new_bytes) { 3335 mark_request_serialising(&req, 1); 3336 } 3337 if (bs->read_only) { 3338 error_setg(errp, "Image is read-only"); 3339 ret = -EACCES; 3340 goto out; 3341 } 3342 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3343 0); 3344 if (ret < 0) { 3345 error_setg_errno(errp, -ret, 3346 "Failed to prepare request for truncation"); 3347 goto out; 3348 } 3349 3350 if (!drv->bdrv_co_truncate) { 3351 if (bs->file && drv->is_filter) { 3352 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3353 goto out; 3354 } 3355 error_setg(errp, "Image format driver does not support resize"); 3356 ret = -ENOTSUP; 3357 goto out; 3358 } 3359 3360 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3361 if (ret < 0) { 3362 goto out; 3363 } 3364 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3365 if (ret < 0) { 3366 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3367 } else { 3368 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3369 } 3370 /* It's possible that truncation succeeded but refresh_total_sectors 3371 * failed, but the latter doesn't affect how we should finish the request. 3372 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3373 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3374 3375 out: 3376 tracked_request_end(&req); 3377 bdrv_dec_in_flight(bs); 3378 3379 return ret; 3380 } 3381 3382 typedef struct TruncateCo { 3383 BdrvChild *child; 3384 int64_t offset; 3385 PreallocMode prealloc; 3386 Error **errp; 3387 int ret; 3388 } TruncateCo; 3389 3390 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3391 { 3392 TruncateCo *tco = opaque; 3393 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3394 tco->errp); 3395 aio_wait_kick(); 3396 } 3397 3398 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3399 Error **errp) 3400 { 3401 Coroutine *co; 3402 TruncateCo tco = { 3403 .child = child, 3404 .offset = offset, 3405 .prealloc = prealloc, 3406 .errp = errp, 3407 .ret = NOT_DONE, 3408 }; 3409 3410 if (qemu_in_coroutine()) { 3411 /* Fast-path if already in coroutine context */ 3412 bdrv_truncate_co_entry(&tco); 3413 } else { 3414 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3415 bdrv_coroutine_enter(child->bs, co); 3416 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3417 } 3418 3419 return tco.ret; 3420 } 3421