xref: /openbmc/qemu/block/io.c (revision e688df6b)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36 
37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
39 
40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
41     int64_t offset, int bytes, BdrvRequestFlags flags);
42 
43 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
44 {
45     BdrvChild *c, *next;
46 
47     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
48         if (c == ignore) {
49             continue;
50         }
51         if (c->role->drained_begin) {
52             c->role->drained_begin(c);
53         }
54     }
55 }
56 
57 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
58 {
59     BdrvChild *c, *next;
60 
61     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
62         if (c == ignore) {
63             continue;
64         }
65         if (c->role->drained_end) {
66             c->role->drained_end(c);
67         }
68     }
69 }
70 
71 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
72 {
73     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
74     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
75     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
76                                  src->opt_mem_alignment);
77     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
78                                  src->min_mem_alignment);
79     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
80 }
81 
82 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
83 {
84     BlockDriver *drv = bs->drv;
85     Error *local_err = NULL;
86 
87     memset(&bs->bl, 0, sizeof(bs->bl));
88 
89     if (!drv) {
90         return;
91     }
92 
93     /* Default alignment based on whether driver has byte interface */
94     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
95 
96     /* Take some limits from the children as a default */
97     if (bs->file) {
98         bdrv_refresh_limits(bs->file->bs, &local_err);
99         if (local_err) {
100             error_propagate(errp, local_err);
101             return;
102         }
103         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
104     } else {
105         bs->bl.min_mem_alignment = 512;
106         bs->bl.opt_mem_alignment = getpagesize();
107 
108         /* Safe default since most protocols use readv()/writev()/etc */
109         bs->bl.max_iov = IOV_MAX;
110     }
111 
112     if (bs->backing) {
113         bdrv_refresh_limits(bs->backing->bs, &local_err);
114         if (local_err) {
115             error_propagate(errp, local_err);
116             return;
117         }
118         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
119     }
120 
121     /* Then let the driver override it */
122     if (drv->bdrv_refresh_limits) {
123         drv->bdrv_refresh_limits(bs, errp);
124     }
125 }
126 
127 /**
128  * The copy-on-read flag is actually a reference count so multiple users may
129  * use the feature without worrying about clobbering its previous state.
130  * Copy-on-read stays enabled until all users have called to disable it.
131  */
132 void bdrv_enable_copy_on_read(BlockDriverState *bs)
133 {
134     atomic_inc(&bs->copy_on_read);
135 }
136 
137 void bdrv_disable_copy_on_read(BlockDriverState *bs)
138 {
139     int old = atomic_fetch_dec(&bs->copy_on_read);
140     assert(old >= 1);
141 }
142 
143 typedef struct {
144     Coroutine *co;
145     BlockDriverState *bs;
146     bool done;
147     bool begin;
148     bool recursive;
149     BdrvChild *parent;
150 } BdrvCoDrainData;
151 
152 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
153 {
154     BdrvCoDrainData *data = opaque;
155     BlockDriverState *bs = data->bs;
156 
157     if (data->begin) {
158         bs->drv->bdrv_co_drain_begin(bs);
159     } else {
160         bs->drv->bdrv_co_drain_end(bs);
161     }
162 
163     /* Set data->done before reading bs->wakeup.  */
164     atomic_mb_set(&data->done, true);
165     bdrv_wakeup(bs);
166 }
167 
168 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
169 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
170 {
171     BdrvChild *child, *tmp;
172     BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
173 
174     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
175             (!begin && !bs->drv->bdrv_co_drain_end)) {
176         return;
177     }
178 
179     data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
180     bdrv_coroutine_enter(bs, data.co);
181     BDRV_POLL_WHILE(bs, !data.done);
182 
183     if (recursive) {
184         QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
185             bdrv_drain_invoke(child->bs, begin, true);
186         }
187     }
188 }
189 
190 static bool bdrv_drain_recurse(BlockDriverState *bs)
191 {
192     BdrvChild *child, *tmp;
193     bool waited;
194 
195     /* Wait for drained requests to finish */
196     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
197 
198     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
199         BlockDriverState *bs = child->bs;
200         bool in_main_loop =
201             qemu_get_current_aio_context() == qemu_get_aio_context();
202         assert(bs->refcnt > 0);
203         if (in_main_loop) {
204             /* In case the recursive bdrv_drain_recurse processes a
205              * block_job_defer_to_main_loop BH and modifies the graph,
206              * let's hold a reference to bs until we are done.
207              *
208              * IOThread doesn't have such a BH, and it is not safe to call
209              * bdrv_unref without BQL, so skip doing it there.
210              */
211             bdrv_ref(bs);
212         }
213         waited |= bdrv_drain_recurse(bs);
214         if (in_main_loop) {
215             bdrv_unref(bs);
216         }
217     }
218 
219     return waited;
220 }
221 
222 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
223                                   BdrvChild *parent);
224 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
225                                 BdrvChild *parent);
226 
227 static void bdrv_co_drain_bh_cb(void *opaque)
228 {
229     BdrvCoDrainData *data = opaque;
230     Coroutine *co = data->co;
231     BlockDriverState *bs = data->bs;
232 
233     bdrv_dec_in_flight(bs);
234     if (data->begin) {
235         bdrv_do_drained_begin(bs, data->recursive, data->parent);
236     } else {
237         bdrv_do_drained_end(bs, data->recursive, data->parent);
238     }
239 
240     data->done = true;
241     aio_co_wake(co);
242 }
243 
244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
245                                                 bool begin, bool recursive,
246                                                 BdrvChild *parent)
247 {
248     BdrvCoDrainData data;
249 
250     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
251      * other coroutines run if they were queued from
252      * qemu_co_queue_run_restart(). */
253 
254     assert(qemu_in_coroutine());
255     data = (BdrvCoDrainData) {
256         .co = qemu_coroutine_self(),
257         .bs = bs,
258         .done = false,
259         .begin = begin,
260         .recursive = recursive,
261         .parent = parent,
262     };
263     bdrv_inc_in_flight(bs);
264     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
265                             bdrv_co_drain_bh_cb, &data);
266 
267     qemu_coroutine_yield();
268     /* If we are resumed from some other event (such as an aio completion or a
269      * timer callback), it is a bug in the caller that should be fixed. */
270     assert(data.done);
271 }
272 
273 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
274                            BdrvChild *parent)
275 {
276     BdrvChild *child, *next;
277 
278     if (qemu_in_coroutine()) {
279         bdrv_co_yield_to_drain(bs, true, recursive, parent);
280         return;
281     }
282 
283     /* Stop things in parent-to-child order */
284     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
285         aio_disable_external(bdrv_get_aio_context(bs));
286     }
287 
288     bdrv_parent_drained_begin(bs, parent);
289     bdrv_drain_invoke(bs, true, false);
290     bdrv_drain_recurse(bs);
291 
292     if (recursive) {
293         bs->recursive_quiesce_counter++;
294         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
295             bdrv_do_drained_begin(child->bs, true, child);
296         }
297     }
298 }
299 
300 void bdrv_drained_begin(BlockDriverState *bs)
301 {
302     bdrv_do_drained_begin(bs, false, NULL);
303 }
304 
305 void bdrv_subtree_drained_begin(BlockDriverState *bs)
306 {
307     bdrv_do_drained_begin(bs, true, NULL);
308 }
309 
310 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
311                          BdrvChild *parent)
312 {
313     BdrvChild *child, *next;
314     int old_quiesce_counter;
315 
316     if (qemu_in_coroutine()) {
317         bdrv_co_yield_to_drain(bs, false, recursive, parent);
318         return;
319     }
320     assert(bs->quiesce_counter > 0);
321     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
322 
323     /* Re-enable things in child-to-parent order */
324     bdrv_drain_invoke(bs, false, false);
325     bdrv_parent_drained_end(bs, parent);
326     if (old_quiesce_counter == 1) {
327         aio_enable_external(bdrv_get_aio_context(bs));
328     }
329 
330     if (recursive) {
331         bs->recursive_quiesce_counter--;
332         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
333             bdrv_do_drained_end(child->bs, true, child);
334         }
335     }
336 }
337 
338 void bdrv_drained_end(BlockDriverState *bs)
339 {
340     bdrv_do_drained_end(bs, false, NULL);
341 }
342 
343 void bdrv_subtree_drained_end(BlockDriverState *bs)
344 {
345     bdrv_do_drained_end(bs, true, NULL);
346 }
347 
348 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
349 {
350     int i;
351 
352     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
353         bdrv_do_drained_begin(child->bs, true, child);
354     }
355 }
356 
357 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
358 {
359     int i;
360 
361     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
362         bdrv_do_drained_end(child->bs, true, child);
363     }
364 }
365 
366 /*
367  * Wait for pending requests to complete on a single BlockDriverState subtree,
368  * and suspend block driver's internal I/O until next request arrives.
369  *
370  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
371  * AioContext.
372  *
373  * Only this BlockDriverState's AioContext is run, so in-flight requests must
374  * not depend on events in other AioContexts.  In that case, use
375  * bdrv_drain_all() instead.
376  */
377 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
378 {
379     assert(qemu_in_coroutine());
380     bdrv_drained_begin(bs);
381     bdrv_drained_end(bs);
382 }
383 
384 void bdrv_drain(BlockDriverState *bs)
385 {
386     bdrv_drained_begin(bs);
387     bdrv_drained_end(bs);
388 }
389 
390 /*
391  * Wait for pending requests to complete across all BlockDriverStates
392  *
393  * This function does not flush data to disk, use bdrv_flush_all() for that
394  * after calling this function.
395  *
396  * This pauses all block jobs and disables external clients. It must
397  * be paired with bdrv_drain_all_end().
398  *
399  * NOTE: no new block jobs or BlockDriverStates can be created between
400  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
401  */
402 void bdrv_drain_all_begin(void)
403 {
404     /* Always run first iteration so any pending completion BHs run */
405     bool waited = true;
406     BlockDriverState *bs;
407     BdrvNextIterator it;
408     GSList *aio_ctxs = NULL, *ctx;
409 
410     /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
411      * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
412      * nodes in several different AioContexts, so make sure we're in the main
413      * context. */
414     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
415 
416     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
417         AioContext *aio_context = bdrv_get_aio_context(bs);
418 
419         /* Stop things in parent-to-child order */
420         aio_context_acquire(aio_context);
421         aio_disable_external(aio_context);
422         bdrv_parent_drained_begin(bs, NULL);
423         bdrv_drain_invoke(bs, true, true);
424         aio_context_release(aio_context);
425 
426         if (!g_slist_find(aio_ctxs, aio_context)) {
427             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
428         }
429     }
430 
431     /* Note that completion of an asynchronous I/O operation can trigger any
432      * number of other I/O operations on other devices---for example a
433      * coroutine can submit an I/O request to another device in response to
434      * request completion.  Therefore we must keep looping until there was no
435      * more activity rather than simply draining each device independently.
436      */
437     while (waited) {
438         waited = false;
439 
440         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
441             AioContext *aio_context = ctx->data;
442 
443             aio_context_acquire(aio_context);
444             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
445                 if (aio_context == bdrv_get_aio_context(bs)) {
446                     waited |= bdrv_drain_recurse(bs);
447                 }
448             }
449             aio_context_release(aio_context);
450         }
451     }
452 
453     g_slist_free(aio_ctxs);
454 }
455 
456 void bdrv_drain_all_end(void)
457 {
458     BlockDriverState *bs;
459     BdrvNextIterator it;
460 
461     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
462         AioContext *aio_context = bdrv_get_aio_context(bs);
463 
464         /* Re-enable things in child-to-parent order */
465         aio_context_acquire(aio_context);
466         bdrv_drain_invoke(bs, false, true);
467         bdrv_parent_drained_end(bs, NULL);
468         aio_enable_external(aio_context);
469         aio_context_release(aio_context);
470     }
471 }
472 
473 void bdrv_drain_all(void)
474 {
475     bdrv_drain_all_begin();
476     bdrv_drain_all_end();
477 }
478 
479 /**
480  * Remove an active request from the tracked requests list
481  *
482  * This function should be called when a tracked request is completing.
483  */
484 static void tracked_request_end(BdrvTrackedRequest *req)
485 {
486     if (req->serialising) {
487         atomic_dec(&req->bs->serialising_in_flight);
488     }
489 
490     qemu_co_mutex_lock(&req->bs->reqs_lock);
491     QLIST_REMOVE(req, list);
492     qemu_co_queue_restart_all(&req->wait_queue);
493     qemu_co_mutex_unlock(&req->bs->reqs_lock);
494 }
495 
496 /**
497  * Add an active request to the tracked requests list
498  */
499 static void tracked_request_begin(BdrvTrackedRequest *req,
500                                   BlockDriverState *bs,
501                                   int64_t offset,
502                                   unsigned int bytes,
503                                   enum BdrvTrackedRequestType type)
504 {
505     *req = (BdrvTrackedRequest){
506         .bs = bs,
507         .offset         = offset,
508         .bytes          = bytes,
509         .type           = type,
510         .co             = qemu_coroutine_self(),
511         .serialising    = false,
512         .overlap_offset = offset,
513         .overlap_bytes  = bytes,
514     };
515 
516     qemu_co_queue_init(&req->wait_queue);
517 
518     qemu_co_mutex_lock(&bs->reqs_lock);
519     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
520     qemu_co_mutex_unlock(&bs->reqs_lock);
521 }
522 
523 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
524 {
525     int64_t overlap_offset = req->offset & ~(align - 1);
526     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
527                                - overlap_offset;
528 
529     if (!req->serialising) {
530         atomic_inc(&req->bs->serialising_in_flight);
531         req->serialising = true;
532     }
533 
534     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
535     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
536 }
537 
538 /**
539  * Round a region to cluster boundaries
540  */
541 void bdrv_round_to_clusters(BlockDriverState *bs,
542                             int64_t offset, int64_t bytes,
543                             int64_t *cluster_offset,
544                             int64_t *cluster_bytes)
545 {
546     BlockDriverInfo bdi;
547 
548     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
549         *cluster_offset = offset;
550         *cluster_bytes = bytes;
551     } else {
552         int64_t c = bdi.cluster_size;
553         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
554         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
555     }
556 }
557 
558 static int bdrv_get_cluster_size(BlockDriverState *bs)
559 {
560     BlockDriverInfo bdi;
561     int ret;
562 
563     ret = bdrv_get_info(bs, &bdi);
564     if (ret < 0 || bdi.cluster_size == 0) {
565         return bs->bl.request_alignment;
566     } else {
567         return bdi.cluster_size;
568     }
569 }
570 
571 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
572                                      int64_t offset, unsigned int bytes)
573 {
574     /*        aaaa   bbbb */
575     if (offset >= req->overlap_offset + req->overlap_bytes) {
576         return false;
577     }
578     /* bbbb   aaaa        */
579     if (req->overlap_offset >= offset + bytes) {
580         return false;
581     }
582     return true;
583 }
584 
585 void bdrv_inc_in_flight(BlockDriverState *bs)
586 {
587     atomic_inc(&bs->in_flight);
588 }
589 
590 static void dummy_bh_cb(void *opaque)
591 {
592 }
593 
594 void bdrv_wakeup(BlockDriverState *bs)
595 {
596     /* The barrier (or an atomic op) is in the caller.  */
597     if (atomic_read(&bs->wakeup)) {
598         aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
599     }
600 }
601 
602 void bdrv_dec_in_flight(BlockDriverState *bs)
603 {
604     atomic_dec(&bs->in_flight);
605     bdrv_wakeup(bs);
606 }
607 
608 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
609 {
610     BlockDriverState *bs = self->bs;
611     BdrvTrackedRequest *req;
612     bool retry;
613     bool waited = false;
614 
615     if (!atomic_read(&bs->serialising_in_flight)) {
616         return false;
617     }
618 
619     do {
620         retry = false;
621         qemu_co_mutex_lock(&bs->reqs_lock);
622         QLIST_FOREACH(req, &bs->tracked_requests, list) {
623             if (req == self || (!req->serialising && !self->serialising)) {
624                 continue;
625             }
626             if (tracked_request_overlaps(req, self->overlap_offset,
627                                          self->overlap_bytes))
628             {
629                 /* Hitting this means there was a reentrant request, for
630                  * example, a block driver issuing nested requests.  This must
631                  * never happen since it means deadlock.
632                  */
633                 assert(qemu_coroutine_self() != req->co);
634 
635                 /* If the request is already (indirectly) waiting for us, or
636                  * will wait for us as soon as it wakes up, then just go on
637                  * (instead of producing a deadlock in the former case). */
638                 if (!req->waiting_for) {
639                     self->waiting_for = req;
640                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
641                     self->waiting_for = NULL;
642                     retry = true;
643                     waited = true;
644                     break;
645                 }
646             }
647         }
648         qemu_co_mutex_unlock(&bs->reqs_lock);
649     } while (retry);
650 
651     return waited;
652 }
653 
654 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
655                                    size_t size)
656 {
657     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
658         return -EIO;
659     }
660 
661     if (!bdrv_is_inserted(bs)) {
662         return -ENOMEDIUM;
663     }
664 
665     if (offset < 0) {
666         return -EIO;
667     }
668 
669     return 0;
670 }
671 
672 typedef struct RwCo {
673     BdrvChild *child;
674     int64_t offset;
675     QEMUIOVector *qiov;
676     bool is_write;
677     int ret;
678     BdrvRequestFlags flags;
679 } RwCo;
680 
681 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
682 {
683     RwCo *rwco = opaque;
684 
685     if (!rwco->is_write) {
686         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
687                                    rwco->qiov->size, rwco->qiov,
688                                    rwco->flags);
689     } else {
690         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
691                                     rwco->qiov->size, rwco->qiov,
692                                     rwco->flags);
693     }
694 }
695 
696 /*
697  * Process a vectored synchronous request using coroutines
698  */
699 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
700                         QEMUIOVector *qiov, bool is_write,
701                         BdrvRequestFlags flags)
702 {
703     Coroutine *co;
704     RwCo rwco = {
705         .child = child,
706         .offset = offset,
707         .qiov = qiov,
708         .is_write = is_write,
709         .ret = NOT_DONE,
710         .flags = flags,
711     };
712 
713     if (qemu_in_coroutine()) {
714         /* Fast-path if already in coroutine context */
715         bdrv_rw_co_entry(&rwco);
716     } else {
717         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
718         bdrv_coroutine_enter(child->bs, co);
719         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
720     }
721     return rwco.ret;
722 }
723 
724 /*
725  * Process a synchronous request using coroutines
726  */
727 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
728                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
729 {
730     QEMUIOVector qiov;
731     struct iovec iov = {
732         .iov_base = (void *)buf,
733         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
734     };
735 
736     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
737         return -EINVAL;
738     }
739 
740     qemu_iovec_init_external(&qiov, &iov, 1);
741     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
742                         &qiov, is_write, flags);
743 }
744 
745 /* return < 0 if error. See bdrv_write() for the return codes */
746 int bdrv_read(BdrvChild *child, int64_t sector_num,
747               uint8_t *buf, int nb_sectors)
748 {
749     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
750 }
751 
752 /* Return < 0 if error. Important errors are:
753   -EIO         generic I/O error (may happen for all errors)
754   -ENOMEDIUM   No media inserted.
755   -EINVAL      Invalid sector number or nb_sectors
756   -EACCES      Trying to write a read-only device
757 */
758 int bdrv_write(BdrvChild *child, int64_t sector_num,
759                const uint8_t *buf, int nb_sectors)
760 {
761     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
762 }
763 
764 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
765                        int bytes, BdrvRequestFlags flags)
766 {
767     QEMUIOVector qiov;
768     struct iovec iov = {
769         .iov_base = NULL,
770         .iov_len = bytes,
771     };
772 
773     qemu_iovec_init_external(&qiov, &iov, 1);
774     return bdrv_prwv_co(child, offset, &qiov, true,
775                         BDRV_REQ_ZERO_WRITE | flags);
776 }
777 
778 /*
779  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
780  * The operation is sped up by checking the block status and only writing
781  * zeroes to the device if they currently do not return zeroes. Optional
782  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
783  * BDRV_REQ_FUA).
784  *
785  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
786  */
787 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
788 {
789     int ret;
790     int64_t target_size, bytes, offset = 0;
791     BlockDriverState *bs = child->bs;
792 
793     target_size = bdrv_getlength(bs);
794     if (target_size < 0) {
795         return target_size;
796     }
797 
798     for (;;) {
799         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
800         if (bytes <= 0) {
801             return 0;
802         }
803         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
804         if (ret < 0) {
805             error_report("error getting block status at offset %" PRId64 ": %s",
806                          offset, strerror(-ret));
807             return ret;
808         }
809         if (ret & BDRV_BLOCK_ZERO) {
810             offset += bytes;
811             continue;
812         }
813         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
814         if (ret < 0) {
815             error_report("error writing zeroes at offset %" PRId64 ": %s",
816                          offset, strerror(-ret));
817             return ret;
818         }
819         offset += bytes;
820     }
821 }
822 
823 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
824 {
825     int ret;
826 
827     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
828     if (ret < 0) {
829         return ret;
830     }
831 
832     return qiov->size;
833 }
834 
835 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
836 {
837     QEMUIOVector qiov;
838     struct iovec iov = {
839         .iov_base = (void *)buf,
840         .iov_len = bytes,
841     };
842 
843     if (bytes < 0) {
844         return -EINVAL;
845     }
846 
847     qemu_iovec_init_external(&qiov, &iov, 1);
848     return bdrv_preadv(child, offset, &qiov);
849 }
850 
851 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
852 {
853     int ret;
854 
855     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
856     if (ret < 0) {
857         return ret;
858     }
859 
860     return qiov->size;
861 }
862 
863 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
864 {
865     QEMUIOVector qiov;
866     struct iovec iov = {
867         .iov_base   = (void *) buf,
868         .iov_len    = bytes,
869     };
870 
871     if (bytes < 0) {
872         return -EINVAL;
873     }
874 
875     qemu_iovec_init_external(&qiov, &iov, 1);
876     return bdrv_pwritev(child, offset, &qiov);
877 }
878 
879 /*
880  * Writes to the file and ensures that no writes are reordered across this
881  * request (acts as a barrier)
882  *
883  * Returns 0 on success, -errno in error cases.
884  */
885 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
886                      const void *buf, int count)
887 {
888     int ret;
889 
890     ret = bdrv_pwrite(child, offset, buf, count);
891     if (ret < 0) {
892         return ret;
893     }
894 
895     ret = bdrv_flush(child->bs);
896     if (ret < 0) {
897         return ret;
898     }
899 
900     return 0;
901 }
902 
903 typedef struct CoroutineIOCompletion {
904     Coroutine *coroutine;
905     int ret;
906 } CoroutineIOCompletion;
907 
908 static void bdrv_co_io_em_complete(void *opaque, int ret)
909 {
910     CoroutineIOCompletion *co = opaque;
911 
912     co->ret = ret;
913     aio_co_wake(co->coroutine);
914 }
915 
916 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
917                                            uint64_t offset, uint64_t bytes,
918                                            QEMUIOVector *qiov, int flags)
919 {
920     BlockDriver *drv = bs->drv;
921     int64_t sector_num;
922     unsigned int nb_sectors;
923 
924     assert(!(flags & ~BDRV_REQ_MASK));
925 
926     if (!drv) {
927         return -ENOMEDIUM;
928     }
929 
930     if (drv->bdrv_co_preadv) {
931         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
932     }
933 
934     sector_num = offset >> BDRV_SECTOR_BITS;
935     nb_sectors = bytes >> BDRV_SECTOR_BITS;
936 
937     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
938     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
939     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
940 
941     if (drv->bdrv_co_readv) {
942         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
943     } else {
944         BlockAIOCB *acb;
945         CoroutineIOCompletion co = {
946             .coroutine = qemu_coroutine_self(),
947         };
948 
949         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
950                                       bdrv_co_io_em_complete, &co);
951         if (acb == NULL) {
952             return -EIO;
953         } else {
954             qemu_coroutine_yield();
955             return co.ret;
956         }
957     }
958 }
959 
960 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
961                                             uint64_t offset, uint64_t bytes,
962                                             QEMUIOVector *qiov, int flags)
963 {
964     BlockDriver *drv = bs->drv;
965     int64_t sector_num;
966     unsigned int nb_sectors;
967     int ret;
968 
969     assert(!(flags & ~BDRV_REQ_MASK));
970 
971     if (!drv) {
972         return -ENOMEDIUM;
973     }
974 
975     if (drv->bdrv_co_pwritev) {
976         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
977                                    flags & bs->supported_write_flags);
978         flags &= ~bs->supported_write_flags;
979         goto emulate_flags;
980     }
981 
982     sector_num = offset >> BDRV_SECTOR_BITS;
983     nb_sectors = bytes >> BDRV_SECTOR_BITS;
984 
985     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
986     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
987     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
988 
989     if (drv->bdrv_co_writev_flags) {
990         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
991                                         flags & bs->supported_write_flags);
992         flags &= ~bs->supported_write_flags;
993     } else if (drv->bdrv_co_writev) {
994         assert(!bs->supported_write_flags);
995         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
996     } else {
997         BlockAIOCB *acb;
998         CoroutineIOCompletion co = {
999             .coroutine = qemu_coroutine_self(),
1000         };
1001 
1002         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
1003                                        bdrv_co_io_em_complete, &co);
1004         if (acb == NULL) {
1005             ret = -EIO;
1006         } else {
1007             qemu_coroutine_yield();
1008             ret = co.ret;
1009         }
1010     }
1011 
1012 emulate_flags:
1013     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1014         ret = bdrv_co_flush(bs);
1015     }
1016 
1017     return ret;
1018 }
1019 
1020 static int coroutine_fn
1021 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1022                                uint64_t bytes, QEMUIOVector *qiov)
1023 {
1024     BlockDriver *drv = bs->drv;
1025 
1026     if (!drv) {
1027         return -ENOMEDIUM;
1028     }
1029 
1030     if (!drv->bdrv_co_pwritev_compressed) {
1031         return -ENOTSUP;
1032     }
1033 
1034     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1035 }
1036 
1037 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1038         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1039 {
1040     BlockDriverState *bs = child->bs;
1041 
1042     /* Perform I/O through a temporary buffer so that users who scribble over
1043      * their read buffer while the operation is in progress do not end up
1044      * modifying the image file.  This is critical for zero-copy guest I/O
1045      * where anything might happen inside guest memory.
1046      */
1047     void *bounce_buffer;
1048 
1049     BlockDriver *drv = bs->drv;
1050     struct iovec iov;
1051     QEMUIOVector local_qiov;
1052     int64_t cluster_offset;
1053     int64_t cluster_bytes;
1054     size_t skip_bytes;
1055     int ret;
1056     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1057                                     BDRV_REQUEST_MAX_BYTES);
1058     unsigned int progress = 0;
1059 
1060     if (!drv) {
1061         return -ENOMEDIUM;
1062     }
1063 
1064     /* FIXME We cannot require callers to have write permissions when all they
1065      * are doing is a read request. If we did things right, write permissions
1066      * would be obtained anyway, but internally by the copy-on-read code. As
1067      * long as it is implemented here rather than in a separate filter driver,
1068      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1069      * it could request permissions. Therefore we have to bypass the permission
1070      * system for the moment. */
1071     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1072 
1073     /* Cover entire cluster so no additional backing file I/O is required when
1074      * allocating cluster in the image file.  Note that this value may exceed
1075      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1076      * is one reason we loop rather than doing it all at once.
1077      */
1078     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1079     skip_bytes = offset - cluster_offset;
1080 
1081     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1082                                    cluster_offset, cluster_bytes);
1083 
1084     bounce_buffer = qemu_try_blockalign(bs,
1085                                         MIN(MIN(max_transfer, cluster_bytes),
1086                                             MAX_BOUNCE_BUFFER));
1087     if (bounce_buffer == NULL) {
1088         ret = -ENOMEM;
1089         goto err;
1090     }
1091 
1092     while (cluster_bytes) {
1093         int64_t pnum;
1094 
1095         ret = bdrv_is_allocated(bs, cluster_offset,
1096                                 MIN(cluster_bytes, max_transfer), &pnum);
1097         if (ret < 0) {
1098             /* Safe to treat errors in querying allocation as if
1099              * unallocated; we'll probably fail again soon on the
1100              * read, but at least that will set a decent errno.
1101              */
1102             pnum = MIN(cluster_bytes, max_transfer);
1103         }
1104 
1105         assert(skip_bytes < pnum);
1106 
1107         if (ret <= 0) {
1108             /* Must copy-on-read; use the bounce buffer */
1109             iov.iov_base = bounce_buffer;
1110             iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1111             qemu_iovec_init_external(&local_qiov, &iov, 1);
1112 
1113             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1114                                      &local_qiov, 0);
1115             if (ret < 0) {
1116                 goto err;
1117             }
1118 
1119             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1120             if (drv->bdrv_co_pwrite_zeroes &&
1121                 buffer_is_zero(bounce_buffer, pnum)) {
1122                 /* FIXME: Should we (perhaps conditionally) be setting
1123                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1124                  * that still correctly reads as zero? */
1125                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1126             } else {
1127                 /* This does not change the data on the disk, it is not
1128                  * necessary to flush even in cache=writethrough mode.
1129                  */
1130                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1131                                           &local_qiov, 0);
1132             }
1133 
1134             if (ret < 0) {
1135                 /* It might be okay to ignore write errors for guest
1136                  * requests.  If this is a deliberate copy-on-read
1137                  * then we don't want to ignore the error.  Simply
1138                  * report it in all cases.
1139                  */
1140                 goto err;
1141             }
1142 
1143             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1144                                 pnum - skip_bytes);
1145         } else {
1146             /* Read directly into the destination */
1147             qemu_iovec_init(&local_qiov, qiov->niov);
1148             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1149             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1150                                      &local_qiov, 0);
1151             qemu_iovec_destroy(&local_qiov);
1152             if (ret < 0) {
1153                 goto err;
1154             }
1155         }
1156 
1157         cluster_offset += pnum;
1158         cluster_bytes -= pnum;
1159         progress += pnum - skip_bytes;
1160         skip_bytes = 0;
1161     }
1162     ret = 0;
1163 
1164 err:
1165     qemu_vfree(bounce_buffer);
1166     return ret;
1167 }
1168 
1169 /*
1170  * Forwards an already correctly aligned request to the BlockDriver. This
1171  * handles copy on read, zeroing after EOF, and fragmentation of large
1172  * reads; any other features must be implemented by the caller.
1173  */
1174 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1175     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1176     int64_t align, QEMUIOVector *qiov, int flags)
1177 {
1178     BlockDriverState *bs = child->bs;
1179     int64_t total_bytes, max_bytes;
1180     int ret = 0;
1181     uint64_t bytes_remaining = bytes;
1182     int max_transfer;
1183 
1184     assert(is_power_of_2(align));
1185     assert((offset & (align - 1)) == 0);
1186     assert((bytes & (align - 1)) == 0);
1187     assert(!qiov || bytes == qiov->size);
1188     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1189     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1190                                    align);
1191 
1192     /* TODO: We would need a per-BDS .supported_read_flags and
1193      * potential fallback support, if we ever implement any read flags
1194      * to pass through to drivers.  For now, there aren't any
1195      * passthrough flags.  */
1196     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1197 
1198     /* Handle Copy on Read and associated serialisation */
1199     if (flags & BDRV_REQ_COPY_ON_READ) {
1200         /* If we touch the same cluster it counts as an overlap.  This
1201          * guarantees that allocating writes will be serialized and not race
1202          * with each other for the same cluster.  For example, in copy-on-read
1203          * it ensures that the CoR read and write operations are atomic and
1204          * guest writes cannot interleave between them. */
1205         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1206     }
1207 
1208     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1209         wait_serialising_requests(req);
1210     }
1211 
1212     if (flags & BDRV_REQ_COPY_ON_READ) {
1213         int64_t pnum;
1214 
1215         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1216         if (ret < 0) {
1217             goto out;
1218         }
1219 
1220         if (!ret || pnum != bytes) {
1221             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1222             goto out;
1223         }
1224     }
1225 
1226     /* Forward the request to the BlockDriver, possibly fragmenting it */
1227     total_bytes = bdrv_getlength(bs);
1228     if (total_bytes < 0) {
1229         ret = total_bytes;
1230         goto out;
1231     }
1232 
1233     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1234     if (bytes <= max_bytes && bytes <= max_transfer) {
1235         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1236         goto out;
1237     }
1238 
1239     while (bytes_remaining) {
1240         int num;
1241 
1242         if (max_bytes) {
1243             QEMUIOVector local_qiov;
1244 
1245             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1246             assert(num);
1247             qemu_iovec_init(&local_qiov, qiov->niov);
1248             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1249 
1250             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1251                                      num, &local_qiov, 0);
1252             max_bytes -= num;
1253             qemu_iovec_destroy(&local_qiov);
1254         } else {
1255             num = bytes_remaining;
1256             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1257                                     bytes_remaining);
1258         }
1259         if (ret < 0) {
1260             goto out;
1261         }
1262         bytes_remaining -= num;
1263     }
1264 
1265 out:
1266     return ret < 0 ? ret : 0;
1267 }
1268 
1269 /*
1270  * Handle a read request in coroutine context
1271  */
1272 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1273     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1274     BdrvRequestFlags flags)
1275 {
1276     BlockDriverState *bs = child->bs;
1277     BlockDriver *drv = bs->drv;
1278     BdrvTrackedRequest req;
1279 
1280     uint64_t align = bs->bl.request_alignment;
1281     uint8_t *head_buf = NULL;
1282     uint8_t *tail_buf = NULL;
1283     QEMUIOVector local_qiov;
1284     bool use_local_qiov = false;
1285     int ret;
1286 
1287     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1288 
1289     if (!drv) {
1290         return -ENOMEDIUM;
1291     }
1292 
1293     ret = bdrv_check_byte_request(bs, offset, bytes);
1294     if (ret < 0) {
1295         return ret;
1296     }
1297 
1298     bdrv_inc_in_flight(bs);
1299 
1300     /* Don't do copy-on-read if we read data before write operation */
1301     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1302         flags |= BDRV_REQ_COPY_ON_READ;
1303     }
1304 
1305     /* Align read if necessary by padding qiov */
1306     if (offset & (align - 1)) {
1307         head_buf = qemu_blockalign(bs, align);
1308         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1309         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1310         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1311         use_local_qiov = true;
1312 
1313         bytes += offset & (align - 1);
1314         offset = offset & ~(align - 1);
1315     }
1316 
1317     if ((offset + bytes) & (align - 1)) {
1318         if (!use_local_qiov) {
1319             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1320             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1321             use_local_qiov = true;
1322         }
1323         tail_buf = qemu_blockalign(bs, align);
1324         qemu_iovec_add(&local_qiov, tail_buf,
1325                        align - ((offset + bytes) & (align - 1)));
1326 
1327         bytes = ROUND_UP(bytes, align);
1328     }
1329 
1330     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1331     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1332                               use_local_qiov ? &local_qiov : qiov,
1333                               flags);
1334     tracked_request_end(&req);
1335     bdrv_dec_in_flight(bs);
1336 
1337     if (use_local_qiov) {
1338         qemu_iovec_destroy(&local_qiov);
1339         qemu_vfree(head_buf);
1340         qemu_vfree(tail_buf);
1341     }
1342 
1343     return ret;
1344 }
1345 
1346 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1347     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1348     BdrvRequestFlags flags)
1349 {
1350     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1351         return -EINVAL;
1352     }
1353 
1354     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1355                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1356 }
1357 
1358 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1359                                int nb_sectors, QEMUIOVector *qiov)
1360 {
1361     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1362 }
1363 
1364 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1365     int64_t offset, int bytes, BdrvRequestFlags flags)
1366 {
1367     BlockDriver *drv = bs->drv;
1368     QEMUIOVector qiov;
1369     struct iovec iov = {0};
1370     int ret = 0;
1371     bool need_flush = false;
1372     int head = 0;
1373     int tail = 0;
1374 
1375     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1376     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1377                         bs->bl.request_alignment);
1378     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1379 
1380     if (!drv) {
1381         return -ENOMEDIUM;
1382     }
1383 
1384     assert(alignment % bs->bl.request_alignment == 0);
1385     head = offset % alignment;
1386     tail = (offset + bytes) % alignment;
1387     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1388     assert(max_write_zeroes >= bs->bl.request_alignment);
1389 
1390     while (bytes > 0 && !ret) {
1391         int num = bytes;
1392 
1393         /* Align request.  Block drivers can expect the "bulk" of the request
1394          * to be aligned, and that unaligned requests do not cross cluster
1395          * boundaries.
1396          */
1397         if (head) {
1398             /* Make a small request up to the first aligned sector. For
1399              * convenience, limit this request to max_transfer even if
1400              * we don't need to fall back to writes.  */
1401             num = MIN(MIN(bytes, max_transfer), alignment - head);
1402             head = (head + num) % alignment;
1403             assert(num < max_write_zeroes);
1404         } else if (tail && num > alignment) {
1405             /* Shorten the request to the last aligned sector.  */
1406             num -= tail;
1407         }
1408 
1409         /* limit request size */
1410         if (num > max_write_zeroes) {
1411             num = max_write_zeroes;
1412         }
1413 
1414         ret = -ENOTSUP;
1415         /* First try the efficient write zeroes operation */
1416         if (drv->bdrv_co_pwrite_zeroes) {
1417             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1418                                              flags & bs->supported_zero_flags);
1419             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1420                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1421                 need_flush = true;
1422             }
1423         } else {
1424             assert(!bs->supported_zero_flags);
1425         }
1426 
1427         if (ret == -ENOTSUP) {
1428             /* Fall back to bounce buffer if write zeroes is unsupported */
1429             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1430 
1431             if ((flags & BDRV_REQ_FUA) &&
1432                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1433                 /* No need for bdrv_driver_pwrite() to do a fallback
1434                  * flush on each chunk; use just one at the end */
1435                 write_flags &= ~BDRV_REQ_FUA;
1436                 need_flush = true;
1437             }
1438             num = MIN(num, max_transfer);
1439             iov.iov_len = num;
1440             if (iov.iov_base == NULL) {
1441                 iov.iov_base = qemu_try_blockalign(bs, num);
1442                 if (iov.iov_base == NULL) {
1443                     ret = -ENOMEM;
1444                     goto fail;
1445                 }
1446                 memset(iov.iov_base, 0, num);
1447             }
1448             qemu_iovec_init_external(&qiov, &iov, 1);
1449 
1450             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1451 
1452             /* Keep bounce buffer around if it is big enough for all
1453              * all future requests.
1454              */
1455             if (num < max_transfer) {
1456                 qemu_vfree(iov.iov_base);
1457                 iov.iov_base = NULL;
1458             }
1459         }
1460 
1461         offset += num;
1462         bytes -= num;
1463     }
1464 
1465 fail:
1466     if (ret == 0 && need_flush) {
1467         ret = bdrv_co_flush(bs);
1468     }
1469     qemu_vfree(iov.iov_base);
1470     return ret;
1471 }
1472 
1473 /*
1474  * Forwards an already correctly aligned write request to the BlockDriver,
1475  * after possibly fragmenting it.
1476  */
1477 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1478     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1479     int64_t align, QEMUIOVector *qiov, int flags)
1480 {
1481     BlockDriverState *bs = child->bs;
1482     BlockDriver *drv = bs->drv;
1483     bool waited;
1484     int ret;
1485 
1486     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1487     uint64_t bytes_remaining = bytes;
1488     int max_transfer;
1489 
1490     if (!drv) {
1491         return -ENOMEDIUM;
1492     }
1493 
1494     if (bdrv_has_readonly_bitmaps(bs)) {
1495         return -EPERM;
1496     }
1497 
1498     assert(is_power_of_2(align));
1499     assert((offset & (align - 1)) == 0);
1500     assert((bytes & (align - 1)) == 0);
1501     assert(!qiov || bytes == qiov->size);
1502     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1503     assert(!(flags & ~BDRV_REQ_MASK));
1504     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1505                                    align);
1506 
1507     waited = wait_serialising_requests(req);
1508     assert(!waited || !req->serialising);
1509     assert(req->overlap_offset <= offset);
1510     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1511     assert(child->perm & BLK_PERM_WRITE);
1512     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1513 
1514     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1515 
1516     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1517         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1518         qemu_iovec_is_zero(qiov)) {
1519         flags |= BDRV_REQ_ZERO_WRITE;
1520         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1521             flags |= BDRV_REQ_MAY_UNMAP;
1522         }
1523     }
1524 
1525     if (ret < 0) {
1526         /* Do nothing, write notifier decided to fail this request */
1527     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1528         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1529         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1530     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1531         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1532     } else if (bytes <= max_transfer) {
1533         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1534         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1535     } else {
1536         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1537         while (bytes_remaining) {
1538             int num = MIN(bytes_remaining, max_transfer);
1539             QEMUIOVector local_qiov;
1540             int local_flags = flags;
1541 
1542             assert(num);
1543             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1544                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1545                 /* If FUA is going to be emulated by flush, we only
1546                  * need to flush on the last iteration */
1547                 local_flags &= ~BDRV_REQ_FUA;
1548             }
1549             qemu_iovec_init(&local_qiov, qiov->niov);
1550             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1551 
1552             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1553                                       num, &local_qiov, local_flags);
1554             qemu_iovec_destroy(&local_qiov);
1555             if (ret < 0) {
1556                 break;
1557             }
1558             bytes_remaining -= num;
1559         }
1560     }
1561     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1562 
1563     atomic_inc(&bs->write_gen);
1564     bdrv_set_dirty(bs, offset, bytes);
1565 
1566     stat64_max(&bs->wr_highest_offset, offset + bytes);
1567 
1568     if (ret >= 0) {
1569         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1570         ret = 0;
1571     }
1572 
1573     return ret;
1574 }
1575 
1576 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1577                                                 int64_t offset,
1578                                                 unsigned int bytes,
1579                                                 BdrvRequestFlags flags,
1580                                                 BdrvTrackedRequest *req)
1581 {
1582     BlockDriverState *bs = child->bs;
1583     uint8_t *buf = NULL;
1584     QEMUIOVector local_qiov;
1585     struct iovec iov;
1586     uint64_t align = bs->bl.request_alignment;
1587     unsigned int head_padding_bytes, tail_padding_bytes;
1588     int ret = 0;
1589 
1590     head_padding_bytes = offset & (align - 1);
1591     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1592 
1593 
1594     assert(flags & BDRV_REQ_ZERO_WRITE);
1595     if (head_padding_bytes || tail_padding_bytes) {
1596         buf = qemu_blockalign(bs, align);
1597         iov = (struct iovec) {
1598             .iov_base   = buf,
1599             .iov_len    = align,
1600         };
1601         qemu_iovec_init_external(&local_qiov, &iov, 1);
1602     }
1603     if (head_padding_bytes) {
1604         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1605 
1606         /* RMW the unaligned part before head. */
1607         mark_request_serialising(req, align);
1608         wait_serialising_requests(req);
1609         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1610         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1611                                   align, &local_qiov, 0);
1612         if (ret < 0) {
1613             goto fail;
1614         }
1615         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1616 
1617         memset(buf + head_padding_bytes, 0, zero_bytes);
1618         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1619                                    align, &local_qiov,
1620                                    flags & ~BDRV_REQ_ZERO_WRITE);
1621         if (ret < 0) {
1622             goto fail;
1623         }
1624         offset += zero_bytes;
1625         bytes -= zero_bytes;
1626     }
1627 
1628     assert(!bytes || (offset & (align - 1)) == 0);
1629     if (bytes >= align) {
1630         /* Write the aligned part in the middle. */
1631         uint64_t aligned_bytes = bytes & ~(align - 1);
1632         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1633                                    NULL, flags);
1634         if (ret < 0) {
1635             goto fail;
1636         }
1637         bytes -= aligned_bytes;
1638         offset += aligned_bytes;
1639     }
1640 
1641     assert(!bytes || (offset & (align - 1)) == 0);
1642     if (bytes) {
1643         assert(align == tail_padding_bytes + bytes);
1644         /* RMW the unaligned part after tail. */
1645         mark_request_serialising(req, align);
1646         wait_serialising_requests(req);
1647         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1648         ret = bdrv_aligned_preadv(child, req, offset, align,
1649                                   align, &local_qiov, 0);
1650         if (ret < 0) {
1651             goto fail;
1652         }
1653         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1654 
1655         memset(buf, 0, bytes);
1656         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1657                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1658     }
1659 fail:
1660     qemu_vfree(buf);
1661     return ret;
1662 
1663 }
1664 
1665 /*
1666  * Handle a write request in coroutine context
1667  */
1668 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1669     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1670     BdrvRequestFlags flags)
1671 {
1672     BlockDriverState *bs = child->bs;
1673     BdrvTrackedRequest req;
1674     uint64_t align = bs->bl.request_alignment;
1675     uint8_t *head_buf = NULL;
1676     uint8_t *tail_buf = NULL;
1677     QEMUIOVector local_qiov;
1678     bool use_local_qiov = false;
1679     int ret;
1680 
1681     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1682 
1683     if (!bs->drv) {
1684         return -ENOMEDIUM;
1685     }
1686     if (bs->read_only) {
1687         return -EPERM;
1688     }
1689     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1690 
1691     ret = bdrv_check_byte_request(bs, offset, bytes);
1692     if (ret < 0) {
1693         return ret;
1694     }
1695 
1696     bdrv_inc_in_flight(bs);
1697     /*
1698      * Align write if necessary by performing a read-modify-write cycle.
1699      * Pad qiov with the read parts and be sure to have a tracked request not
1700      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1701      */
1702     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1703 
1704     if (!qiov) {
1705         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1706         goto out;
1707     }
1708 
1709     if (offset & (align - 1)) {
1710         QEMUIOVector head_qiov;
1711         struct iovec head_iov;
1712 
1713         mark_request_serialising(&req, align);
1714         wait_serialising_requests(&req);
1715 
1716         head_buf = qemu_blockalign(bs, align);
1717         head_iov = (struct iovec) {
1718             .iov_base   = head_buf,
1719             .iov_len    = align,
1720         };
1721         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1722 
1723         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1724         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1725                                   align, &head_qiov, 0);
1726         if (ret < 0) {
1727             goto fail;
1728         }
1729         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1730 
1731         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1732         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1733         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1734         use_local_qiov = true;
1735 
1736         bytes += offset & (align - 1);
1737         offset = offset & ~(align - 1);
1738 
1739         /* We have read the tail already if the request is smaller
1740          * than one aligned block.
1741          */
1742         if (bytes < align) {
1743             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1744             bytes = align;
1745         }
1746     }
1747 
1748     if ((offset + bytes) & (align - 1)) {
1749         QEMUIOVector tail_qiov;
1750         struct iovec tail_iov;
1751         size_t tail_bytes;
1752         bool waited;
1753 
1754         mark_request_serialising(&req, align);
1755         waited = wait_serialising_requests(&req);
1756         assert(!waited || !use_local_qiov);
1757 
1758         tail_buf = qemu_blockalign(bs, align);
1759         tail_iov = (struct iovec) {
1760             .iov_base   = tail_buf,
1761             .iov_len    = align,
1762         };
1763         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1764 
1765         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1766         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1767                                   align, align, &tail_qiov, 0);
1768         if (ret < 0) {
1769             goto fail;
1770         }
1771         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1772 
1773         if (!use_local_qiov) {
1774             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1775             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1776             use_local_qiov = true;
1777         }
1778 
1779         tail_bytes = (offset + bytes) & (align - 1);
1780         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1781 
1782         bytes = ROUND_UP(bytes, align);
1783     }
1784 
1785     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1786                                use_local_qiov ? &local_qiov : qiov,
1787                                flags);
1788 
1789 fail:
1790 
1791     if (use_local_qiov) {
1792         qemu_iovec_destroy(&local_qiov);
1793     }
1794     qemu_vfree(head_buf);
1795     qemu_vfree(tail_buf);
1796 out:
1797     tracked_request_end(&req);
1798     bdrv_dec_in_flight(bs);
1799     return ret;
1800 }
1801 
1802 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1803     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1804     BdrvRequestFlags flags)
1805 {
1806     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1807         return -EINVAL;
1808     }
1809 
1810     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1811                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1812 }
1813 
1814 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1815     int nb_sectors, QEMUIOVector *qiov)
1816 {
1817     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1818 }
1819 
1820 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1821                                        int bytes, BdrvRequestFlags flags)
1822 {
1823     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1824 
1825     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1826         flags &= ~BDRV_REQ_MAY_UNMAP;
1827     }
1828 
1829     return bdrv_co_pwritev(child, offset, bytes, NULL,
1830                            BDRV_REQ_ZERO_WRITE | flags);
1831 }
1832 
1833 /*
1834  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1835  */
1836 int bdrv_flush_all(void)
1837 {
1838     BdrvNextIterator it;
1839     BlockDriverState *bs = NULL;
1840     int result = 0;
1841 
1842     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1843         AioContext *aio_context = bdrv_get_aio_context(bs);
1844         int ret;
1845 
1846         aio_context_acquire(aio_context);
1847         ret = bdrv_flush(bs);
1848         if (ret < 0 && !result) {
1849             result = ret;
1850         }
1851         aio_context_release(aio_context);
1852     }
1853 
1854     return result;
1855 }
1856 
1857 
1858 typedef struct BdrvCoBlockStatusData {
1859     BlockDriverState *bs;
1860     BlockDriverState *base;
1861     bool want_zero;
1862     int64_t offset;
1863     int64_t bytes;
1864     int64_t *pnum;
1865     int64_t *map;
1866     BlockDriverState **file;
1867     int ret;
1868     bool done;
1869 } BdrvCoBlockStatusData;
1870 
1871 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1872                                                         int64_t sector_num,
1873                                                         int nb_sectors,
1874                                                         int *pnum,
1875                                                         BlockDriverState **file)
1876 {
1877     assert(bs->file && bs->file->bs);
1878     *pnum = nb_sectors;
1879     *file = bs->file->bs;
1880     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1881            (sector_num << BDRV_SECTOR_BITS);
1882 }
1883 
1884 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1885                                                            int64_t sector_num,
1886                                                            int nb_sectors,
1887                                                            int *pnum,
1888                                                            BlockDriverState **file)
1889 {
1890     assert(bs->backing && bs->backing->bs);
1891     *pnum = nb_sectors;
1892     *file = bs->backing->bs;
1893     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1894            (sector_num << BDRV_SECTOR_BITS);
1895 }
1896 
1897 /*
1898  * Returns the allocation status of the specified sectors.
1899  * Drivers not implementing the functionality are assumed to not support
1900  * backing files, hence all their sectors are reported as allocated.
1901  *
1902  * If 'want_zero' is true, the caller is querying for mapping purposes,
1903  * and the result should include BDRV_BLOCK_OFFSET_VALID and
1904  * BDRV_BLOCK_ZERO where possible; otherwise, the result may omit those
1905  * bits particularly if it allows for a larger value in 'pnum'.
1906  *
1907  * If 'offset' is beyond the end of the disk image the return value is
1908  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1909  *
1910  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
1911  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1912  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1913  *
1914  * 'pnum' is set to the number of bytes (including and immediately
1915  * following the specified offset) that are easily known to be in the
1916  * same allocated/unallocated state.  Note that a second call starting
1917  * at the original offset plus returned pnum may have the same status.
1918  * The returned value is non-zero on success except at end-of-file.
1919  *
1920  * Returns negative errno on failure.  Otherwise, if the
1921  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1922  * set to the host mapping and BDS corresponding to the guest offset.
1923  */
1924 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1925                                              bool want_zero,
1926                                              int64_t offset, int64_t bytes,
1927                                              int64_t *pnum, int64_t *map,
1928                                              BlockDriverState **file)
1929 {
1930     int64_t total_size;
1931     int64_t n; /* bytes */
1932     int ret;
1933     int64_t local_map = 0;
1934     BlockDriverState *local_file = NULL;
1935     int64_t aligned_offset, aligned_bytes;
1936     uint32_t align;
1937 
1938     assert(pnum);
1939     *pnum = 0;
1940     total_size = bdrv_getlength(bs);
1941     if (total_size < 0) {
1942         ret = total_size;
1943         goto early_out;
1944     }
1945 
1946     if (offset >= total_size) {
1947         ret = BDRV_BLOCK_EOF;
1948         goto early_out;
1949     }
1950     if (!bytes) {
1951         ret = 0;
1952         goto early_out;
1953     }
1954 
1955     n = total_size - offset;
1956     if (n < bytes) {
1957         bytes = n;
1958     }
1959 
1960     /* Must be non-NULL or bdrv_getlength() would have failed */
1961     assert(bs->drv);
1962     if (!bs->drv->bdrv_co_get_block_status) {
1963         *pnum = bytes;
1964         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1965         if (offset + bytes == total_size) {
1966             ret |= BDRV_BLOCK_EOF;
1967         }
1968         if (bs->drv->protocol_name) {
1969             ret |= BDRV_BLOCK_OFFSET_VALID;
1970             local_map = offset;
1971             local_file = bs;
1972         }
1973         goto early_out;
1974     }
1975 
1976     bdrv_inc_in_flight(bs);
1977 
1978     /* Round out to request_alignment boundaries */
1979     /* TODO: until we have a byte-based driver callback, we also have to
1980      * round out to sectors, even if that is bigger than request_alignment */
1981     align = MAX(bs->bl.request_alignment, BDRV_SECTOR_SIZE);
1982     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1983     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1984 
1985     {
1986         int count; /* sectors */
1987         int64_t longret;
1988 
1989         assert(QEMU_IS_ALIGNED(aligned_offset | aligned_bytes,
1990                                BDRV_SECTOR_SIZE));
1991         /*
1992          * The contract allows us to return pnum smaller than bytes, even
1993          * if the next query would see the same status; we truncate the
1994          * request to avoid overflowing the driver's 32-bit interface.
1995          */
1996         longret = bs->drv->bdrv_co_get_block_status(
1997             bs, aligned_offset >> BDRV_SECTOR_BITS,
1998             MIN(INT_MAX, aligned_bytes) >> BDRV_SECTOR_BITS, &count,
1999             &local_file);
2000         if (longret < 0) {
2001             assert(INT_MIN <= longret);
2002             ret = longret;
2003             goto out;
2004         }
2005         if (longret & BDRV_BLOCK_OFFSET_VALID) {
2006             local_map = longret & BDRV_BLOCK_OFFSET_MASK;
2007         }
2008         ret = longret & ~BDRV_BLOCK_OFFSET_MASK;
2009         *pnum = count * BDRV_SECTOR_SIZE;
2010     }
2011 
2012     /*
2013      * The driver's result must be a multiple of request_alignment.
2014      * Clamp pnum and adjust map to original request.
2015      */
2016     assert(QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset);
2017     *pnum -= offset - aligned_offset;
2018     if (*pnum > bytes) {
2019         *pnum = bytes;
2020     }
2021     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2022         local_map += offset - aligned_offset;
2023     }
2024 
2025     if (ret & BDRV_BLOCK_RAW) {
2026         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2027         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2028                                    *pnum, pnum, &local_map, &local_file);
2029         goto out;
2030     }
2031 
2032     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2033         ret |= BDRV_BLOCK_ALLOCATED;
2034     } else if (want_zero) {
2035         if (bdrv_unallocated_blocks_are_zero(bs)) {
2036             ret |= BDRV_BLOCK_ZERO;
2037         } else if (bs->backing) {
2038             BlockDriverState *bs2 = bs->backing->bs;
2039             int64_t size2 = bdrv_getlength(bs2);
2040 
2041             if (size2 >= 0 && offset >= size2) {
2042                 ret |= BDRV_BLOCK_ZERO;
2043             }
2044         }
2045     }
2046 
2047     if (want_zero && local_file && local_file != bs &&
2048         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2049         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2050         int64_t file_pnum;
2051         int ret2;
2052 
2053         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2054                                     *pnum, &file_pnum, NULL, NULL);
2055         if (ret2 >= 0) {
2056             /* Ignore errors.  This is just providing extra information, it
2057              * is useful but not necessary.
2058              */
2059             if (ret2 & BDRV_BLOCK_EOF &&
2060                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2061                 /*
2062                  * It is valid for the format block driver to read
2063                  * beyond the end of the underlying file's current
2064                  * size; such areas read as zero.
2065                  */
2066                 ret |= BDRV_BLOCK_ZERO;
2067             } else {
2068                 /* Limit request to the range reported by the protocol driver */
2069                 *pnum = file_pnum;
2070                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2071             }
2072         }
2073     }
2074 
2075 out:
2076     bdrv_dec_in_flight(bs);
2077     if (ret >= 0 && offset + *pnum == total_size) {
2078         ret |= BDRV_BLOCK_EOF;
2079     }
2080 early_out:
2081     if (file) {
2082         *file = local_file;
2083     }
2084     if (map) {
2085         *map = local_map;
2086     }
2087     return ret;
2088 }
2089 
2090 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2091                                                    BlockDriverState *base,
2092                                                    bool want_zero,
2093                                                    int64_t offset,
2094                                                    int64_t bytes,
2095                                                    int64_t *pnum,
2096                                                    int64_t *map,
2097                                                    BlockDriverState **file)
2098 {
2099     BlockDriverState *p;
2100     int ret = 0;
2101     bool first = true;
2102 
2103     assert(bs != base);
2104     for (p = bs; p != base; p = backing_bs(p)) {
2105         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2106                                    file);
2107         if (ret < 0) {
2108             break;
2109         }
2110         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2111             /*
2112              * Reading beyond the end of the file continues to read
2113              * zeroes, but we can only widen the result to the
2114              * unallocated length we learned from an earlier
2115              * iteration.
2116              */
2117             *pnum = bytes;
2118         }
2119         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2120             break;
2121         }
2122         /* [offset, pnum] unallocated on this layer, which could be only
2123          * the first part of [offset, bytes].  */
2124         bytes = MIN(bytes, *pnum);
2125         first = false;
2126     }
2127     return ret;
2128 }
2129 
2130 /* Coroutine wrapper for bdrv_block_status_above() */
2131 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2132 {
2133     BdrvCoBlockStatusData *data = opaque;
2134 
2135     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2136                                            data->want_zero,
2137                                            data->offset, data->bytes,
2138                                            data->pnum, data->map, data->file);
2139     data->done = true;
2140 }
2141 
2142 /*
2143  * Synchronous wrapper around bdrv_co_block_status_above().
2144  *
2145  * See bdrv_co_block_status_above() for details.
2146  */
2147 static int bdrv_common_block_status_above(BlockDriverState *bs,
2148                                           BlockDriverState *base,
2149                                           bool want_zero, int64_t offset,
2150                                           int64_t bytes, int64_t *pnum,
2151                                           int64_t *map,
2152                                           BlockDriverState **file)
2153 {
2154     Coroutine *co;
2155     BdrvCoBlockStatusData data = {
2156         .bs = bs,
2157         .base = base,
2158         .want_zero = want_zero,
2159         .offset = offset,
2160         .bytes = bytes,
2161         .pnum = pnum,
2162         .map = map,
2163         .file = file,
2164         .done = false,
2165     };
2166 
2167     if (qemu_in_coroutine()) {
2168         /* Fast-path if already in coroutine context */
2169         bdrv_block_status_above_co_entry(&data);
2170     } else {
2171         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2172         bdrv_coroutine_enter(bs, co);
2173         BDRV_POLL_WHILE(bs, !data.done);
2174     }
2175     return data.ret;
2176 }
2177 
2178 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2179                             int64_t offset, int64_t bytes, int64_t *pnum,
2180                             int64_t *map, BlockDriverState **file)
2181 {
2182     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2183                                           pnum, map, file);
2184 }
2185 
2186 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2187                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2188 {
2189     return bdrv_block_status_above(bs, backing_bs(bs),
2190                                    offset, bytes, pnum, map, file);
2191 }
2192 
2193 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2194                                    int64_t bytes, int64_t *pnum)
2195 {
2196     int ret;
2197     int64_t dummy;
2198 
2199     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2200                                          bytes, pnum ? pnum : &dummy, NULL,
2201                                          NULL);
2202     if (ret < 0) {
2203         return ret;
2204     }
2205     return !!(ret & BDRV_BLOCK_ALLOCATED);
2206 }
2207 
2208 /*
2209  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2210  *
2211  * Return true if (a prefix of) the given range is allocated in any image
2212  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2213  * offset is allocated in any image of the chain.  Return false otherwise,
2214  * or negative errno on failure.
2215  *
2216  * 'pnum' is set to the number of bytes (including and immediately
2217  * following the specified offset) that are known to be in the same
2218  * allocated/unallocated state.  Note that a subsequent call starting
2219  * at 'offset + *pnum' may return the same allocation status (in other
2220  * words, the result is not necessarily the maximum possible range);
2221  * but 'pnum' will only be 0 when end of file is reached.
2222  *
2223  */
2224 int bdrv_is_allocated_above(BlockDriverState *top,
2225                             BlockDriverState *base,
2226                             int64_t offset, int64_t bytes, int64_t *pnum)
2227 {
2228     BlockDriverState *intermediate;
2229     int ret;
2230     int64_t n = bytes;
2231 
2232     intermediate = top;
2233     while (intermediate && intermediate != base) {
2234         int64_t pnum_inter;
2235         int64_t size_inter;
2236 
2237         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2238         if (ret < 0) {
2239             return ret;
2240         }
2241         if (ret) {
2242             *pnum = pnum_inter;
2243             return 1;
2244         }
2245 
2246         size_inter = bdrv_getlength(intermediate);
2247         if (size_inter < 0) {
2248             return size_inter;
2249         }
2250         if (n > pnum_inter &&
2251             (intermediate == top || offset + pnum_inter < size_inter)) {
2252             n = pnum_inter;
2253         }
2254 
2255         intermediate = backing_bs(intermediate);
2256     }
2257 
2258     *pnum = n;
2259     return 0;
2260 }
2261 
2262 typedef struct BdrvVmstateCo {
2263     BlockDriverState    *bs;
2264     QEMUIOVector        *qiov;
2265     int64_t             pos;
2266     bool                is_read;
2267     int                 ret;
2268 } BdrvVmstateCo;
2269 
2270 static int coroutine_fn
2271 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2272                    bool is_read)
2273 {
2274     BlockDriver *drv = bs->drv;
2275     int ret = -ENOTSUP;
2276 
2277     bdrv_inc_in_flight(bs);
2278 
2279     if (!drv) {
2280         ret = -ENOMEDIUM;
2281     } else if (drv->bdrv_load_vmstate) {
2282         if (is_read) {
2283             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2284         } else {
2285             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2286         }
2287     } else if (bs->file) {
2288         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2289     }
2290 
2291     bdrv_dec_in_flight(bs);
2292     return ret;
2293 }
2294 
2295 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2296 {
2297     BdrvVmstateCo *co = opaque;
2298     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2299 }
2300 
2301 static inline int
2302 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2303                 bool is_read)
2304 {
2305     if (qemu_in_coroutine()) {
2306         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2307     } else {
2308         BdrvVmstateCo data = {
2309             .bs         = bs,
2310             .qiov       = qiov,
2311             .pos        = pos,
2312             .is_read    = is_read,
2313             .ret        = -EINPROGRESS,
2314         };
2315         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2316 
2317         bdrv_coroutine_enter(bs, co);
2318         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2319         return data.ret;
2320     }
2321 }
2322 
2323 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2324                       int64_t pos, int size)
2325 {
2326     QEMUIOVector qiov;
2327     struct iovec iov = {
2328         .iov_base   = (void *) buf,
2329         .iov_len    = size,
2330     };
2331     int ret;
2332 
2333     qemu_iovec_init_external(&qiov, &iov, 1);
2334 
2335     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2336     if (ret < 0) {
2337         return ret;
2338     }
2339 
2340     return size;
2341 }
2342 
2343 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2344 {
2345     return bdrv_rw_vmstate(bs, qiov, pos, false);
2346 }
2347 
2348 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2349                       int64_t pos, int size)
2350 {
2351     QEMUIOVector qiov;
2352     struct iovec iov = {
2353         .iov_base   = buf,
2354         .iov_len    = size,
2355     };
2356     int ret;
2357 
2358     qemu_iovec_init_external(&qiov, &iov, 1);
2359     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2360     if (ret < 0) {
2361         return ret;
2362     }
2363 
2364     return size;
2365 }
2366 
2367 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2368 {
2369     return bdrv_rw_vmstate(bs, qiov, pos, true);
2370 }
2371 
2372 /**************************************************************/
2373 /* async I/Os */
2374 
2375 void bdrv_aio_cancel(BlockAIOCB *acb)
2376 {
2377     qemu_aio_ref(acb);
2378     bdrv_aio_cancel_async(acb);
2379     while (acb->refcnt > 1) {
2380         if (acb->aiocb_info->get_aio_context) {
2381             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2382         } else if (acb->bs) {
2383             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2384              * assert that we're not using an I/O thread.  Thread-safe
2385              * code should use bdrv_aio_cancel_async exclusively.
2386              */
2387             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2388             aio_poll(bdrv_get_aio_context(acb->bs), true);
2389         } else {
2390             abort();
2391         }
2392     }
2393     qemu_aio_unref(acb);
2394 }
2395 
2396 /* Async version of aio cancel. The caller is not blocked if the acb implements
2397  * cancel_async, otherwise we do nothing and let the request normally complete.
2398  * In either case the completion callback must be called. */
2399 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2400 {
2401     if (acb->aiocb_info->cancel_async) {
2402         acb->aiocb_info->cancel_async(acb);
2403     }
2404 }
2405 
2406 /**************************************************************/
2407 /* Coroutine block device emulation */
2408 
2409 typedef struct FlushCo {
2410     BlockDriverState *bs;
2411     int ret;
2412 } FlushCo;
2413 
2414 
2415 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2416 {
2417     FlushCo *rwco = opaque;
2418 
2419     rwco->ret = bdrv_co_flush(rwco->bs);
2420 }
2421 
2422 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2423 {
2424     int current_gen;
2425     int ret = 0;
2426 
2427     bdrv_inc_in_flight(bs);
2428 
2429     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2430         bdrv_is_sg(bs)) {
2431         goto early_exit;
2432     }
2433 
2434     qemu_co_mutex_lock(&bs->reqs_lock);
2435     current_gen = atomic_read(&bs->write_gen);
2436 
2437     /* Wait until any previous flushes are completed */
2438     while (bs->active_flush_req) {
2439         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2440     }
2441 
2442     /* Flushes reach this point in nondecreasing current_gen order.  */
2443     bs->active_flush_req = true;
2444     qemu_co_mutex_unlock(&bs->reqs_lock);
2445 
2446     /* Write back all layers by calling one driver function */
2447     if (bs->drv->bdrv_co_flush) {
2448         ret = bs->drv->bdrv_co_flush(bs);
2449         goto out;
2450     }
2451 
2452     /* Write back cached data to the OS even with cache=unsafe */
2453     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2454     if (bs->drv->bdrv_co_flush_to_os) {
2455         ret = bs->drv->bdrv_co_flush_to_os(bs);
2456         if (ret < 0) {
2457             goto out;
2458         }
2459     }
2460 
2461     /* But don't actually force it to the disk with cache=unsafe */
2462     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2463         goto flush_parent;
2464     }
2465 
2466     /* Check if we really need to flush anything */
2467     if (bs->flushed_gen == current_gen) {
2468         goto flush_parent;
2469     }
2470 
2471     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2472     if (!bs->drv) {
2473         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2474          * (even in case of apparent success) */
2475         ret = -ENOMEDIUM;
2476         goto out;
2477     }
2478     if (bs->drv->bdrv_co_flush_to_disk) {
2479         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2480     } else if (bs->drv->bdrv_aio_flush) {
2481         BlockAIOCB *acb;
2482         CoroutineIOCompletion co = {
2483             .coroutine = qemu_coroutine_self(),
2484         };
2485 
2486         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2487         if (acb == NULL) {
2488             ret = -EIO;
2489         } else {
2490             qemu_coroutine_yield();
2491             ret = co.ret;
2492         }
2493     } else {
2494         /*
2495          * Some block drivers always operate in either writethrough or unsafe
2496          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2497          * know how the server works (because the behaviour is hardcoded or
2498          * depends on server-side configuration), so we can't ensure that
2499          * everything is safe on disk. Returning an error doesn't work because
2500          * that would break guests even if the server operates in writethrough
2501          * mode.
2502          *
2503          * Let's hope the user knows what he's doing.
2504          */
2505         ret = 0;
2506     }
2507 
2508     if (ret < 0) {
2509         goto out;
2510     }
2511 
2512     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2513      * in the case of cache=unsafe, so there are no useless flushes.
2514      */
2515 flush_parent:
2516     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2517 out:
2518     /* Notify any pending flushes that we have completed */
2519     if (ret == 0) {
2520         bs->flushed_gen = current_gen;
2521     }
2522 
2523     qemu_co_mutex_lock(&bs->reqs_lock);
2524     bs->active_flush_req = false;
2525     /* Return value is ignored - it's ok if wait queue is empty */
2526     qemu_co_queue_next(&bs->flush_queue);
2527     qemu_co_mutex_unlock(&bs->reqs_lock);
2528 
2529 early_exit:
2530     bdrv_dec_in_flight(bs);
2531     return ret;
2532 }
2533 
2534 int bdrv_flush(BlockDriverState *bs)
2535 {
2536     Coroutine *co;
2537     FlushCo flush_co = {
2538         .bs = bs,
2539         .ret = NOT_DONE,
2540     };
2541 
2542     if (qemu_in_coroutine()) {
2543         /* Fast-path if already in coroutine context */
2544         bdrv_flush_co_entry(&flush_co);
2545     } else {
2546         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2547         bdrv_coroutine_enter(bs, co);
2548         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2549     }
2550 
2551     return flush_co.ret;
2552 }
2553 
2554 typedef struct DiscardCo {
2555     BlockDriverState *bs;
2556     int64_t offset;
2557     int bytes;
2558     int ret;
2559 } DiscardCo;
2560 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2561 {
2562     DiscardCo *rwco = opaque;
2563 
2564     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2565 }
2566 
2567 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2568                                   int bytes)
2569 {
2570     BdrvTrackedRequest req;
2571     int max_pdiscard, ret;
2572     int head, tail, align;
2573 
2574     if (!bs->drv) {
2575         return -ENOMEDIUM;
2576     }
2577 
2578     if (bdrv_has_readonly_bitmaps(bs)) {
2579         return -EPERM;
2580     }
2581 
2582     ret = bdrv_check_byte_request(bs, offset, bytes);
2583     if (ret < 0) {
2584         return ret;
2585     } else if (bs->read_only) {
2586         return -EPERM;
2587     }
2588     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2589 
2590     /* Do nothing if disabled.  */
2591     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2592         return 0;
2593     }
2594 
2595     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2596         return 0;
2597     }
2598 
2599     /* Discard is advisory, but some devices track and coalesce
2600      * unaligned requests, so we must pass everything down rather than
2601      * round here.  Still, most devices will just silently ignore
2602      * unaligned requests (by returning -ENOTSUP), so we must fragment
2603      * the request accordingly.  */
2604     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2605     assert(align % bs->bl.request_alignment == 0);
2606     head = offset % align;
2607     tail = (offset + bytes) % align;
2608 
2609     bdrv_inc_in_flight(bs);
2610     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2611 
2612     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2613     if (ret < 0) {
2614         goto out;
2615     }
2616 
2617     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2618                                    align);
2619     assert(max_pdiscard >= bs->bl.request_alignment);
2620 
2621     while (bytes > 0) {
2622         int num = bytes;
2623 
2624         if (head) {
2625             /* Make small requests to get to alignment boundaries. */
2626             num = MIN(bytes, align - head);
2627             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2628                 num %= bs->bl.request_alignment;
2629             }
2630             head = (head + num) % align;
2631             assert(num < max_pdiscard);
2632         } else if (tail) {
2633             if (num > align) {
2634                 /* Shorten the request to the last aligned cluster.  */
2635                 num -= tail;
2636             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2637                        tail > bs->bl.request_alignment) {
2638                 tail %= bs->bl.request_alignment;
2639                 num -= tail;
2640             }
2641         }
2642         /* limit request size */
2643         if (num > max_pdiscard) {
2644             num = max_pdiscard;
2645         }
2646 
2647         if (!bs->drv) {
2648             ret = -ENOMEDIUM;
2649             goto out;
2650         }
2651         if (bs->drv->bdrv_co_pdiscard) {
2652             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2653         } else {
2654             BlockAIOCB *acb;
2655             CoroutineIOCompletion co = {
2656                 .coroutine = qemu_coroutine_self(),
2657             };
2658 
2659             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2660                                              bdrv_co_io_em_complete, &co);
2661             if (acb == NULL) {
2662                 ret = -EIO;
2663                 goto out;
2664             } else {
2665                 qemu_coroutine_yield();
2666                 ret = co.ret;
2667             }
2668         }
2669         if (ret && ret != -ENOTSUP) {
2670             goto out;
2671         }
2672 
2673         offset += num;
2674         bytes -= num;
2675     }
2676     ret = 0;
2677 out:
2678     atomic_inc(&bs->write_gen);
2679     bdrv_set_dirty(bs, req.offset, req.bytes);
2680     tracked_request_end(&req);
2681     bdrv_dec_in_flight(bs);
2682     return ret;
2683 }
2684 
2685 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2686 {
2687     Coroutine *co;
2688     DiscardCo rwco = {
2689         .bs = bs,
2690         .offset = offset,
2691         .bytes = bytes,
2692         .ret = NOT_DONE,
2693     };
2694 
2695     if (qemu_in_coroutine()) {
2696         /* Fast-path if already in coroutine context */
2697         bdrv_pdiscard_co_entry(&rwco);
2698     } else {
2699         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2700         bdrv_coroutine_enter(bs, co);
2701         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2702     }
2703 
2704     return rwco.ret;
2705 }
2706 
2707 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2708 {
2709     BlockDriver *drv = bs->drv;
2710     CoroutineIOCompletion co = {
2711         .coroutine = qemu_coroutine_self(),
2712     };
2713     BlockAIOCB *acb;
2714 
2715     bdrv_inc_in_flight(bs);
2716     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2717         co.ret = -ENOTSUP;
2718         goto out;
2719     }
2720 
2721     if (drv->bdrv_co_ioctl) {
2722         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2723     } else {
2724         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2725         if (!acb) {
2726             co.ret = -ENOTSUP;
2727             goto out;
2728         }
2729         qemu_coroutine_yield();
2730     }
2731 out:
2732     bdrv_dec_in_flight(bs);
2733     return co.ret;
2734 }
2735 
2736 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2737 {
2738     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2739 }
2740 
2741 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2742 {
2743     return memset(qemu_blockalign(bs, size), 0, size);
2744 }
2745 
2746 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2747 {
2748     size_t align = bdrv_opt_mem_align(bs);
2749 
2750     /* Ensure that NULL is never returned on success */
2751     assert(align > 0);
2752     if (size == 0) {
2753         size = align;
2754     }
2755 
2756     return qemu_try_memalign(align, size);
2757 }
2758 
2759 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2760 {
2761     void *mem = qemu_try_blockalign(bs, size);
2762 
2763     if (mem) {
2764         memset(mem, 0, size);
2765     }
2766 
2767     return mem;
2768 }
2769 
2770 /*
2771  * Check if all memory in this vector is sector aligned.
2772  */
2773 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2774 {
2775     int i;
2776     size_t alignment = bdrv_min_mem_align(bs);
2777 
2778     for (i = 0; i < qiov->niov; i++) {
2779         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2780             return false;
2781         }
2782         if (qiov->iov[i].iov_len % alignment) {
2783             return false;
2784         }
2785     }
2786 
2787     return true;
2788 }
2789 
2790 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2791                                     NotifierWithReturn *notifier)
2792 {
2793     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2794 }
2795 
2796 void bdrv_io_plug(BlockDriverState *bs)
2797 {
2798     BdrvChild *child;
2799 
2800     QLIST_FOREACH(child, &bs->children, next) {
2801         bdrv_io_plug(child->bs);
2802     }
2803 
2804     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2805         BlockDriver *drv = bs->drv;
2806         if (drv && drv->bdrv_io_plug) {
2807             drv->bdrv_io_plug(bs);
2808         }
2809     }
2810 }
2811 
2812 void bdrv_io_unplug(BlockDriverState *bs)
2813 {
2814     BdrvChild *child;
2815 
2816     assert(bs->io_plugged);
2817     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2818         BlockDriver *drv = bs->drv;
2819         if (drv && drv->bdrv_io_unplug) {
2820             drv->bdrv_io_unplug(bs);
2821         }
2822     }
2823 
2824     QLIST_FOREACH(child, &bs->children, next) {
2825         bdrv_io_unplug(child->bs);
2826     }
2827 }
2828 
2829 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2830 {
2831     BdrvChild *child;
2832 
2833     if (bs->drv && bs->drv->bdrv_register_buf) {
2834         bs->drv->bdrv_register_buf(bs, host, size);
2835     }
2836     QLIST_FOREACH(child, &bs->children, next) {
2837         bdrv_register_buf(child->bs, host, size);
2838     }
2839 }
2840 
2841 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2842 {
2843     BdrvChild *child;
2844 
2845     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2846         bs->drv->bdrv_unregister_buf(bs, host);
2847     }
2848     QLIST_FOREACH(child, &bs->children, next) {
2849         bdrv_unregister_buf(child->bs, host);
2850     }
2851 }
2852