xref: /openbmc/qemu/block/io.c (revision e4fdf9df)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
40 
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47 
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
49                                       bool ignore_bds_parents)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c, false);
58     }
59 }
60 
61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
62                                                    int *drained_end_counter)
63 {
64     assert(c->parent_quiesce_counter > 0);
65     c->parent_quiesce_counter--;
66     if (c->klass->drained_end) {
67         c->klass->drained_end(c, drained_end_counter);
68     }
69 }
70 
71 void bdrv_parent_drained_end_single(BdrvChild *c)
72 {
73     int drained_end_counter = 0;
74     IO_OR_GS_CODE();
75     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
76     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
77 }
78 
79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
80                                     bool ignore_bds_parents,
81                                     int *drained_end_counter)
82 {
83     BdrvChild *c;
84 
85     QLIST_FOREACH(c, &bs->parents, next_parent) {
86         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
87             continue;
88         }
89         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
90     }
91 }
92 
93 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95     if (c->klass->drained_poll) {
96         return c->klass->drained_poll(c);
97     }
98     return false;
99 }
100 
101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
102                                      bool ignore_bds_parents)
103 {
104     BdrvChild *c, *next;
105     bool busy = false;
106 
107     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
108         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
109             continue;
110         }
111         busy |= bdrv_parent_drained_poll_single(c);
112     }
113 
114     return busy;
115 }
116 
117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
118 {
119     IO_OR_GS_CODE();
120     c->parent_quiesce_counter++;
121     if (c->klass->drained_begin) {
122         c->klass->drained_begin(c);
123     }
124     if (poll) {
125         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126     }
127 }
128 
129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
130 {
131     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
132                                   src->pdiscard_alignment);
133     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
134     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
135     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
136                                         src->max_hw_transfer);
137     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
138                                  src->opt_mem_alignment);
139     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
140                                  src->min_mem_alignment);
141     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
142     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
143 }
144 
145 typedef struct BdrvRefreshLimitsState {
146     BlockDriverState *bs;
147     BlockLimits old_bl;
148 } BdrvRefreshLimitsState;
149 
150 static void bdrv_refresh_limits_abort(void *opaque)
151 {
152     BdrvRefreshLimitsState *s = opaque;
153 
154     s->bs->bl = s->old_bl;
155 }
156 
157 static TransactionActionDrv bdrv_refresh_limits_drv = {
158     .abort = bdrv_refresh_limits_abort,
159     .clean = g_free,
160 };
161 
162 /* @tran is allowed to be NULL, in this case no rollback is possible. */
163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
164 {
165     ERRP_GUARD();
166     BlockDriver *drv = bs->drv;
167     BdrvChild *c;
168     bool have_limits;
169 
170     GLOBAL_STATE_CODE();
171 
172     if (tran) {
173         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
174         *s = (BdrvRefreshLimitsState) {
175             .bs = bs,
176             .old_bl = bs->bl,
177         };
178         tran_add(tran, &bdrv_refresh_limits_drv, s);
179     }
180 
181     memset(&bs->bl, 0, sizeof(bs->bl));
182 
183     if (!drv) {
184         return;
185     }
186 
187     /* Default alignment based on whether driver has byte interface */
188     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
189                                 drv->bdrv_aio_preadv ||
190                                 drv->bdrv_co_preadv_part) ? 1 : 512;
191 
192     /* Take some limits from the children as a default */
193     have_limits = false;
194     QLIST_FOREACH(c, &bs->children, next) {
195         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
196         {
197             bdrv_merge_limits(&bs->bl, &c->bs->bl);
198             have_limits = true;
199         }
200     }
201 
202     if (!have_limits) {
203         bs->bl.min_mem_alignment = 512;
204         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
205 
206         /* Safe default since most protocols use readv()/writev()/etc */
207         bs->bl.max_iov = IOV_MAX;
208     }
209 
210     /* Then let the driver override it */
211     if (drv->bdrv_refresh_limits) {
212         drv->bdrv_refresh_limits(bs, errp);
213         if (*errp) {
214             return;
215         }
216     }
217 
218     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
219         error_setg(errp, "Driver requires too large request alignment");
220     }
221 }
222 
223 /**
224  * The copy-on-read flag is actually a reference count so multiple users may
225  * use the feature without worrying about clobbering its previous state.
226  * Copy-on-read stays enabled until all users have called to disable it.
227  */
228 void bdrv_enable_copy_on_read(BlockDriverState *bs)
229 {
230     IO_CODE();
231     qatomic_inc(&bs->copy_on_read);
232 }
233 
234 void bdrv_disable_copy_on_read(BlockDriverState *bs)
235 {
236     int old = qatomic_fetch_dec(&bs->copy_on_read);
237     IO_CODE();
238     assert(old >= 1);
239 }
240 
241 typedef struct {
242     Coroutine *co;
243     BlockDriverState *bs;
244     bool done;
245     bool begin;
246     bool recursive;
247     bool poll;
248     BdrvChild *parent;
249     bool ignore_bds_parents;
250     int *drained_end_counter;
251 } BdrvCoDrainData;
252 
253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
254 {
255     BdrvCoDrainData *data = opaque;
256     BlockDriverState *bs = data->bs;
257 
258     if (data->begin) {
259         bs->drv->bdrv_co_drain_begin(bs);
260     } else {
261         bs->drv->bdrv_co_drain_end(bs);
262     }
263 
264     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
265     qatomic_mb_set(&data->done, true);
266     if (!data->begin) {
267         qatomic_dec(data->drained_end_counter);
268     }
269     bdrv_dec_in_flight(bs);
270 
271     g_free(data);
272 }
273 
274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
276                               int *drained_end_counter)
277 {
278     BdrvCoDrainData *data;
279 
280     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
281             (!begin && !bs->drv->bdrv_co_drain_end)) {
282         return;
283     }
284 
285     data = g_new(BdrvCoDrainData, 1);
286     *data = (BdrvCoDrainData) {
287         .bs = bs,
288         .done = false,
289         .begin = begin,
290         .drained_end_counter = drained_end_counter,
291     };
292 
293     if (!begin) {
294         qatomic_inc(drained_end_counter);
295     }
296 
297     /* Make sure the driver callback completes during the polling phase for
298      * drain_begin. */
299     bdrv_inc_in_flight(bs);
300     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
301     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
302 }
303 
304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
306                      BdrvChild *ignore_parent, bool ignore_bds_parents)
307 {
308     BdrvChild *child, *next;
309     IO_OR_GS_CODE();
310 
311     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
312         return true;
313     }
314 
315     if (qatomic_read(&bs->in_flight)) {
316         return true;
317     }
318 
319     if (recursive) {
320         assert(!ignore_bds_parents);
321         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
322             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
323                 return true;
324             }
325         }
326     }
327 
328     return false;
329 }
330 
331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
332                                       BdrvChild *ignore_parent)
333 {
334     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
335 }
336 
337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
338                                   BdrvChild *parent, bool ignore_bds_parents,
339                                   bool poll);
340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
341                                 BdrvChild *parent, bool ignore_bds_parents,
342                                 int *drained_end_counter);
343 
344 static void bdrv_co_drain_bh_cb(void *opaque)
345 {
346     BdrvCoDrainData *data = opaque;
347     Coroutine *co = data->co;
348     BlockDriverState *bs = data->bs;
349 
350     if (bs) {
351         AioContext *ctx = bdrv_get_aio_context(bs);
352         aio_context_acquire(ctx);
353         bdrv_dec_in_flight(bs);
354         if (data->begin) {
355             assert(!data->drained_end_counter);
356             bdrv_do_drained_begin(bs, data->recursive, data->parent,
357                                   data->ignore_bds_parents, data->poll);
358         } else {
359             assert(!data->poll);
360             bdrv_do_drained_end(bs, data->recursive, data->parent,
361                                 data->ignore_bds_parents,
362                                 data->drained_end_counter);
363         }
364         aio_context_release(ctx);
365     } else {
366         assert(data->begin);
367         bdrv_drain_all_begin();
368     }
369 
370     data->done = true;
371     aio_co_wake(co);
372 }
373 
374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
375                                                 bool begin, bool recursive,
376                                                 BdrvChild *parent,
377                                                 bool ignore_bds_parents,
378                                                 bool poll,
379                                                 int *drained_end_counter)
380 {
381     BdrvCoDrainData data;
382     Coroutine *self = qemu_coroutine_self();
383     AioContext *ctx = bdrv_get_aio_context(bs);
384     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
385 
386     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
387      * other coroutines run if they were queued by aio_co_enter(). */
388 
389     assert(qemu_in_coroutine());
390     data = (BdrvCoDrainData) {
391         .co = self,
392         .bs = bs,
393         .done = false,
394         .begin = begin,
395         .recursive = recursive,
396         .parent = parent,
397         .ignore_bds_parents = ignore_bds_parents,
398         .poll = poll,
399         .drained_end_counter = drained_end_counter,
400     };
401 
402     if (bs) {
403         bdrv_inc_in_flight(bs);
404     }
405 
406     /*
407      * Temporarily drop the lock across yield or we would get deadlocks.
408      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
409      *
410      * When we yield below, the lock for the current context will be
411      * released, so if this is actually the lock that protects bs, don't drop
412      * it a second time.
413      */
414     if (ctx != co_ctx) {
415         aio_context_release(ctx);
416     }
417     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
418 
419     qemu_coroutine_yield();
420     /* If we are resumed from some other event (such as an aio completion or a
421      * timer callback), it is a bug in the caller that should be fixed. */
422     assert(data.done);
423 
424     /* Reaquire the AioContext of bs if we dropped it */
425     if (ctx != co_ctx) {
426         aio_context_acquire(ctx);
427     }
428 }
429 
430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
431                                    BdrvChild *parent, bool ignore_bds_parents)
432 {
433     IO_OR_GS_CODE();
434     assert(!qemu_in_coroutine());
435 
436     /* Stop things in parent-to-child order */
437     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
438         aio_disable_external(bdrv_get_aio_context(bs));
439     }
440 
441     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
442     bdrv_drain_invoke(bs, true, NULL);
443 }
444 
445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
446                                   BdrvChild *parent, bool ignore_bds_parents,
447                                   bool poll)
448 {
449     BdrvChild *child, *next;
450 
451     if (qemu_in_coroutine()) {
452         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
453                                poll, NULL);
454         return;
455     }
456 
457     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
458 
459     if (recursive) {
460         assert(!ignore_bds_parents);
461         bs->recursive_quiesce_counter++;
462         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
463             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
464                                   false);
465         }
466     }
467 
468     /*
469      * Wait for drained requests to finish.
470      *
471      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
472      * call is needed so things in this AioContext can make progress even
473      * though we don't return to the main AioContext loop - this automatically
474      * includes other nodes in the same AioContext and therefore all child
475      * nodes.
476      */
477     if (poll) {
478         assert(!ignore_bds_parents);
479         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
480     }
481 }
482 
483 void bdrv_drained_begin(BlockDriverState *bs)
484 {
485     IO_OR_GS_CODE();
486     bdrv_do_drained_begin(bs, false, NULL, false, true);
487 }
488 
489 void bdrv_subtree_drained_begin(BlockDriverState *bs)
490 {
491     IO_OR_GS_CODE();
492     bdrv_do_drained_begin(bs, true, NULL, false, true);
493 }
494 
495 /**
496  * This function does not poll, nor must any of its recursively called
497  * functions.  The *drained_end_counter pointee will be incremented
498  * once for every background operation scheduled, and decremented once
499  * the operation settles.  Therefore, the pointer must remain valid
500  * until the pointee reaches 0.  That implies that whoever sets up the
501  * pointee has to poll until it is 0.
502  *
503  * We use atomic operations to access *drained_end_counter, because
504  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
505  *     @bs may contain nodes in different AioContexts,
506  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
507  *     regardless of which AioContext they are in.
508  */
509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
510                                 BdrvChild *parent, bool ignore_bds_parents,
511                                 int *drained_end_counter)
512 {
513     BdrvChild *child;
514     int old_quiesce_counter;
515 
516     assert(drained_end_counter != NULL);
517 
518     if (qemu_in_coroutine()) {
519         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
520                                false, drained_end_counter);
521         return;
522     }
523     assert(bs->quiesce_counter > 0);
524 
525     /* Re-enable things in child-to-parent order */
526     bdrv_drain_invoke(bs, false, drained_end_counter);
527     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
528                             drained_end_counter);
529 
530     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
531     if (old_quiesce_counter == 1) {
532         aio_enable_external(bdrv_get_aio_context(bs));
533     }
534 
535     if (recursive) {
536         assert(!ignore_bds_parents);
537         bs->recursive_quiesce_counter--;
538         QLIST_FOREACH(child, &bs->children, next) {
539             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
540                                 drained_end_counter);
541         }
542     }
543 }
544 
545 void bdrv_drained_end(BlockDriverState *bs)
546 {
547     int drained_end_counter = 0;
548     IO_OR_GS_CODE();
549     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
550     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
551 }
552 
553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
554 {
555     IO_CODE();
556     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
557 }
558 
559 void bdrv_subtree_drained_end(BlockDriverState *bs)
560 {
561     int drained_end_counter = 0;
562     IO_OR_GS_CODE();
563     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
564     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
565 }
566 
567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
568 {
569     int i;
570     IO_OR_GS_CODE();
571 
572     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
573         bdrv_do_drained_begin(child->bs, true, child, false, true);
574     }
575 }
576 
577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
578 {
579     int drained_end_counter = 0;
580     int i;
581     IO_OR_GS_CODE();
582 
583     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
584         bdrv_do_drained_end(child->bs, true, child, false,
585                             &drained_end_counter);
586     }
587 
588     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
589 }
590 
591 void bdrv_drain(BlockDriverState *bs)
592 {
593     IO_OR_GS_CODE();
594     bdrv_drained_begin(bs);
595     bdrv_drained_end(bs);
596 }
597 
598 static void bdrv_drain_assert_idle(BlockDriverState *bs)
599 {
600     BdrvChild *child, *next;
601 
602     assert(qatomic_read(&bs->in_flight) == 0);
603     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
604         bdrv_drain_assert_idle(child->bs);
605     }
606 }
607 
608 unsigned int bdrv_drain_all_count = 0;
609 
610 static bool bdrv_drain_all_poll(void)
611 {
612     BlockDriverState *bs = NULL;
613     bool result = false;
614     GLOBAL_STATE_CODE();
615 
616     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
617      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
618     while ((bs = bdrv_next_all_states(bs))) {
619         AioContext *aio_context = bdrv_get_aio_context(bs);
620         aio_context_acquire(aio_context);
621         result |= bdrv_drain_poll(bs, false, NULL, true);
622         aio_context_release(aio_context);
623     }
624 
625     return result;
626 }
627 
628 /*
629  * Wait for pending requests to complete across all BlockDriverStates
630  *
631  * This function does not flush data to disk, use bdrv_flush_all() for that
632  * after calling this function.
633  *
634  * This pauses all block jobs and disables external clients. It must
635  * be paired with bdrv_drain_all_end().
636  *
637  * NOTE: no new block jobs or BlockDriverStates can be created between
638  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
639  */
640 void bdrv_drain_all_begin(void)
641 {
642     BlockDriverState *bs = NULL;
643     GLOBAL_STATE_CODE();
644 
645     if (qemu_in_coroutine()) {
646         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
647         return;
648     }
649 
650     /*
651      * bdrv queue is managed by record/replay,
652      * waiting for finishing the I/O requests may
653      * be infinite
654      */
655     if (replay_events_enabled()) {
656         return;
657     }
658 
659     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
660      * loop AioContext, so make sure we're in the main context. */
661     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
662     assert(bdrv_drain_all_count < INT_MAX);
663     bdrv_drain_all_count++;
664 
665     /* Quiesce all nodes, without polling in-flight requests yet. The graph
666      * cannot change during this loop. */
667     while ((bs = bdrv_next_all_states(bs))) {
668         AioContext *aio_context = bdrv_get_aio_context(bs);
669 
670         aio_context_acquire(aio_context);
671         bdrv_do_drained_begin(bs, false, NULL, true, false);
672         aio_context_release(aio_context);
673     }
674 
675     /* Now poll the in-flight requests */
676     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
677 
678     while ((bs = bdrv_next_all_states(bs))) {
679         bdrv_drain_assert_idle(bs);
680     }
681 }
682 
683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
684 {
685     int drained_end_counter = 0;
686     GLOBAL_STATE_CODE();
687 
688     g_assert(bs->quiesce_counter > 0);
689     g_assert(!bs->refcnt);
690 
691     while (bs->quiesce_counter) {
692         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
693     }
694     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
695 }
696 
697 void bdrv_drain_all_end(void)
698 {
699     BlockDriverState *bs = NULL;
700     int drained_end_counter = 0;
701     GLOBAL_STATE_CODE();
702 
703     /*
704      * bdrv queue is managed by record/replay,
705      * waiting for finishing the I/O requests may
706      * be endless
707      */
708     if (replay_events_enabled()) {
709         return;
710     }
711 
712     while ((bs = bdrv_next_all_states(bs))) {
713         AioContext *aio_context = bdrv_get_aio_context(bs);
714 
715         aio_context_acquire(aio_context);
716         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
717         aio_context_release(aio_context);
718     }
719 
720     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
721     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
722 
723     assert(bdrv_drain_all_count > 0);
724     bdrv_drain_all_count--;
725 }
726 
727 void bdrv_drain_all(void)
728 {
729     GLOBAL_STATE_CODE();
730     bdrv_drain_all_begin();
731     bdrv_drain_all_end();
732 }
733 
734 /**
735  * Remove an active request from the tracked requests list
736  *
737  * This function should be called when a tracked request is completing.
738  */
739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
740 {
741     if (req->serialising) {
742         qatomic_dec(&req->bs->serialising_in_flight);
743     }
744 
745     qemu_co_mutex_lock(&req->bs->reqs_lock);
746     QLIST_REMOVE(req, list);
747     qemu_co_queue_restart_all(&req->wait_queue);
748     qemu_co_mutex_unlock(&req->bs->reqs_lock);
749 }
750 
751 /**
752  * Add an active request to the tracked requests list
753  */
754 static void tracked_request_begin(BdrvTrackedRequest *req,
755                                   BlockDriverState *bs,
756                                   int64_t offset,
757                                   int64_t bytes,
758                                   enum BdrvTrackedRequestType type)
759 {
760     bdrv_check_request(offset, bytes, &error_abort);
761 
762     *req = (BdrvTrackedRequest){
763         .bs = bs,
764         .offset         = offset,
765         .bytes          = bytes,
766         .type           = type,
767         .co             = qemu_coroutine_self(),
768         .serialising    = false,
769         .overlap_offset = offset,
770         .overlap_bytes  = bytes,
771     };
772 
773     qemu_co_queue_init(&req->wait_queue);
774 
775     qemu_co_mutex_lock(&bs->reqs_lock);
776     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
777     qemu_co_mutex_unlock(&bs->reqs_lock);
778 }
779 
780 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
781                                      int64_t offset, int64_t bytes)
782 {
783     bdrv_check_request(offset, bytes, &error_abort);
784 
785     /*        aaaa   bbbb */
786     if (offset >= req->overlap_offset + req->overlap_bytes) {
787         return false;
788     }
789     /* bbbb   aaaa        */
790     if (req->overlap_offset >= offset + bytes) {
791         return false;
792     }
793     return true;
794 }
795 
796 /* Called with self->bs->reqs_lock held */
797 static BdrvTrackedRequest *
798 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
799 {
800     BdrvTrackedRequest *req;
801 
802     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
803         if (req == self || (!req->serialising && !self->serialising)) {
804             continue;
805         }
806         if (tracked_request_overlaps(req, self->overlap_offset,
807                                      self->overlap_bytes))
808         {
809             /*
810              * Hitting this means there was a reentrant request, for
811              * example, a block driver issuing nested requests.  This must
812              * never happen since it means deadlock.
813              */
814             assert(qemu_coroutine_self() != req->co);
815 
816             /*
817              * If the request is already (indirectly) waiting for us, or
818              * will wait for us as soon as it wakes up, then just go on
819              * (instead of producing a deadlock in the former case).
820              */
821             if (!req->waiting_for) {
822                 return req;
823             }
824         }
825     }
826 
827     return NULL;
828 }
829 
830 /* Called with self->bs->reqs_lock held */
831 static void coroutine_fn
832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
833 {
834     BdrvTrackedRequest *req;
835 
836     while ((req = bdrv_find_conflicting_request(self))) {
837         self->waiting_for = req;
838         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
839         self->waiting_for = NULL;
840     }
841 }
842 
843 /* Called with req->bs->reqs_lock held */
844 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
845                                             uint64_t align)
846 {
847     int64_t overlap_offset = req->offset & ~(align - 1);
848     int64_t overlap_bytes =
849         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
850 
851     bdrv_check_request(req->offset, req->bytes, &error_abort);
852 
853     if (!req->serialising) {
854         qatomic_inc(&req->bs->serialising_in_flight);
855         req->serialising = true;
856     }
857 
858     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
859     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
860 }
861 
862 /**
863  * Return the tracked request on @bs for the current coroutine, or
864  * NULL if there is none.
865  */
866 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
867 {
868     BdrvTrackedRequest *req;
869     Coroutine *self = qemu_coroutine_self();
870     IO_CODE();
871 
872     QLIST_FOREACH(req, &bs->tracked_requests, list) {
873         if (req->co == self) {
874             return req;
875         }
876     }
877 
878     return NULL;
879 }
880 
881 /**
882  * Round a region to cluster boundaries
883  */
884 void bdrv_round_to_clusters(BlockDriverState *bs,
885                             int64_t offset, int64_t bytes,
886                             int64_t *cluster_offset,
887                             int64_t *cluster_bytes)
888 {
889     BlockDriverInfo bdi;
890     IO_CODE();
891     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
892         *cluster_offset = offset;
893         *cluster_bytes = bytes;
894     } else {
895         int64_t c = bdi.cluster_size;
896         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
897         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
898     }
899 }
900 
901 static int bdrv_get_cluster_size(BlockDriverState *bs)
902 {
903     BlockDriverInfo bdi;
904     int ret;
905 
906     ret = bdrv_get_info(bs, &bdi);
907     if (ret < 0 || bdi.cluster_size == 0) {
908         return bs->bl.request_alignment;
909     } else {
910         return bdi.cluster_size;
911     }
912 }
913 
914 void bdrv_inc_in_flight(BlockDriverState *bs)
915 {
916     IO_CODE();
917     qatomic_inc(&bs->in_flight);
918 }
919 
920 void bdrv_wakeup(BlockDriverState *bs)
921 {
922     IO_CODE();
923     aio_wait_kick();
924 }
925 
926 void bdrv_dec_in_flight(BlockDriverState *bs)
927 {
928     IO_CODE();
929     qatomic_dec(&bs->in_flight);
930     bdrv_wakeup(bs);
931 }
932 
933 static void coroutine_fn
934 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
935 {
936     BlockDriverState *bs = self->bs;
937 
938     if (!qatomic_read(&bs->serialising_in_flight)) {
939         return;
940     }
941 
942     qemu_co_mutex_lock(&bs->reqs_lock);
943     bdrv_wait_serialising_requests_locked(self);
944     qemu_co_mutex_unlock(&bs->reqs_lock);
945 }
946 
947 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
948                                                 uint64_t align)
949 {
950     IO_CODE();
951 
952     qemu_co_mutex_lock(&req->bs->reqs_lock);
953 
954     tracked_request_set_serialising(req, align);
955     bdrv_wait_serialising_requests_locked(req);
956 
957     qemu_co_mutex_unlock(&req->bs->reqs_lock);
958 }
959 
960 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
961                             QEMUIOVector *qiov, size_t qiov_offset,
962                             Error **errp)
963 {
964     /*
965      * Check generic offset/bytes correctness
966      */
967 
968     if (offset < 0) {
969         error_setg(errp, "offset is negative: %" PRIi64, offset);
970         return -EIO;
971     }
972 
973     if (bytes < 0) {
974         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
975         return -EIO;
976     }
977 
978     if (bytes > BDRV_MAX_LENGTH) {
979         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
980                    bytes, BDRV_MAX_LENGTH);
981         return -EIO;
982     }
983 
984     if (offset > BDRV_MAX_LENGTH) {
985         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
986                    offset, BDRV_MAX_LENGTH);
987         return -EIO;
988     }
989 
990     if (offset > BDRV_MAX_LENGTH - bytes) {
991         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
992                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
993                    BDRV_MAX_LENGTH);
994         return -EIO;
995     }
996 
997     if (!qiov) {
998         return 0;
999     }
1000 
1001     /*
1002      * Check qiov and qiov_offset
1003      */
1004 
1005     if (qiov_offset > qiov->size) {
1006         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1007                    qiov_offset, qiov->size);
1008         return -EIO;
1009     }
1010 
1011     if (bytes > qiov->size - qiov_offset) {
1012         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1013                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1014         return -EIO;
1015     }
1016 
1017     return 0;
1018 }
1019 
1020 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1021 {
1022     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1023 }
1024 
1025 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1026                                 QEMUIOVector *qiov, size_t qiov_offset)
1027 {
1028     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1029     if (ret < 0) {
1030         return ret;
1031     }
1032 
1033     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1034         return -EIO;
1035     }
1036 
1037     return 0;
1038 }
1039 
1040 /*
1041  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1042  * The operation is sped up by checking the block status and only writing
1043  * zeroes to the device if they currently do not return zeroes. Optional
1044  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1045  * BDRV_REQ_FUA).
1046  *
1047  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1048  */
1049 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1050 {
1051     int ret;
1052     int64_t target_size, bytes, offset = 0;
1053     BlockDriverState *bs = child->bs;
1054     IO_CODE();
1055 
1056     target_size = bdrv_getlength(bs);
1057     if (target_size < 0) {
1058         return target_size;
1059     }
1060 
1061     for (;;) {
1062         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1063         if (bytes <= 0) {
1064             return 0;
1065         }
1066         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1067         if (ret < 0) {
1068             return ret;
1069         }
1070         if (ret & BDRV_BLOCK_ZERO) {
1071             offset += bytes;
1072             continue;
1073         }
1074         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1075         if (ret < 0) {
1076             return ret;
1077         }
1078         offset += bytes;
1079     }
1080 }
1081 
1082 /*
1083  * Writes to the file and ensures that no writes are reordered across this
1084  * request (acts as a barrier)
1085  *
1086  * Returns 0 on success, -errno in error cases.
1087  */
1088 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
1089                                      int64_t bytes, const void *buf,
1090                                      BdrvRequestFlags flags)
1091 {
1092     int ret;
1093     IO_CODE();
1094 
1095     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
1096     if (ret < 0) {
1097         return ret;
1098     }
1099 
1100     ret = bdrv_co_flush(child->bs);
1101     if (ret < 0) {
1102         return ret;
1103     }
1104 
1105     return 0;
1106 }
1107 
1108 typedef struct CoroutineIOCompletion {
1109     Coroutine *coroutine;
1110     int ret;
1111 } CoroutineIOCompletion;
1112 
1113 static void bdrv_co_io_em_complete(void *opaque, int ret)
1114 {
1115     CoroutineIOCompletion *co = opaque;
1116 
1117     co->ret = ret;
1118     aio_co_wake(co->coroutine);
1119 }
1120 
1121 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1122                                            int64_t offset, int64_t bytes,
1123                                            QEMUIOVector *qiov,
1124                                            size_t qiov_offset, int flags)
1125 {
1126     BlockDriver *drv = bs->drv;
1127     int64_t sector_num;
1128     unsigned int nb_sectors;
1129     QEMUIOVector local_qiov;
1130     int ret;
1131 
1132     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1133     assert(!(flags & ~BDRV_REQ_MASK));
1134     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1135 
1136     if (!drv) {
1137         return -ENOMEDIUM;
1138     }
1139 
1140     if (drv->bdrv_co_preadv_part) {
1141         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1142                                         flags);
1143     }
1144 
1145     if (qiov_offset > 0 || bytes != qiov->size) {
1146         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1147         qiov = &local_qiov;
1148     }
1149 
1150     if (drv->bdrv_co_preadv) {
1151         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1152         goto out;
1153     }
1154 
1155     if (drv->bdrv_aio_preadv) {
1156         BlockAIOCB *acb;
1157         CoroutineIOCompletion co = {
1158             .coroutine = qemu_coroutine_self(),
1159         };
1160 
1161         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1162                                    bdrv_co_io_em_complete, &co);
1163         if (acb == NULL) {
1164             ret = -EIO;
1165             goto out;
1166         } else {
1167             qemu_coroutine_yield();
1168             ret = co.ret;
1169             goto out;
1170         }
1171     }
1172 
1173     sector_num = offset >> BDRV_SECTOR_BITS;
1174     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1175 
1176     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1177     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1178     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1179     assert(drv->bdrv_co_readv);
1180 
1181     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1182 
1183 out:
1184     if (qiov == &local_qiov) {
1185         qemu_iovec_destroy(&local_qiov);
1186     }
1187 
1188     return ret;
1189 }
1190 
1191 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1192                                             int64_t offset, int64_t bytes,
1193                                             QEMUIOVector *qiov,
1194                                             size_t qiov_offset,
1195                                             BdrvRequestFlags flags)
1196 {
1197     BlockDriver *drv = bs->drv;
1198     int64_t sector_num;
1199     unsigned int nb_sectors;
1200     QEMUIOVector local_qiov;
1201     int ret;
1202 
1203     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1204     assert(!(flags & ~BDRV_REQ_MASK));
1205     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1206 
1207     if (!drv) {
1208         return -ENOMEDIUM;
1209     }
1210 
1211     if (drv->bdrv_co_pwritev_part) {
1212         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1213                                         flags & bs->supported_write_flags);
1214         flags &= ~bs->supported_write_flags;
1215         goto emulate_flags;
1216     }
1217 
1218     if (qiov_offset > 0 || bytes != qiov->size) {
1219         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1220         qiov = &local_qiov;
1221     }
1222 
1223     if (drv->bdrv_co_pwritev) {
1224         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1225                                    flags & bs->supported_write_flags);
1226         flags &= ~bs->supported_write_flags;
1227         goto emulate_flags;
1228     }
1229 
1230     if (drv->bdrv_aio_pwritev) {
1231         BlockAIOCB *acb;
1232         CoroutineIOCompletion co = {
1233             .coroutine = qemu_coroutine_self(),
1234         };
1235 
1236         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1237                                     flags & bs->supported_write_flags,
1238                                     bdrv_co_io_em_complete, &co);
1239         flags &= ~bs->supported_write_flags;
1240         if (acb == NULL) {
1241             ret = -EIO;
1242         } else {
1243             qemu_coroutine_yield();
1244             ret = co.ret;
1245         }
1246         goto emulate_flags;
1247     }
1248 
1249     sector_num = offset >> BDRV_SECTOR_BITS;
1250     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1251 
1252     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1253     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1254     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1255 
1256     assert(drv->bdrv_co_writev);
1257     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1258                               flags & bs->supported_write_flags);
1259     flags &= ~bs->supported_write_flags;
1260 
1261 emulate_flags:
1262     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1263         ret = bdrv_co_flush(bs);
1264     }
1265 
1266     if (qiov == &local_qiov) {
1267         qemu_iovec_destroy(&local_qiov);
1268     }
1269 
1270     return ret;
1271 }
1272 
1273 static int coroutine_fn
1274 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1275                                int64_t bytes, QEMUIOVector *qiov,
1276                                size_t qiov_offset)
1277 {
1278     BlockDriver *drv = bs->drv;
1279     QEMUIOVector local_qiov;
1280     int ret;
1281 
1282     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1283 
1284     if (!drv) {
1285         return -ENOMEDIUM;
1286     }
1287 
1288     if (!block_driver_can_compress(drv)) {
1289         return -ENOTSUP;
1290     }
1291 
1292     if (drv->bdrv_co_pwritev_compressed_part) {
1293         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1294                                                     qiov, qiov_offset);
1295     }
1296 
1297     if (qiov_offset == 0) {
1298         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1299     }
1300 
1301     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1302     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1303     qemu_iovec_destroy(&local_qiov);
1304 
1305     return ret;
1306 }
1307 
1308 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1309         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1310         size_t qiov_offset, int flags)
1311 {
1312     BlockDriverState *bs = child->bs;
1313 
1314     /* Perform I/O through a temporary buffer so that users who scribble over
1315      * their read buffer while the operation is in progress do not end up
1316      * modifying the image file.  This is critical for zero-copy guest I/O
1317      * where anything might happen inside guest memory.
1318      */
1319     void *bounce_buffer = NULL;
1320 
1321     BlockDriver *drv = bs->drv;
1322     int64_t cluster_offset;
1323     int64_t cluster_bytes;
1324     int64_t skip_bytes;
1325     int ret;
1326     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1327                                     BDRV_REQUEST_MAX_BYTES);
1328     int64_t progress = 0;
1329     bool skip_write;
1330 
1331     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1332 
1333     if (!drv) {
1334         return -ENOMEDIUM;
1335     }
1336 
1337     /*
1338      * Do not write anything when the BDS is inactive.  That is not
1339      * allowed, and it would not help.
1340      */
1341     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1342 
1343     /* FIXME We cannot require callers to have write permissions when all they
1344      * are doing is a read request. If we did things right, write permissions
1345      * would be obtained anyway, but internally by the copy-on-read code. As
1346      * long as it is implemented here rather than in a separate filter driver,
1347      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1348      * it could request permissions. Therefore we have to bypass the permission
1349      * system for the moment. */
1350     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1351 
1352     /* Cover entire cluster so no additional backing file I/O is required when
1353      * allocating cluster in the image file.  Note that this value may exceed
1354      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1355      * is one reason we loop rather than doing it all at once.
1356      */
1357     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1358     skip_bytes = offset - cluster_offset;
1359 
1360     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1361                                    cluster_offset, cluster_bytes);
1362 
1363     while (cluster_bytes) {
1364         int64_t pnum;
1365 
1366         if (skip_write) {
1367             ret = 1; /* "already allocated", so nothing will be copied */
1368             pnum = MIN(cluster_bytes, max_transfer);
1369         } else {
1370             ret = bdrv_is_allocated(bs, cluster_offset,
1371                                     MIN(cluster_bytes, max_transfer), &pnum);
1372             if (ret < 0) {
1373                 /*
1374                  * Safe to treat errors in querying allocation as if
1375                  * unallocated; we'll probably fail again soon on the
1376                  * read, but at least that will set a decent errno.
1377                  */
1378                 pnum = MIN(cluster_bytes, max_transfer);
1379             }
1380 
1381             /* Stop at EOF if the image ends in the middle of the cluster */
1382             if (ret == 0 && pnum == 0) {
1383                 assert(progress >= bytes);
1384                 break;
1385             }
1386 
1387             assert(skip_bytes < pnum);
1388         }
1389 
1390         if (ret <= 0) {
1391             QEMUIOVector local_qiov;
1392 
1393             /* Must copy-on-read; use the bounce buffer */
1394             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1395             if (!bounce_buffer) {
1396                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1397                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1398                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1399 
1400                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1401                 if (!bounce_buffer) {
1402                     ret = -ENOMEM;
1403                     goto err;
1404                 }
1405             }
1406             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1407 
1408             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1409                                      &local_qiov, 0, 0);
1410             if (ret < 0) {
1411                 goto err;
1412             }
1413 
1414             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1415             if (drv->bdrv_co_pwrite_zeroes &&
1416                 buffer_is_zero(bounce_buffer, pnum)) {
1417                 /* FIXME: Should we (perhaps conditionally) be setting
1418                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1419                  * that still correctly reads as zero? */
1420                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1421                                                BDRV_REQ_WRITE_UNCHANGED);
1422             } else {
1423                 /* This does not change the data on the disk, it is not
1424                  * necessary to flush even in cache=writethrough mode.
1425                  */
1426                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1427                                           &local_qiov, 0,
1428                                           BDRV_REQ_WRITE_UNCHANGED);
1429             }
1430 
1431             if (ret < 0) {
1432                 /* It might be okay to ignore write errors for guest
1433                  * requests.  If this is a deliberate copy-on-read
1434                  * then we don't want to ignore the error.  Simply
1435                  * report it in all cases.
1436                  */
1437                 goto err;
1438             }
1439 
1440             if (!(flags & BDRV_REQ_PREFETCH)) {
1441                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1442                                     bounce_buffer + skip_bytes,
1443                                     MIN(pnum - skip_bytes, bytes - progress));
1444             }
1445         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1446             /* Read directly into the destination */
1447             ret = bdrv_driver_preadv(bs, offset + progress,
1448                                      MIN(pnum - skip_bytes, bytes - progress),
1449                                      qiov, qiov_offset + progress, 0);
1450             if (ret < 0) {
1451                 goto err;
1452             }
1453         }
1454 
1455         cluster_offset += pnum;
1456         cluster_bytes -= pnum;
1457         progress += pnum - skip_bytes;
1458         skip_bytes = 0;
1459     }
1460     ret = 0;
1461 
1462 err:
1463     qemu_vfree(bounce_buffer);
1464     return ret;
1465 }
1466 
1467 /*
1468  * Forwards an already correctly aligned request to the BlockDriver. This
1469  * handles copy on read, zeroing after EOF, and fragmentation of large
1470  * reads; any other features must be implemented by the caller.
1471  */
1472 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1473     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1474     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1475 {
1476     BlockDriverState *bs = child->bs;
1477     int64_t total_bytes, max_bytes;
1478     int ret = 0;
1479     int64_t bytes_remaining = bytes;
1480     int max_transfer;
1481 
1482     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1483     assert(is_power_of_2(align));
1484     assert((offset & (align - 1)) == 0);
1485     assert((bytes & (align - 1)) == 0);
1486     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1487     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1488                                    align);
1489 
1490     /* TODO: We would need a per-BDS .supported_read_flags and
1491      * potential fallback support, if we ever implement any read flags
1492      * to pass through to drivers.  For now, there aren't any
1493      * passthrough flags.  */
1494     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1495 
1496     /* Handle Copy on Read and associated serialisation */
1497     if (flags & BDRV_REQ_COPY_ON_READ) {
1498         /* If we touch the same cluster it counts as an overlap.  This
1499          * guarantees that allocating writes will be serialized and not race
1500          * with each other for the same cluster.  For example, in copy-on-read
1501          * it ensures that the CoR read and write operations are atomic and
1502          * guest writes cannot interleave between them. */
1503         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1504     } else {
1505         bdrv_wait_serialising_requests(req);
1506     }
1507 
1508     if (flags & BDRV_REQ_COPY_ON_READ) {
1509         int64_t pnum;
1510 
1511         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1512         flags &= ~BDRV_REQ_COPY_ON_READ;
1513 
1514         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1515         if (ret < 0) {
1516             goto out;
1517         }
1518 
1519         if (!ret || pnum != bytes) {
1520             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1521                                            qiov, qiov_offset, flags);
1522             goto out;
1523         } else if (flags & BDRV_REQ_PREFETCH) {
1524             goto out;
1525         }
1526     }
1527 
1528     /* Forward the request to the BlockDriver, possibly fragmenting it */
1529     total_bytes = bdrv_getlength(bs);
1530     if (total_bytes < 0) {
1531         ret = total_bytes;
1532         goto out;
1533     }
1534 
1535     assert(!(flags & ~bs->supported_read_flags));
1536 
1537     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1538     if (bytes <= max_bytes && bytes <= max_transfer) {
1539         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1540         goto out;
1541     }
1542 
1543     while (bytes_remaining) {
1544         int64_t num;
1545 
1546         if (max_bytes) {
1547             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1548             assert(num);
1549 
1550             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1551                                      num, qiov,
1552                                      qiov_offset + bytes - bytes_remaining,
1553                                      flags);
1554             max_bytes -= num;
1555         } else {
1556             num = bytes_remaining;
1557             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1558                                     0, bytes_remaining);
1559         }
1560         if (ret < 0) {
1561             goto out;
1562         }
1563         bytes_remaining -= num;
1564     }
1565 
1566 out:
1567     return ret < 0 ? ret : 0;
1568 }
1569 
1570 /*
1571  * Request padding
1572  *
1573  *  |<---- align ----->|                     |<----- align ---->|
1574  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1575  *  |          |       |                     |     |            |
1576  * -*----------$-------*-------- ... --------*-----$------------*---
1577  *  |          |       |                     |     |            |
1578  *  |          offset  |                     |     end          |
1579  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1580  *  [buf   ... )                             [tail_buf          )
1581  *
1582  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1583  * is placed at the beginning of @buf and @tail at the @end.
1584  *
1585  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1586  * around tail, if tail exists.
1587  *
1588  * @merge_reads is true for small requests,
1589  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1590  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1591  */
1592 typedef struct BdrvRequestPadding {
1593     uint8_t *buf;
1594     size_t buf_len;
1595     uint8_t *tail_buf;
1596     size_t head;
1597     size_t tail;
1598     bool merge_reads;
1599     QEMUIOVector local_qiov;
1600 } BdrvRequestPadding;
1601 
1602 static bool bdrv_init_padding(BlockDriverState *bs,
1603                               int64_t offset, int64_t bytes,
1604                               BdrvRequestPadding *pad)
1605 {
1606     int64_t align = bs->bl.request_alignment;
1607     int64_t sum;
1608 
1609     bdrv_check_request(offset, bytes, &error_abort);
1610     assert(align <= INT_MAX); /* documented in block/block_int.h */
1611     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1612 
1613     memset(pad, 0, sizeof(*pad));
1614 
1615     pad->head = offset & (align - 1);
1616     pad->tail = ((offset + bytes) & (align - 1));
1617     if (pad->tail) {
1618         pad->tail = align - pad->tail;
1619     }
1620 
1621     if (!pad->head && !pad->tail) {
1622         return false;
1623     }
1624 
1625     assert(bytes); /* Nothing good in aligning zero-length requests */
1626 
1627     sum = pad->head + bytes + pad->tail;
1628     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1629     pad->buf = qemu_blockalign(bs, pad->buf_len);
1630     pad->merge_reads = sum == pad->buf_len;
1631     if (pad->tail) {
1632         pad->tail_buf = pad->buf + pad->buf_len - align;
1633     }
1634 
1635     return true;
1636 }
1637 
1638 static int bdrv_padding_rmw_read(BdrvChild *child,
1639                                  BdrvTrackedRequest *req,
1640                                  BdrvRequestPadding *pad,
1641                                  bool zero_middle)
1642 {
1643     QEMUIOVector local_qiov;
1644     BlockDriverState *bs = child->bs;
1645     uint64_t align = bs->bl.request_alignment;
1646     int ret;
1647 
1648     assert(req->serialising && pad->buf);
1649 
1650     if (pad->head || pad->merge_reads) {
1651         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1652 
1653         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1654 
1655         if (pad->head) {
1656             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1657         }
1658         if (pad->merge_reads && pad->tail) {
1659             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1660         }
1661         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1662                                   align, &local_qiov, 0, 0);
1663         if (ret < 0) {
1664             return ret;
1665         }
1666         if (pad->head) {
1667             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1668         }
1669         if (pad->merge_reads && pad->tail) {
1670             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1671         }
1672 
1673         if (pad->merge_reads) {
1674             goto zero_mem;
1675         }
1676     }
1677 
1678     if (pad->tail) {
1679         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1680 
1681         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1682         ret = bdrv_aligned_preadv(
1683                 child, req,
1684                 req->overlap_offset + req->overlap_bytes - align,
1685                 align, align, &local_qiov, 0, 0);
1686         if (ret < 0) {
1687             return ret;
1688         }
1689         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1690     }
1691 
1692 zero_mem:
1693     if (zero_middle) {
1694         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1695     }
1696 
1697     return 0;
1698 }
1699 
1700 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1701 {
1702     if (pad->buf) {
1703         qemu_vfree(pad->buf);
1704         qemu_iovec_destroy(&pad->local_qiov);
1705     }
1706     memset(pad, 0, sizeof(*pad));
1707 }
1708 
1709 /*
1710  * bdrv_pad_request
1711  *
1712  * Exchange request parameters with padded request if needed. Don't include RMW
1713  * read of padding, bdrv_padding_rmw_read() should be called separately if
1714  * needed.
1715  *
1716  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1717  *  - on function start they represent original request
1718  *  - on failure or when padding is not needed they are unchanged
1719  *  - on success when padding is needed they represent padded request
1720  */
1721 static int bdrv_pad_request(BlockDriverState *bs,
1722                             QEMUIOVector **qiov, size_t *qiov_offset,
1723                             int64_t *offset, int64_t *bytes,
1724                             BdrvRequestPadding *pad, bool *padded)
1725 {
1726     int ret;
1727 
1728     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1729 
1730     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1731         if (padded) {
1732             *padded = false;
1733         }
1734         return 0;
1735     }
1736 
1737     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1738                                    *qiov, *qiov_offset, *bytes,
1739                                    pad->buf + pad->buf_len - pad->tail,
1740                                    pad->tail);
1741     if (ret < 0) {
1742         bdrv_padding_destroy(pad);
1743         return ret;
1744     }
1745     *bytes += pad->head + pad->tail;
1746     *offset -= pad->head;
1747     *qiov = &pad->local_qiov;
1748     *qiov_offset = 0;
1749     if (padded) {
1750         *padded = true;
1751     }
1752 
1753     return 0;
1754 }
1755 
1756 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1757     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1758     BdrvRequestFlags flags)
1759 {
1760     IO_CODE();
1761     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1762 }
1763 
1764 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1765     int64_t offset, int64_t bytes,
1766     QEMUIOVector *qiov, size_t qiov_offset,
1767     BdrvRequestFlags flags)
1768 {
1769     BlockDriverState *bs = child->bs;
1770     BdrvTrackedRequest req;
1771     BdrvRequestPadding pad;
1772     int ret;
1773     IO_CODE();
1774 
1775     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1776 
1777     if (!bdrv_is_inserted(bs)) {
1778         return -ENOMEDIUM;
1779     }
1780 
1781     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1782     if (ret < 0) {
1783         return ret;
1784     }
1785 
1786     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1787         /*
1788          * Aligning zero request is nonsense. Even if driver has special meaning
1789          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1790          * it to driver due to request_alignment.
1791          *
1792          * Still, no reason to return an error if someone do unaligned
1793          * zero-length read occasionally.
1794          */
1795         return 0;
1796     }
1797 
1798     bdrv_inc_in_flight(bs);
1799 
1800     /* Don't do copy-on-read if we read data before write operation */
1801     if (qatomic_read(&bs->copy_on_read)) {
1802         flags |= BDRV_REQ_COPY_ON_READ;
1803     }
1804 
1805     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1806                            NULL);
1807     if (ret < 0) {
1808         goto fail;
1809     }
1810 
1811     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1812     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1813                               bs->bl.request_alignment,
1814                               qiov, qiov_offset, flags);
1815     tracked_request_end(&req);
1816     bdrv_padding_destroy(&pad);
1817 
1818 fail:
1819     bdrv_dec_in_flight(bs);
1820 
1821     return ret;
1822 }
1823 
1824 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1825     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1826 {
1827     BlockDriver *drv = bs->drv;
1828     QEMUIOVector qiov;
1829     void *buf = NULL;
1830     int ret = 0;
1831     bool need_flush = false;
1832     int head = 0;
1833     int tail = 0;
1834 
1835     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1836                                             INT64_MAX);
1837     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1838                         bs->bl.request_alignment);
1839     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1840 
1841     bdrv_check_request(offset, bytes, &error_abort);
1842 
1843     if (!drv) {
1844         return -ENOMEDIUM;
1845     }
1846 
1847     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1848         return -ENOTSUP;
1849     }
1850 
1851     /* Invalidate the cached block-status data range if this write overlaps */
1852     bdrv_bsc_invalidate_range(bs, offset, bytes);
1853 
1854     assert(alignment % bs->bl.request_alignment == 0);
1855     head = offset % alignment;
1856     tail = (offset + bytes) % alignment;
1857     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1858     assert(max_write_zeroes >= bs->bl.request_alignment);
1859 
1860     while (bytes > 0 && !ret) {
1861         int64_t num = bytes;
1862 
1863         /* Align request.  Block drivers can expect the "bulk" of the request
1864          * to be aligned, and that unaligned requests do not cross cluster
1865          * boundaries.
1866          */
1867         if (head) {
1868             /* Make a small request up to the first aligned sector. For
1869              * convenience, limit this request to max_transfer even if
1870              * we don't need to fall back to writes.  */
1871             num = MIN(MIN(bytes, max_transfer), alignment - head);
1872             head = (head + num) % alignment;
1873             assert(num < max_write_zeroes);
1874         } else if (tail && num > alignment) {
1875             /* Shorten the request to the last aligned sector.  */
1876             num -= tail;
1877         }
1878 
1879         /* limit request size */
1880         if (num > max_write_zeroes) {
1881             num = max_write_zeroes;
1882         }
1883 
1884         ret = -ENOTSUP;
1885         /* First try the efficient write zeroes operation */
1886         if (drv->bdrv_co_pwrite_zeroes) {
1887             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1888                                              flags & bs->supported_zero_flags);
1889             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1890                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1891                 need_flush = true;
1892             }
1893         } else {
1894             assert(!bs->supported_zero_flags);
1895         }
1896 
1897         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1898             /* Fall back to bounce buffer if write zeroes is unsupported */
1899             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1900 
1901             if ((flags & BDRV_REQ_FUA) &&
1902                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1903                 /* No need for bdrv_driver_pwrite() to do a fallback
1904                  * flush on each chunk; use just one at the end */
1905                 write_flags &= ~BDRV_REQ_FUA;
1906                 need_flush = true;
1907             }
1908             num = MIN(num, max_transfer);
1909             if (buf == NULL) {
1910                 buf = qemu_try_blockalign0(bs, num);
1911                 if (buf == NULL) {
1912                     ret = -ENOMEM;
1913                     goto fail;
1914                 }
1915             }
1916             qemu_iovec_init_buf(&qiov, buf, num);
1917 
1918             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1919 
1920             /* Keep bounce buffer around if it is big enough for all
1921              * all future requests.
1922              */
1923             if (num < max_transfer) {
1924                 qemu_vfree(buf);
1925                 buf = NULL;
1926             }
1927         }
1928 
1929         offset += num;
1930         bytes -= num;
1931     }
1932 
1933 fail:
1934     if (ret == 0 && need_flush) {
1935         ret = bdrv_co_flush(bs);
1936     }
1937     qemu_vfree(buf);
1938     return ret;
1939 }
1940 
1941 static inline int coroutine_fn
1942 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1943                           BdrvTrackedRequest *req, int flags)
1944 {
1945     BlockDriverState *bs = child->bs;
1946 
1947     bdrv_check_request(offset, bytes, &error_abort);
1948 
1949     if (bdrv_is_read_only(bs)) {
1950         return -EPERM;
1951     }
1952 
1953     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1954     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1955     assert(!(flags & ~BDRV_REQ_MASK));
1956     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1957 
1958     if (flags & BDRV_REQ_SERIALISING) {
1959         QEMU_LOCK_GUARD(&bs->reqs_lock);
1960 
1961         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1962 
1963         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1964             return -EBUSY;
1965         }
1966 
1967         bdrv_wait_serialising_requests_locked(req);
1968     } else {
1969         bdrv_wait_serialising_requests(req);
1970     }
1971 
1972     assert(req->overlap_offset <= offset);
1973     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1974     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1975            child->perm & BLK_PERM_RESIZE);
1976 
1977     switch (req->type) {
1978     case BDRV_TRACKED_WRITE:
1979     case BDRV_TRACKED_DISCARD:
1980         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1981             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1982         } else {
1983             assert(child->perm & BLK_PERM_WRITE);
1984         }
1985         bdrv_write_threshold_check_write(bs, offset, bytes);
1986         return 0;
1987     case BDRV_TRACKED_TRUNCATE:
1988         assert(child->perm & BLK_PERM_RESIZE);
1989         return 0;
1990     default:
1991         abort();
1992     }
1993 }
1994 
1995 static inline void coroutine_fn
1996 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1997                          BdrvTrackedRequest *req, int ret)
1998 {
1999     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2000     BlockDriverState *bs = child->bs;
2001 
2002     bdrv_check_request(offset, bytes, &error_abort);
2003 
2004     qatomic_inc(&bs->write_gen);
2005 
2006     /*
2007      * Discard cannot extend the image, but in error handling cases, such as
2008      * when reverting a qcow2 cluster allocation, the discarded range can pass
2009      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2010      * here. Instead, just skip it, since semantically a discard request
2011      * beyond EOF cannot expand the image anyway.
2012      */
2013     if (ret == 0 &&
2014         (req->type == BDRV_TRACKED_TRUNCATE ||
2015          end_sector > bs->total_sectors) &&
2016         req->type != BDRV_TRACKED_DISCARD) {
2017         bs->total_sectors = end_sector;
2018         bdrv_parent_cb_resize(bs);
2019         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2020     }
2021     if (req->bytes) {
2022         switch (req->type) {
2023         case BDRV_TRACKED_WRITE:
2024             stat64_max(&bs->wr_highest_offset, offset + bytes);
2025             /* fall through, to set dirty bits */
2026         case BDRV_TRACKED_DISCARD:
2027             bdrv_set_dirty(bs, offset, bytes);
2028             break;
2029         default:
2030             break;
2031         }
2032     }
2033 }
2034 
2035 /*
2036  * Forwards an already correctly aligned write request to the BlockDriver,
2037  * after possibly fragmenting it.
2038  */
2039 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2040     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2041     int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2042     BdrvRequestFlags flags)
2043 {
2044     BlockDriverState *bs = child->bs;
2045     BlockDriver *drv = bs->drv;
2046     int ret;
2047 
2048     int64_t bytes_remaining = bytes;
2049     int max_transfer;
2050 
2051     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2052 
2053     if (!drv) {
2054         return -ENOMEDIUM;
2055     }
2056 
2057     if (bdrv_has_readonly_bitmaps(bs)) {
2058         return -EPERM;
2059     }
2060 
2061     assert(is_power_of_2(align));
2062     assert((offset & (align - 1)) == 0);
2063     assert((bytes & (align - 1)) == 0);
2064     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2065                                    align);
2066 
2067     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2068 
2069     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2070         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2071         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2072         flags |= BDRV_REQ_ZERO_WRITE;
2073         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2074             flags |= BDRV_REQ_MAY_UNMAP;
2075         }
2076     }
2077 
2078     if (ret < 0) {
2079         /* Do nothing, write notifier decided to fail this request */
2080     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2081         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2082         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2083     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2084         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2085                                              qiov, qiov_offset);
2086     } else if (bytes <= max_transfer) {
2087         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2088         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2089     } else {
2090         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2091         while (bytes_remaining) {
2092             int num = MIN(bytes_remaining, max_transfer);
2093             int local_flags = flags;
2094 
2095             assert(num);
2096             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2097                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2098                 /* If FUA is going to be emulated by flush, we only
2099                  * need to flush on the last iteration */
2100                 local_flags &= ~BDRV_REQ_FUA;
2101             }
2102 
2103             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2104                                       num, qiov,
2105                                       qiov_offset + bytes - bytes_remaining,
2106                                       local_flags);
2107             if (ret < 0) {
2108                 break;
2109             }
2110             bytes_remaining -= num;
2111         }
2112     }
2113     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2114 
2115     if (ret >= 0) {
2116         ret = 0;
2117     }
2118     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2119 
2120     return ret;
2121 }
2122 
2123 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2124                                                 int64_t offset,
2125                                                 int64_t bytes,
2126                                                 BdrvRequestFlags flags,
2127                                                 BdrvTrackedRequest *req)
2128 {
2129     BlockDriverState *bs = child->bs;
2130     QEMUIOVector local_qiov;
2131     uint64_t align = bs->bl.request_alignment;
2132     int ret = 0;
2133     bool padding;
2134     BdrvRequestPadding pad;
2135 
2136     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2137     if (padding) {
2138         assert(!(flags & BDRV_REQ_NO_WAIT));
2139         bdrv_make_request_serialising(req, align);
2140 
2141         bdrv_padding_rmw_read(child, req, &pad, true);
2142 
2143         if (pad.head || pad.merge_reads) {
2144             int64_t aligned_offset = offset & ~(align - 1);
2145             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2146 
2147             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2148             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2149                                        align, &local_qiov, 0,
2150                                        flags & ~BDRV_REQ_ZERO_WRITE);
2151             if (ret < 0 || pad.merge_reads) {
2152                 /* Error or all work is done */
2153                 goto out;
2154             }
2155             offset += write_bytes - pad.head;
2156             bytes -= write_bytes - pad.head;
2157         }
2158     }
2159 
2160     assert(!bytes || (offset & (align - 1)) == 0);
2161     if (bytes >= align) {
2162         /* Write the aligned part in the middle. */
2163         int64_t aligned_bytes = bytes & ~(align - 1);
2164         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2165                                    NULL, 0, flags);
2166         if (ret < 0) {
2167             goto out;
2168         }
2169         bytes -= aligned_bytes;
2170         offset += aligned_bytes;
2171     }
2172 
2173     assert(!bytes || (offset & (align - 1)) == 0);
2174     if (bytes) {
2175         assert(align == pad.tail + bytes);
2176 
2177         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2178         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2179                                    &local_qiov, 0,
2180                                    flags & ~BDRV_REQ_ZERO_WRITE);
2181     }
2182 
2183 out:
2184     bdrv_padding_destroy(&pad);
2185 
2186     return ret;
2187 }
2188 
2189 /*
2190  * Handle a write request in coroutine context
2191  */
2192 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2193     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2194     BdrvRequestFlags flags)
2195 {
2196     IO_CODE();
2197     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2198 }
2199 
2200 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2201     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2202     BdrvRequestFlags flags)
2203 {
2204     BlockDriverState *bs = child->bs;
2205     BdrvTrackedRequest req;
2206     uint64_t align = bs->bl.request_alignment;
2207     BdrvRequestPadding pad;
2208     int ret;
2209     bool padded = false;
2210     IO_CODE();
2211 
2212     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2213 
2214     if (!bdrv_is_inserted(bs)) {
2215         return -ENOMEDIUM;
2216     }
2217 
2218     if (flags & BDRV_REQ_ZERO_WRITE) {
2219         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2220     } else {
2221         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2222     }
2223     if (ret < 0) {
2224         return ret;
2225     }
2226 
2227     /* If the request is misaligned then we can't make it efficient */
2228     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2229         !QEMU_IS_ALIGNED(offset | bytes, align))
2230     {
2231         return -ENOTSUP;
2232     }
2233 
2234     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2235         /*
2236          * Aligning zero request is nonsense. Even if driver has special meaning
2237          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2238          * it to driver due to request_alignment.
2239          *
2240          * Still, no reason to return an error if someone do unaligned
2241          * zero-length write occasionally.
2242          */
2243         return 0;
2244     }
2245 
2246     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2247         /*
2248          * Pad request for following read-modify-write cycle.
2249          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2250          * alignment only if there is no ZERO flag.
2251          */
2252         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2253                                &padded);
2254         if (ret < 0) {
2255             return ret;
2256         }
2257     }
2258 
2259     bdrv_inc_in_flight(bs);
2260     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2261 
2262     if (flags & BDRV_REQ_ZERO_WRITE) {
2263         assert(!padded);
2264         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2265         goto out;
2266     }
2267 
2268     if (padded) {
2269         /*
2270          * Request was unaligned to request_alignment and therefore
2271          * padded.  We are going to do read-modify-write, and must
2272          * serialize the request to prevent interactions of the
2273          * widened region with other transactions.
2274          */
2275         assert(!(flags & BDRV_REQ_NO_WAIT));
2276         bdrv_make_request_serialising(&req, align);
2277         bdrv_padding_rmw_read(child, &req, &pad, false);
2278     }
2279 
2280     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2281                                qiov, qiov_offset, flags);
2282 
2283     bdrv_padding_destroy(&pad);
2284 
2285 out:
2286     tracked_request_end(&req);
2287     bdrv_dec_in_flight(bs);
2288 
2289     return ret;
2290 }
2291 
2292 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2293                                        int64_t bytes, BdrvRequestFlags flags)
2294 {
2295     IO_CODE();
2296     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2297 
2298     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2299         flags &= ~BDRV_REQ_MAY_UNMAP;
2300     }
2301 
2302     return bdrv_co_pwritev(child, offset, bytes, NULL,
2303                            BDRV_REQ_ZERO_WRITE | flags);
2304 }
2305 
2306 /*
2307  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2308  */
2309 int bdrv_flush_all(void)
2310 {
2311     BdrvNextIterator it;
2312     BlockDriverState *bs = NULL;
2313     int result = 0;
2314 
2315     GLOBAL_STATE_CODE();
2316 
2317     /*
2318      * bdrv queue is managed by record/replay,
2319      * creating new flush request for stopping
2320      * the VM may break the determinism
2321      */
2322     if (replay_events_enabled()) {
2323         return result;
2324     }
2325 
2326     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2327         AioContext *aio_context = bdrv_get_aio_context(bs);
2328         int ret;
2329 
2330         aio_context_acquire(aio_context);
2331         ret = bdrv_flush(bs);
2332         if (ret < 0 && !result) {
2333             result = ret;
2334         }
2335         aio_context_release(aio_context);
2336     }
2337 
2338     return result;
2339 }
2340 
2341 /*
2342  * Returns the allocation status of the specified sectors.
2343  * Drivers not implementing the functionality are assumed to not support
2344  * backing files, hence all their sectors are reported as allocated.
2345  *
2346  * If 'want_zero' is true, the caller is querying for mapping
2347  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2348  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2349  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2350  *
2351  * If 'offset' is beyond the end of the disk image the return value is
2352  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2353  *
2354  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2355  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2356  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2357  *
2358  * 'pnum' is set to the number of bytes (including and immediately
2359  * following the specified offset) that are easily known to be in the
2360  * same allocated/unallocated state.  Note that a second call starting
2361  * at the original offset plus returned pnum may have the same status.
2362  * The returned value is non-zero on success except at end-of-file.
2363  *
2364  * Returns negative errno on failure.  Otherwise, if the
2365  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2366  * set to the host mapping and BDS corresponding to the guest offset.
2367  */
2368 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2369                                              bool want_zero,
2370                                              int64_t offset, int64_t bytes,
2371                                              int64_t *pnum, int64_t *map,
2372                                              BlockDriverState **file)
2373 {
2374     int64_t total_size;
2375     int64_t n; /* bytes */
2376     int ret;
2377     int64_t local_map = 0;
2378     BlockDriverState *local_file = NULL;
2379     int64_t aligned_offset, aligned_bytes;
2380     uint32_t align;
2381     bool has_filtered_child;
2382 
2383     assert(pnum);
2384     *pnum = 0;
2385     total_size = bdrv_getlength(bs);
2386     if (total_size < 0) {
2387         ret = total_size;
2388         goto early_out;
2389     }
2390 
2391     if (offset >= total_size) {
2392         ret = BDRV_BLOCK_EOF;
2393         goto early_out;
2394     }
2395     if (!bytes) {
2396         ret = 0;
2397         goto early_out;
2398     }
2399 
2400     n = total_size - offset;
2401     if (n < bytes) {
2402         bytes = n;
2403     }
2404 
2405     /* Must be non-NULL or bdrv_getlength() would have failed */
2406     assert(bs->drv);
2407     has_filtered_child = bdrv_filter_child(bs);
2408     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2409         *pnum = bytes;
2410         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2411         if (offset + bytes == total_size) {
2412             ret |= BDRV_BLOCK_EOF;
2413         }
2414         if (bs->drv->protocol_name) {
2415             ret |= BDRV_BLOCK_OFFSET_VALID;
2416             local_map = offset;
2417             local_file = bs;
2418         }
2419         goto early_out;
2420     }
2421 
2422     bdrv_inc_in_flight(bs);
2423 
2424     /* Round out to request_alignment boundaries */
2425     align = bs->bl.request_alignment;
2426     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2427     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2428 
2429     if (bs->drv->bdrv_co_block_status) {
2430         /*
2431          * Use the block-status cache only for protocol nodes: Format
2432          * drivers are generally quick to inquire the status, but protocol
2433          * drivers often need to get information from outside of qemu, so
2434          * we do not have control over the actual implementation.  There
2435          * have been cases where inquiring the status took an unreasonably
2436          * long time, and we can do nothing in qemu to fix it.
2437          * This is especially problematic for images with large data areas,
2438          * because finding the few holes in them and giving them special
2439          * treatment does not gain much performance.  Therefore, we try to
2440          * cache the last-identified data region.
2441          *
2442          * Second, limiting ourselves to protocol nodes allows us to assume
2443          * the block status for data regions to be DATA | OFFSET_VALID, and
2444          * that the host offset is the same as the guest offset.
2445          *
2446          * Note that it is possible that external writers zero parts of
2447          * the cached regions without the cache being invalidated, and so
2448          * we may report zeroes as data.  This is not catastrophic,
2449          * however, because reporting zeroes as data is fine.
2450          */
2451         if (QLIST_EMPTY(&bs->children) &&
2452             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2453         {
2454             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2455             local_file = bs;
2456             local_map = aligned_offset;
2457         } else {
2458             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2459                                                 aligned_bytes, pnum, &local_map,
2460                                                 &local_file);
2461 
2462             /*
2463              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2464              * the cache is queried above.  Technically, we do not need to check
2465              * it here; the worst that can happen is that we fill the cache for
2466              * non-protocol nodes, and then it is never used.  However, filling
2467              * the cache requires an RCU update, so double check here to avoid
2468              * such an update if possible.
2469              *
2470              * Check want_zero, because we only want to update the cache when we
2471              * have accurate information about what is zero and what is data.
2472              */
2473             if (want_zero &&
2474                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2475                 QLIST_EMPTY(&bs->children))
2476             {
2477                 /*
2478                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2479                  * returned local_map value must be the same as the offset we
2480                  * have passed (aligned_offset), and local_bs must be the node
2481                  * itself.
2482                  * Assert this, because we follow this rule when reading from
2483                  * the cache (see the `local_file = bs` and
2484                  * `local_map = aligned_offset` assignments above), and the
2485                  * result the cache delivers must be the same as the driver
2486                  * would deliver.
2487                  */
2488                 assert(local_file == bs);
2489                 assert(local_map == aligned_offset);
2490                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2491             }
2492         }
2493     } else {
2494         /* Default code for filters */
2495 
2496         local_file = bdrv_filter_bs(bs);
2497         assert(local_file);
2498 
2499         *pnum = aligned_bytes;
2500         local_map = aligned_offset;
2501         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2502     }
2503     if (ret < 0) {
2504         *pnum = 0;
2505         goto out;
2506     }
2507 
2508     /*
2509      * The driver's result must be a non-zero multiple of request_alignment.
2510      * Clamp pnum and adjust map to original request.
2511      */
2512     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2513            align > offset - aligned_offset);
2514     if (ret & BDRV_BLOCK_RECURSE) {
2515         assert(ret & BDRV_BLOCK_DATA);
2516         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2517         assert(!(ret & BDRV_BLOCK_ZERO));
2518     }
2519 
2520     *pnum -= offset - aligned_offset;
2521     if (*pnum > bytes) {
2522         *pnum = bytes;
2523     }
2524     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2525         local_map += offset - aligned_offset;
2526     }
2527 
2528     if (ret & BDRV_BLOCK_RAW) {
2529         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2530         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2531                                    *pnum, pnum, &local_map, &local_file);
2532         goto out;
2533     }
2534 
2535     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2536         ret |= BDRV_BLOCK_ALLOCATED;
2537     } else if (bs->drv->supports_backing) {
2538         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2539 
2540         if (!cow_bs) {
2541             ret |= BDRV_BLOCK_ZERO;
2542         } else if (want_zero) {
2543             int64_t size2 = bdrv_getlength(cow_bs);
2544 
2545             if (size2 >= 0 && offset >= size2) {
2546                 ret |= BDRV_BLOCK_ZERO;
2547             }
2548         }
2549     }
2550 
2551     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2552         local_file && local_file != bs &&
2553         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2554         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2555         int64_t file_pnum;
2556         int ret2;
2557 
2558         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2559                                     *pnum, &file_pnum, NULL, NULL);
2560         if (ret2 >= 0) {
2561             /* Ignore errors.  This is just providing extra information, it
2562              * is useful but not necessary.
2563              */
2564             if (ret2 & BDRV_BLOCK_EOF &&
2565                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2566                 /*
2567                  * It is valid for the format block driver to read
2568                  * beyond the end of the underlying file's current
2569                  * size; such areas read as zero.
2570                  */
2571                 ret |= BDRV_BLOCK_ZERO;
2572             } else {
2573                 /* Limit request to the range reported by the protocol driver */
2574                 *pnum = file_pnum;
2575                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2576             }
2577         }
2578     }
2579 
2580 out:
2581     bdrv_dec_in_flight(bs);
2582     if (ret >= 0 && offset + *pnum == total_size) {
2583         ret |= BDRV_BLOCK_EOF;
2584     }
2585 early_out:
2586     if (file) {
2587         *file = local_file;
2588     }
2589     if (map) {
2590         *map = local_map;
2591     }
2592     return ret;
2593 }
2594 
2595 int coroutine_fn
2596 bdrv_co_common_block_status_above(BlockDriverState *bs,
2597                                   BlockDriverState *base,
2598                                   bool include_base,
2599                                   bool want_zero,
2600                                   int64_t offset,
2601                                   int64_t bytes,
2602                                   int64_t *pnum,
2603                                   int64_t *map,
2604                                   BlockDriverState **file,
2605                                   int *depth)
2606 {
2607     int ret;
2608     BlockDriverState *p;
2609     int64_t eof = 0;
2610     int dummy;
2611     IO_CODE();
2612 
2613     assert(!include_base || base); /* Can't include NULL base */
2614 
2615     if (!depth) {
2616         depth = &dummy;
2617     }
2618     *depth = 0;
2619 
2620     if (!include_base && bs == base) {
2621         *pnum = bytes;
2622         return 0;
2623     }
2624 
2625     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2626     ++*depth;
2627     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2628         return ret;
2629     }
2630 
2631     if (ret & BDRV_BLOCK_EOF) {
2632         eof = offset + *pnum;
2633     }
2634 
2635     assert(*pnum <= bytes);
2636     bytes = *pnum;
2637 
2638     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2639          p = bdrv_filter_or_cow_bs(p))
2640     {
2641         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2642                                    file);
2643         ++*depth;
2644         if (ret < 0) {
2645             return ret;
2646         }
2647         if (*pnum == 0) {
2648             /*
2649              * The top layer deferred to this layer, and because this layer is
2650              * short, any zeroes that we synthesize beyond EOF behave as if they
2651              * were allocated at this layer.
2652              *
2653              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2654              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2655              * below.
2656              */
2657             assert(ret & BDRV_BLOCK_EOF);
2658             *pnum = bytes;
2659             if (file) {
2660                 *file = p;
2661             }
2662             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2663             break;
2664         }
2665         if (ret & BDRV_BLOCK_ALLOCATED) {
2666             /*
2667              * We've found the node and the status, we must break.
2668              *
2669              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2670              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2671              * below.
2672              */
2673             ret &= ~BDRV_BLOCK_EOF;
2674             break;
2675         }
2676 
2677         if (p == base) {
2678             assert(include_base);
2679             break;
2680         }
2681 
2682         /*
2683          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2684          * let's continue the diving.
2685          */
2686         assert(*pnum <= bytes);
2687         bytes = *pnum;
2688     }
2689 
2690     if (offset + *pnum == eof) {
2691         ret |= BDRV_BLOCK_EOF;
2692     }
2693 
2694     return ret;
2695 }
2696 
2697 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2698                             int64_t offset, int64_t bytes, int64_t *pnum,
2699                             int64_t *map, BlockDriverState **file)
2700 {
2701     IO_CODE();
2702     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2703                                           pnum, map, file, NULL);
2704 }
2705 
2706 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2707                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2708 {
2709     IO_CODE();
2710     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2711                                    offset, bytes, pnum, map, file);
2712 }
2713 
2714 /*
2715  * Check @bs (and its backing chain) to see if the range defined
2716  * by @offset and @bytes is known to read as zeroes.
2717  * Return 1 if that is the case, 0 otherwise and -errno on error.
2718  * This test is meant to be fast rather than accurate so returning 0
2719  * does not guarantee non-zero data.
2720  */
2721 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2722                                       int64_t bytes)
2723 {
2724     int ret;
2725     int64_t pnum = bytes;
2726     IO_CODE();
2727 
2728     if (!bytes) {
2729         return 1;
2730     }
2731 
2732     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2733                                          bytes, &pnum, NULL, NULL, NULL);
2734 
2735     if (ret < 0) {
2736         return ret;
2737     }
2738 
2739     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2740 }
2741 
2742 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2743                                    int64_t bytes, int64_t *pnum)
2744 {
2745     int ret;
2746     int64_t dummy;
2747     IO_CODE();
2748 
2749     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2750                                          bytes, pnum ? pnum : &dummy, NULL,
2751                                          NULL, NULL);
2752     if (ret < 0) {
2753         return ret;
2754     }
2755     return !!(ret & BDRV_BLOCK_ALLOCATED);
2756 }
2757 
2758 /*
2759  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2760  *
2761  * Return a positive depth if (a prefix of) the given range is allocated
2762  * in any image between BASE and TOP (BASE is only included if include_base
2763  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2764  * BASE can be NULL to check if the given offset is allocated in any
2765  * image of the chain.  Return 0 otherwise, or negative errno on
2766  * failure.
2767  *
2768  * 'pnum' is set to the number of bytes (including and immediately
2769  * following the specified offset) that are known to be in the same
2770  * allocated/unallocated state.  Note that a subsequent call starting
2771  * at 'offset + *pnum' may return the same allocation status (in other
2772  * words, the result is not necessarily the maximum possible range);
2773  * but 'pnum' will only be 0 when end of file is reached.
2774  */
2775 int bdrv_is_allocated_above(BlockDriverState *top,
2776                             BlockDriverState *base,
2777                             bool include_base, int64_t offset,
2778                             int64_t bytes, int64_t *pnum)
2779 {
2780     int depth;
2781     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2782                                              offset, bytes, pnum, NULL, NULL,
2783                                              &depth);
2784     IO_CODE();
2785     if (ret < 0) {
2786         return ret;
2787     }
2788 
2789     if (ret & BDRV_BLOCK_ALLOCATED) {
2790         return depth;
2791     }
2792     return 0;
2793 }
2794 
2795 int coroutine_fn
2796 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2797 {
2798     BlockDriver *drv = bs->drv;
2799     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2800     int ret;
2801     IO_CODE();
2802 
2803     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2804     if (ret < 0) {
2805         return ret;
2806     }
2807 
2808     if (!drv) {
2809         return -ENOMEDIUM;
2810     }
2811 
2812     bdrv_inc_in_flight(bs);
2813 
2814     if (drv->bdrv_load_vmstate) {
2815         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2816     } else if (child_bs) {
2817         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2818     } else {
2819         ret = -ENOTSUP;
2820     }
2821 
2822     bdrv_dec_in_flight(bs);
2823 
2824     return ret;
2825 }
2826 
2827 int coroutine_fn
2828 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2829 {
2830     BlockDriver *drv = bs->drv;
2831     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2832     int ret;
2833     IO_CODE();
2834 
2835     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2836     if (ret < 0) {
2837         return ret;
2838     }
2839 
2840     if (!drv) {
2841         return -ENOMEDIUM;
2842     }
2843 
2844     bdrv_inc_in_flight(bs);
2845 
2846     if (drv->bdrv_save_vmstate) {
2847         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2848     } else if (child_bs) {
2849         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2850     } else {
2851         ret = -ENOTSUP;
2852     }
2853 
2854     bdrv_dec_in_flight(bs);
2855 
2856     return ret;
2857 }
2858 
2859 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2860                       int64_t pos, int size)
2861 {
2862     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2863     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2864     IO_CODE();
2865 
2866     return ret < 0 ? ret : size;
2867 }
2868 
2869 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2870                       int64_t pos, int size)
2871 {
2872     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2873     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2874     IO_CODE();
2875 
2876     return ret < 0 ? ret : size;
2877 }
2878 
2879 /**************************************************************/
2880 /* async I/Os */
2881 
2882 void bdrv_aio_cancel(BlockAIOCB *acb)
2883 {
2884     IO_CODE();
2885     qemu_aio_ref(acb);
2886     bdrv_aio_cancel_async(acb);
2887     while (acb->refcnt > 1) {
2888         if (acb->aiocb_info->get_aio_context) {
2889             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2890         } else if (acb->bs) {
2891             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2892              * assert that we're not using an I/O thread.  Thread-safe
2893              * code should use bdrv_aio_cancel_async exclusively.
2894              */
2895             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2896             aio_poll(bdrv_get_aio_context(acb->bs), true);
2897         } else {
2898             abort();
2899         }
2900     }
2901     qemu_aio_unref(acb);
2902 }
2903 
2904 /* Async version of aio cancel. The caller is not blocked if the acb implements
2905  * cancel_async, otherwise we do nothing and let the request normally complete.
2906  * In either case the completion callback must be called. */
2907 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2908 {
2909     IO_CODE();
2910     if (acb->aiocb_info->cancel_async) {
2911         acb->aiocb_info->cancel_async(acb);
2912     }
2913 }
2914 
2915 /**************************************************************/
2916 /* Coroutine block device emulation */
2917 
2918 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2919 {
2920     BdrvChild *primary_child = bdrv_primary_child(bs);
2921     BdrvChild *child;
2922     int current_gen;
2923     int ret = 0;
2924     IO_CODE();
2925 
2926     bdrv_inc_in_flight(bs);
2927 
2928     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2929         bdrv_is_sg(bs)) {
2930         goto early_exit;
2931     }
2932 
2933     qemu_co_mutex_lock(&bs->reqs_lock);
2934     current_gen = qatomic_read(&bs->write_gen);
2935 
2936     /* Wait until any previous flushes are completed */
2937     while (bs->active_flush_req) {
2938         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2939     }
2940 
2941     /* Flushes reach this point in nondecreasing current_gen order.  */
2942     bs->active_flush_req = true;
2943     qemu_co_mutex_unlock(&bs->reqs_lock);
2944 
2945     /* Write back all layers by calling one driver function */
2946     if (bs->drv->bdrv_co_flush) {
2947         ret = bs->drv->bdrv_co_flush(bs);
2948         goto out;
2949     }
2950 
2951     /* Write back cached data to the OS even with cache=unsafe */
2952     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2953     if (bs->drv->bdrv_co_flush_to_os) {
2954         ret = bs->drv->bdrv_co_flush_to_os(bs);
2955         if (ret < 0) {
2956             goto out;
2957         }
2958     }
2959 
2960     /* But don't actually force it to the disk with cache=unsafe */
2961     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2962         goto flush_children;
2963     }
2964 
2965     /* Check if we really need to flush anything */
2966     if (bs->flushed_gen == current_gen) {
2967         goto flush_children;
2968     }
2969 
2970     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2971     if (!bs->drv) {
2972         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2973          * (even in case of apparent success) */
2974         ret = -ENOMEDIUM;
2975         goto out;
2976     }
2977     if (bs->drv->bdrv_co_flush_to_disk) {
2978         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2979     } else if (bs->drv->bdrv_aio_flush) {
2980         BlockAIOCB *acb;
2981         CoroutineIOCompletion co = {
2982             .coroutine = qemu_coroutine_self(),
2983         };
2984 
2985         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2986         if (acb == NULL) {
2987             ret = -EIO;
2988         } else {
2989             qemu_coroutine_yield();
2990             ret = co.ret;
2991         }
2992     } else {
2993         /*
2994          * Some block drivers always operate in either writethrough or unsafe
2995          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2996          * know how the server works (because the behaviour is hardcoded or
2997          * depends on server-side configuration), so we can't ensure that
2998          * everything is safe on disk. Returning an error doesn't work because
2999          * that would break guests even if the server operates in writethrough
3000          * mode.
3001          *
3002          * Let's hope the user knows what he's doing.
3003          */
3004         ret = 0;
3005     }
3006 
3007     if (ret < 0) {
3008         goto out;
3009     }
3010 
3011     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3012      * in the case of cache=unsafe, so there are no useless flushes.
3013      */
3014 flush_children:
3015     ret = 0;
3016     QLIST_FOREACH(child, &bs->children, next) {
3017         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3018             int this_child_ret = bdrv_co_flush(child->bs);
3019             if (!ret) {
3020                 ret = this_child_ret;
3021             }
3022         }
3023     }
3024 
3025 out:
3026     /* Notify any pending flushes that we have completed */
3027     if (ret == 0) {
3028         bs->flushed_gen = current_gen;
3029     }
3030 
3031     qemu_co_mutex_lock(&bs->reqs_lock);
3032     bs->active_flush_req = false;
3033     /* Return value is ignored - it's ok if wait queue is empty */
3034     qemu_co_queue_next(&bs->flush_queue);
3035     qemu_co_mutex_unlock(&bs->reqs_lock);
3036 
3037 early_exit:
3038     bdrv_dec_in_flight(bs);
3039     return ret;
3040 }
3041 
3042 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3043                                   int64_t bytes)
3044 {
3045     BdrvTrackedRequest req;
3046     int ret;
3047     int64_t max_pdiscard;
3048     int head, tail, align;
3049     BlockDriverState *bs = child->bs;
3050     IO_CODE();
3051 
3052     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3053         return -ENOMEDIUM;
3054     }
3055 
3056     if (bdrv_has_readonly_bitmaps(bs)) {
3057         return -EPERM;
3058     }
3059 
3060     ret = bdrv_check_request(offset, bytes, NULL);
3061     if (ret < 0) {
3062         return ret;
3063     }
3064 
3065     /* Do nothing if disabled.  */
3066     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3067         return 0;
3068     }
3069 
3070     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3071         return 0;
3072     }
3073 
3074     /* Invalidate the cached block-status data range if this discard overlaps */
3075     bdrv_bsc_invalidate_range(bs, offset, bytes);
3076 
3077     /* Discard is advisory, but some devices track and coalesce
3078      * unaligned requests, so we must pass everything down rather than
3079      * round here.  Still, most devices will just silently ignore
3080      * unaligned requests (by returning -ENOTSUP), so we must fragment
3081      * the request accordingly.  */
3082     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3083     assert(align % bs->bl.request_alignment == 0);
3084     head = offset % align;
3085     tail = (offset + bytes) % align;
3086 
3087     bdrv_inc_in_flight(bs);
3088     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3089 
3090     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3091     if (ret < 0) {
3092         goto out;
3093     }
3094 
3095     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3096                                    align);
3097     assert(max_pdiscard >= bs->bl.request_alignment);
3098 
3099     while (bytes > 0) {
3100         int64_t num = bytes;
3101 
3102         if (head) {
3103             /* Make small requests to get to alignment boundaries. */
3104             num = MIN(bytes, align - head);
3105             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3106                 num %= bs->bl.request_alignment;
3107             }
3108             head = (head + num) % align;
3109             assert(num < max_pdiscard);
3110         } else if (tail) {
3111             if (num > align) {
3112                 /* Shorten the request to the last aligned cluster.  */
3113                 num -= tail;
3114             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3115                        tail > bs->bl.request_alignment) {
3116                 tail %= bs->bl.request_alignment;
3117                 num -= tail;
3118             }
3119         }
3120         /* limit request size */
3121         if (num > max_pdiscard) {
3122             num = max_pdiscard;
3123         }
3124 
3125         if (!bs->drv) {
3126             ret = -ENOMEDIUM;
3127             goto out;
3128         }
3129         if (bs->drv->bdrv_co_pdiscard) {
3130             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3131         } else {
3132             BlockAIOCB *acb;
3133             CoroutineIOCompletion co = {
3134                 .coroutine = qemu_coroutine_self(),
3135             };
3136 
3137             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3138                                              bdrv_co_io_em_complete, &co);
3139             if (acb == NULL) {
3140                 ret = -EIO;
3141                 goto out;
3142             } else {
3143                 qemu_coroutine_yield();
3144                 ret = co.ret;
3145             }
3146         }
3147         if (ret && ret != -ENOTSUP) {
3148             goto out;
3149         }
3150 
3151         offset += num;
3152         bytes -= num;
3153     }
3154     ret = 0;
3155 out:
3156     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3157     tracked_request_end(&req);
3158     bdrv_dec_in_flight(bs);
3159     return ret;
3160 }
3161 
3162 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3163 {
3164     BlockDriver *drv = bs->drv;
3165     CoroutineIOCompletion co = {
3166         .coroutine = qemu_coroutine_self(),
3167     };
3168     BlockAIOCB *acb;
3169     IO_CODE();
3170 
3171     bdrv_inc_in_flight(bs);
3172     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3173         co.ret = -ENOTSUP;
3174         goto out;
3175     }
3176 
3177     if (drv->bdrv_co_ioctl) {
3178         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3179     } else {
3180         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3181         if (!acb) {
3182             co.ret = -ENOTSUP;
3183             goto out;
3184         }
3185         qemu_coroutine_yield();
3186     }
3187 out:
3188     bdrv_dec_in_flight(bs);
3189     return co.ret;
3190 }
3191 
3192 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3193 {
3194     IO_CODE();
3195     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3196 }
3197 
3198 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3199 {
3200     IO_CODE();
3201     return memset(qemu_blockalign(bs, size), 0, size);
3202 }
3203 
3204 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3205 {
3206     size_t align = bdrv_opt_mem_align(bs);
3207     IO_CODE();
3208 
3209     /* Ensure that NULL is never returned on success */
3210     assert(align > 0);
3211     if (size == 0) {
3212         size = align;
3213     }
3214 
3215     return qemu_try_memalign(align, size);
3216 }
3217 
3218 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3219 {
3220     void *mem = qemu_try_blockalign(bs, size);
3221     IO_CODE();
3222 
3223     if (mem) {
3224         memset(mem, 0, size);
3225     }
3226 
3227     return mem;
3228 }
3229 
3230 void bdrv_io_plug(BlockDriverState *bs)
3231 {
3232     BdrvChild *child;
3233     IO_CODE();
3234 
3235     QLIST_FOREACH(child, &bs->children, next) {
3236         bdrv_io_plug(child->bs);
3237     }
3238 
3239     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3240         BlockDriver *drv = bs->drv;
3241         if (drv && drv->bdrv_io_plug) {
3242             drv->bdrv_io_plug(bs);
3243         }
3244     }
3245 }
3246 
3247 void bdrv_io_unplug(BlockDriverState *bs)
3248 {
3249     BdrvChild *child;
3250     IO_CODE();
3251 
3252     assert(bs->io_plugged);
3253     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3254         BlockDriver *drv = bs->drv;
3255         if (drv && drv->bdrv_io_unplug) {
3256             drv->bdrv_io_unplug(bs);
3257         }
3258     }
3259 
3260     QLIST_FOREACH(child, &bs->children, next) {
3261         bdrv_io_unplug(child->bs);
3262     }
3263 }
3264 
3265 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3266 {
3267     BdrvChild *child;
3268 
3269     GLOBAL_STATE_CODE();
3270     if (bs->drv && bs->drv->bdrv_register_buf) {
3271         bs->drv->bdrv_register_buf(bs, host, size);
3272     }
3273     QLIST_FOREACH(child, &bs->children, next) {
3274         bdrv_register_buf(child->bs, host, size);
3275     }
3276 }
3277 
3278 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3279 {
3280     BdrvChild *child;
3281 
3282     GLOBAL_STATE_CODE();
3283     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3284         bs->drv->bdrv_unregister_buf(bs, host);
3285     }
3286     QLIST_FOREACH(child, &bs->children, next) {
3287         bdrv_unregister_buf(child->bs, host);
3288     }
3289 }
3290 
3291 static int coroutine_fn bdrv_co_copy_range_internal(
3292         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3293         int64_t dst_offset, int64_t bytes,
3294         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3295         bool recurse_src)
3296 {
3297     BdrvTrackedRequest req;
3298     int ret;
3299 
3300     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3301     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3302     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3303     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3304     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3305 
3306     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3307         return -ENOMEDIUM;
3308     }
3309     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3310     if (ret) {
3311         return ret;
3312     }
3313     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3314         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3315     }
3316 
3317     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3318         return -ENOMEDIUM;
3319     }
3320     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3321     if (ret) {
3322         return ret;
3323     }
3324 
3325     if (!src->bs->drv->bdrv_co_copy_range_from
3326         || !dst->bs->drv->bdrv_co_copy_range_to
3327         || src->bs->encrypted || dst->bs->encrypted) {
3328         return -ENOTSUP;
3329     }
3330 
3331     if (recurse_src) {
3332         bdrv_inc_in_flight(src->bs);
3333         tracked_request_begin(&req, src->bs, src_offset, bytes,
3334                               BDRV_TRACKED_READ);
3335 
3336         /* BDRV_REQ_SERIALISING is only for write operation */
3337         assert(!(read_flags & BDRV_REQ_SERIALISING));
3338         bdrv_wait_serialising_requests(&req);
3339 
3340         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3341                                                     src, src_offset,
3342                                                     dst, dst_offset,
3343                                                     bytes,
3344                                                     read_flags, write_flags);
3345 
3346         tracked_request_end(&req);
3347         bdrv_dec_in_flight(src->bs);
3348     } else {
3349         bdrv_inc_in_flight(dst->bs);
3350         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3351                               BDRV_TRACKED_WRITE);
3352         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3353                                         write_flags);
3354         if (!ret) {
3355             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3356                                                       src, src_offset,
3357                                                       dst, dst_offset,
3358                                                       bytes,
3359                                                       read_flags, write_flags);
3360         }
3361         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3362         tracked_request_end(&req);
3363         bdrv_dec_in_flight(dst->bs);
3364     }
3365 
3366     return ret;
3367 }
3368 
3369 /* Copy range from @src to @dst.
3370  *
3371  * See the comment of bdrv_co_copy_range for the parameter and return value
3372  * semantics. */
3373 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3374                                          BdrvChild *dst, int64_t dst_offset,
3375                                          int64_t bytes,
3376                                          BdrvRequestFlags read_flags,
3377                                          BdrvRequestFlags write_flags)
3378 {
3379     IO_CODE();
3380     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3381                                   read_flags, write_flags);
3382     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3383                                        bytes, read_flags, write_flags, true);
3384 }
3385 
3386 /* Copy range from @src to @dst.
3387  *
3388  * See the comment of bdrv_co_copy_range for the parameter and return value
3389  * semantics. */
3390 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3391                                        BdrvChild *dst, int64_t dst_offset,
3392                                        int64_t bytes,
3393                                        BdrvRequestFlags read_flags,
3394                                        BdrvRequestFlags write_flags)
3395 {
3396     IO_CODE();
3397     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3398                                 read_flags, write_flags);
3399     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3400                                        bytes, read_flags, write_flags, false);
3401 }
3402 
3403 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3404                                     BdrvChild *dst, int64_t dst_offset,
3405                                     int64_t bytes, BdrvRequestFlags read_flags,
3406                                     BdrvRequestFlags write_flags)
3407 {
3408     IO_CODE();
3409     return bdrv_co_copy_range_from(src, src_offset,
3410                                    dst, dst_offset,
3411                                    bytes, read_flags, write_flags);
3412 }
3413 
3414 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3415 {
3416     BdrvChild *c;
3417     QLIST_FOREACH(c, &bs->parents, next_parent) {
3418         if (c->klass->resize) {
3419             c->klass->resize(c);
3420         }
3421     }
3422 }
3423 
3424 /**
3425  * Truncate file to 'offset' bytes (needed only for file protocols)
3426  *
3427  * If 'exact' is true, the file must be resized to exactly the given
3428  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3429  * 'offset' bytes in length.
3430  */
3431 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3432                                   PreallocMode prealloc, BdrvRequestFlags flags,
3433                                   Error **errp)
3434 {
3435     BlockDriverState *bs = child->bs;
3436     BdrvChild *filtered, *backing;
3437     BlockDriver *drv = bs->drv;
3438     BdrvTrackedRequest req;
3439     int64_t old_size, new_bytes;
3440     int ret;
3441     IO_CODE();
3442 
3443     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3444     if (!drv) {
3445         error_setg(errp, "No medium inserted");
3446         return -ENOMEDIUM;
3447     }
3448     if (offset < 0) {
3449         error_setg(errp, "Image size cannot be negative");
3450         return -EINVAL;
3451     }
3452 
3453     ret = bdrv_check_request(offset, 0, errp);
3454     if (ret < 0) {
3455         return ret;
3456     }
3457 
3458     old_size = bdrv_getlength(bs);
3459     if (old_size < 0) {
3460         error_setg_errno(errp, -old_size, "Failed to get old image size");
3461         return old_size;
3462     }
3463 
3464     if (bdrv_is_read_only(bs)) {
3465         error_setg(errp, "Image is read-only");
3466         return -EACCES;
3467     }
3468 
3469     if (offset > old_size) {
3470         new_bytes = offset - old_size;
3471     } else {
3472         new_bytes = 0;
3473     }
3474 
3475     bdrv_inc_in_flight(bs);
3476     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3477                           BDRV_TRACKED_TRUNCATE);
3478 
3479     /* If we are growing the image and potentially using preallocation for the
3480      * new area, we need to make sure that no write requests are made to it
3481      * concurrently or they might be overwritten by preallocation. */
3482     if (new_bytes) {
3483         bdrv_make_request_serialising(&req, 1);
3484     }
3485     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3486                                     0);
3487     if (ret < 0) {
3488         error_setg_errno(errp, -ret,
3489                          "Failed to prepare request for truncation");
3490         goto out;
3491     }
3492 
3493     filtered = bdrv_filter_child(bs);
3494     backing = bdrv_cow_child(bs);
3495 
3496     /*
3497      * If the image has a backing file that is large enough that it would
3498      * provide data for the new area, we cannot leave it unallocated because
3499      * then the backing file content would become visible. Instead, zero-fill
3500      * the new area.
3501      *
3502      * Note that if the image has a backing file, but was opened without the
3503      * backing file, taking care of keeping things consistent with that backing
3504      * file is the user's responsibility.
3505      */
3506     if (new_bytes && backing) {
3507         int64_t backing_len;
3508 
3509         backing_len = bdrv_getlength(backing->bs);
3510         if (backing_len < 0) {
3511             ret = backing_len;
3512             error_setg_errno(errp, -ret, "Could not get backing file size");
3513             goto out;
3514         }
3515 
3516         if (backing_len > old_size) {
3517             flags |= BDRV_REQ_ZERO_WRITE;
3518         }
3519     }
3520 
3521     if (drv->bdrv_co_truncate) {
3522         if (flags & ~bs->supported_truncate_flags) {
3523             error_setg(errp, "Block driver does not support requested flags");
3524             ret = -ENOTSUP;
3525             goto out;
3526         }
3527         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3528     } else if (filtered) {
3529         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3530     } else {
3531         error_setg(errp, "Image format driver does not support resize");
3532         ret = -ENOTSUP;
3533         goto out;
3534     }
3535     if (ret < 0) {
3536         goto out;
3537     }
3538 
3539     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3540     if (ret < 0) {
3541         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3542     } else {
3543         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3544     }
3545     /* It's possible that truncation succeeded but refresh_total_sectors
3546      * failed, but the latter doesn't affect how we should finish the request.
3547      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3548     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3549 
3550 out:
3551     tracked_request_end(&req);
3552     bdrv_dec_in_flight(bs);
3553 
3554     return ret;
3555 }
3556 
3557 void bdrv_cancel_in_flight(BlockDriverState *bs)
3558 {
3559     GLOBAL_STATE_CODE();
3560     if (!bs || !bs->drv) {
3561         return;
3562     }
3563 
3564     if (bs->drv->bdrv_cancel_in_flight) {
3565         bs->drv->bdrv_cancel_in_flight(bs);
3566     }
3567 }
3568 
3569 int coroutine_fn
3570 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3571                         QEMUIOVector *qiov, size_t qiov_offset)
3572 {
3573     BlockDriverState *bs = child->bs;
3574     BlockDriver *drv = bs->drv;
3575     int ret;
3576     IO_CODE();
3577 
3578     if (!drv) {
3579         return -ENOMEDIUM;
3580     }
3581 
3582     if (!drv->bdrv_co_preadv_snapshot) {
3583         return -ENOTSUP;
3584     }
3585 
3586     bdrv_inc_in_flight(bs);
3587     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3588     bdrv_dec_in_flight(bs);
3589 
3590     return ret;
3591 }
3592 
3593 int coroutine_fn
3594 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3595                               bool want_zero, int64_t offset, int64_t bytes,
3596                               int64_t *pnum, int64_t *map,
3597                               BlockDriverState **file)
3598 {
3599     BlockDriver *drv = bs->drv;
3600     int ret;
3601     IO_CODE();
3602 
3603     if (!drv) {
3604         return -ENOMEDIUM;
3605     }
3606 
3607     if (!drv->bdrv_co_snapshot_block_status) {
3608         return -ENOTSUP;
3609     }
3610 
3611     bdrv_inc_in_flight(bs);
3612     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3613                                              pnum, map, file);
3614     bdrv_dec_in_flight(bs);
3615 
3616     return ret;
3617 }
3618 
3619 int coroutine_fn
3620 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3621 {
3622     BlockDriver *drv = bs->drv;
3623     int ret;
3624     IO_CODE();
3625 
3626     if (!drv) {
3627         return -ENOMEDIUM;
3628     }
3629 
3630     if (!drv->bdrv_co_pdiscard_snapshot) {
3631         return -ENOTSUP;
3632     }
3633 
3634     bdrv_inc_in_flight(bs);
3635     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3636     bdrv_dec_in_flight(bs);
3637 
3638     return ret;
3639 }
3640