xref: /openbmc/qemu/block/io.c (revision f0830823d017af1a4e7dad228e5870cad7eb764b)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41 
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c);
58     }
59 }
60 
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63     IO_OR_GS_CODE();
64 
65     assert(c->quiesced_parent);
66     c->quiesced_parent = false;
67 
68     if (c->klass->drained_end) {
69         c->klass->drained_end(c);
70     }
71 }
72 
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75     BdrvChild *c;
76 
77     QLIST_FOREACH(c, &bs->parents, next_parent) {
78         if (c == ignore) {
79             continue;
80         }
81         bdrv_parent_drained_end_single(c);
82     }
83 }
84 
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87     if (c->klass->drained_poll) {
88         return c->klass->drained_poll(c);
89     }
90     return false;
91 }
92 
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94                                      bool ignore_bds_parents)
95 {
96     BdrvChild *c, *next;
97     bool busy = false;
98 
99     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101             continue;
102         }
103         busy |= bdrv_parent_drained_poll_single(c);
104     }
105 
106     return busy;
107 }
108 
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111     IO_OR_GS_CODE();
112 
113     assert(!c->quiesced_parent);
114     c->quiesced_parent = true;
115 
116     if (c->klass->drained_begin) {
117         c->klass->drained_begin(c);
118     }
119 }
120 
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124                                   src->pdiscard_alignment);
125     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128                                         src->max_hw_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136 
137 typedef struct BdrvRefreshLimitsState {
138     BlockDriverState *bs;
139     BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141 
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144     BdrvRefreshLimitsState *s = opaque;
145 
146     s->bs->bl = s->old_bl;
147 }
148 
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150     .abort = bdrv_refresh_limits_abort,
151     .clean = g_free,
152 };
153 
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157     ERRP_GUARD();
158     BlockDriver *drv = bs->drv;
159     BdrvChild *c;
160     bool have_limits;
161 
162     GLOBAL_STATE_CODE();
163     assume_graph_lock(); /* FIXME */
164 
165     if (tran) {
166         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
167         *s = (BdrvRefreshLimitsState) {
168             .bs = bs,
169             .old_bl = bs->bl,
170         };
171         tran_add(tran, &bdrv_refresh_limits_drv, s);
172     }
173 
174     memset(&bs->bl, 0, sizeof(bs->bl));
175 
176     if (!drv) {
177         return;
178     }
179 
180     /* Default alignment based on whether driver has byte interface */
181     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
182                                 drv->bdrv_aio_preadv ||
183                                 drv->bdrv_co_preadv_part) ? 1 : 512;
184 
185     /* Take some limits from the children as a default */
186     have_limits = false;
187     QLIST_FOREACH(c, &bs->children, next) {
188         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
189         {
190             bdrv_merge_limits(&bs->bl, &c->bs->bl);
191             have_limits = true;
192         }
193     }
194 
195     if (!have_limits) {
196         bs->bl.min_mem_alignment = 512;
197         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
198 
199         /* Safe default since most protocols use readv()/writev()/etc */
200         bs->bl.max_iov = IOV_MAX;
201     }
202 
203     /* Then let the driver override it */
204     if (drv->bdrv_refresh_limits) {
205         drv->bdrv_refresh_limits(bs, errp);
206         if (*errp) {
207             return;
208         }
209     }
210 
211     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
212         error_setg(errp, "Driver requires too large request alignment");
213     }
214 }
215 
216 /**
217  * The copy-on-read flag is actually a reference count so multiple users may
218  * use the feature without worrying about clobbering its previous state.
219  * Copy-on-read stays enabled until all users have called to disable it.
220  */
221 void bdrv_enable_copy_on_read(BlockDriverState *bs)
222 {
223     IO_CODE();
224     qatomic_inc(&bs->copy_on_read);
225 }
226 
227 void bdrv_disable_copy_on_read(BlockDriverState *bs)
228 {
229     int old = qatomic_fetch_dec(&bs->copy_on_read);
230     IO_CODE();
231     assert(old >= 1);
232 }
233 
234 typedef struct {
235     Coroutine *co;
236     BlockDriverState *bs;
237     bool done;
238     bool begin;
239     bool poll;
240     BdrvChild *parent;
241 } BdrvCoDrainData;
242 
243 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
244 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
245                      bool ignore_bds_parents)
246 {
247     IO_OR_GS_CODE();
248 
249     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
250         return true;
251     }
252 
253     if (qatomic_read(&bs->in_flight)) {
254         return true;
255     }
256 
257     return false;
258 }
259 
260 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
261                                       BdrvChild *ignore_parent)
262 {
263     return bdrv_drain_poll(bs, ignore_parent, false);
264 }
265 
266 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
267                                   bool poll);
268 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
269 
270 static void bdrv_co_drain_bh_cb(void *opaque)
271 {
272     BdrvCoDrainData *data = opaque;
273     Coroutine *co = data->co;
274     BlockDriverState *bs = data->bs;
275 
276     if (bs) {
277         AioContext *ctx = bdrv_get_aio_context(bs);
278         aio_context_acquire(ctx);
279         bdrv_dec_in_flight(bs);
280         if (data->begin) {
281             bdrv_do_drained_begin(bs, data->parent, data->poll);
282         } else {
283             assert(!data->poll);
284             bdrv_do_drained_end(bs, data->parent);
285         }
286         aio_context_release(ctx);
287     } else {
288         assert(data->begin);
289         bdrv_drain_all_begin();
290     }
291 
292     data->done = true;
293     aio_co_wake(co);
294 }
295 
296 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
297                                                 bool begin,
298                                                 BdrvChild *parent,
299                                                 bool poll)
300 {
301     BdrvCoDrainData data;
302     Coroutine *self = qemu_coroutine_self();
303     AioContext *ctx = bdrv_get_aio_context(bs);
304     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
305 
306     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
307      * other coroutines run if they were queued by aio_co_enter(). */
308 
309     assert(qemu_in_coroutine());
310     data = (BdrvCoDrainData) {
311         .co = self,
312         .bs = bs,
313         .done = false,
314         .begin = begin,
315         .parent = parent,
316         .poll = poll,
317     };
318 
319     if (bs) {
320         bdrv_inc_in_flight(bs);
321     }
322 
323     /*
324      * Temporarily drop the lock across yield or we would get deadlocks.
325      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
326      *
327      * When we yield below, the lock for the current context will be
328      * released, so if this is actually the lock that protects bs, don't drop
329      * it a second time.
330      */
331     if (ctx != co_ctx) {
332         aio_context_release(ctx);
333     }
334     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
335 
336     qemu_coroutine_yield();
337     /* If we are resumed from some other event (such as an aio completion or a
338      * timer callback), it is a bug in the caller that should be fixed. */
339     assert(data.done);
340 
341     /* Reaquire the AioContext of bs if we dropped it */
342     if (ctx != co_ctx) {
343         aio_context_acquire(ctx);
344     }
345 }
346 
347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348                                   bool poll)
349 {
350     IO_OR_GS_CODE();
351 
352     if (qemu_in_coroutine()) {
353         bdrv_co_yield_to_drain(bs, true, parent, poll);
354         return;
355     }
356 
357     /* Stop things in parent-to-child order */
358     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
359         aio_disable_external(bdrv_get_aio_context(bs));
360         bdrv_parent_drained_begin(bs, parent);
361         if (bs->drv && bs->drv->bdrv_drain_begin) {
362             bs->drv->bdrv_drain_begin(bs);
363         }
364     }
365 
366     /*
367      * Wait for drained requests to finish.
368      *
369      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
370      * call is needed so things in this AioContext can make progress even
371      * though we don't return to the main AioContext loop - this automatically
372      * includes other nodes in the same AioContext and therefore all child
373      * nodes.
374      */
375     if (poll) {
376         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
377     }
378 }
379 
380 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
381 {
382     bdrv_do_drained_begin(bs, parent, false);
383 }
384 
385 void bdrv_drained_begin(BlockDriverState *bs)
386 {
387     IO_OR_GS_CODE();
388     bdrv_do_drained_begin(bs, NULL, true);
389 }
390 
391 /**
392  * This function does not poll, nor must any of its recursively called
393  * functions.
394  */
395 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
396 {
397     int old_quiesce_counter;
398 
399     if (qemu_in_coroutine()) {
400         bdrv_co_yield_to_drain(bs, false, parent, false);
401         return;
402     }
403     assert(bs->quiesce_counter > 0);
404 
405     /* Re-enable things in child-to-parent order */
406     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
407     if (old_quiesce_counter == 1) {
408         if (bs->drv && bs->drv->bdrv_drain_end) {
409             bs->drv->bdrv_drain_end(bs);
410         }
411         bdrv_parent_drained_end(bs, parent);
412         aio_enable_external(bdrv_get_aio_context(bs));
413     }
414 }
415 
416 void bdrv_drained_end(BlockDriverState *bs)
417 {
418     IO_OR_GS_CODE();
419     bdrv_do_drained_end(bs, NULL);
420 }
421 
422 void bdrv_drain(BlockDriverState *bs)
423 {
424     IO_OR_GS_CODE();
425     bdrv_drained_begin(bs);
426     bdrv_drained_end(bs);
427 }
428 
429 static void bdrv_drain_assert_idle(BlockDriverState *bs)
430 {
431     BdrvChild *child, *next;
432 
433     assert(qatomic_read(&bs->in_flight) == 0);
434     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
435         bdrv_drain_assert_idle(child->bs);
436     }
437 }
438 
439 unsigned int bdrv_drain_all_count = 0;
440 
441 static bool bdrv_drain_all_poll(void)
442 {
443     BlockDriverState *bs = NULL;
444     bool result = false;
445     GLOBAL_STATE_CODE();
446 
447     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
448      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
449     while ((bs = bdrv_next_all_states(bs))) {
450         AioContext *aio_context = bdrv_get_aio_context(bs);
451         aio_context_acquire(aio_context);
452         result |= bdrv_drain_poll(bs, NULL, true);
453         aio_context_release(aio_context);
454     }
455 
456     return result;
457 }
458 
459 /*
460  * Wait for pending requests to complete across all BlockDriverStates
461  *
462  * This function does not flush data to disk, use bdrv_flush_all() for that
463  * after calling this function.
464  *
465  * This pauses all block jobs and disables external clients. It must
466  * be paired with bdrv_drain_all_end().
467  *
468  * NOTE: no new block jobs or BlockDriverStates can be created between
469  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
470  */
471 void bdrv_drain_all_begin_nopoll(void)
472 {
473     BlockDriverState *bs = NULL;
474     GLOBAL_STATE_CODE();
475 
476     /*
477      * bdrv queue is managed by record/replay,
478      * waiting for finishing the I/O requests may
479      * be infinite
480      */
481     if (replay_events_enabled()) {
482         return;
483     }
484 
485     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
486      * loop AioContext, so make sure we're in the main context. */
487     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
488     assert(bdrv_drain_all_count < INT_MAX);
489     bdrv_drain_all_count++;
490 
491     /* Quiesce all nodes, without polling in-flight requests yet. The graph
492      * cannot change during this loop. */
493     while ((bs = bdrv_next_all_states(bs))) {
494         AioContext *aio_context = bdrv_get_aio_context(bs);
495 
496         aio_context_acquire(aio_context);
497         bdrv_do_drained_begin(bs, NULL, false);
498         aio_context_release(aio_context);
499     }
500 }
501 
502 void bdrv_drain_all_begin(void)
503 {
504     BlockDriverState *bs = NULL;
505 
506     if (qemu_in_coroutine()) {
507         bdrv_co_yield_to_drain(NULL, true, NULL, true);
508         return;
509     }
510 
511     /*
512      * bdrv queue is managed by record/replay,
513      * waiting for finishing the I/O requests may
514      * be infinite
515      */
516     if (replay_events_enabled()) {
517         return;
518     }
519 
520     bdrv_drain_all_begin_nopoll();
521 
522     /* Now poll the in-flight requests */
523     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
524 
525     while ((bs = bdrv_next_all_states(bs))) {
526         bdrv_drain_assert_idle(bs);
527     }
528 }
529 
530 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
531 {
532     GLOBAL_STATE_CODE();
533 
534     g_assert(bs->quiesce_counter > 0);
535     g_assert(!bs->refcnt);
536 
537     while (bs->quiesce_counter) {
538         bdrv_do_drained_end(bs, NULL);
539     }
540 }
541 
542 void bdrv_drain_all_end(void)
543 {
544     BlockDriverState *bs = NULL;
545     GLOBAL_STATE_CODE();
546 
547     /*
548      * bdrv queue is managed by record/replay,
549      * waiting for finishing the I/O requests may
550      * be endless
551      */
552     if (replay_events_enabled()) {
553         return;
554     }
555 
556     while ((bs = bdrv_next_all_states(bs))) {
557         AioContext *aio_context = bdrv_get_aio_context(bs);
558 
559         aio_context_acquire(aio_context);
560         bdrv_do_drained_end(bs, NULL);
561         aio_context_release(aio_context);
562     }
563 
564     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
565     assert(bdrv_drain_all_count > 0);
566     bdrv_drain_all_count--;
567 }
568 
569 void bdrv_drain_all(void)
570 {
571     GLOBAL_STATE_CODE();
572     bdrv_drain_all_begin();
573     bdrv_drain_all_end();
574 }
575 
576 /**
577  * Remove an active request from the tracked requests list
578  *
579  * This function should be called when a tracked request is completing.
580  */
581 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
582 {
583     if (req->serialising) {
584         qatomic_dec(&req->bs->serialising_in_flight);
585     }
586 
587     qemu_co_mutex_lock(&req->bs->reqs_lock);
588     QLIST_REMOVE(req, list);
589     qemu_co_queue_restart_all(&req->wait_queue);
590     qemu_co_mutex_unlock(&req->bs->reqs_lock);
591 }
592 
593 /**
594  * Add an active request to the tracked requests list
595  */
596 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
597                                                BlockDriverState *bs,
598                                                int64_t offset,
599                                                int64_t bytes,
600                                                enum BdrvTrackedRequestType type)
601 {
602     bdrv_check_request(offset, bytes, &error_abort);
603 
604     *req = (BdrvTrackedRequest){
605         .bs = bs,
606         .offset         = offset,
607         .bytes          = bytes,
608         .type           = type,
609         .co             = qemu_coroutine_self(),
610         .serialising    = false,
611         .overlap_offset = offset,
612         .overlap_bytes  = bytes,
613     };
614 
615     qemu_co_queue_init(&req->wait_queue);
616 
617     qemu_co_mutex_lock(&bs->reqs_lock);
618     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
619     qemu_co_mutex_unlock(&bs->reqs_lock);
620 }
621 
622 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
623                                      int64_t offset, int64_t bytes)
624 {
625     bdrv_check_request(offset, bytes, &error_abort);
626 
627     /*        aaaa   bbbb */
628     if (offset >= req->overlap_offset + req->overlap_bytes) {
629         return false;
630     }
631     /* bbbb   aaaa        */
632     if (req->overlap_offset >= offset + bytes) {
633         return false;
634     }
635     return true;
636 }
637 
638 /* Called with self->bs->reqs_lock held */
639 static coroutine_fn BdrvTrackedRequest *
640 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
641 {
642     BdrvTrackedRequest *req;
643 
644     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
645         if (req == self || (!req->serialising && !self->serialising)) {
646             continue;
647         }
648         if (tracked_request_overlaps(req, self->overlap_offset,
649                                      self->overlap_bytes))
650         {
651             /*
652              * Hitting this means there was a reentrant request, for
653              * example, a block driver issuing nested requests.  This must
654              * never happen since it means deadlock.
655              */
656             assert(qemu_coroutine_self() != req->co);
657 
658             /*
659              * If the request is already (indirectly) waiting for us, or
660              * will wait for us as soon as it wakes up, then just go on
661              * (instead of producing a deadlock in the former case).
662              */
663             if (!req->waiting_for) {
664                 return req;
665             }
666         }
667     }
668 
669     return NULL;
670 }
671 
672 /* Called with self->bs->reqs_lock held */
673 static void coroutine_fn
674 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
675 {
676     BdrvTrackedRequest *req;
677 
678     while ((req = bdrv_find_conflicting_request(self))) {
679         self->waiting_for = req;
680         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
681         self->waiting_for = NULL;
682     }
683 }
684 
685 /* Called with req->bs->reqs_lock held */
686 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
687                                             uint64_t align)
688 {
689     int64_t overlap_offset = req->offset & ~(align - 1);
690     int64_t overlap_bytes =
691         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
692 
693     bdrv_check_request(req->offset, req->bytes, &error_abort);
694 
695     if (!req->serialising) {
696         qatomic_inc(&req->bs->serialising_in_flight);
697         req->serialising = true;
698     }
699 
700     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
701     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
702 }
703 
704 /**
705  * Return the tracked request on @bs for the current coroutine, or
706  * NULL if there is none.
707  */
708 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
709 {
710     BdrvTrackedRequest *req;
711     Coroutine *self = qemu_coroutine_self();
712     IO_CODE();
713 
714     QLIST_FOREACH(req, &bs->tracked_requests, list) {
715         if (req->co == self) {
716             return req;
717         }
718     }
719 
720     return NULL;
721 }
722 
723 /**
724  * Round a region to cluster boundaries
725  */
726 void coroutine_fn bdrv_round_to_clusters(BlockDriverState *bs,
727                             int64_t offset, int64_t bytes,
728                             int64_t *cluster_offset,
729                             int64_t *cluster_bytes)
730 {
731     BlockDriverInfo bdi;
732     IO_CODE();
733     if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
734         *cluster_offset = offset;
735         *cluster_bytes = bytes;
736     } else {
737         int64_t c = bdi.cluster_size;
738         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
739         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
740     }
741 }
742 
743 static coroutine_fn int bdrv_get_cluster_size(BlockDriverState *bs)
744 {
745     BlockDriverInfo bdi;
746     int ret;
747 
748     ret = bdrv_co_get_info(bs, &bdi);
749     if (ret < 0 || bdi.cluster_size == 0) {
750         return bs->bl.request_alignment;
751     } else {
752         return bdi.cluster_size;
753     }
754 }
755 
756 void bdrv_inc_in_flight(BlockDriverState *bs)
757 {
758     IO_CODE();
759     qatomic_inc(&bs->in_flight);
760 }
761 
762 void bdrv_wakeup(BlockDriverState *bs)
763 {
764     IO_CODE();
765     aio_wait_kick();
766 }
767 
768 void bdrv_dec_in_flight(BlockDriverState *bs)
769 {
770     IO_CODE();
771     qatomic_dec(&bs->in_flight);
772     bdrv_wakeup(bs);
773 }
774 
775 static void coroutine_fn
776 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
777 {
778     BlockDriverState *bs = self->bs;
779 
780     if (!qatomic_read(&bs->serialising_in_flight)) {
781         return;
782     }
783 
784     qemu_co_mutex_lock(&bs->reqs_lock);
785     bdrv_wait_serialising_requests_locked(self);
786     qemu_co_mutex_unlock(&bs->reqs_lock);
787 }
788 
789 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
790                                                 uint64_t align)
791 {
792     IO_CODE();
793 
794     qemu_co_mutex_lock(&req->bs->reqs_lock);
795 
796     tracked_request_set_serialising(req, align);
797     bdrv_wait_serialising_requests_locked(req);
798 
799     qemu_co_mutex_unlock(&req->bs->reqs_lock);
800 }
801 
802 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
803                             QEMUIOVector *qiov, size_t qiov_offset,
804                             Error **errp)
805 {
806     /*
807      * Check generic offset/bytes correctness
808      */
809 
810     if (offset < 0) {
811         error_setg(errp, "offset is negative: %" PRIi64, offset);
812         return -EIO;
813     }
814 
815     if (bytes < 0) {
816         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
817         return -EIO;
818     }
819 
820     if (bytes > BDRV_MAX_LENGTH) {
821         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
822                    bytes, BDRV_MAX_LENGTH);
823         return -EIO;
824     }
825 
826     if (offset > BDRV_MAX_LENGTH) {
827         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
828                    offset, BDRV_MAX_LENGTH);
829         return -EIO;
830     }
831 
832     if (offset > BDRV_MAX_LENGTH - bytes) {
833         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
834                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
835                    BDRV_MAX_LENGTH);
836         return -EIO;
837     }
838 
839     if (!qiov) {
840         return 0;
841     }
842 
843     /*
844      * Check qiov and qiov_offset
845      */
846 
847     if (qiov_offset > qiov->size) {
848         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
849                    qiov_offset, qiov->size);
850         return -EIO;
851     }
852 
853     if (bytes > qiov->size - qiov_offset) {
854         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
855                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
856         return -EIO;
857     }
858 
859     return 0;
860 }
861 
862 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
863 {
864     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
865 }
866 
867 static int bdrv_check_request32(int64_t offset, int64_t bytes,
868                                 QEMUIOVector *qiov, size_t qiov_offset)
869 {
870     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
871     if (ret < 0) {
872         return ret;
873     }
874 
875     if (bytes > BDRV_REQUEST_MAX_BYTES) {
876         return -EIO;
877     }
878 
879     return 0;
880 }
881 
882 /*
883  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
884  * The operation is sped up by checking the block status and only writing
885  * zeroes to the device if they currently do not return zeroes. Optional
886  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
887  * BDRV_REQ_FUA).
888  *
889  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
890  */
891 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
892 {
893     int ret;
894     int64_t target_size, bytes, offset = 0;
895     BlockDriverState *bs = child->bs;
896     IO_CODE();
897 
898     target_size = bdrv_getlength(bs);
899     if (target_size < 0) {
900         return target_size;
901     }
902 
903     for (;;) {
904         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
905         if (bytes <= 0) {
906             return 0;
907         }
908         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
909         if (ret < 0) {
910             return ret;
911         }
912         if (ret & BDRV_BLOCK_ZERO) {
913             offset += bytes;
914             continue;
915         }
916         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
917         if (ret < 0) {
918             return ret;
919         }
920         offset += bytes;
921     }
922 }
923 
924 /*
925  * Writes to the file and ensures that no writes are reordered across this
926  * request (acts as a barrier)
927  *
928  * Returns 0 on success, -errno in error cases.
929  */
930 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
931                                      int64_t bytes, const void *buf,
932                                      BdrvRequestFlags flags)
933 {
934     int ret;
935     IO_CODE();
936     assert_bdrv_graph_readable();
937 
938     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
939     if (ret < 0) {
940         return ret;
941     }
942 
943     ret = bdrv_co_flush(child->bs);
944     if (ret < 0) {
945         return ret;
946     }
947 
948     return 0;
949 }
950 
951 typedef struct CoroutineIOCompletion {
952     Coroutine *coroutine;
953     int ret;
954 } CoroutineIOCompletion;
955 
956 static void bdrv_co_io_em_complete(void *opaque, int ret)
957 {
958     CoroutineIOCompletion *co = opaque;
959 
960     co->ret = ret;
961     aio_co_wake(co->coroutine);
962 }
963 
964 static int coroutine_fn GRAPH_RDLOCK
965 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
966                    QEMUIOVector *qiov, size_t qiov_offset, int flags)
967 {
968     BlockDriver *drv = bs->drv;
969     int64_t sector_num;
970     unsigned int nb_sectors;
971     QEMUIOVector local_qiov;
972     int ret;
973     assert_bdrv_graph_readable();
974 
975     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
976     assert(!(flags & ~bs->supported_read_flags));
977 
978     if (!drv) {
979         return -ENOMEDIUM;
980     }
981 
982     if (drv->bdrv_co_preadv_part) {
983         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
984                                         flags);
985     }
986 
987     if (qiov_offset > 0 || bytes != qiov->size) {
988         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
989         qiov = &local_qiov;
990     }
991 
992     if (drv->bdrv_co_preadv) {
993         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
994         goto out;
995     }
996 
997     if (drv->bdrv_aio_preadv) {
998         BlockAIOCB *acb;
999         CoroutineIOCompletion co = {
1000             .coroutine = qemu_coroutine_self(),
1001         };
1002 
1003         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1004                                    bdrv_co_io_em_complete, &co);
1005         if (acb == NULL) {
1006             ret = -EIO;
1007             goto out;
1008         } else {
1009             qemu_coroutine_yield();
1010             ret = co.ret;
1011             goto out;
1012         }
1013     }
1014 
1015     sector_num = offset >> BDRV_SECTOR_BITS;
1016     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1017 
1018     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1019     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1020     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1021     assert(drv->bdrv_co_readv);
1022 
1023     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1024 
1025 out:
1026     if (qiov == &local_qiov) {
1027         qemu_iovec_destroy(&local_qiov);
1028     }
1029 
1030     return ret;
1031 }
1032 
1033 static int coroutine_fn GRAPH_RDLOCK
1034 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1035                     QEMUIOVector *qiov, size_t qiov_offset,
1036                     BdrvRequestFlags flags)
1037 {
1038     BlockDriver *drv = bs->drv;
1039     bool emulate_fua = false;
1040     int64_t sector_num;
1041     unsigned int nb_sectors;
1042     QEMUIOVector local_qiov;
1043     int ret;
1044     assert_bdrv_graph_readable();
1045 
1046     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1047 
1048     if (!drv) {
1049         return -ENOMEDIUM;
1050     }
1051 
1052     if ((flags & BDRV_REQ_FUA) &&
1053         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1054         flags &= ~BDRV_REQ_FUA;
1055         emulate_fua = true;
1056     }
1057 
1058     flags &= bs->supported_write_flags;
1059 
1060     if (drv->bdrv_co_pwritev_part) {
1061         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1062                                         flags);
1063         goto emulate_flags;
1064     }
1065 
1066     if (qiov_offset > 0 || bytes != qiov->size) {
1067         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1068         qiov = &local_qiov;
1069     }
1070 
1071     if (drv->bdrv_co_pwritev) {
1072         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1073         goto emulate_flags;
1074     }
1075 
1076     if (drv->bdrv_aio_pwritev) {
1077         BlockAIOCB *acb;
1078         CoroutineIOCompletion co = {
1079             .coroutine = qemu_coroutine_self(),
1080         };
1081 
1082         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1083                                     bdrv_co_io_em_complete, &co);
1084         if (acb == NULL) {
1085             ret = -EIO;
1086         } else {
1087             qemu_coroutine_yield();
1088             ret = co.ret;
1089         }
1090         goto emulate_flags;
1091     }
1092 
1093     sector_num = offset >> BDRV_SECTOR_BITS;
1094     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1095 
1096     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1097     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1098     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1099 
1100     assert(drv->bdrv_co_writev);
1101     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1102 
1103 emulate_flags:
1104     if (ret == 0 && emulate_fua) {
1105         ret = bdrv_co_flush(bs);
1106     }
1107 
1108     if (qiov == &local_qiov) {
1109         qemu_iovec_destroy(&local_qiov);
1110     }
1111 
1112     return ret;
1113 }
1114 
1115 static int coroutine_fn GRAPH_RDLOCK
1116 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1117                                int64_t bytes, QEMUIOVector *qiov,
1118                                size_t qiov_offset)
1119 {
1120     BlockDriver *drv = bs->drv;
1121     QEMUIOVector local_qiov;
1122     int ret;
1123     assert_bdrv_graph_readable();
1124 
1125     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1126 
1127     if (!drv) {
1128         return -ENOMEDIUM;
1129     }
1130 
1131     if (!block_driver_can_compress(drv)) {
1132         return -ENOTSUP;
1133     }
1134 
1135     if (drv->bdrv_co_pwritev_compressed_part) {
1136         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1137                                                     qiov, qiov_offset);
1138     }
1139 
1140     if (qiov_offset == 0) {
1141         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1142     }
1143 
1144     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1145     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1146     qemu_iovec_destroy(&local_qiov);
1147 
1148     return ret;
1149 }
1150 
1151 static int coroutine_fn GRAPH_RDLOCK
1152 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1153                          QEMUIOVector *qiov, size_t qiov_offset, int flags)
1154 {
1155     BlockDriverState *bs = child->bs;
1156 
1157     /* Perform I/O through a temporary buffer so that users who scribble over
1158      * their read buffer while the operation is in progress do not end up
1159      * modifying the image file.  This is critical for zero-copy guest I/O
1160      * where anything might happen inside guest memory.
1161      */
1162     void *bounce_buffer = NULL;
1163 
1164     BlockDriver *drv = bs->drv;
1165     int64_t cluster_offset;
1166     int64_t cluster_bytes;
1167     int64_t skip_bytes;
1168     int ret;
1169     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1170                                     BDRV_REQUEST_MAX_BYTES);
1171     int64_t progress = 0;
1172     bool skip_write;
1173 
1174     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1175 
1176     if (!drv) {
1177         return -ENOMEDIUM;
1178     }
1179 
1180     /*
1181      * Do not write anything when the BDS is inactive.  That is not
1182      * allowed, and it would not help.
1183      */
1184     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1185 
1186     /* FIXME We cannot require callers to have write permissions when all they
1187      * are doing is a read request. If we did things right, write permissions
1188      * would be obtained anyway, but internally by the copy-on-read code. As
1189      * long as it is implemented here rather than in a separate filter driver,
1190      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1191      * it could request permissions. Therefore we have to bypass the permission
1192      * system for the moment. */
1193     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1194 
1195     /* Cover entire cluster so no additional backing file I/O is required when
1196      * allocating cluster in the image file.  Note that this value may exceed
1197      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1198      * is one reason we loop rather than doing it all at once.
1199      */
1200     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1201     skip_bytes = offset - cluster_offset;
1202 
1203     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1204                                    cluster_offset, cluster_bytes);
1205 
1206     while (cluster_bytes) {
1207         int64_t pnum;
1208 
1209         if (skip_write) {
1210             ret = 1; /* "already allocated", so nothing will be copied */
1211             pnum = MIN(cluster_bytes, max_transfer);
1212         } else {
1213             ret = bdrv_is_allocated(bs, cluster_offset,
1214                                     MIN(cluster_bytes, max_transfer), &pnum);
1215             if (ret < 0) {
1216                 /*
1217                  * Safe to treat errors in querying allocation as if
1218                  * unallocated; we'll probably fail again soon on the
1219                  * read, but at least that will set a decent errno.
1220                  */
1221                 pnum = MIN(cluster_bytes, max_transfer);
1222             }
1223 
1224             /* Stop at EOF if the image ends in the middle of the cluster */
1225             if (ret == 0 && pnum == 0) {
1226                 assert(progress >= bytes);
1227                 break;
1228             }
1229 
1230             assert(skip_bytes < pnum);
1231         }
1232 
1233         if (ret <= 0) {
1234             QEMUIOVector local_qiov;
1235 
1236             /* Must copy-on-read; use the bounce buffer */
1237             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1238             if (!bounce_buffer) {
1239                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1240                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1241                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1242 
1243                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1244                 if (!bounce_buffer) {
1245                     ret = -ENOMEM;
1246                     goto err;
1247                 }
1248             }
1249             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1250 
1251             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1252                                      &local_qiov, 0, 0);
1253             if (ret < 0) {
1254                 goto err;
1255             }
1256 
1257             bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1258             if (drv->bdrv_co_pwrite_zeroes &&
1259                 buffer_is_zero(bounce_buffer, pnum)) {
1260                 /* FIXME: Should we (perhaps conditionally) be setting
1261                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1262                  * that still correctly reads as zero? */
1263                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1264                                                BDRV_REQ_WRITE_UNCHANGED);
1265             } else {
1266                 /* This does not change the data on the disk, it is not
1267                  * necessary to flush even in cache=writethrough mode.
1268                  */
1269                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1270                                           &local_qiov, 0,
1271                                           BDRV_REQ_WRITE_UNCHANGED);
1272             }
1273 
1274             if (ret < 0) {
1275                 /* It might be okay to ignore write errors for guest
1276                  * requests.  If this is a deliberate copy-on-read
1277                  * then we don't want to ignore the error.  Simply
1278                  * report it in all cases.
1279                  */
1280                 goto err;
1281             }
1282 
1283             if (!(flags & BDRV_REQ_PREFETCH)) {
1284                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1285                                     bounce_buffer + skip_bytes,
1286                                     MIN(pnum - skip_bytes, bytes - progress));
1287             }
1288         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1289             /* Read directly into the destination */
1290             ret = bdrv_driver_preadv(bs, offset + progress,
1291                                      MIN(pnum - skip_bytes, bytes - progress),
1292                                      qiov, qiov_offset + progress, 0);
1293             if (ret < 0) {
1294                 goto err;
1295             }
1296         }
1297 
1298         cluster_offset += pnum;
1299         cluster_bytes -= pnum;
1300         progress += pnum - skip_bytes;
1301         skip_bytes = 0;
1302     }
1303     ret = 0;
1304 
1305 err:
1306     qemu_vfree(bounce_buffer);
1307     return ret;
1308 }
1309 
1310 /*
1311  * Forwards an already correctly aligned request to the BlockDriver. This
1312  * handles copy on read, zeroing after EOF, and fragmentation of large
1313  * reads; any other features must be implemented by the caller.
1314  */
1315 static int coroutine_fn GRAPH_RDLOCK
1316 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1317                     int64_t offset, int64_t bytes, int64_t align,
1318                     QEMUIOVector *qiov, size_t qiov_offset, int flags)
1319 {
1320     BlockDriverState *bs = child->bs;
1321     int64_t total_bytes, max_bytes;
1322     int ret = 0;
1323     int64_t bytes_remaining = bytes;
1324     int max_transfer;
1325 
1326     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1327     assert(is_power_of_2(align));
1328     assert((offset & (align - 1)) == 0);
1329     assert((bytes & (align - 1)) == 0);
1330     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1331     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1332                                    align);
1333 
1334     /*
1335      * TODO: We would need a per-BDS .supported_read_flags and
1336      * potential fallback support, if we ever implement any read flags
1337      * to pass through to drivers.  For now, there aren't any
1338      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1339      */
1340     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1341                        BDRV_REQ_REGISTERED_BUF)));
1342 
1343     /* Handle Copy on Read and associated serialisation */
1344     if (flags & BDRV_REQ_COPY_ON_READ) {
1345         /* If we touch the same cluster it counts as an overlap.  This
1346          * guarantees that allocating writes will be serialized and not race
1347          * with each other for the same cluster.  For example, in copy-on-read
1348          * it ensures that the CoR read and write operations are atomic and
1349          * guest writes cannot interleave between them. */
1350         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1351     } else {
1352         bdrv_wait_serialising_requests(req);
1353     }
1354 
1355     if (flags & BDRV_REQ_COPY_ON_READ) {
1356         int64_t pnum;
1357 
1358         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1359         flags &= ~BDRV_REQ_COPY_ON_READ;
1360 
1361         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1362         if (ret < 0) {
1363             goto out;
1364         }
1365 
1366         if (!ret || pnum != bytes) {
1367             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1368                                            qiov, qiov_offset, flags);
1369             goto out;
1370         } else if (flags & BDRV_REQ_PREFETCH) {
1371             goto out;
1372         }
1373     }
1374 
1375     /* Forward the request to the BlockDriver, possibly fragmenting it */
1376     total_bytes = bdrv_getlength(bs);
1377     if (total_bytes < 0) {
1378         ret = total_bytes;
1379         goto out;
1380     }
1381 
1382     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1383 
1384     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1385     if (bytes <= max_bytes && bytes <= max_transfer) {
1386         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1387         goto out;
1388     }
1389 
1390     while (bytes_remaining) {
1391         int64_t num;
1392 
1393         if (max_bytes) {
1394             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1395             assert(num);
1396 
1397             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1398                                      num, qiov,
1399                                      qiov_offset + bytes - bytes_remaining,
1400                                      flags);
1401             max_bytes -= num;
1402         } else {
1403             num = bytes_remaining;
1404             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1405                                     0, bytes_remaining);
1406         }
1407         if (ret < 0) {
1408             goto out;
1409         }
1410         bytes_remaining -= num;
1411     }
1412 
1413 out:
1414     return ret < 0 ? ret : 0;
1415 }
1416 
1417 /*
1418  * Request padding
1419  *
1420  *  |<---- align ----->|                     |<----- align ---->|
1421  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1422  *  |          |       |                     |     |            |
1423  * -*----------$-------*-------- ... --------*-----$------------*---
1424  *  |          |       |                     |     |            |
1425  *  |          offset  |                     |     end          |
1426  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1427  *  [buf   ... )                             [tail_buf          )
1428  *
1429  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1430  * is placed at the beginning of @buf and @tail at the @end.
1431  *
1432  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1433  * around tail, if tail exists.
1434  *
1435  * @merge_reads is true for small requests,
1436  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1437  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1438  */
1439 typedef struct BdrvRequestPadding {
1440     uint8_t *buf;
1441     size_t buf_len;
1442     uint8_t *tail_buf;
1443     size_t head;
1444     size_t tail;
1445     bool merge_reads;
1446     QEMUIOVector local_qiov;
1447 } BdrvRequestPadding;
1448 
1449 static bool bdrv_init_padding(BlockDriverState *bs,
1450                               int64_t offset, int64_t bytes,
1451                               BdrvRequestPadding *pad)
1452 {
1453     int64_t align = bs->bl.request_alignment;
1454     int64_t sum;
1455 
1456     bdrv_check_request(offset, bytes, &error_abort);
1457     assert(align <= INT_MAX); /* documented in block/block_int.h */
1458     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1459 
1460     memset(pad, 0, sizeof(*pad));
1461 
1462     pad->head = offset & (align - 1);
1463     pad->tail = ((offset + bytes) & (align - 1));
1464     if (pad->tail) {
1465         pad->tail = align - pad->tail;
1466     }
1467 
1468     if (!pad->head && !pad->tail) {
1469         return false;
1470     }
1471 
1472     assert(bytes); /* Nothing good in aligning zero-length requests */
1473 
1474     sum = pad->head + bytes + pad->tail;
1475     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1476     pad->buf = qemu_blockalign(bs, pad->buf_len);
1477     pad->merge_reads = sum == pad->buf_len;
1478     if (pad->tail) {
1479         pad->tail_buf = pad->buf + pad->buf_len - align;
1480     }
1481 
1482     return true;
1483 }
1484 
1485 static int coroutine_fn GRAPH_RDLOCK
1486 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1487                       BdrvRequestPadding *pad, bool zero_middle)
1488 {
1489     QEMUIOVector local_qiov;
1490     BlockDriverState *bs = child->bs;
1491     uint64_t align = bs->bl.request_alignment;
1492     int ret;
1493 
1494     assert(req->serialising && pad->buf);
1495 
1496     if (pad->head || pad->merge_reads) {
1497         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1498 
1499         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1500 
1501         if (pad->head) {
1502             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1503         }
1504         if (pad->merge_reads && pad->tail) {
1505             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1506         }
1507         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1508                                   align, &local_qiov, 0, 0);
1509         if (ret < 0) {
1510             return ret;
1511         }
1512         if (pad->head) {
1513             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1514         }
1515         if (pad->merge_reads && pad->tail) {
1516             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1517         }
1518 
1519         if (pad->merge_reads) {
1520             goto zero_mem;
1521         }
1522     }
1523 
1524     if (pad->tail) {
1525         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1526 
1527         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1528         ret = bdrv_aligned_preadv(
1529                 child, req,
1530                 req->overlap_offset + req->overlap_bytes - align,
1531                 align, align, &local_qiov, 0, 0);
1532         if (ret < 0) {
1533             return ret;
1534         }
1535         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1536     }
1537 
1538 zero_mem:
1539     if (zero_middle) {
1540         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1541     }
1542 
1543     return 0;
1544 }
1545 
1546 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1547 {
1548     if (pad->buf) {
1549         qemu_vfree(pad->buf);
1550         qemu_iovec_destroy(&pad->local_qiov);
1551     }
1552     memset(pad, 0, sizeof(*pad));
1553 }
1554 
1555 /*
1556  * bdrv_pad_request
1557  *
1558  * Exchange request parameters with padded request if needed. Don't include RMW
1559  * read of padding, bdrv_padding_rmw_read() should be called separately if
1560  * needed.
1561  *
1562  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1563  *  - on function start they represent original request
1564  *  - on failure or when padding is not needed they are unchanged
1565  *  - on success when padding is needed they represent padded request
1566  */
1567 static int bdrv_pad_request(BlockDriverState *bs,
1568                             QEMUIOVector **qiov, size_t *qiov_offset,
1569                             int64_t *offset, int64_t *bytes,
1570                             BdrvRequestPadding *pad, bool *padded,
1571                             BdrvRequestFlags *flags)
1572 {
1573     int ret;
1574 
1575     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1576 
1577     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1578         if (padded) {
1579             *padded = false;
1580         }
1581         return 0;
1582     }
1583 
1584     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1585                                    *qiov, *qiov_offset, *bytes,
1586                                    pad->buf + pad->buf_len - pad->tail,
1587                                    pad->tail);
1588     if (ret < 0) {
1589         bdrv_padding_destroy(pad);
1590         return ret;
1591     }
1592     *bytes += pad->head + pad->tail;
1593     *offset -= pad->head;
1594     *qiov = &pad->local_qiov;
1595     *qiov_offset = 0;
1596     if (padded) {
1597         *padded = true;
1598     }
1599     if (flags) {
1600         /* Can't use optimization hint with bounce buffer */
1601         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1602     }
1603 
1604     return 0;
1605 }
1606 
1607 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1608     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1609     BdrvRequestFlags flags)
1610 {
1611     IO_CODE();
1612     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1613 }
1614 
1615 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1616     int64_t offset, int64_t bytes,
1617     QEMUIOVector *qiov, size_t qiov_offset,
1618     BdrvRequestFlags flags)
1619 {
1620     BlockDriverState *bs = child->bs;
1621     BdrvTrackedRequest req;
1622     BdrvRequestPadding pad;
1623     int ret;
1624     IO_CODE();
1625 
1626     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1627 
1628     if (!bdrv_co_is_inserted(bs)) {
1629         return -ENOMEDIUM;
1630     }
1631 
1632     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1633     if (ret < 0) {
1634         return ret;
1635     }
1636 
1637     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1638         /*
1639          * Aligning zero request is nonsense. Even if driver has special meaning
1640          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1641          * it to driver due to request_alignment.
1642          *
1643          * Still, no reason to return an error if someone do unaligned
1644          * zero-length read occasionally.
1645          */
1646         return 0;
1647     }
1648 
1649     bdrv_inc_in_flight(bs);
1650 
1651     /* Don't do copy-on-read if we read data before write operation */
1652     if (qatomic_read(&bs->copy_on_read)) {
1653         flags |= BDRV_REQ_COPY_ON_READ;
1654     }
1655 
1656     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1657                            NULL, &flags);
1658     if (ret < 0) {
1659         goto fail;
1660     }
1661 
1662     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1663     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1664                               bs->bl.request_alignment,
1665                               qiov, qiov_offset, flags);
1666     tracked_request_end(&req);
1667     bdrv_padding_destroy(&pad);
1668 
1669 fail:
1670     bdrv_dec_in_flight(bs);
1671 
1672     return ret;
1673 }
1674 
1675 static int coroutine_fn GRAPH_RDLOCK
1676 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1677                          BdrvRequestFlags flags)
1678 {
1679     BlockDriver *drv = bs->drv;
1680     QEMUIOVector qiov;
1681     void *buf = NULL;
1682     int ret = 0;
1683     bool need_flush = false;
1684     int head = 0;
1685     int tail = 0;
1686 
1687     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1688                                             INT64_MAX);
1689     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1690                         bs->bl.request_alignment);
1691     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1692 
1693     assert_bdrv_graph_readable();
1694     bdrv_check_request(offset, bytes, &error_abort);
1695 
1696     if (!drv) {
1697         return -ENOMEDIUM;
1698     }
1699 
1700     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1701         return -ENOTSUP;
1702     }
1703 
1704     /* By definition there is no user buffer so this flag doesn't make sense */
1705     if (flags & BDRV_REQ_REGISTERED_BUF) {
1706         return -EINVAL;
1707     }
1708 
1709     /* Invalidate the cached block-status data range if this write overlaps */
1710     bdrv_bsc_invalidate_range(bs, offset, bytes);
1711 
1712     assert(alignment % bs->bl.request_alignment == 0);
1713     head = offset % alignment;
1714     tail = (offset + bytes) % alignment;
1715     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1716     assert(max_write_zeroes >= bs->bl.request_alignment);
1717 
1718     while (bytes > 0 && !ret) {
1719         int64_t num = bytes;
1720 
1721         /* Align request.  Block drivers can expect the "bulk" of the request
1722          * to be aligned, and that unaligned requests do not cross cluster
1723          * boundaries.
1724          */
1725         if (head) {
1726             /* Make a small request up to the first aligned sector. For
1727              * convenience, limit this request to max_transfer even if
1728              * we don't need to fall back to writes.  */
1729             num = MIN(MIN(bytes, max_transfer), alignment - head);
1730             head = (head + num) % alignment;
1731             assert(num < max_write_zeroes);
1732         } else if (tail && num > alignment) {
1733             /* Shorten the request to the last aligned sector.  */
1734             num -= tail;
1735         }
1736 
1737         /* limit request size */
1738         if (num > max_write_zeroes) {
1739             num = max_write_zeroes;
1740         }
1741 
1742         ret = -ENOTSUP;
1743         /* First try the efficient write zeroes operation */
1744         if (drv->bdrv_co_pwrite_zeroes) {
1745             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1746                                              flags & bs->supported_zero_flags);
1747             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1748                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1749                 need_flush = true;
1750             }
1751         } else {
1752             assert(!bs->supported_zero_flags);
1753         }
1754 
1755         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1756             /* Fall back to bounce buffer if write zeroes is unsupported */
1757             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1758 
1759             if ((flags & BDRV_REQ_FUA) &&
1760                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1761                 /* No need for bdrv_driver_pwrite() to do a fallback
1762                  * flush on each chunk; use just one at the end */
1763                 write_flags &= ~BDRV_REQ_FUA;
1764                 need_flush = true;
1765             }
1766             num = MIN(num, max_transfer);
1767             if (buf == NULL) {
1768                 buf = qemu_try_blockalign0(bs, num);
1769                 if (buf == NULL) {
1770                     ret = -ENOMEM;
1771                     goto fail;
1772                 }
1773             }
1774             qemu_iovec_init_buf(&qiov, buf, num);
1775 
1776             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1777 
1778             /* Keep bounce buffer around if it is big enough for all
1779              * all future requests.
1780              */
1781             if (num < max_transfer) {
1782                 qemu_vfree(buf);
1783                 buf = NULL;
1784             }
1785         }
1786 
1787         offset += num;
1788         bytes -= num;
1789     }
1790 
1791 fail:
1792     if (ret == 0 && need_flush) {
1793         ret = bdrv_co_flush(bs);
1794     }
1795     qemu_vfree(buf);
1796     return ret;
1797 }
1798 
1799 static inline int coroutine_fn
1800 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1801                           BdrvTrackedRequest *req, int flags)
1802 {
1803     BlockDriverState *bs = child->bs;
1804 
1805     bdrv_check_request(offset, bytes, &error_abort);
1806 
1807     if (bdrv_is_read_only(bs)) {
1808         return -EPERM;
1809     }
1810 
1811     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1812     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1813     assert(!(flags & ~BDRV_REQ_MASK));
1814     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1815 
1816     if (flags & BDRV_REQ_SERIALISING) {
1817         QEMU_LOCK_GUARD(&bs->reqs_lock);
1818 
1819         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1820 
1821         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1822             return -EBUSY;
1823         }
1824 
1825         bdrv_wait_serialising_requests_locked(req);
1826     } else {
1827         bdrv_wait_serialising_requests(req);
1828     }
1829 
1830     assert(req->overlap_offset <= offset);
1831     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1832     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1833            child->perm & BLK_PERM_RESIZE);
1834 
1835     switch (req->type) {
1836     case BDRV_TRACKED_WRITE:
1837     case BDRV_TRACKED_DISCARD:
1838         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1839             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1840         } else {
1841             assert(child->perm & BLK_PERM_WRITE);
1842         }
1843         bdrv_write_threshold_check_write(bs, offset, bytes);
1844         return 0;
1845     case BDRV_TRACKED_TRUNCATE:
1846         assert(child->perm & BLK_PERM_RESIZE);
1847         return 0;
1848     default:
1849         abort();
1850     }
1851 }
1852 
1853 static inline void coroutine_fn
1854 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1855                          BdrvTrackedRequest *req, int ret)
1856 {
1857     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1858     BlockDriverState *bs = child->bs;
1859 
1860     bdrv_check_request(offset, bytes, &error_abort);
1861 
1862     qatomic_inc(&bs->write_gen);
1863 
1864     /*
1865      * Discard cannot extend the image, but in error handling cases, such as
1866      * when reverting a qcow2 cluster allocation, the discarded range can pass
1867      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1868      * here. Instead, just skip it, since semantically a discard request
1869      * beyond EOF cannot expand the image anyway.
1870      */
1871     if (ret == 0 &&
1872         (req->type == BDRV_TRACKED_TRUNCATE ||
1873          end_sector > bs->total_sectors) &&
1874         req->type != BDRV_TRACKED_DISCARD) {
1875         bs->total_sectors = end_sector;
1876         bdrv_parent_cb_resize(bs);
1877         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1878     }
1879     if (req->bytes) {
1880         switch (req->type) {
1881         case BDRV_TRACKED_WRITE:
1882             stat64_max(&bs->wr_highest_offset, offset + bytes);
1883             /* fall through, to set dirty bits */
1884         case BDRV_TRACKED_DISCARD:
1885             bdrv_set_dirty(bs, offset, bytes);
1886             break;
1887         default:
1888             break;
1889         }
1890     }
1891 }
1892 
1893 /*
1894  * Forwards an already correctly aligned write request to the BlockDriver,
1895  * after possibly fragmenting it.
1896  */
1897 static int coroutine_fn GRAPH_RDLOCK
1898 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
1899                      int64_t offset, int64_t bytes, int64_t align,
1900                      QEMUIOVector *qiov, size_t qiov_offset,
1901                      BdrvRequestFlags flags)
1902 {
1903     BlockDriverState *bs = child->bs;
1904     BlockDriver *drv = bs->drv;
1905     int ret;
1906 
1907     int64_t bytes_remaining = bytes;
1908     int max_transfer;
1909 
1910     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1911 
1912     if (!drv) {
1913         return -ENOMEDIUM;
1914     }
1915 
1916     if (bdrv_has_readonly_bitmaps(bs)) {
1917         return -EPERM;
1918     }
1919 
1920     assert(is_power_of_2(align));
1921     assert((offset & (align - 1)) == 0);
1922     assert((bytes & (align - 1)) == 0);
1923     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1924                                    align);
1925 
1926     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1927 
1928     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1929         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1930         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1931         flags |= BDRV_REQ_ZERO_WRITE;
1932         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1933             flags |= BDRV_REQ_MAY_UNMAP;
1934         }
1935 
1936         /* Can't use optimization hint with bufferless zero write */
1937         flags &= ~BDRV_REQ_REGISTERED_BUF;
1938     }
1939 
1940     if (ret < 0) {
1941         /* Do nothing, write notifier decided to fail this request */
1942     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1943         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1944         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1945     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1946         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1947                                              qiov, qiov_offset);
1948     } else if (bytes <= max_transfer) {
1949         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1950         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1951     } else {
1952         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1953         while (bytes_remaining) {
1954             int num = MIN(bytes_remaining, max_transfer);
1955             int local_flags = flags;
1956 
1957             assert(num);
1958             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1959                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1960                 /* If FUA is going to be emulated by flush, we only
1961                  * need to flush on the last iteration */
1962                 local_flags &= ~BDRV_REQ_FUA;
1963             }
1964 
1965             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1966                                       num, qiov,
1967                                       qiov_offset + bytes - bytes_remaining,
1968                                       local_flags);
1969             if (ret < 0) {
1970                 break;
1971             }
1972             bytes_remaining -= num;
1973         }
1974     }
1975     bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
1976 
1977     if (ret >= 0) {
1978         ret = 0;
1979     }
1980     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1981 
1982     return ret;
1983 }
1984 
1985 static int coroutine_fn GRAPH_RDLOCK
1986 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
1987                         BdrvRequestFlags flags, BdrvTrackedRequest *req)
1988 {
1989     BlockDriverState *bs = child->bs;
1990     QEMUIOVector local_qiov;
1991     uint64_t align = bs->bl.request_alignment;
1992     int ret = 0;
1993     bool padding;
1994     BdrvRequestPadding pad;
1995 
1996     /* This flag doesn't make sense for padding or zero writes */
1997     flags &= ~BDRV_REQ_REGISTERED_BUF;
1998 
1999     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2000     if (padding) {
2001         assert(!(flags & BDRV_REQ_NO_WAIT));
2002         bdrv_make_request_serialising(req, align);
2003 
2004         bdrv_padding_rmw_read(child, req, &pad, true);
2005 
2006         if (pad.head || pad.merge_reads) {
2007             int64_t aligned_offset = offset & ~(align - 1);
2008             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2009 
2010             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2011             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2012                                        align, &local_qiov, 0,
2013                                        flags & ~BDRV_REQ_ZERO_WRITE);
2014             if (ret < 0 || pad.merge_reads) {
2015                 /* Error or all work is done */
2016                 goto out;
2017             }
2018             offset += write_bytes - pad.head;
2019             bytes -= write_bytes - pad.head;
2020         }
2021     }
2022 
2023     assert(!bytes || (offset & (align - 1)) == 0);
2024     if (bytes >= align) {
2025         /* Write the aligned part in the middle. */
2026         int64_t aligned_bytes = bytes & ~(align - 1);
2027         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2028                                    NULL, 0, flags);
2029         if (ret < 0) {
2030             goto out;
2031         }
2032         bytes -= aligned_bytes;
2033         offset += aligned_bytes;
2034     }
2035 
2036     assert(!bytes || (offset & (align - 1)) == 0);
2037     if (bytes) {
2038         assert(align == pad.tail + bytes);
2039 
2040         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2041         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2042                                    &local_qiov, 0,
2043                                    flags & ~BDRV_REQ_ZERO_WRITE);
2044     }
2045 
2046 out:
2047     bdrv_padding_destroy(&pad);
2048 
2049     return ret;
2050 }
2051 
2052 /*
2053  * Handle a write request in coroutine context
2054  */
2055 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2056     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2057     BdrvRequestFlags flags)
2058 {
2059     IO_CODE();
2060     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2061 }
2062 
2063 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2064     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2065     BdrvRequestFlags flags)
2066 {
2067     BlockDriverState *bs = child->bs;
2068     BdrvTrackedRequest req;
2069     uint64_t align = bs->bl.request_alignment;
2070     BdrvRequestPadding pad;
2071     int ret;
2072     bool padded = false;
2073     IO_CODE();
2074 
2075     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2076 
2077     if (!bdrv_co_is_inserted(bs)) {
2078         return -ENOMEDIUM;
2079     }
2080 
2081     if (flags & BDRV_REQ_ZERO_WRITE) {
2082         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2083     } else {
2084         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2085     }
2086     if (ret < 0) {
2087         return ret;
2088     }
2089 
2090     /* If the request is misaligned then we can't make it efficient */
2091     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2092         !QEMU_IS_ALIGNED(offset | bytes, align))
2093     {
2094         return -ENOTSUP;
2095     }
2096 
2097     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2098         /*
2099          * Aligning zero request is nonsense. Even if driver has special meaning
2100          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2101          * it to driver due to request_alignment.
2102          *
2103          * Still, no reason to return an error if someone do unaligned
2104          * zero-length write occasionally.
2105          */
2106         return 0;
2107     }
2108 
2109     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2110         /*
2111          * Pad request for following read-modify-write cycle.
2112          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2113          * alignment only if there is no ZERO flag.
2114          */
2115         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2116                                &padded, &flags);
2117         if (ret < 0) {
2118             return ret;
2119         }
2120     }
2121 
2122     bdrv_inc_in_flight(bs);
2123     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2124 
2125     if (flags & BDRV_REQ_ZERO_WRITE) {
2126         assert(!padded);
2127         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2128         goto out;
2129     }
2130 
2131     if (padded) {
2132         /*
2133          * Request was unaligned to request_alignment and therefore
2134          * padded.  We are going to do read-modify-write, and must
2135          * serialize the request to prevent interactions of the
2136          * widened region with other transactions.
2137          */
2138         assert(!(flags & BDRV_REQ_NO_WAIT));
2139         bdrv_make_request_serialising(&req, align);
2140         bdrv_padding_rmw_read(child, &req, &pad, false);
2141     }
2142 
2143     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2144                                qiov, qiov_offset, flags);
2145 
2146     bdrv_padding_destroy(&pad);
2147 
2148 out:
2149     tracked_request_end(&req);
2150     bdrv_dec_in_flight(bs);
2151 
2152     return ret;
2153 }
2154 
2155 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2156                                        int64_t bytes, BdrvRequestFlags flags)
2157 {
2158     IO_CODE();
2159     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2160     assert_bdrv_graph_readable();
2161 
2162     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2163         flags &= ~BDRV_REQ_MAY_UNMAP;
2164     }
2165 
2166     return bdrv_co_pwritev(child, offset, bytes, NULL,
2167                            BDRV_REQ_ZERO_WRITE | flags);
2168 }
2169 
2170 /*
2171  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2172  */
2173 int bdrv_flush_all(void)
2174 {
2175     BdrvNextIterator it;
2176     BlockDriverState *bs = NULL;
2177     int result = 0;
2178 
2179     GLOBAL_STATE_CODE();
2180 
2181     /*
2182      * bdrv queue is managed by record/replay,
2183      * creating new flush request for stopping
2184      * the VM may break the determinism
2185      */
2186     if (replay_events_enabled()) {
2187         return result;
2188     }
2189 
2190     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2191         AioContext *aio_context = bdrv_get_aio_context(bs);
2192         int ret;
2193 
2194         aio_context_acquire(aio_context);
2195         ret = bdrv_flush(bs);
2196         if (ret < 0 && !result) {
2197             result = ret;
2198         }
2199         aio_context_release(aio_context);
2200     }
2201 
2202     return result;
2203 }
2204 
2205 /*
2206  * Returns the allocation status of the specified sectors.
2207  * Drivers not implementing the functionality are assumed to not support
2208  * backing files, hence all their sectors are reported as allocated.
2209  *
2210  * If 'want_zero' is true, the caller is querying for mapping
2211  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2212  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2213  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2214  *
2215  * If 'offset' is beyond the end of the disk image the return value is
2216  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2217  *
2218  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2219  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2220  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2221  *
2222  * 'pnum' is set to the number of bytes (including and immediately
2223  * following the specified offset) that are easily known to be in the
2224  * same allocated/unallocated state.  Note that a second call starting
2225  * at the original offset plus returned pnum may have the same status.
2226  * The returned value is non-zero on success except at end-of-file.
2227  *
2228  * Returns negative errno on failure.  Otherwise, if the
2229  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2230  * set to the host mapping and BDS corresponding to the guest offset.
2231  */
2232 static int coroutine_fn GRAPH_RDLOCK
2233 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2234                      int64_t offset, int64_t bytes,
2235                      int64_t *pnum, int64_t *map, BlockDriverState **file)
2236 {
2237     int64_t total_size;
2238     int64_t n; /* bytes */
2239     int ret;
2240     int64_t local_map = 0;
2241     BlockDriverState *local_file = NULL;
2242     int64_t aligned_offset, aligned_bytes;
2243     uint32_t align;
2244     bool has_filtered_child;
2245 
2246     assert(pnum);
2247     assert_bdrv_graph_readable();
2248     *pnum = 0;
2249     total_size = bdrv_getlength(bs);
2250     if (total_size < 0) {
2251         ret = total_size;
2252         goto early_out;
2253     }
2254 
2255     if (offset >= total_size) {
2256         ret = BDRV_BLOCK_EOF;
2257         goto early_out;
2258     }
2259     if (!bytes) {
2260         ret = 0;
2261         goto early_out;
2262     }
2263 
2264     n = total_size - offset;
2265     if (n < bytes) {
2266         bytes = n;
2267     }
2268 
2269     /* Must be non-NULL or bdrv_getlength() would have failed */
2270     assert(bs->drv);
2271     has_filtered_child = bdrv_filter_child(bs);
2272     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2273         *pnum = bytes;
2274         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2275         if (offset + bytes == total_size) {
2276             ret |= BDRV_BLOCK_EOF;
2277         }
2278         if (bs->drv->protocol_name) {
2279             ret |= BDRV_BLOCK_OFFSET_VALID;
2280             local_map = offset;
2281             local_file = bs;
2282         }
2283         goto early_out;
2284     }
2285 
2286     bdrv_inc_in_flight(bs);
2287 
2288     /* Round out to request_alignment boundaries */
2289     align = bs->bl.request_alignment;
2290     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2291     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2292 
2293     if (bs->drv->bdrv_co_block_status) {
2294         /*
2295          * Use the block-status cache only for protocol nodes: Format
2296          * drivers are generally quick to inquire the status, but protocol
2297          * drivers often need to get information from outside of qemu, so
2298          * we do not have control over the actual implementation.  There
2299          * have been cases where inquiring the status took an unreasonably
2300          * long time, and we can do nothing in qemu to fix it.
2301          * This is especially problematic for images with large data areas,
2302          * because finding the few holes in them and giving them special
2303          * treatment does not gain much performance.  Therefore, we try to
2304          * cache the last-identified data region.
2305          *
2306          * Second, limiting ourselves to protocol nodes allows us to assume
2307          * the block status for data regions to be DATA | OFFSET_VALID, and
2308          * that the host offset is the same as the guest offset.
2309          *
2310          * Note that it is possible that external writers zero parts of
2311          * the cached regions without the cache being invalidated, and so
2312          * we may report zeroes as data.  This is not catastrophic,
2313          * however, because reporting zeroes as data is fine.
2314          */
2315         if (QLIST_EMPTY(&bs->children) &&
2316             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2317         {
2318             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2319             local_file = bs;
2320             local_map = aligned_offset;
2321         } else {
2322             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2323                                                 aligned_bytes, pnum, &local_map,
2324                                                 &local_file);
2325 
2326             /*
2327              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2328              * the cache is queried above.  Technically, we do not need to check
2329              * it here; the worst that can happen is that we fill the cache for
2330              * non-protocol nodes, and then it is never used.  However, filling
2331              * the cache requires an RCU update, so double check here to avoid
2332              * such an update if possible.
2333              *
2334              * Check want_zero, because we only want to update the cache when we
2335              * have accurate information about what is zero and what is data.
2336              */
2337             if (want_zero &&
2338                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2339                 QLIST_EMPTY(&bs->children))
2340             {
2341                 /*
2342                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2343                  * returned local_map value must be the same as the offset we
2344                  * have passed (aligned_offset), and local_bs must be the node
2345                  * itself.
2346                  * Assert this, because we follow this rule when reading from
2347                  * the cache (see the `local_file = bs` and
2348                  * `local_map = aligned_offset` assignments above), and the
2349                  * result the cache delivers must be the same as the driver
2350                  * would deliver.
2351                  */
2352                 assert(local_file == bs);
2353                 assert(local_map == aligned_offset);
2354                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2355             }
2356         }
2357     } else {
2358         /* Default code for filters */
2359 
2360         local_file = bdrv_filter_bs(bs);
2361         assert(local_file);
2362 
2363         *pnum = aligned_bytes;
2364         local_map = aligned_offset;
2365         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2366     }
2367     if (ret < 0) {
2368         *pnum = 0;
2369         goto out;
2370     }
2371 
2372     /*
2373      * The driver's result must be a non-zero multiple of request_alignment.
2374      * Clamp pnum and adjust map to original request.
2375      */
2376     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2377            align > offset - aligned_offset);
2378     if (ret & BDRV_BLOCK_RECURSE) {
2379         assert(ret & BDRV_BLOCK_DATA);
2380         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2381         assert(!(ret & BDRV_BLOCK_ZERO));
2382     }
2383 
2384     *pnum -= offset - aligned_offset;
2385     if (*pnum > bytes) {
2386         *pnum = bytes;
2387     }
2388     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2389         local_map += offset - aligned_offset;
2390     }
2391 
2392     if (ret & BDRV_BLOCK_RAW) {
2393         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2394         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2395                                    *pnum, pnum, &local_map, &local_file);
2396         goto out;
2397     }
2398 
2399     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2400         ret |= BDRV_BLOCK_ALLOCATED;
2401     } else if (bs->drv->supports_backing) {
2402         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2403 
2404         if (!cow_bs) {
2405             ret |= BDRV_BLOCK_ZERO;
2406         } else if (want_zero) {
2407             int64_t size2 = bdrv_getlength(cow_bs);
2408 
2409             if (size2 >= 0 && offset >= size2) {
2410                 ret |= BDRV_BLOCK_ZERO;
2411             }
2412         }
2413     }
2414 
2415     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2416         local_file && local_file != bs &&
2417         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2418         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2419         int64_t file_pnum;
2420         int ret2;
2421 
2422         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2423                                     *pnum, &file_pnum, NULL, NULL);
2424         if (ret2 >= 0) {
2425             /* Ignore errors.  This is just providing extra information, it
2426              * is useful but not necessary.
2427              */
2428             if (ret2 & BDRV_BLOCK_EOF &&
2429                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2430                 /*
2431                  * It is valid for the format block driver to read
2432                  * beyond the end of the underlying file's current
2433                  * size; such areas read as zero.
2434                  */
2435                 ret |= BDRV_BLOCK_ZERO;
2436             } else {
2437                 /* Limit request to the range reported by the protocol driver */
2438                 *pnum = file_pnum;
2439                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2440             }
2441         }
2442     }
2443 
2444 out:
2445     bdrv_dec_in_flight(bs);
2446     if (ret >= 0 && offset + *pnum == total_size) {
2447         ret |= BDRV_BLOCK_EOF;
2448     }
2449 early_out:
2450     if (file) {
2451         *file = local_file;
2452     }
2453     if (map) {
2454         *map = local_map;
2455     }
2456     return ret;
2457 }
2458 
2459 int coroutine_fn
2460 bdrv_co_common_block_status_above(BlockDriverState *bs,
2461                                   BlockDriverState *base,
2462                                   bool include_base,
2463                                   bool want_zero,
2464                                   int64_t offset,
2465                                   int64_t bytes,
2466                                   int64_t *pnum,
2467                                   int64_t *map,
2468                                   BlockDriverState **file,
2469                                   int *depth)
2470 {
2471     int ret;
2472     BlockDriverState *p;
2473     int64_t eof = 0;
2474     int dummy;
2475     IO_CODE();
2476 
2477     assert(!include_base || base); /* Can't include NULL base */
2478     assert_bdrv_graph_readable();
2479 
2480     if (!depth) {
2481         depth = &dummy;
2482     }
2483     *depth = 0;
2484 
2485     if (!include_base && bs == base) {
2486         *pnum = bytes;
2487         return 0;
2488     }
2489 
2490     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2491     ++*depth;
2492     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2493         return ret;
2494     }
2495 
2496     if (ret & BDRV_BLOCK_EOF) {
2497         eof = offset + *pnum;
2498     }
2499 
2500     assert(*pnum <= bytes);
2501     bytes = *pnum;
2502 
2503     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2504          p = bdrv_filter_or_cow_bs(p))
2505     {
2506         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2507                                    file);
2508         ++*depth;
2509         if (ret < 0) {
2510             return ret;
2511         }
2512         if (*pnum == 0) {
2513             /*
2514              * The top layer deferred to this layer, and because this layer is
2515              * short, any zeroes that we synthesize beyond EOF behave as if they
2516              * were allocated at this layer.
2517              *
2518              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2519              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2520              * below.
2521              */
2522             assert(ret & BDRV_BLOCK_EOF);
2523             *pnum = bytes;
2524             if (file) {
2525                 *file = p;
2526             }
2527             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2528             break;
2529         }
2530         if (ret & BDRV_BLOCK_ALLOCATED) {
2531             /*
2532              * We've found the node and the status, we must break.
2533              *
2534              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2535              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2536              * below.
2537              */
2538             ret &= ~BDRV_BLOCK_EOF;
2539             break;
2540         }
2541 
2542         if (p == base) {
2543             assert(include_base);
2544             break;
2545         }
2546 
2547         /*
2548          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2549          * let's continue the diving.
2550          */
2551         assert(*pnum <= bytes);
2552         bytes = *pnum;
2553     }
2554 
2555     if (offset + *pnum == eof) {
2556         ret |= BDRV_BLOCK_EOF;
2557     }
2558 
2559     return ret;
2560 }
2561 
2562 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2563                                             BlockDriverState *base,
2564                                             int64_t offset, int64_t bytes,
2565                                             int64_t *pnum, int64_t *map,
2566                                             BlockDriverState **file)
2567 {
2568     IO_CODE();
2569     return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2570                                              bytes, pnum, map, file, NULL);
2571 }
2572 
2573 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2574                             int64_t offset, int64_t bytes, int64_t *pnum,
2575                             int64_t *map, BlockDriverState **file)
2576 {
2577     IO_CODE();
2578     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2579                                           pnum, map, file, NULL);
2580 }
2581 
2582 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2583                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2584 {
2585     IO_CODE();
2586     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2587                                    offset, bytes, pnum, map, file);
2588 }
2589 
2590 /*
2591  * Check @bs (and its backing chain) to see if the range defined
2592  * by @offset and @bytes is known to read as zeroes.
2593  * Return 1 if that is the case, 0 otherwise and -errno on error.
2594  * This test is meant to be fast rather than accurate so returning 0
2595  * does not guarantee non-zero data.
2596  */
2597 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2598                                       int64_t bytes)
2599 {
2600     int ret;
2601     int64_t pnum = bytes;
2602     IO_CODE();
2603 
2604     if (!bytes) {
2605         return 1;
2606     }
2607 
2608     ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2609                                             bytes, &pnum, NULL, NULL, NULL);
2610 
2611     if (ret < 0) {
2612         return ret;
2613     }
2614 
2615     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2616 }
2617 
2618 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2619                                       int64_t bytes, int64_t *pnum)
2620 {
2621     int ret;
2622     int64_t dummy;
2623     IO_CODE();
2624 
2625     ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2626                                             bytes, pnum ? pnum : &dummy, NULL,
2627                                             NULL, NULL);
2628     if (ret < 0) {
2629         return ret;
2630     }
2631     return !!(ret & BDRV_BLOCK_ALLOCATED);
2632 }
2633 
2634 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2635                       int64_t *pnum)
2636 {
2637     int ret;
2638     int64_t dummy;
2639     IO_CODE();
2640 
2641     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2642                                          bytes, pnum ? pnum : &dummy, NULL,
2643                                          NULL, NULL);
2644     if (ret < 0) {
2645         return ret;
2646     }
2647     return !!(ret & BDRV_BLOCK_ALLOCATED);
2648 }
2649 
2650 /* See bdrv_is_allocated_above for documentation */
2651 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2652                                             BlockDriverState *base,
2653                                             bool include_base, int64_t offset,
2654                                             int64_t bytes, int64_t *pnum)
2655 {
2656     int depth;
2657     int ret;
2658     IO_CODE();
2659 
2660     ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2661                                             offset, bytes, pnum, NULL, NULL,
2662                                             &depth);
2663     if (ret < 0) {
2664         return ret;
2665     }
2666 
2667     if (ret & BDRV_BLOCK_ALLOCATED) {
2668         return depth;
2669     }
2670     return 0;
2671 }
2672 
2673 /*
2674  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2675  *
2676  * Return a positive depth if (a prefix of) the given range is allocated
2677  * in any image between BASE and TOP (BASE is only included if include_base
2678  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2679  * BASE can be NULL to check if the given offset is allocated in any
2680  * image of the chain.  Return 0 otherwise, or negative errno on
2681  * failure.
2682  *
2683  * 'pnum' is set to the number of bytes (including and immediately
2684  * following the specified offset) that are known to be in the same
2685  * allocated/unallocated state.  Note that a subsequent call starting
2686  * at 'offset + *pnum' may return the same allocation status (in other
2687  * words, the result is not necessarily the maximum possible range);
2688  * but 'pnum' will only be 0 when end of file is reached.
2689  */
2690 int bdrv_is_allocated_above(BlockDriverState *top,
2691                             BlockDriverState *base,
2692                             bool include_base, int64_t offset,
2693                             int64_t bytes, int64_t *pnum)
2694 {
2695     int depth;
2696     int ret;
2697     IO_CODE();
2698 
2699     ret = bdrv_common_block_status_above(top, base, include_base, false,
2700                                          offset, bytes, pnum, NULL, NULL,
2701                                          &depth);
2702     if (ret < 0) {
2703         return ret;
2704     }
2705 
2706     if (ret & BDRV_BLOCK_ALLOCATED) {
2707         return depth;
2708     }
2709     return 0;
2710 }
2711 
2712 int coroutine_fn
2713 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2714 {
2715     BlockDriver *drv = bs->drv;
2716     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2717     int ret;
2718     IO_CODE();
2719     assert_bdrv_graph_readable();
2720 
2721     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2722     if (ret < 0) {
2723         return ret;
2724     }
2725 
2726     if (!drv) {
2727         return -ENOMEDIUM;
2728     }
2729 
2730     bdrv_inc_in_flight(bs);
2731 
2732     if (drv->bdrv_co_load_vmstate) {
2733         ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2734     } else if (child_bs) {
2735         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2736     } else {
2737         ret = -ENOTSUP;
2738     }
2739 
2740     bdrv_dec_in_flight(bs);
2741 
2742     return ret;
2743 }
2744 
2745 int coroutine_fn
2746 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2747 {
2748     BlockDriver *drv = bs->drv;
2749     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2750     int ret;
2751     IO_CODE();
2752     assert_bdrv_graph_readable();
2753 
2754     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2755     if (ret < 0) {
2756         return ret;
2757     }
2758 
2759     if (!drv) {
2760         return -ENOMEDIUM;
2761     }
2762 
2763     bdrv_inc_in_flight(bs);
2764 
2765     if (drv->bdrv_co_save_vmstate) {
2766         ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2767     } else if (child_bs) {
2768         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2769     } else {
2770         ret = -ENOTSUP;
2771     }
2772 
2773     bdrv_dec_in_flight(bs);
2774 
2775     return ret;
2776 }
2777 
2778 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2779                       int64_t pos, int size)
2780 {
2781     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2782     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2783     IO_CODE();
2784 
2785     return ret < 0 ? ret : size;
2786 }
2787 
2788 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2789                       int64_t pos, int size)
2790 {
2791     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2792     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2793     IO_CODE();
2794 
2795     return ret < 0 ? ret : size;
2796 }
2797 
2798 /**************************************************************/
2799 /* async I/Os */
2800 
2801 void bdrv_aio_cancel(BlockAIOCB *acb)
2802 {
2803     IO_CODE();
2804     qemu_aio_ref(acb);
2805     bdrv_aio_cancel_async(acb);
2806     while (acb->refcnt > 1) {
2807         if (acb->aiocb_info->get_aio_context) {
2808             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2809         } else if (acb->bs) {
2810             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2811              * assert that we're not using an I/O thread.  Thread-safe
2812              * code should use bdrv_aio_cancel_async exclusively.
2813              */
2814             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2815             aio_poll(bdrv_get_aio_context(acb->bs), true);
2816         } else {
2817             abort();
2818         }
2819     }
2820     qemu_aio_unref(acb);
2821 }
2822 
2823 /* Async version of aio cancel. The caller is not blocked if the acb implements
2824  * cancel_async, otherwise we do nothing and let the request normally complete.
2825  * In either case the completion callback must be called. */
2826 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2827 {
2828     IO_CODE();
2829     if (acb->aiocb_info->cancel_async) {
2830         acb->aiocb_info->cancel_async(acb);
2831     }
2832 }
2833 
2834 /**************************************************************/
2835 /* Coroutine block device emulation */
2836 
2837 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2838 {
2839     BdrvChild *primary_child = bdrv_primary_child(bs);
2840     BdrvChild *child;
2841     int current_gen;
2842     int ret = 0;
2843     IO_CODE();
2844 
2845     assert_bdrv_graph_readable();
2846     bdrv_inc_in_flight(bs);
2847 
2848     if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2849         bdrv_is_sg(bs)) {
2850         goto early_exit;
2851     }
2852 
2853     qemu_co_mutex_lock(&bs->reqs_lock);
2854     current_gen = qatomic_read(&bs->write_gen);
2855 
2856     /* Wait until any previous flushes are completed */
2857     while (bs->active_flush_req) {
2858         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2859     }
2860 
2861     /* Flushes reach this point in nondecreasing current_gen order.  */
2862     bs->active_flush_req = true;
2863     qemu_co_mutex_unlock(&bs->reqs_lock);
2864 
2865     /* Write back all layers by calling one driver function */
2866     if (bs->drv->bdrv_co_flush) {
2867         ret = bs->drv->bdrv_co_flush(bs);
2868         goto out;
2869     }
2870 
2871     /* Write back cached data to the OS even with cache=unsafe */
2872     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2873     if (bs->drv->bdrv_co_flush_to_os) {
2874         ret = bs->drv->bdrv_co_flush_to_os(bs);
2875         if (ret < 0) {
2876             goto out;
2877         }
2878     }
2879 
2880     /* But don't actually force it to the disk with cache=unsafe */
2881     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2882         goto flush_children;
2883     }
2884 
2885     /* Check if we really need to flush anything */
2886     if (bs->flushed_gen == current_gen) {
2887         goto flush_children;
2888     }
2889 
2890     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2891     if (!bs->drv) {
2892         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2893          * (even in case of apparent success) */
2894         ret = -ENOMEDIUM;
2895         goto out;
2896     }
2897     if (bs->drv->bdrv_co_flush_to_disk) {
2898         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2899     } else if (bs->drv->bdrv_aio_flush) {
2900         BlockAIOCB *acb;
2901         CoroutineIOCompletion co = {
2902             .coroutine = qemu_coroutine_self(),
2903         };
2904 
2905         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2906         if (acb == NULL) {
2907             ret = -EIO;
2908         } else {
2909             qemu_coroutine_yield();
2910             ret = co.ret;
2911         }
2912     } else {
2913         /*
2914          * Some block drivers always operate in either writethrough or unsafe
2915          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2916          * know how the server works (because the behaviour is hardcoded or
2917          * depends on server-side configuration), so we can't ensure that
2918          * everything is safe on disk. Returning an error doesn't work because
2919          * that would break guests even if the server operates in writethrough
2920          * mode.
2921          *
2922          * Let's hope the user knows what he's doing.
2923          */
2924         ret = 0;
2925     }
2926 
2927     if (ret < 0) {
2928         goto out;
2929     }
2930 
2931     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2932      * in the case of cache=unsafe, so there are no useless flushes.
2933      */
2934 flush_children:
2935     ret = 0;
2936     QLIST_FOREACH(child, &bs->children, next) {
2937         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2938             int this_child_ret = bdrv_co_flush(child->bs);
2939             if (!ret) {
2940                 ret = this_child_ret;
2941             }
2942         }
2943     }
2944 
2945 out:
2946     /* Notify any pending flushes that we have completed */
2947     if (ret == 0) {
2948         bs->flushed_gen = current_gen;
2949     }
2950 
2951     qemu_co_mutex_lock(&bs->reqs_lock);
2952     bs->active_flush_req = false;
2953     /* Return value is ignored - it's ok if wait queue is empty */
2954     qemu_co_queue_next(&bs->flush_queue);
2955     qemu_co_mutex_unlock(&bs->reqs_lock);
2956 
2957 early_exit:
2958     bdrv_dec_in_flight(bs);
2959     return ret;
2960 }
2961 
2962 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2963                                   int64_t bytes)
2964 {
2965     BdrvTrackedRequest req;
2966     int ret;
2967     int64_t max_pdiscard;
2968     int head, tail, align;
2969     BlockDriverState *bs = child->bs;
2970     IO_CODE();
2971     assert_bdrv_graph_readable();
2972 
2973     if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
2974         return -ENOMEDIUM;
2975     }
2976 
2977     if (bdrv_has_readonly_bitmaps(bs)) {
2978         return -EPERM;
2979     }
2980 
2981     ret = bdrv_check_request(offset, bytes, NULL);
2982     if (ret < 0) {
2983         return ret;
2984     }
2985 
2986     /* Do nothing if disabled.  */
2987     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2988         return 0;
2989     }
2990 
2991     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2992         return 0;
2993     }
2994 
2995     /* Invalidate the cached block-status data range if this discard overlaps */
2996     bdrv_bsc_invalidate_range(bs, offset, bytes);
2997 
2998     /* Discard is advisory, but some devices track and coalesce
2999      * unaligned requests, so we must pass everything down rather than
3000      * round here.  Still, most devices will just silently ignore
3001      * unaligned requests (by returning -ENOTSUP), so we must fragment
3002      * the request accordingly.  */
3003     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3004     assert(align % bs->bl.request_alignment == 0);
3005     head = offset % align;
3006     tail = (offset + bytes) % align;
3007 
3008     bdrv_inc_in_flight(bs);
3009     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3010 
3011     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3012     if (ret < 0) {
3013         goto out;
3014     }
3015 
3016     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3017                                    align);
3018     assert(max_pdiscard >= bs->bl.request_alignment);
3019 
3020     while (bytes > 0) {
3021         int64_t num = bytes;
3022 
3023         if (head) {
3024             /* Make small requests to get to alignment boundaries. */
3025             num = MIN(bytes, align - head);
3026             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3027                 num %= bs->bl.request_alignment;
3028             }
3029             head = (head + num) % align;
3030             assert(num < max_pdiscard);
3031         } else if (tail) {
3032             if (num > align) {
3033                 /* Shorten the request to the last aligned cluster.  */
3034                 num -= tail;
3035             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3036                        tail > bs->bl.request_alignment) {
3037                 tail %= bs->bl.request_alignment;
3038                 num -= tail;
3039             }
3040         }
3041         /* limit request size */
3042         if (num > max_pdiscard) {
3043             num = max_pdiscard;
3044         }
3045 
3046         if (!bs->drv) {
3047             ret = -ENOMEDIUM;
3048             goto out;
3049         }
3050         if (bs->drv->bdrv_co_pdiscard) {
3051             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3052         } else {
3053             BlockAIOCB *acb;
3054             CoroutineIOCompletion co = {
3055                 .coroutine = qemu_coroutine_self(),
3056             };
3057 
3058             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3059                                              bdrv_co_io_em_complete, &co);
3060             if (acb == NULL) {
3061                 ret = -EIO;
3062                 goto out;
3063             } else {
3064                 qemu_coroutine_yield();
3065                 ret = co.ret;
3066             }
3067         }
3068         if (ret && ret != -ENOTSUP) {
3069             goto out;
3070         }
3071 
3072         offset += num;
3073         bytes -= num;
3074     }
3075     ret = 0;
3076 out:
3077     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3078     tracked_request_end(&req);
3079     bdrv_dec_in_flight(bs);
3080     return ret;
3081 }
3082 
3083 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3084 {
3085     BlockDriver *drv = bs->drv;
3086     CoroutineIOCompletion co = {
3087         .coroutine = qemu_coroutine_self(),
3088     };
3089     BlockAIOCB *acb;
3090     IO_CODE();
3091     assert_bdrv_graph_readable();
3092 
3093     bdrv_inc_in_flight(bs);
3094     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3095         co.ret = -ENOTSUP;
3096         goto out;
3097     }
3098 
3099     if (drv->bdrv_co_ioctl) {
3100         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3101     } else {
3102         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3103         if (!acb) {
3104             co.ret = -ENOTSUP;
3105             goto out;
3106         }
3107         qemu_coroutine_yield();
3108     }
3109 out:
3110     bdrv_dec_in_flight(bs);
3111     return co.ret;
3112 }
3113 
3114 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3115 {
3116     IO_CODE();
3117     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3118 }
3119 
3120 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3121 {
3122     IO_CODE();
3123     return memset(qemu_blockalign(bs, size), 0, size);
3124 }
3125 
3126 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3127 {
3128     size_t align = bdrv_opt_mem_align(bs);
3129     IO_CODE();
3130 
3131     /* Ensure that NULL is never returned on success */
3132     assert(align > 0);
3133     if (size == 0) {
3134         size = align;
3135     }
3136 
3137     return qemu_try_memalign(align, size);
3138 }
3139 
3140 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3141 {
3142     void *mem = qemu_try_blockalign(bs, size);
3143     IO_CODE();
3144 
3145     if (mem) {
3146         memset(mem, 0, size);
3147     }
3148 
3149     return mem;
3150 }
3151 
3152 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs)
3153 {
3154     BdrvChild *child;
3155     IO_CODE();
3156     assert_bdrv_graph_readable();
3157 
3158     QLIST_FOREACH(child, &bs->children, next) {
3159         bdrv_co_io_plug(child->bs);
3160     }
3161 
3162     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3163         BlockDriver *drv = bs->drv;
3164         if (drv && drv->bdrv_co_io_plug) {
3165             drv->bdrv_co_io_plug(bs);
3166         }
3167     }
3168 }
3169 
3170 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs)
3171 {
3172     BdrvChild *child;
3173     IO_CODE();
3174     assert_bdrv_graph_readable();
3175 
3176     assert(bs->io_plugged);
3177     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3178         BlockDriver *drv = bs->drv;
3179         if (drv && drv->bdrv_co_io_unplug) {
3180             drv->bdrv_co_io_unplug(bs);
3181         }
3182     }
3183 
3184     QLIST_FOREACH(child, &bs->children, next) {
3185         bdrv_co_io_unplug(child->bs);
3186     }
3187 }
3188 
3189 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3190 static void GRAPH_RDLOCK
3191 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3192                            BdrvChild *final_child)
3193 {
3194     BdrvChild *child;
3195 
3196     GLOBAL_STATE_CODE();
3197     assert_bdrv_graph_readable();
3198 
3199     QLIST_FOREACH(child, &bs->children, next) {
3200         if (child == final_child) {
3201             break;
3202         }
3203 
3204         bdrv_unregister_buf(child->bs, host, size);
3205     }
3206 
3207     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3208         bs->drv->bdrv_unregister_buf(bs, host, size);
3209     }
3210 }
3211 
3212 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3213                        Error **errp)
3214 {
3215     BdrvChild *child;
3216 
3217     GLOBAL_STATE_CODE();
3218     GRAPH_RDLOCK_GUARD_MAINLOOP();
3219 
3220     if (bs->drv && bs->drv->bdrv_register_buf) {
3221         if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3222             return false;
3223         }
3224     }
3225     QLIST_FOREACH(child, &bs->children, next) {
3226         if (!bdrv_register_buf(child->bs, host, size, errp)) {
3227             bdrv_register_buf_rollback(bs, host, size, child);
3228             return false;
3229         }
3230     }
3231     return true;
3232 }
3233 
3234 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3235 {
3236     BdrvChild *child;
3237 
3238     GLOBAL_STATE_CODE();
3239     GRAPH_RDLOCK_GUARD_MAINLOOP();
3240 
3241     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3242         bs->drv->bdrv_unregister_buf(bs, host, size);
3243     }
3244     QLIST_FOREACH(child, &bs->children, next) {
3245         bdrv_unregister_buf(child->bs, host, size);
3246     }
3247 }
3248 
3249 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3250         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3251         int64_t dst_offset, int64_t bytes,
3252         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3253         bool recurse_src)
3254 {
3255     BdrvTrackedRequest req;
3256     int ret;
3257     assert_bdrv_graph_readable();
3258 
3259     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3260     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3261     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3262     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3263     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3264 
3265     if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3266         return -ENOMEDIUM;
3267     }
3268     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3269     if (ret) {
3270         return ret;
3271     }
3272     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3273         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3274     }
3275 
3276     if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3277         return -ENOMEDIUM;
3278     }
3279     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3280     if (ret) {
3281         return ret;
3282     }
3283 
3284     if (!src->bs->drv->bdrv_co_copy_range_from
3285         || !dst->bs->drv->bdrv_co_copy_range_to
3286         || src->bs->encrypted || dst->bs->encrypted) {
3287         return -ENOTSUP;
3288     }
3289 
3290     if (recurse_src) {
3291         bdrv_inc_in_flight(src->bs);
3292         tracked_request_begin(&req, src->bs, src_offset, bytes,
3293                               BDRV_TRACKED_READ);
3294 
3295         /* BDRV_REQ_SERIALISING is only for write operation */
3296         assert(!(read_flags & BDRV_REQ_SERIALISING));
3297         bdrv_wait_serialising_requests(&req);
3298 
3299         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3300                                                     src, src_offset,
3301                                                     dst, dst_offset,
3302                                                     bytes,
3303                                                     read_flags, write_flags);
3304 
3305         tracked_request_end(&req);
3306         bdrv_dec_in_flight(src->bs);
3307     } else {
3308         bdrv_inc_in_flight(dst->bs);
3309         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3310                               BDRV_TRACKED_WRITE);
3311         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3312                                         write_flags);
3313         if (!ret) {
3314             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3315                                                       src, src_offset,
3316                                                       dst, dst_offset,
3317                                                       bytes,
3318                                                       read_flags, write_flags);
3319         }
3320         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3321         tracked_request_end(&req);
3322         bdrv_dec_in_flight(dst->bs);
3323     }
3324 
3325     return ret;
3326 }
3327 
3328 /* Copy range from @src to @dst.
3329  *
3330  * See the comment of bdrv_co_copy_range for the parameter and return value
3331  * semantics. */
3332 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3333                                          BdrvChild *dst, int64_t dst_offset,
3334                                          int64_t bytes,
3335                                          BdrvRequestFlags read_flags,
3336                                          BdrvRequestFlags write_flags)
3337 {
3338     IO_CODE();
3339     assert_bdrv_graph_readable();
3340     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3341                                   read_flags, write_flags);
3342     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3343                                        bytes, read_flags, write_flags, true);
3344 }
3345 
3346 /* Copy range from @src to @dst.
3347  *
3348  * See the comment of bdrv_co_copy_range for the parameter and return value
3349  * semantics. */
3350 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3351                                        BdrvChild *dst, int64_t dst_offset,
3352                                        int64_t bytes,
3353                                        BdrvRequestFlags read_flags,
3354                                        BdrvRequestFlags write_flags)
3355 {
3356     IO_CODE();
3357     assert_bdrv_graph_readable();
3358     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3359                                 read_flags, write_flags);
3360     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3361                                        bytes, read_flags, write_flags, false);
3362 }
3363 
3364 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3365                                     BdrvChild *dst, int64_t dst_offset,
3366                                     int64_t bytes, BdrvRequestFlags read_flags,
3367                                     BdrvRequestFlags write_flags)
3368 {
3369     IO_CODE();
3370     assert_bdrv_graph_readable();
3371 
3372     return bdrv_co_copy_range_from(src, src_offset,
3373                                    dst, dst_offset,
3374                                    bytes, read_flags, write_flags);
3375 }
3376 
3377 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3378 {
3379     BdrvChild *c;
3380     QLIST_FOREACH(c, &bs->parents, next_parent) {
3381         if (c->klass->resize) {
3382             c->klass->resize(c);
3383         }
3384     }
3385 }
3386 
3387 /**
3388  * Truncate file to 'offset' bytes (needed only for file protocols)
3389  *
3390  * If 'exact' is true, the file must be resized to exactly the given
3391  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3392  * 'offset' bytes in length.
3393  */
3394 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3395                                   PreallocMode prealloc, BdrvRequestFlags flags,
3396                                   Error **errp)
3397 {
3398     BlockDriverState *bs = child->bs;
3399     BdrvChild *filtered, *backing;
3400     BlockDriver *drv = bs->drv;
3401     BdrvTrackedRequest req;
3402     int64_t old_size, new_bytes;
3403     int ret;
3404     IO_CODE();
3405     assert_bdrv_graph_readable();
3406 
3407     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3408     if (!drv) {
3409         error_setg(errp, "No medium inserted");
3410         return -ENOMEDIUM;
3411     }
3412     if (offset < 0) {
3413         error_setg(errp, "Image size cannot be negative");
3414         return -EINVAL;
3415     }
3416 
3417     ret = bdrv_check_request(offset, 0, errp);
3418     if (ret < 0) {
3419         return ret;
3420     }
3421 
3422     old_size = bdrv_getlength(bs);
3423     if (old_size < 0) {
3424         error_setg_errno(errp, -old_size, "Failed to get old image size");
3425         return old_size;
3426     }
3427 
3428     if (bdrv_is_read_only(bs)) {
3429         error_setg(errp, "Image is read-only");
3430         return -EACCES;
3431     }
3432 
3433     if (offset > old_size) {
3434         new_bytes = offset - old_size;
3435     } else {
3436         new_bytes = 0;
3437     }
3438 
3439     bdrv_inc_in_flight(bs);
3440     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3441                           BDRV_TRACKED_TRUNCATE);
3442 
3443     /* If we are growing the image and potentially using preallocation for the
3444      * new area, we need to make sure that no write requests are made to it
3445      * concurrently or they might be overwritten by preallocation. */
3446     if (new_bytes) {
3447         bdrv_make_request_serialising(&req, 1);
3448     }
3449     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3450                                     0);
3451     if (ret < 0) {
3452         error_setg_errno(errp, -ret,
3453                          "Failed to prepare request for truncation");
3454         goto out;
3455     }
3456 
3457     filtered = bdrv_filter_child(bs);
3458     backing = bdrv_cow_child(bs);
3459 
3460     /*
3461      * If the image has a backing file that is large enough that it would
3462      * provide data for the new area, we cannot leave it unallocated because
3463      * then the backing file content would become visible. Instead, zero-fill
3464      * the new area.
3465      *
3466      * Note that if the image has a backing file, but was opened without the
3467      * backing file, taking care of keeping things consistent with that backing
3468      * file is the user's responsibility.
3469      */
3470     if (new_bytes && backing) {
3471         int64_t backing_len;
3472 
3473         backing_len = bdrv_co_getlength(backing->bs);
3474         if (backing_len < 0) {
3475             ret = backing_len;
3476             error_setg_errno(errp, -ret, "Could not get backing file size");
3477             goto out;
3478         }
3479 
3480         if (backing_len > old_size) {
3481             flags |= BDRV_REQ_ZERO_WRITE;
3482         }
3483     }
3484 
3485     if (drv->bdrv_co_truncate) {
3486         if (flags & ~bs->supported_truncate_flags) {
3487             error_setg(errp, "Block driver does not support requested flags");
3488             ret = -ENOTSUP;
3489             goto out;
3490         }
3491         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3492     } else if (filtered) {
3493         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3494     } else {
3495         error_setg(errp, "Image format driver does not support resize");
3496         ret = -ENOTSUP;
3497         goto out;
3498     }
3499     if (ret < 0) {
3500         goto out;
3501     }
3502 
3503     ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3504     if (ret < 0) {
3505         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3506     } else {
3507         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3508     }
3509     /*
3510      * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3511      * failed, but the latter doesn't affect how we should finish the request.
3512      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3513      */
3514     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3515 
3516 out:
3517     tracked_request_end(&req);
3518     bdrv_dec_in_flight(bs);
3519 
3520     return ret;
3521 }
3522 
3523 void bdrv_cancel_in_flight(BlockDriverState *bs)
3524 {
3525     GLOBAL_STATE_CODE();
3526     if (!bs || !bs->drv) {
3527         return;
3528     }
3529 
3530     if (bs->drv->bdrv_cancel_in_flight) {
3531         bs->drv->bdrv_cancel_in_flight(bs);
3532     }
3533 }
3534 
3535 int coroutine_fn
3536 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3537                         QEMUIOVector *qiov, size_t qiov_offset)
3538 {
3539     BlockDriverState *bs = child->bs;
3540     BlockDriver *drv = bs->drv;
3541     int ret;
3542     IO_CODE();
3543     assert_bdrv_graph_readable();
3544 
3545     if (!drv) {
3546         return -ENOMEDIUM;
3547     }
3548 
3549     if (!drv->bdrv_co_preadv_snapshot) {
3550         return -ENOTSUP;
3551     }
3552 
3553     bdrv_inc_in_flight(bs);
3554     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3555     bdrv_dec_in_flight(bs);
3556 
3557     return ret;
3558 }
3559 
3560 int coroutine_fn
3561 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3562                               bool want_zero, int64_t offset, int64_t bytes,
3563                               int64_t *pnum, int64_t *map,
3564                               BlockDriverState **file)
3565 {
3566     BlockDriver *drv = bs->drv;
3567     int ret;
3568     IO_CODE();
3569     assert_bdrv_graph_readable();
3570 
3571     if (!drv) {
3572         return -ENOMEDIUM;
3573     }
3574 
3575     if (!drv->bdrv_co_snapshot_block_status) {
3576         return -ENOTSUP;
3577     }
3578 
3579     bdrv_inc_in_flight(bs);
3580     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3581                                              pnum, map, file);
3582     bdrv_dec_in_flight(bs);
3583 
3584     return ret;
3585 }
3586 
3587 int coroutine_fn
3588 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3589 {
3590     BlockDriver *drv = bs->drv;
3591     int ret;
3592     IO_CODE();
3593     assert_bdrv_graph_readable();
3594 
3595     if (!drv) {
3596         return -ENOMEDIUM;
3597     }
3598 
3599     if (!drv->bdrv_co_pdiscard_snapshot) {
3600         return -ENOTSUP;
3601     }
3602 
3603     bdrv_inc_in_flight(bs);
3604     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3605     bdrv_dec_in_flight(bs);
3606 
3607     return ret;
3608 }
3609